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Abstract: In this paper, an effective on-line method for induction 
motor parameter identification, especially rotor parameters, based on 
the H-G diagram is presented for motor thermal monitoring purpose. 
The H-G diagram is established from the analysis of the induction 
motor measurement of active and reactive power consumption for 
each operating point. Computer simulations and experimental tests, 
carried out for a 4-kW four-pole squirrel cage induction motor, 
provide an encouraging validation of the proposed thermal 
monitoring technique. The process should be refined for a possible 
industrial application. 
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I. INTRODUCTION 
 

 Because of the requirement that induction motors 
operating in locations which can be exposed to flammable or 
explosive atmospheres must operate below the autoignition 
temperature of the gaseous mixture, the accurate 
determination of the rotor temperature is critical. However, 
one obstacle appears to be the difficulties in accessing 
information, particularly, from the rotor while the induction 
motor is in normal operation. Certainly the availability of 
continuous temperature profile across the rotor will contribute 
much to comprehensive condition monitor. 
 It is well known that numerous modern electrical motors 
are often working at their rated point and temporary with 
overload cycles. Therefore, it becomes necessary to protect 
and to monitor the motor winding temperature against damage 
by overheating [1-2]. Conventionally and in some cases, this 
protection is achieved by simple schemes which permit to 
detect when the Joule effect (i2t) exceeds a certain critical 
values. This can be obtained, for example, by means of 
universal technique like thermal sensor located at the stator 
slots. 
 The actual trends for thermal monitoring of an induction 
motor is achieved without thermal and mechanical sensors. 
Parameters presently monitored on induction motors include 
terminal voltage, current and rotor speed. Recently, much 
attention has been given to the identification of instantaneous 
value of the rotor parameters, especially the rotor resistance 

which leads to sufficient information on the rotor temperature. 
So far, several approaches have been presented [3-9]. 
 This paper describes a new method of rotor parameters 
identification based on the real-time analysis of the induction 
motor active and reactive power consumption acquisition. 
This method is based on the so-called H-G diagram [10], 
allowing one real-time processing of the induction motor state 
saturation and temperature for each operating point. The 
distinct features of the proposed approach lies in its simplicity 
and quite accuracy. 

 

II. THE H-G DIAGRAM PRINCIPLE 
 

 An induction motor can be represented by the following 
differential equations (written in complex form) in - axes 
fixed in the stator. 
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Where 
 

 Vs
   =  complex stator voltage 

  I Is r   =  complex stator (rotor) current 

 Rs (Rr)  =  stator (rotor) resistance 

 Ls (Lr)  =  cyclic stator (rotor) inductance 

 M   =  cyclic mutual inductance stator-rotor 

    =  rotor frequency 

 s   =  time derivative operator 

 j   =  j  1 . 

 

 Note that all rotor parameters and variables are referred to 
the stator side. 



 In quasi-steady state, the s-operator becomes js, where s 
is the supply frequency. Then, (1) and (2) are modified as 
follows. 
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where sl = s   is the slip frequency. 
 From (3) and (4), we can express the complex input 
impedance. 

 

   Z
V

I
R G j Hin

s

s
s s sl s sl       ,     (5) 

 
where 

 

G
M R

R L
Msl

sl r

r r sl

( ) 
 2 2 2 ,         (6) 

 

H L
M

R L
Lsl s

sl

r r sl
r( ) 

  
2 2

2 2 2 .        (7) 

 
 The G(sl) and H(sl) functions have inductance 
dimension and can represent, with a quite good 
approximation, respectively, the active power consumption, 
generating the motor torque and the reactive power 
consumption, generating the magnetization flux. Furthermore, 
for a given sinusoidal stator supply, corresponding to a given 
saturation state, the G(sl) and H(sl) functions vary together 
describing a circle in the so-called H-G plane with the load 
variation as illustrated by Fig. 1 [4]. This circle is graduated 
with the slip frequency increasing from the pure synchronous 
point H0 to the infinite slip frequency point H. These two 
points are theoretical ones and they could be obtained by a 
circular extrapolation once the experimental circle is plotted. 
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Fig. 1. The H-G diagram. 

 Generally, these two points correspond, respectively, to a 
fully loaded motor, with the slip frequency slnl (―nl‖: no 
load) and to any other load, with the slip frequency sl. 
Therefore, one can obtain simultaneously the cyclic stator 
inductance Ls and the total leakage coefficient  as follows. 

 
Ls = H0,              (8) 
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III. H-G DIAGRAM BASED 
ROTOR PARAMETERS IDENTIFICATION 

 
A. Saturation Effect 

 

 Assuming that  is quite small such as H  0, circle 
diameters become directly a function of the stator flux s and 
then a function of the induction motor saturation state, as it is 
shown by (10). 
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 When the flux leakage increases with the machine 
saturation state, the (H,0) point moves at the right of the H-
axis [10-11]. H0 fluctuates with the machine saturation state 
making the (H0,0) point moving at the left of the H-axis, when 
the stator flux s increases. Figure 2 shows then the H0 
fluctuations versus the induction motor saturation state. 

 

B. Identification Procedure 
 

 The stator voltage and current - components are 
obtained by Concordia transformation. The active power 
consumption P and the reactive power consumption Q are 
then given by the following equations. 

 

 
 

Fig. 2. Experimental magnetization characteristic. 
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Q V I v i v is s s s s s       .         (12) 

 

 Therefore, for each induction motor operating point (with 
―i‖ index), H(sl) and G(sl) are given by 
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where 
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 The stator flux modulus can be deduced from terminal 
signals with a known stator resistance. Then the 
magnetization characteristic H0 = H0(s), given in Fig. 2, 
allows the determination of the cyclic inductance Ls. 
Moreover, knowing the (Hi,Gi) points, one can perform an on-
line computation of the H-G circle position. Consequently the 
total leakage coefficient  is obtained, according to (9), from 
the plotted circle. Moreover, one can compute the rotor time 
constant r using (6) and (7). 
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 Considering an equitable share of the flux leakage, the 
rotor resistance could then be deduced from the following 
equation [12]. 
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It should be noticed that rotor resistance is identified with a 
real rotor frequency. This allows us to overcome the skin 
effect. 
 The mutual inductance M can be expressed, according to  definition. 

 

 M H
H

H
  

0
0

1           (18) 

 

 The proposed identification procedure is illustrated by 
Fig. 3. 
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Fig. 3. The proposed rotor parameter identification technique. 

 

C. Stator Resistance Variation Effect 
 

 In the proposed identification method, the stator resistance 
is off-line determined by a classical dc-test. For a normal 
operating induction motor, one have 

 
G(sl) s >> Rs.            (19) 

 

Hence, the stator resistance has not big sensitive on the rotor 
parameter determination. It is sufficient to take its rated value 
without any correction. However, it should be noticed that in 
general the stator resistance is corrected for operating 
temperature [IEEE 112]. Numerical simulations have been 
carried out to illustrate the stator resistance variation effect, 
where the real rotor resistance is simulated by the following 
exponential profile intended to cover the temperature effect 
[9]. 
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The real stator resistance is deduced from [13]. 
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Rsn and Rrn are the rated values of the stator and rotor 
resistance as given by the induction motor manufacturer. 
 The estimated error on the identified rotor resistance, with 
and without taking into account the thermal effect on the 
stator resistance, is about 2% as illustrated by Fig. 4. 

 

IV. INDUCTION MOTOR THERMAL MONITORING 
 

A. The Experimental Set Up 
 

 The proposed rotor parameter identification technique has 
been tested on a 4-kW squirrel cage induction motor with a dc 
generator coupled on its shaft. It is then used for the induction 
motor thermal monitoring. Figure 5 shows a view of the 
experimental set up. 
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Fig. 4. Stator resistance effect on the rotor resistance identification. 

 

 
 

Fig. 5. The experimental set up. 

B. Experimental Results 
 

 Figure 6 shows experimental results of the rotor resistance 
identification for a load corresponding to 1440 rpm, where 
each curve corresponds to a resistance identification, during 1 
s, done at 0, 60, 240 and 300 min in order to show the thermal 
effect on the rotor resistance. It should be noticed that the 
computed data are low-pass filtered with a time constant 
equals to 50 ms. 
 The thermal effect on the rotor resistance is clearly 
illustrated by Figs. 7 and 8. In fact, the steady-state rotor 
resistance, identified every 5 min, is compared to the steady-
state temperature sensed with a diode-based thermal sensor 
placed inside the stator winding, for a total of 4 hours 
induction motor operating time. In each case, it is found that 
the thermal time constant is approximately the same and of 
about 1 hour. The identification process could therefore be 
considered quite satisfactory. 
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Rr  identification after 60 min

Rr  identification after 240 min
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Fig. 6. Specific rotor resistance identification at 1440 rpm. 

 

 
 

Fig. 7. Rotor resistance identification at 1440 rpm. 
(―—‖ interpolated curve, ―+ +‖ experimental curve) 



 
 

Fig. 8. Measured temperature at 1440 rpm. 
(―—‖ interpolated curve, ―+ +‖ experimental curve) 

 
 It should be noticed that Fig. 8 illustrates the stator 
winding temperature. In fact, the French Electricity Board 
(EDF) states that the rotor temperature is about 10°C greater 
than the stator one [9], [14]. Using this approach, one can 
easily estimate the rotor winding temperature. 
 Experimental tests have been also carried out to verify the 
validity of (18). In fact, Fig. 9 clearly shows that the mutual 
inductance is well identified during the 4 hours motor 
operation and it is not altered by any thermal effect. 
It is easy to monitor the rotor temperature from its resistance 
identification and then its temperature dependence, which is 
given by 

  R R T 0 1  ,           (22) 

 
where R0  = resistance at 25°C 
    = resistance temperature coefficient 
  T  = temperature increase. 

 

 
 

Fig. 9. Mutual inductance identification at 1440 rpm. 

 Using this equation and Fig. 7, the temperature gradient is 
easily calculated. In fact, it is about 105°C. This value is 
approximately equal to the experimental temperature increase 
inside the induction motor as it is deduced from Fig. 8, which 
is about 110°C. 

 

C. Discussion 
 

 The above simulation and experimental results 
comparisons have to be refined so as to increase the method 
reliability. In fact, the EDF statement certainly would not 
apply to enclosure or design, especially NEMA design D 
machines with 8-13% slip. 

 

V. CONCLUSION 
 

 The H-G diagram method shows that it is possible to 
determine the induction motor parameters taking into account 
its saturation and temperature state. In this case, the rotor 
resistance is identified with a real rotor frequency to 
overcome the skin effect. In fact, with a classical locked rotor 
test, this parameter is given with a rotor frequency equals to 
the stator one. 
 Computer simulations and experimental tests, carried out 
for a 4-kW four-pole squirrel cage induction motor, provide 
an encouraging validation of the proposed thermal monitoring 
technique. In fact, it seems that the given induction motor 
temperature information is quite improved using the H-G 
diagram method. However, the thermal monitoring process 
should be refined so as to increase the method reliability 
which will lead to a potential industrial application. 

 

APPENDIX 
RATED DATA OF THE TESTED INDUCTION MOTOR 

 

 

 Rated values    Power    4   kW 
       Frequency   50   Hz 
       Voltage (/Y)  220/380  V 
       Current (/Y)  15/8.6  A 
       Speed    1440  rpm 
       Pole pair (p)   2 
 Rated parameters   Rs     1.150   
       Rr     1.100   
       l     0.013  H 
       M     0.203  H 
 Constants         0.004  1/°C 
       J     0.042  kg.m2 

       f     0.032   IS 
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