
HAL Id: hal-01052437
https://hal.science/hal-01052437v1

Submitted on 25 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Consistent Shared Data Types: Beyond Memory
Matthieu Perrin, Matoula Petrolia, Achour Mostefaoui, Claude Jard

To cite this version:
Matthieu Perrin, Matoula Petrolia, Achour Mostefaoui, Claude Jard. Consistent Shared Data Types:
Beyond Memory. [Research Report] Université de Nantes. 2014. �hal-01052437�

https://hal.science/hal-01052437v1
https://hal.archives-ouvertes.fr

Consistent Shared Data Types: Beyond Memory

Matthieu Perrin
LINA – University of Nantes

2 rue de la Houssinière
Nantes, France

matthieu.perrin@univ-
nantes.fr

Matoula Petrolia
LINA – University of Nantes

2 rue de la Houssinière
Nantes, France

stamatina.petrolia@univ-
nantes.fr

Achour Mostéfaoui
LINA – University of Nantes

2 rue de la Houssinière
Nantes, France

achour.mostefaoui@univ-
nantes.fr

Claude Jard
LINA – University of Nantes

2 rue de la Houssinière
Nantes, France

claude.jard@univ-
nantes.fr

ABSTRACT
In large scale distributed systems, shared objects provide a
valuable abstraction of communication. However, these ob-
jects can only be used reliably if they are specified precisely.
Until now, a lot of work has been done on shared memory, to
the detriment of other objects. This paper aims at extending
this work to any update-query abstract data type, the types
in which the operations are updates or queries. A shared ob-
ject should be fully specified by two complementary aspects:
a sequential specification that defines how the updates in-
fluence the queries, and a consistency criterion that discrim-
inates which distributed histories are eligible according to
the sequential specification. This paper formalizes the no-
tions of sequential specification and consistency criterion. It
then extends the definition of many consistency criteria, in-
cluding causal consistency, to all update-query abstract data
types. It also explores the notion of composability for con-
sistency criteria and proves that no consistency criterion be-
tween pipelined consistency and sequential consistency is
composable, which includes causal consistency.

Categories and Subject Descriptors
E.1 [Data]: Data structures—Distributed data structures

General Terms
Design, Reliability, Theory

Keywords
Abstract data types, causal consistency, composability, con-
sistency criteria, eventual consistency, pipelined consistency,
sequential consistency.

1. INTRODUCTION

Overview. Distributed systems are often viewed as more
difficult to program than sequential systems because they re-
quire to solve many issues due to communication. Shared
objects, that can be accessed concurrently by the processes of
the system, can be used as a practical abstraction of commu-
nications to let processes enjoy a more general view of the
system. A precise specification of these objects is essential
to ensure their adoption as well as reliability of distributed
systems.

Many models have been proposed to specify shared mem-
ory, and several inventories [17, 1] can be found in the lit-
erature. In [12], Lamport defines linearizable registers, that
ensures that everything appears as if all the operation where
executed instantaneously at a point situated between the mo-
ment when the operation is called and the moment when it
returns. Sequential consistency [11] is a little weaker: it only
guaranties that all the operations appear totally ordered, and
that this order is compatible with the program order, the order
in which each process performs its own operations.

These strong consistency criteria are very expensive to im-
plement in message-passing systems. In terms of latency, it
is necessary to wait for answers for the reads or the writes
for sequential consistency [13] and for all kinds of operations
in the case of linearizability [3]. In terms of fault tolerance,
strong hypothesis must be respected by the system: it is im-
possible to resist to partitioning [5, 8]. Many weaker con-
sistency criteria have been proposed to solve this problem.
Among them, PRAM [13], causal memory [2] and eventual
consistency [19] are best documented. PRAM is a local con-
sistency criterion: each process only sees its own reads and
all the writes, and all these operations appear to it as totally
ordered by an order that respects the program order. Causal
consistency strengthens PRAM by imposing to these total or-
ders to be compatible with a partial order that is common to
all processes, the causal order, that not only contains the pro-
cess order, but also a writes-into relation, that encodes data
dependencies between the write and the read operations.
Eventual consistency expects that, if all the processes stop
writing, they will eventually read the same values.

Motivation. Memory is a good abstraction in sequential
programming models because all kinds of objects can be im-
plemented using variables. Things are more complicated for
distributed computing because of race conditions: complex
concurrent editing can often lead to inconsistent states. Crit-
ical sections offer a generic solution to this problem but at
a high cost: they reduce parallelism and they are unable to
tolerate faulty behaviors. A better solution is to design the
shared objects directly, without using shared memory.

We believe that an object should be totally specified by two
facets: a sequential specification given by an abstract data
type, and a consistency criterion, that defines a link between
distributed histories and sequential specifications. Sequen-
tial specifications are very easy to design because they are
based on the well studied and understood notions of lan-
guages and automata. This makes possible to apply all the
tools developed for sequential systems, from their simple
definition using structures and classes to the most advanced
techniques like model checking and formal verification. Se-
quential objects cannot be used directly in distributed envi-
ronments. A consistency criterion is necessary to adapt the
sequential specification to the environment. Graphically, we
can imagine a consistency criterion as a way to take a picture
of the distributed histories so that they look sequential.

The definition of eventual consistency is independent from
memory, but it fails to fully specify shared objects and re-
quires additional non-intuitive and error-prone distributed
specification techniques [?]. Other consistency criteria, such
as linearizability and sequential consistency, have already
been defined for many data types [10], including memory.
The definition of causal memory is based on a semantic
matching between the reads and the writes, that does not ex-
ist so clearly for other objects. For example, the value of a
counter depends on all the increments and decrements made
on it from the beginning. Because of the ad hoc substitute for
the writes-into order it requires for each data type, this ap-
proach cannot be used for a generic definition of causal con-
sistency. Moreover, Ahamad’s definition has a serious limit
even for memory: it does not handle multiple writings of the
same value correctly. To our knowledge, the only solution to
this issue is to forbid those editions [16], which is very dam-
aging for the ease of use of the memory.

Contributions of the paper. This paper aims at introduc-
ing a clear distinction between the notions of sequential spec-
ification and consistency criteria that are both necessary to
fully specify shared objects. It has four main contributions.
It (1) formalizes the notions of abstract data types and consis-
tency criteria and (2) extends the definitions of many famous
consistency criteria to a larger class of abstract data types.
In particular, it (3) explores the limits of causal memory and
gives a new definition of causal consistency. It also (4) for-
malizes the notion of composability and proves several re-
sults on it.

The remainder of this paper is organized as follows. Sec-
tion 2 formalizes the type of objects we target in this paper as
well as the notion of consistency criteria and studies general
properties on them. Section 3 illustrates the formalism with
several examples of consistency criteria. Finally, Section 4
concludes the paper.

2. SPECIFYING SHARED OBJECTS
In distributed systems, sharing objects is a way to abstract
communications between processes. The abstract type of
these objects has a sequential specification, defined in this pa-
per by a transition system, that characterizes the sequential
histories allowed for this object. As shared objects are imple-
mented in a distributed system, typically using replication,
the events in a distributed history are partially ordered. A
consistency criterion is necessary to make the link between
the sequential specifications and the distributed executions
that invoke them, by a characterization of the histories that
are admissible for a program that uses the objects, depending
on their type.

2.1 Update-query abstract data types
We use transition systems to specify sequential abstract data
types. Our modeling of update-query abstract data type is
intermediate between Mealy machines [15] and transition
systems. We separate the input alphabet into two classes of

operations: the updates and the queries1. On the one hand,
the updates can have a side-effect that usually affects every-
one, but do not return a value. They correspond to transi-
tions between abstract states in the transition system. On the
other hand, the queries can only read the state of the object
but not modify it. Like in mealy machines, they produce an
output that depends on the state on which they are executed.

Definition 1. An update-query abstract data type (UQ-ADT)
is a 7-tuple T = (U,Qi, Qo, S, s0, µ, ϕ) such that:

• U is a countable set of update operations;

• Qi and Qo are countable sets called input and output
alphabets. Q = Qi × Qo is the set of query operations.
A query operation (qi, qo) is denoted qi/qo;

• S is a countable set of states;

• s0 ∈ S is the initial state;

• µ : S × U → S is the transition function that specifies
the updates;

• ϕ : S×Qi → Qo is the output function that specifies the
queries.

We consider the UQ-ADTs up to isomorphism as the names
of the states are never used in our work. The set of all the
UQ-ADTs is denoted by T .

An infinite sequence of operations (li)i∈N ∈ (U ∪Q)ω is rec-
ognized by T if there exists an infinite sequence of states
(si)i≥1 ∈ Sω such that for all i ∈ N, µ(si, li) = si+1 if li ∈ U
or si = si+1 and ϕ(si, qi) = qo if li = qi/qo ∈ Q. The set of all
infinite sequences recognized by T and their finite prefixes is
denoted by L(T). Informally, L(T) contains the sequential
histories that are admissible for T .

1Some objects, such as Compare&Swap and Test&Set for ex-
ample, have operations that are both an update and a query.
Such objects are out of the scope of this paper.

Suppose one wants to use several objects together in their
program. We can model the composition of these objects as
another object on which it is possible to apply the operations
of both objects. The composition of two UQ-ADTs T1 and T2

is a parallel, asynchronous product of transitions systems. A
word is recognized by the composition if it is the interleav-
ing of two words recognized by T1 and T2 respectively. This
composition is associative and commutative, and there is one
neutral element T1 that contains one state and no transition
and an absorbing element T0 that contains no state and no
transition.

Definition 2. We define the composition of two UQ-ADTs
(U,Qi, Qo, S, s0, µ, ϕ)× (U ′, Q′

i, Q
′
o, S

′, s′0, µ
′, ϕ′) as the UQ-

ADT (U ⊔ U ′, Qi ⊔ Q′
i, Qo ∪ Q′

o, S × S′, s′0, µ
′′, ϕ′′) with,

for all s ∈ S, s′ ∈ S′, u ∈ U , u′ ∈ U ′, q ∈ Qi and
q′ ∈ Q′

i, µ
′′((s, s′), u) = T (s, u), µ′′((s, s′), u′) = µ′(s′, u′),

ϕ′′((s, s′), q) = ϕ(s, q) and ϕ′′((s, s′), q′) = ϕ′(s′, q′). The
symbol ⊔ stands for the disjoint union of sets.

We illustrate UQ-ADTs by two examples. We first give the
full sequential specification of the register and the memory.
Then, we define the graph as a class, like in sequential object-
oriented programming languages.

The integer register Mx can be accessed by a write update
operation wx(n), where n ∈ N and a read query operation
rx that returns the last value written, if there is one, or the
default value 0 otherwise. The integer memory MX is the
collection of the integer registers of X . More formally, they
correspond to the UQ-ADTs given in Example 1.

Example 1. Let x be any symbolic register name. We define
the integer register on x by the UQ-ADT:

Mx = ({wx(n) : n ∈ N}, {rx},N,N, 0, µ, ϕ)

with, for all n, p ∈ N, µ(n,wx(p)) = p and ϕ(n, rx) = n.

Let X be a countable set of register names, we define the in-
teger memory on X by the UQ-ADT:

MX =
∏

x∈X

Mx.

Figure 1 presents another more usual way to define sequen-
tial specifications. Here, the graph type G is specified by a
class. A graph is constituted of a set of vertices, here repre-
sented by integers, and a set of edges, that are pairs of ver-
tices. It provides four update operations, to insert and delete
edges and vertices, and two query operation that allow to
check if a vertex or an edge is present in the graph and return
a boolean value. A graph must remain consistent: it cannot
contain edges between vertices that do not exist in the graph.
To ensure that, vertices are inserted or edges are deleted to
avoid inconsistencies. An UQ-ADT can easily been deduced
from this specification. The states and the operations are de-
fined by the member variables and methods of the class, the
output alphabet contains all the values that can be returned
by the queries, here the booleans values true (⊤) and false
(⊥), the transition function is defined by the implementa-
tion of the update methods and the output function by the
query methods. We consider the pruned transition system,
in which all the states are reachable.

class G
var vertices ⊂ N← ∅;
var edges ⊂ N× N← ∅;
update Iv (v ∈ N) /* insert vertex */

vertices← vertices ∪ {v};
end
update Dv (v ∈ N) /* delete vertex */

edges← edges \ (V × {v} ∪ {v} × V);
vertices← vertices \ {v};

end
query Qv (v ∈ N) ∈ {⊥,⊤} /* get vertex */

return v ∈ vertices;
end
update Ie (v1 ∈ N, v2 ∈ N) /* insert edge */

vertices← vertices ∪ {v1, v2};
edges← edges ∪ {(v1, v2)};

end
update De (v1 ∈ N, v2 ∈ N) /* delete edge */

edges← edges \ {(v1, v2)};
end
query Qe (v1 ∈ N, v2 ∈ N) ∈ {⊥,⊤} /* get edge */

return (v1, v2) ∈ edges;
end

end

Figure 1: Sequential specification of the graph

2.2 Distributed histories
During an execution, the participants call the operations of
an object, an instance of the abstract data type, which pro-
duces a set of events labelled by the operations of the abstract
data type. In general, the computing entities are sequential,
which imposes a strict ordering between their own opera-
tions, so the events are partially ordered. For example, in the
case of communicating sequential processes, an event a pre-
cedes an event b in the program order if they are executed by
the same process in that sequential order. In this case, the
processes correspond to the maximal chains of the history.
This representation of distributed histories is generic enough
to model a large number of distributed systems, such as peer-
to-peer systems where peers join and leave permanently, or
more complex modern systems in which new threads are cre-
ated and destroyed dynamically.

Definition 3. A distributed history (or simply history) is a
5-tuple H = (U,Q,E,Λ, 7→) such that:

• U and Q are disjoint countable sets of update and query
operations, and all queries are in the form qi/qo;

• E is a countable set of events;

• Λ : E → U ∪Q is a labelling function;

• 7→⊂ E × E is a partial order called program order, such
that for all e ∈ E, {e′ ∈ E : e′ 7→ e} is finite, i.e. all
event has a finite past.

The set of all the distributed histories is denoted by H .

Let H = (U,Q,E,Λ, 7→) be a distributed history. We now
introduce a few notations.

• The update and query events of H are denoted by
UH = {e ∈ E : Λ(e) ∈ U}, QH = {e ∈ E : Λ(e) ∈ Q}.

• Two events e and e′ are concurrent (denoted e||e′) if
they are not comparable for 7→, i.e. e 67→ e′ and e′ 67→ e.

• PH denotes the set of the maximal chains of H :

PH =

{

p ⊂ E :
∀e, e′ ∈ p, (e 7→ e′ ∨ e′ 7→ e)
∧∀e′′ ∈ E \ p, (e||e′′ ∨ e′||e′′)

}

.

In the case of sequential processes, each p ∈ PH cor-
responds to the events produced by a process. In the
remainder of this article, we use the term "process" to
designate such a chain, even in models that are not
based on a collection of communicating sequential pro-
cesses.

• We also define some projections on the histories. The
first one allows to withdraw some events: for F ⊂ E,
HF = (U,Q, F,Λ|F , 7→ ∩(F × F)) is the history that
contains only the events of F . The second one allows
to replace the program order by another order →: if
→ ∩(E×E) respects the definition of a program order,
H→ = (U,Q,E,Λ,→ ∩(E×E)) is the history in which
the events are ordered by→. Note that the projections
commute, which allows the notation H→

F .

• A history in which a composition of two objects is
used can also be seen as the composition of two sub-
histories that only contain the events of one of the ob-
jects. Let H = (U,Q,E,Λ, 7→) be a distributed history
and {E1, E2} be a partition of E. We say that H is a
composition of HE1

and HE2
. There is more than one

way to compose histories, so the composition of two
histories is a set of histories. The set of all the composi-
tions of H1 and H2 is denoted by H1 ×H2.

• Finally, a linearization of H corresponds to a sequential
history that contains the events of H in an order con-
sistent with the program order. More precisely, it is a
word Λ(e0) . . .Λ(en) . . . such that {e0, . . . , en, . . .} = E
and for all i and j, if i < j, then ej 67→ ei. We denote by
lin(H) the set of all linearizations of H .

2.3 Consistency criteria
A consistency criterion characterizes which histories are ad-
missible for a given data type. More formally, it is a func-
tion C that associates a set of consistent histories C(T) to
all UQ-ADTs T = (U,Qi, Qo, S, s0, µ, ϕ) such that, for all
H = (U ′, Q′, E,Λ, 7→) in C(T), U ′ ⊂ U and Q′ ⊂ Qi × Qo.
The set of all consistency criteria is denoted by C . A shared
object is C-consistent for a consistency criterion C and a UQ-
ADT T if all the histories it admits are in C(T).

We say that a criterion C1 is stronger than a criterion C2, de-
noted C2 ≤ C1, if for all T ∈ T , C1(T) ⊂ C2(T). A strong
consistency criterion guaranties stronger properties on the
histories it admits, so a C1-consistent implementation can al-
ways be used instead of a C2-consistent implementation of
the same abstract data type if C2 ≤ C1.

Sometimes, one wants an object to respect several consis-
tency criteria simultaneously (e.g. a causally consistent and
eventually consistent memory). We define a join operator
C1+C2 : T 7→ C1(T)∩C2(T). (C ,≤,+) is a join-semilattice.
It has a minimal element, C⊥, that accepts all the histories for
all the objects and a maximal element, C⊤, that accepts none
of them.

We can now define the composition of two consistency crite-
ria. If C1 and C2 are two consistency criteria, C1×C2 denotes
the set of the histories that are the composition of a C1 con-
sistent history and a C2 consistent history.

Definition 4. Let C1 and C2 be two consistency criteria. We
define C1 × C2 as the strongest consistency criterion such
that, for all T1, T2 ∈ T and for all histories H1 ∈ C1(T1)
and H2 ∈ C2(T2), H1 × H2 ⊂ (C1 × C2)(T1 × T2). This
strongest criterion exists since the property that we require
on it is conserved by +.

(C ,×) is a commutative monoid (i.e. × is commutative and
associative and C⊤ is neutral), C⊥ is absorbing,× is distribu-
tive for + (i.e. C1 × (C2 + C3) = C1 × C2 + C1 × C3), ≤ is
compatible with × (i.e. C1 ≤ C2 ⇒ C1 ×C3 ≤ C2 ×C3) and
C1 × C2 ≤ C1.

We use the classical power notation Cn for the composi-
tion of n C-consistent objects, and the compositional closure
C⋆ : T 7→

⋃

n∈N
Cn(T) stands for the composition of any

number of C-consistent objects. Intuitively, C⋆ is the limit of
Cn when n grows to infinity.

One could expect that a program that uses two C-consistent
objects together will remain C-consistent with respect to the
composition of the objects. This property, called composabil-
ity, is an important property because it allows to program in
a modular way, but only C2 ≤ C is true in general.

Definition 5. A consistency criterion C is composable if it is
idempotent for composition, i.e. C2 = C.

As we will see in Section 3, composability is difficult to
achieve. The reciprocal, however, is a natural request to
all consistency criteria: if a history is globally consistent, it
should also be consistent for all the objects that are involved
in it. Decomposability means that, for all T1, T2 ∈ T and all
history H ∈ C(T1 × T2), there exists histories H1 ∈ C(T1),
H2 ∈ C(T2) such that H ∈ H1 × H2. All the consistency
criteria defined thereafter are decomposable.

3. COMMON CONSISTENCY CRITERIA
We now illustrate the concept of consistency criteria with
common examples. We first illustrate the formalism with
sequential consistency [11] and its derivatives, cache con-
sistency [9] and linearizability [10]. We then formalize
pipelined consistency [13], that is very close in its definition
to local consistency. Causal consistency [2] is more compli-
cated to extend because its definition is closely related to
the semantics of the operations on the registers. We finish
this presentation with eventual consistency [19] and strong
eventual consistency [18]. All these criteria are illustrated on
small examples on the memory and graph data types.

•
Ie(1, 2)

•
Qv(3)/⊤

•
Ie(2, 3)

•
Qv(1)/⊥

(a) SC(G)

•
wx(1)

•
ry/0

•
wy(1)

•
rx/0

(b) SC⋆, not SC

Figure 2: A sequential history for an instance of G and a cache
consistent history for an instance of M{x,y} that is not se-
quentially consistent

3.1 Sequential consistency
Sequential consistency was originally defined by Lamport in
[11] as: “the result of any execution is the same as if the oper-
ations of all the processors were executed in some sequential
order, and the operations of each individual processor ap-
pear in this sequence in the order specified by its program“.
In our formalism, such a sequence is a word of update and
query operations that has two properties: it is correct with
respect to the sequential specification of the object (i.e. it be-
longs to L(T)) and the total order is compatible with the pro-
gram order (i.e. it belongs to lin(H)).

Definition 6. A history H is sequentially consistent (SC) with
an UQ-ADT T if lin(H) ∩ L(T) 6= ∅.

Figure 2a shows a sequentially consistent history. It can be
viewed as two processes sharing a graph of G. The first pro-
cess first inserts the edge (1, 2) and then reads that the ver-
tex 3 was inserted, while the second process inserts the edge
(2, 3) and then reads that the vertex 1 was not inserted yet.
The word Ie(2, 3).Qv(1)/⊥.Ie(1, 2).Qv(3)/⊤ is in both lin(H)
and L(G), so this history is sequentially consistent.

The history of Figure 2b is very close, but the shared object is
a memory, and each query returns the initial value of the reg-
ister. This history is not sequentially consistent because the
first event of any linearization must be a write which pre-
cedes the read of the same variable, that should return a 1.
To be sequentially consistent, at least one read should return
a 1.

Cache consistency. The compositional closure seems to be
an easy way to define composable consistency criteria, as
C⋆ is the strongest composable consistency criterion weaker
than C. However, this criterion can be very weak. For exam-
ple, SC⋆, known as cache consistency [9] or simply coherence
[7] for memory in the literature, does not allow any guaranty
of synchronization between the variables.

As rx/0.wx(1) is a possible linearization for the events on
Mx and ry/0.wy(1) is a possible linearization for the events
on My , the history of Figure 2b is cache consistent for
M{x,y} =Mx ×My .

Linearizability: the case of real time. Linearizability is
very close to sequential consistency, as it also imposes the
existence of a total order on all the events in the history. Real
time must be respected by this total order in linearizability:
if an event e1 finishes before another event e2 starts, then e1
must precede e2 in the total order.

p1
e1 e3

p2
e2 e4

•
e1

•
e3

•
e2

•
e4

Figure 3: The program order is defined considering real time
dependencies. We cannot have both e1||e4 and e2||e3

We did not introduce real time in our model yet because it
is not relevant for most consistency criteria, and no global
clock can be implemented in asynchronous distributed sys-
tems. However, it is possible to model real-time dependen-
cies between events directly in the histories, by only consid-
ering interval orders [6] for the program orders. In this para-
graph, we change the modeling of the executions: an event
e1 precedes an event e2 in the program order if and only if e1
returns before e2 starts. Let us consider Figure 3. A process
p1 produces the events e1 and e3 while a process p2 produces
the events e2 and e4. It is impossible that e3 starts before
e2 finishes and e4 starts before e1 finishes at the same time,
which implies e1 7→ e4 or e2 7→ e3 if the program order mod-
els real time.

Definition 7. A history (U,Q,E,Λ, 7→) is real time consistent
(RT) if (e1 7→ e3 ∧ e2 7→ e4) ⇒ (e1 7→ e4 ∨ e2 7→ e3) for all
e1, e2, e3, e4 ∈ E.

Real time consistency is not composable. However, if real
time is respected during the composition of sequentially con-
sistent histories, the composed histories are also sequentially
consistent.

PROPOSITION 1. SC2 +RT = SC +RT.

PROOF. It is clear that SC2 + RT ≤ SC + RT and that
RT ≤ SC2 + RT . We prove that SC ≤ SC2 + RT . Let
T1, T2 ∈ T , H1 = (U1, Q1, E1,Λ1, 7→1) ∈ SC(T1) and
H2 = (U2, Q2, E2,Λ2, 7→2) ∈ SC(T2). We suppose that
H = (U,Q,E,Λ, 7→) ∈ H1 × H2 ∩ RT (T1 × T2). We prove
that H ∈ SC(T1 × T2).

By definition of sequential consistency, for i ∈ {1, 2} there
is a total order ≤i on Ei and a unique word li such that

lin
(

H≤i
i

)

∩L(Ti) = {li} and 7→i⊂≤i. For sake of simplicity,

we extend ≤i on E by taking its reflexive closure. We pose
◦ =≤1 ∪ ≤2 ∪ 7→ and • as the transitive closure of ◦. We first
prove that • is antisymmetric.

Let e1 ◦ e2 ◦ ... ◦ en−1 ◦ en ∈ E, with e1 ∈ E1. We
prove by induction on n that there are e, e′ ∈ E such that
e1 ≤1 e 7→ e′ ≤2 en (and by symmetry, e1 ≤2 e 7→ e′ ≤1 en
if e1 ∈ E2). If n = 1, we have e1 ≤1 e1 7→ e1 ≤2 e1. Suppose
the result is true for n and let us examine it for n+1. We have
e1 ≤1 e 7→ e′ ≤2 en ◦ en+1. There are three cases for ◦.

• If en ≤2 en+1, by transitivity, e1 ≤1 e 7→ e′ ≤2 en+1.

• If en ≤1 en+1 and en 6= en+1, then en ∈ E1 so e′ = en.
Moreover, e ∈ E1 because e1 ≤1 e, so e ≤1 en. We have
e1 ≤1 en+1 7→ en+1 ≤2 en+1.

• If en 7→ en+1, by real-time, either e 7→ en+1 or en 7→ e′

holds. In the first case, e1 ≤1 e 7→ en+1 ≤2 en+1. In the
second case, en ≤2 e′ ≤2 en, so e′ = en. By transitivity
of 7→, e1 ≤1 e 7→ en+1 ≤2 en+1.

•
Iv(1)

•
Iv(2)

•
Ie(1, 2)

•
Qv(1)/⊤

•
Qe(1, 2)/⊤

•
Dv(1)

•
Qv(1)/⊥

•
Qe(1, 2)/⊥

Figure 4: A locally consistent history on G

Let e1, e2 ∈ E such that e1 • e2 and e2 • e1. Let us prove that
e1 = e2.

• Suppose e1, e2 ∈ E1 (the case e1, e2 ∈ E1 is symmetric).
We have e1 ≤1 e 7→ e′ ≤2 e2 ≤1 e′′ 7→ e′′′ ≤2 e1, so
e1 ≤1 e ≤1 e′ = e2 ≤1 e′′ ≤1 e′′′ = e1 and e1 = e2.

• Suppose now that e1 ∈ E1 and e2 ∈ E2 (which proves
the case e1 ∈ E2 and e2 ∈ E1 by symmetry). We have
e1 ≤1 e 7→ e′ ≤2 e2 ≤2 e′′ 7→ e′′′ ≤1 e1. By real-
time, we have either e 7→ e′′′ or e′′ 7→ e′. Suppose
that e 7→ e′′′ (the other case is symmetric). We have
e1 ≤1 e 7→1 e′′′ ≤1 e1, so e1 = e = e′′′. Moreover,
e′′ 7→ e′′′ = e 7→ e′, which implies e2 = e′′ = e′.
Finally, e1 = e 7→ e′ = e2 = e′′ 7→ e′′′ = e1, so e1 = e2.

As • is a partial order, we can extend it in a total order ≤.

lin
(

H≤
)

contains exactly one word l, that is an interleaving
of l1 and l2. As l1 ∈ L(T1) and l2 ∈ L(T2), l ∈ L(T1 × T2).
Finally, H ∈ SC(T1 × T2).

3.2 Pipelined consistency
Pipelined consistency is an extension of pipelined random
access memory (PRAM) [13] for other data types. It allows
the processes to be aware of some, but not all, of the events.
The definition of pipelined consistency is very close to those
of local consistency, a very easily understood consistency
criterion that we introduce first to illustrate the formalism
needed for pipelined consistency.

Local consistency. Local consistency is the criterion re-
spected by local variables. A local variable contains an object
of type T that is not shared on the network. All the events
on it are done by a sequential process, so they form a maxi-
mal chain p in the history. We recall that the maximal chains
of the history H are contained into PH . This means that
lin (Hp) is a singleton {l} that only contains the sequential
history seen by p. Local consistency requires that this history
is correct with respect to the sequential specification of the
object, i.e. l ∈ L(T). More formally, Definition 8 requires
that lin (Hp) ∩ L(T) is not empty, as it must contain l.

Definition 8. A history H is locally consistent (LC) with an
UQ-ADT T if ∀p ∈PH , lin (Hp) ∩ L(T) 6= ∅.

The history on Figure 4 is locally consistent. It represents
a graph edited by a thread. At one point, this thread forks
and the graph is edited separately by the father thread and
its son. There are two maximal chains in this history, and
the first events are part of both. The operations made by one
thread are ignored by the other thread. Local consistency

•
wx(1)

•
wy(1)

•
ry/1

•
rx/0

(a) SC⋆ but not PC

•
wx(1)

•
rx/2

•
wx(2)

•
rx/1

(b) PC but not SC⋆

Figure 5: These histories onMx,y show that PC is not com-
parable with SC⋆

does not make sense when threads are allowed to join, be-
cause one value must be discarded. If no join is allowed for
the histories, for example because the computation model
is based on parallel sequential processes, local consistency
is composable, in the manner of sequential consistency with
real time.

Pipelined consistency. Pipelined consistency is close in
its definition to local consistency, but the processes are also
aware of the updates made by the other processes, and of the
order in which they are made. Each process must be able
to explain the history individually by a linearization of their
own knowledge. The consistency is local to each process, as
different processes can see concurrent updates in a different
order.

Definition 9. A history H is pipelined consistent (PC) with
an UQ-ADT T if ∀p ∈PH , lin (HUH∪p) ∩ L(T) 6= ∅.

Pipelined consistency is weaker than sequential consistency,
for which the linearizations seen by different processes must
be identical (for a complete proof, see Proposition 3 in Sec-
tion 3.3). It is not comparable with cache consistency, as illus-
trated on Figure 5. On the graph, that cannot be decomposed
into simpler data types, cache consistency is equal to sequen-
tial consistency so we illustrate this on a shared memory.

For memory, cache consistency is very weak as finite locally
consistent histories are also cache consistent. The history
of Figure 5a is also cache consistent since rx/0.wx(1) and
wy(1).ry/1 are correct linearizations of the sub-histories that
only consider one register at a time. It is not pipelined con-
sistent because there is no linearization of all the events, that
is required for the second process.

As there is only one register in the history of Figure 5b, all the
events must be considered in the same linearization for cache
consistency, which is not possible. However, it is pipelined
consistent: wx(1).wx(2).rx/2 is a linearization for the first
process and wx(2).wx(1).rx/1 is a linearization for the sec-
ond process.

We now prove a negative result on composability: there ex-
ists no composable consistency criterion between pipelined
consistency and sequential consistency.

PROPOSITION 2. ∀C,PC ≤ C ≤ SC ⇒ C2 6= C.

PROOF. If there existed a C such that PC ≤ C ≤ SC and
C = C2, we would have PC ≤ C = C2 = C⋆ ≤ SC⋆. The
example of Figure 5a proves that PC 6≤ SC⋆, so such a C
does not exist.

•
wx(1)

•
wx(2)

•
wy(3)

•
rt(3)

•
rz(1)

•
wx(1)

•
wz(1)

•
wz(2)

•
wt(3)

•
ry(3)

•
rx(1)

•
wz(1)

l1 = wx(1)wx(2)wy(3)wz(1)wz(2)wt(3)rt(3)wz(1)rz(1)wx(1)

l2 = wx(1)wx(2)wy(3)wz(1)wz(2)wt(3)ry(3)wx(1)rx(1)wz(1)

Figure 6: This writes-into order is not a correct explanation
of the data dependencies in this history

3.3 Causal Consistency

Causal memory. Causal Consistency [2] is an intermediate
criterion between pipelined consistency and sequential con-
sistency. Pipelined consistency is only local; each process has
a consistent vision of the events it is aware of, but they can
disagree on the order in which updates happen. On the other
hand, sequential consistency imposes a total order on all the
operations of the history. Causal consistency supposes the
existence of a logical time, the causal order, composed of two
kinds of dependences. On the one hand, the program order
must be respected: like in pipelined consistency, if two op-
erations happen on the same process, all the processes that
see both operations must see them in the same order. On the
other hand, two events related by data dependencies must
be ordered in the causal order. More precisely, if a read re-
turns the value written by a write, these events are related by
a writes-into order that can affect the linearizations of all pro-
cesses. We now recall the formal definition of causal memory.

Definition 10. LetMX be a memory update-query abstract
data type. A relation is a writes-into order if:

• for all e, e′ ∈ E such that e e′, there are x ∈ X and
n ∈ N such that Λ(e) = wx(n) and Λ(e′) = rx/n,

• for all e ∈ E, |{e′ ∈ E : e′ e}| ≤ 1,

• for all e ∈ E such that Λ(e) = rx/n and there is no
e′ ∈ E such that e′ e, then n = 0.

A history H is MX -causal if there exists a writes-into order
 such that:

• the transitive closure→ of ∪ 7→ is a partial order,

• ∀p ∈PH , lin
(

H→
UH∪p

)

∩ L(MX) 6= ∅.

Limits of causal memory. The first limit of causal memory
is that it cannot be easily extended to other data types. Ac-
tually, the definition of writes-into orders is deeply related
to the semantics of registers. For other abstract data types,
e.g. graphs, counters or stacks, the value returned by a query
does not depend on one particular update, but on all the
updates that happened before. Moreover, in the case of the
stack, these updates must be sorted to take into account the
order of the elements in the stack. It might be possible to de-
fine a writes-into order for each of these objects individually,
but this approach cannot be used in a data type-independent
definition of causal consistency.

•
wx(1)

•
wy(1)

•
ry(2)

•
rx(1)

•
wx(2)

•
wy(2)

•
ry(1)

•
rx(2)

l3 = wx(2)wx(1)wy(1)wy(2)ry(2)rx(1)

l4 = wx(1)wx(2)wy(2)wy(1)ry(1)rx(2)

Figure 7: In the case of concurrent writes, at least one process
should eventually see the value of the other process

The second limit comes from the fact that the writes-into or-
der is not unique. This weakens the role of the logical time,
as the intuition that a read must be bound to its correspond-
ing write is not always captured by the definition. Let us
illustrate that point with the history on Figure 6. In this his-
tory, we consider the writes-into order in which the reads on
x and z are related to the first write of the other process. This
writes-into order is correct, as each read is related to exactly
one write, and the variables and the values are the same.
Moreover, l1 and l2 are correct linearizations, so this history
is causally consistent. However, in these linearizations, the
value read by the two last reads was not written by their pre-
decessors in the writes-into relation, but if we change this re-
lation to restore the real data dependencies, we obtain a cycle
in the causal order. This example shows that the approach
of Definition 10, that uses the semantics of the operations,
is not well suited to define the consistency criteria. This is-
sue is solved in [16] by the hypothesis that all written values
are distinct. Even if this can be achieved by the addition of
unique timestamps on the values stored by the memory, this
solution is not acceptable because it changes the way the fi-
nal object can be used. Who could accept to sacrifice the ease
of use only for the need of specification?

Another example that cannot be solved by stamping is illus-
trated by Figure 7. The causal order from Definition 10 only
considers write-read dependencies, while concurrent writes
are not considered at all. In the example, there is no ambigu-
ity on the writes-into order, as all the values written in each
variable are different. The linearizations l3 and l4 show that
this history is consistent for causal memory. Nevertheless,
many people, thinking of causal reception, would reject it
for causal consistency because it is impossible that the first
process receives the notification message for wx(2) before
it sends the one for wx(1), and the second process receives
the notification message for wx(1) before it sends the one for
wx(2): a message cannot be received before it is sent.

Causal Consistency. The example of Figure 7 leads to the
consideration that, if an event e is concurrent to an event e′

(i.e. incomparable in the causal order), e must precede e′ in
the linearization of the process that performed e. This is the
principle of our definition of causal consistency: the past of
an event e in the linearization of the process that performed
e is exactly the causal past of e. As the causal order must
be respected in all the linearizations, it results that if e′ is in
this past, e′ must precede e in the linearizations of all the
processes.

•
Ie(1, 2)

•
Qv(2)/⊥

•
Qv(1)/⊤

•
Qv(1)/⊤

•
Dv(1)

•
Dv(2)

(a) PC but not CC

•
Iv(1)

•
Qv(2)/⊥

•
Iv(2)

•
Qv(1)/⊥

(b) CC but not SC

Figure 8: Histories for an instance of G, with different consis-
tency criteria

Definition 11. A history H is causally consistent (CC) for a
UQ-ADT T ∈ T if there exists a family (→p)p∈PH

of total
orders on E such that:

• Each →p defines a correct linearization for pipelined

consistency: ∀p ∈ PH , lin
(

H
→p

UH∪p

)

∩ L(T) 6= ∅ and

7→⊂→p.

• If a process p has already seen an event e when it per-
forms an event e′ (according to→p), then every process
sees those two events in the same order:
∀p, p′ ∈PH , ∀e ∈ E, ∀e′ ∈ p, (e→p e′)⇒ (e→p′ e

′).

The relation →=
(

⋂

p∈PH
→p

)

is a partial order called

causal order.

The history of Figure 8a is pipelined consistent but not
causally consistent. There is only one possible linearization
for the first process, Dv(1).Ie(1, 2).Dv(2).Qv(2)/⊥.Qv(1)/⊤,
so Dv(1) must precede Ie(1, 2) in the causal order, but there
is no linearization for the second process in which the two
events are in this order.

On the contrary, the history of Figure 8b is causally con-
sistent because Iv(1).Qv(2)/⊥.Iv(2) and Iv(2).Qv(1)/⊥.Iv(1)
are correct linearizations for both processes, and the causal
order is equal to the program order. It is not sequentially
consistent because at least one of the query should be aware
of the update made by the other process.

PROPOSITION 3. PC ≤ CC ≤ SC

PROOF. Let T ∈ T and H ∈H .

Suppose H is sequentially consistent. There is a linearization
l ∈ lin(H)∩L(T). Let→ be the total order on the events that
define this linearization. Let us pose, for all p ∈PH ,→p=→
and lp be the word obtained by removing the queries that are

not in p from l. We have lp ∈ lin
(

H
→p

UH∪p

)

by construction

and lp ∈ L(T) because l ∈ L(T) and removing queries does
not change the path in the UQ-ADT. Moreover, for all p, p′ ∈
PH ,→p=→p′ , so H is causally consistent.

Suppose H is causally consistent. Let p ∈ PH . As 7→⊂→p,

lin
(

H
→p

UH∪p

)

⊂ lin (HUH∪p), and lin (HUH∪p) ∩ L(T) 6= ∅.

Thus, H is pipelined consistent.

COROLLARY 1. Causal consistency is not composable.

Consistency criteria are used as hypothesis to prove the cor-
rectness of the programs that use the objects. The strongest
the consistency criterion, the least programs will be impossi-
ble to prove while they are actually correct. As an object is
normally implemented only once and used many times in a
program, it is profitable to prove a strongest property once if
it simplifies all the other proofs later. Definition 11 is inter-
esting because it characterizes exactly the histories that can
be achieved by causal reception. However, it can be incon-
venient to prove that all possible families of linearizations,
for all possible processes, does not fit the definition. It is of-
ten easier to find data inconsistencies that impose loops in
the causal order, like we are used to do with causal mem-
ory. Using Proposition 4, it is often possible to show there is
no possible causal order for a given history such that all the
queries can be explained by the causal past.

PROPOSITION 4. If a history H is causally consistent for an
UQ-ADT T , the causal order→ on E is such that:

• H is pipelined consistent, and the linearizations respect the
causal order:

∀p ∈PH , lin
(

H→
UH∪p

)

∩ L(T) 6= ∅;

• all the queries can be explained by only considering the up-
dates made in its causal past:
∀q ∈ QH , lin

(

H→
{u∈UH :u→q}∪{q}

)

∩ L(T) 6= ∅.

PROOF. Let T ∈ T and H ∈ CC(T). We consider the
family of total orders on E (→p)p∈P given by Definition 11

such that→=
(

⋂

p∈PH
→p

)

.

• Let p ∈PH . As →⊂→p, lin
(

H
→p

UH∪p

)

⊂ lin
(

H→
UH∪p

)

so lin
(

H→
UH∪p

)

∩ L(T) 6= ∅.

• Let p ∈ PH and q ∈ p. For all u ∈ UH , u →p q iff

u → q. Let us consider lq ∈ lin
(

H
→p

{u∈UH :u→q}∪{q}

)

and lp ∈ lin
(

H
→p

UH∪p

)

. lp ∈ L(T) and lq can be ob-

tained from lp by taking a prefix and removing some
queries. As L(T) is closed under prefixing and queries
do not change the state in T , lq ∈ L(T). More-
over, as →⊂→p, lq ∈ lin

(

H→
{u∈UH :u→q}∪{q}

)

. All
q is contained in a p ∈ PH , so for all q ∈ QH ,
lin

(

H→
{u∈UH :u→q}∪{q}

)

∩ L(T) 6= ∅.

Applied to memory, Proposition 4 claims that each query
rx(v), where v 6= v0, contains an update wx(v) that is not
followed by a wx(v

′) in its causal past. This defines a correct
writes-into relation, which proves that causal consistency is
stronger than causal memory. However, there is no equiv-
alence between causal memory and the histories defined by
Proposition 4 (Figure 6 is a counter-example) and no equiv-
alence between the histories defined by Proposition 4 and
causal consistency (Figure 7 is a counter-example).

•
Ie(1, 2)

•
(Qv(2)/⊥)

ω

•
Dv(2)

•
(Qe(1, 2)/⊤)

ω

(a) CC but not EC

•
Iv(1)

•
Qv(1)/⊤

•
Qv(1)/⊥

•
(Qv(1)/⊤)

ω

•
Dv(1)

•
Qv(1)/⊥

•
(Qv(1)/⊤)

ω

(b) EC but not SEC

•
Iv(1)

•
Iv(2)

•
Qv(3)/⊥

•
Qv(3)/⊤

•
(Qv(2)/⊤)

ω

•
Iv(3)

•
Dv(2)

•
Qv(1)/⊥

•
Qv(1)/⊤

•
(Qv(2)/⊤)

ω

(c) SEC but not PC

Figure 9: On these histories for an instance of G, An event
labelled ω is repeated an infinity of times. We can see that
SEC 6= EC and that PC and SC are not comparable with
EC and SEC.

3.4 Eventual consistency
Eventual consistency [19] is one of the few consistency crite-
ria that was not originally designed for memory. It requires
that, if all the participants stop updating, all the replicas
eventually converge to the same state. In other word, H is
eventually consistent if it contains an infinite number of up-
dates (i.e. the participants never stop to write) or if there ex-
ists a state compatible with all but a finite number of queries
(the consistent state).

In our formalism, a consistency criterion must impose to all
the events to be labelled by correct operations of the data
type. It is not clear in the literature whether it is the case
for eventual consistency. A lot of work has been done to
fully specify CRDTs [?], a kind of objects especially designed
to achieve eventual consistency. In [4], it is explicitly men-
tioned that if an insertion and a deletion of the same element
are done concurrently on the set, then any state can be speci-
fied as consistent state, including, for example, an error state.
Moreover, no assumption is made on the queries made be-
fore convergence, so we can imagine that data inconsisten-
cies are acceptable for a short amount of time. For example, a
query operation that returns a local copy of the graph could
return an edge starting from a vertex that does not exists.
These exotic behaviors may cause issues with data integrity,
and our definition does not allow them. It is necessary to ex-
plicitly modify the sequential specification, for example by
adding unreachable states, to take them into account.

Definition 12. A history H is eventually consistent (EC) if it
contains an infinite number of updates or there exists a state
s ∈ S such that the set {qi/qo ∈ QH : ϕ(s, qi) 6= qo} of
queries that cannot be issued while in the state s is finite.

The history of Figure 9a is not eventually consistent since
there are only two updates and no valid state can contain the
edge (1, 2) but not the vertex 2. The other histories of Figure
9 are eventually consistent since only one query is repeated
infinitely often.

Strong eventual consistency. Strong eventual consistency
[18] requires that two replicas of the same object converge as
soon as they have received the same updates. The problem
with that definition is that the notions of replica and message
reception are inherent to the implementation, and are hidden
to the programmer that uses the object, so they should not be
used in a specification. To capture this, a visibility order is
introduced to explain the history.

Definition 13. A history H is strong eventually consistent
(SEC) if there exists an acyclic and reflexive relation→ (called
visibility relation) that contains 7→ and such that:

• Eventual delivery: when an update is viewed by a
replica, it is eventually viewed by all replicas, so there
can be at most a finite number of operations that do not
view it: ∀u ∈ UH , {e ∈ E, u 6→ e} is finite;

• Growth: if an event has been viewed once by a process,
it will remain visible forever:
∀e, e′, e′′ ∈ E, (e→ e′ ∧ e′ 7→ e′′)⇒ (e→ e′′) ;

• Strong convergence: if two query operations view the
same past of updates V , they are issued in the same
state s: ∀V ⊂ UH , ∃s ∈ S, ∀qi/qo ∈ QH ,
{u ∈ UH : u→ qi/qo} = V ⇒ ϕ(s, qi) = qo.

Strong eventual consistency is strictly stronger than eventual
consistency. Figure 9b shows a history that is strong even-
tually consistent but not eventually consistent. The update
Ie(1) must be visible by all the queries of the first process (by
reflexivity and growth), so there are only two possible sets of
visible updates ({Ie(1)} and{Ie(1),De(1)}) for these events.
By the growth property, the query event Qe(1)/⊥must have
the same view as the previous event or the following event,
which is impossible.

Eventual consistency and strong eventual consistency are not
comparable with pipelined consistency and causal consis-
tency. The history of Figure 9a is causally consistent but not
eventually consistent. Conversely, the history of Figure 9c
is strong eventually consistent but not pipelined consistent.
To build the linearization of the first process, it is necessary
to insert the Iv(3) between the two Qv(3), but it is impos-
sible to insert the Dv(2) before any Qv(2). If these queries
returned ⊥, the history would be causally consistent but no
more eventually consistent.

Eventual consistency can hardly be used directly to program
reliable applications because it gives too few guaranties on
the operations made before convergence. It can be used,
however, for applications in which the object is controlled
by humans. For example, it makes sense for a collaborative
text editor like Logoot [20] to ensure that all the collaborators
will eventually see the same document.

Another application is to strengthen other consistency crite-
ria. For example, pipelined consistency and causal consis-
tency do not ensure eventual consistency, since different pro-
cesses can see the same updates in a different order. We can
define causal convergence as CC + EC. In [14], it is proved
that a variation of this criterion is the strongest that can be
implemented for memory in asynchronous message-passing
systems with omission-failures and unreliable networks.

(C⊥)

LC

PC CC CC + EC

EC SEC

SC⋆

SC

(RT)

SC +RT (C⊤)

Figure 10: A summary of the criteria exposed in this article.
The underlined criteria are composable. An arrow between
C1 and C2 express the fact that C1 ≤ C2. This arrow is thick
if no composable consistency criteria exists along it

4. CONCLUSION
Sharing objects is essential to abstract communication com-
plexity in large scale distributed systems. A lot of work has
been done until now to specify many kinds of shared mem-
ory, but very few for other data types. In this paper, we
propose a framework to easily specify shared objects. This
framework is based on a clear separation between sequential
specifications and consistency criteria. The interest of this
approach is that sequential specifications are easy to under-
stand as they are already widely used in sequential object-
oriented programming.

This paper also extends the definition of many consistency
criteria to all update-query abstract data types, the data types
for which all the operations are whether updates or queries.
Figure 10 sums up all the consistency criteria evoked above.
Some, like C⊥, C⊤ and RT only have a theoretical interest,
but others have real practical applications.

Programming in a modular way is very important for relia-
bility because it helps focussing on simpler pieces of codes.
Composability is required to put the pieces together in the fi-
nal program. However, this property seems very difficult to
achieve, in particular for the strongest criteria. In this paper,
we have shown that there exists no composable consistency
criterion between pipelined consistency and sequential con-
sistency. The example of linearizability shows that it might
be possible to add constraints on the composition to make
another consistency criterion composable. We could imagine
an algorithm to compose C-consistent objects with respect to
a criterion C′ such that C2 +C′ = C +C′. Such a C′ always
exists, as C2 + C = C + C but a weaker criterion could lead
to more efficient implementations. We leave all this as future
work.

5. REFERENCES
[1] Sarita V Adve and Kourosh Gharachorloo. Shared

memory consistency models: A tutorial. computer,
29(12):66–76, 1996.

[2] Mustaque Ahamad, Gil Neiger, James E Burns, Prince
Kohli, and Phillip W Hutto. Causal memory:
Definitions, implementation, and programming.
Distributed Computing, 9(1):37–49, 1995.

[3] Hagit Attiya and Jennifer L Welch. Sequential
consistency versus linearizability. ACM Transactions on
Computer Systems (TOCS), 12(2):91–122, 1994.

[4] Annette Bieniusa, Marek Zawirski, Nuno Preguiça,
Marc Shapiro, Carlos Baquero, Valter Balegas, and
Sérgio Duarte. Brief announcement: Semantics of
eventually consistent replicated sets. In Distributed

Computing, pages 441–442. Springer, 2012.

[5] Eric A Brewer. Towards robust distributed systems. In
PODC, page 7, 2000.

[6] Sebastian Burckhardt, Alexey Gotsman, Hongseok
Yang, and Marek Zawirski. Replicated data types:
specification, verification, optimality. In Proceedings of
the 41st annual ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 271–284.
ACM, 2014.

[7] Peter C. Fishburn. Interval graphs and interval orders.
Discrete Mathematics, 55(2):135 – 149, 1985.

[8] Kourosh Gharachorloo, Daniel Lenoski, James Laudon,
Phillip Gibbons, Anoop Gupta, and John Hennessy.
Memory consistency and event ordering in scalable
shared-memory multiprocessors, volume 18. ACM, 1990.

[9] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and
the feasibility of consistent, available, partition-tolerant
web services. ACM SIGACT News, 33(2):51–59, 2002.

[10] James R Goodman. Cache consistency and sequential
consistency. University of Wisconsin-Madison,
Computer Sciences Department, 1991.

[11] Maurice P Herlihy and Jeannette M Wing.
Linearizability: A correctness condition for concurrent
objects. ACM Transactions on Programming Languages
and Systems (TOPLAS), 12(3):463–492, 1990.

[12] Leslie Lamport. How to make a multiprocessor
computer that correctly executes multiprocess
programs. Computers, IEEE Transactions on,
100(9):690–691, 1979.

[13] Leslie Lamport. On interprocess communication.
Distributed computing, 1(2):86–101, 1986.

[14] Richard J Lipton and Jonathan S Sandberg. PRAM: A
scalable shared memory. Princeton University,
Department of Computer Science, 1988.

[15] Prince Mahajan, Lorenzo Alvisi, and Mike Dahlin.
Consistency, availability, and convergence. University of
Texas at Austin Tech Report, 11, 2011.

[16] George H Mealy. A method for synthesizing sequential
circuits. Bell System Technical Journal, 34(5):1045–1079,
1955.

[17] Jayadev Misra. Axioms for memory access in
asynchronous hardware systems. ACM Transactions on
Programming Languages and Systems (TOPLAS),
8(1):142–153, 1986.

[18] David Mosberger. Memory consistency models. ACM
SIGOPS Operating Systems Review, 27(1):18–26, 1993.

[19] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and
Marek Zawirski. Conflict-free replicated data types. In
Stabilization, Safety, and Security of Distributed Systems,
pages 386–400. Springer, 2011.

[20] Marc Shapiro, Nuno Preguiça, Carlos Baquero, Marek
Zawirski, et al. A comprehensive study of convergent
and commutative replicated data types. Technical
report, INRIA, 2011.

[21] Werner Vogels. Eventually consistent. Queue,
6(6):14–19, 2008.

[22] Stephane Weiss, Pascal Urso, and Pascal Molli. Logoot:
a scalable optimistic replication algorithm for
collaborative editing on p2p networks. In Distributed
Computing Systems, 2009. ICDCS’09. 29th IEEE
International Conference on, pages 404–412. IEEE, 2009.

