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Abstract

We consider one dimensional coupled classical-quantum models for quantum
semiconductor device simulations. The coupling occurs in the space variable : the
domain of the device is divided into a region with strong quantum effects (quan-
tum zone) and a region where quantum effects are negligible (classical zone). In
the classical zone, transport in diffusive approximation is modeled through diffusive
limits of the Boltzmann transport equation. This leads to a hierarchy of classical
model. The quantum transport is described by the Schrödinger equation. The aim
of this work is to focus on the derivation of boundary conditions at the interface
between the classical and quantum regions for this hierarchy of models. Numerical
simulations are provided for a resonant tunneling diode with an Energy-Transport
model.

Keywords. Schrödinger equation, Boltzmann equation, energy-transport system, spher-
ical harmonic expansion system, semiconductors, interface conditions, mixed finite ele-
ments.

AMS subject classifications. 65M60, 65Z05, 82D37, 82D80, 35J10, 76P05.

1 Introduction

Due to constant downscaling at nanometer scale of electronic components, quantum effects
in the transport of charged carriers cannot be negligible. Among the observed quantum
phenomena we can cite confinement, tunneling effect or interferences. To take into account
such phenomena, an accurate description of the quantum transport of charged carriers
should be considered, so that electrons are no more described as point particles but
rather as waves. The Schrödinger equation is usually used for the modeling. However, for
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instance for resonant tunneling diodes, quantum effects are well localized in a small region
of the device whereas classical transport is relevant to describe the transport of charged
carriers in the rest of the device. Moreover, from a numerical point of view, numerical
simulations of the Schrödinger equation are costly and it is then interesting to restrict its
use to the region where the quantum effects occur.

We consider in this work those devices for which quantum effects are localized in a
well defined region, which is referred to as the quantum zone. The rest of the device
domain is called the classical zone. In the quantum zone, the Schrödinger equation is
used to describe electrons transport. In the classical zone, the transport is assumed to be
purely classical and mainly driven by collisions. Then, the coupling between the models is
obtained through boundary conditions at the interface between these two regions. In his
seminal work [4], N. Ben Abdallah proposes a coupled kinetic-quantum model where the
Schrödinger equation was used to compute the density in the quantum zone whereas, in
the classical regions, a Boltzmann equation is used to describe the collisional transport of
electrons in the rest of the domain. At the classical-quantum interface, boundary condi-
tions for the Boltzmann equation depending on the quantum reflection and transmission
coefficients have been defined. A numerical discretization of this approach has been later
proposed in [12]. In the aim to diminish computational cost, the diffusive limit of the
Botzmann equation leading to the drift-diffusion (DD) model has been considered in [14].
In this work, the interface boundary conditions have been obtained by passing to the
limit in the reflection-transmission conditions obtained in [4] and by considering bound-
ary layer corrections leading to the resolution to a Milne problem. Another approach has
been proposed in [3] by imposing the continuity of the current at the interfaces.

We propose in this paper to extend the aforementioned study to various fluid models
of electron transport in semiconductors. A hierarchy of classical fluid models has been
derived departing from the Boltzmann transport equation (BTE) in [6]. This latter equa-
tion governs the dynamics of the distribution function of the electrons denoted f(t, x, k)
where t > 0 is the time variable, x is the space variable and k ∈ B is the momentum vari-
able belonging to the Brillouin zone. In semiconductor devices, transport of electrons can
be strongly affected by collisions. Among them, we can distinguish elastic collisions with
impurity of the lattice, collisions between electrons and collisions with phonons. When
elastic collisions are the dominant scattering mechanism, the BTE can be approximated
by the spherical harmonic expansion (SHE) model (see e.g. [36]). This model has been
first introduced in [34] and governs the dynamics of the distribution function F (t, x, E)
as a function of the energy E. Assuming then a dominant electron-electron scattering,
the SHE model relaxes to the so-called energy-transport (ET) system. The macroscopic
quantities considered in this system are the density and the temperature. This system has
been introduced in [34, 35] and can be also derived directly from the Boltzmann equation
under the assumption of dominant elastic and electron-electron collisions (see e.g. [7]).
However, for numerical purpose, it appears to be interesting to consider the system ob-
tained from the SHE model [15]. Finally, under the assumption of large electron-phonon
collision mechanism, the ET system converges to the drift-diffusion system for the density
of electron where the temperature is constant, equal to the lattice temperature.

The aim of this paper is to introduce hybrid coupling in the space variable between the
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SHE model and the Schrödinger equation and between the ET model and the Schrödinger
equation. Moreover, we will see that this approach allows to recover the interface condi-
tions of [14, 3] for the drift-diffusion/Schrödinger coupling. Compared to the DD model,
the SHE and ET models give a more precise description of kinetic effects which can appear
in the domain. Several authors have considered interface problems between macroscopic
models to describe the classical transport. The case of drift-diffusion systems has been
introduced in [37] and has been extended to other macroscopic models in [19]. In [18], the
authors consider the case of space-dependent band diagrams and abrupt heterojunction.
Fluid models taking into account localized kinetic effects are obtained and simulated in
[16]. Finally, in the framework of strongly confined nanostructures, a hybrid approach
[26] has been recently proposed to spatially couple a multiband Schrödinger system [8]
with a nanowire drift-diffusion model [27], preserving the continuity of the current.

We conclude this introduction by referring to other quantum/classical coupling. In
devices where particles are strongly confined in one direction, whereas the other direc-
tions can be considered as classical, models where the coupling occurs in the momentum
variable are proposed in [10, 5, 11, 32]. Such approach can be obtained thanks to a
semiclassical limit of the Schrödinger equation with a partially confining potential [9].
Quantum energy–transport and quantum drift-diffusion models have been derived in [17]
using the strategy of quantum moments, as well as in [29]. These models involve a quan-
tum chemical potential that depends on the density in a non–local way.

Throughout the paper, we restrict ourselves to the one-dimensional case. We denote
by [0, L] the domain where the device lies and by x the transport variable. The quantum
zone is Q = [x1, x2] and the classical zone is then C = [0, x1] ∪ [x2, L]. The quantum
transport in Q is then described by a Schrödinger equation for the scattering states.
The classical transport is modeled by a hierarchy of macroscopic models derived from
the Boltzmann transport equation. The coupling between these models occurs then for
x = x1 and x = x2.

The outline of the paper is the following. In Section 2, we describe the quantum
region and recall the expressions of useful macroscopic quantities. Section 3 is devoted to
the classical region. The one-dimensional Boltzmann transport equation is recalled; its
diffusive limit towards the SHE model, then the ET and the DD systems are proposed.
In Section 4, we derive the interface conditions at the boundary x = x1 and x = x2. We
propose two approaches : one is based on the computation of boundary layers leading to
a Milne problem, another one is based on the continuity of the current. Then, we consider
in Section 5 the numerical discretization of this problem and present the algorithm for
numerical simulations of the hybrid model presented in this work. Finally numerical
results are provided in Section 6 for the simulation of a one-dimensional resonant tunneling
diode with the ET model.
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2 Quantum region

In the quantum region Q = [x1, x2], we consider the scattering states of the Schrödinger
equation in the potential energy V (possibly depending on t) :

− 1

2m
∂xxψk + V (x)ψk = ǫ(x1, k)ψk, for k > 0, (2.1)

− 1

2m
∂xxψk + V (x)ψk = ǫ(x2, k)ψk, for k < 0. (2.2)

where m is the effective mass and ǫ is the total particle energy of an electron in the lattice.
It is the sum of the kinetic energy ε and of the potential energy :

ǫ(x, k) = ε(k) + V (x) =
k2

2m
+ V (x). (2.3)

This system is complemented with the Transparent Boundary Conditions TBCs [4] :

∂xψk(x1) = 2ik − ikψk(x1), ∂xψk(x2) = ik+(k)ψk(x2), for k > 0, (2.4)

∂xψk(x1) = −ik−(k)ψk(x1), ∂xψk(x2) = 2ik − ikψk(x2), for k < 0. (2.5)

This system is equivalent to the resolution of the Schrödinger equations (2.1)–(2.2) on

the real line R with a potential Ṽ defined as the extension by continuity of the potential
V into constant functions outside Q. In fact, in this case the scattering states, which are
defined as solutions of (2.1)–(2.2), satisfy for k > 0 :

ψk(x) = eik(x−x1) + r(k)e−ik(x−x1), for x < x1,

ψk(x) = t(k)eik+(k)(x−x2), for x > x2.

And for k < 0 :
ψk(x) = eik(x−x2) + r(k)e−ik(x−x2), for x > x2,

ψk(x) = t(k)e−ik−(k)(x−x1), for x < x1.

From now on, V1 (resp. V2) stands for V (x1) (resp. V (x2)). In all the presentation, we
will assume that V1 ≥ V2. In the above equations we have defined :

k+(k) =
√
k2 + 2m(V1 − V2), k−(k) =

√
k2 − 2m(V1 − V2),

where
√
α is the complex square root of the real number α having a positive real part (if

α > 0) or a positive imaginary part (if α < 0). We define the reflection and transmission
amplitudes by

r(k) =
1

2

(
ψk +

i

k
∂xψk

)
(x1), t(k) = ψk(x2), for k > 0,

r(k) =
1

2

(
ψk +

i

k
∂xψk

)
(x2), t(k) = ψk(x1), for k < 0.
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Then, the reflection and transmission coefficients R(k) and T (k) are defined by

R(k) = |r(k)|2, k ∈ R; T (k) = k+(k)
|t(k)|2
k

, for k > 0,

T (k) = −Re
(
k−(k)

) |t(k)|2
k

, for k < 0.

(2.6)

They satisfy the reciprocity relations:

T (k) +R(k) = 1, for k ∈ R, (2.7)

R(k) = 1, for − k+(0) ≤ k ≤ 0, (2.8)

T (k) = T (−k+(k)), for k > 0, (2.9)

T (k) = T (k−(k)), for k < −k+(0). (2.10)

We assume that the distribution function f in the classical region C is known. Its
values f(x1, k) for k > 0 and f(x2, k) for k < 0 correspond to particles entering the
quantum region Q and are used as alimentation functions to construct the quantum
electron density NQ defined by

NQ(x) =

∫

k>0

f(x1, k)|ψk(x)|2 dk +
∫

k<0

f(x2, k)|ψk(x)|2 dk, x ∈ Q. (2.11)

The particle current in the Q region is

JQ =

∫

k>0

f(x1, k)Im
( 1

m
∂xψk(x)ψk(x)

)
dk +

∫

k<0

f(x2, k)Im
( 1

m
∂xψk(x)ψk(x)

)
dk.

(2.12)
We can reformulate this current in term of the transmission coefficients :

Lemma 2.1 Assume, as above, that V1 ≥ V2. If (ψk)k are solutions to the Schrödinger
equations (2.1)–(2.2) with transparent boundary conditions (2.4)–(2.5). Then, the particle
current JQ defined in (2.12) satisfies :

JQ =

∫ +∞

0

1

m

(
f(x1, k)− f(x2,−k+(k))

)
kT (k) dk. (2.13)

Moreover, introducing the notation

k(x, E) =
√

2m(E − V (x)), for E > V (x), (2.14)

we have JQ =

∫ +∞

V1

JQ(E) dE, where

JQ(E) =
(
f(x1, k(x1, E))− f(x2,−k(x2, E))

)
T (k(x1, E)). (2.15)

Proof. Formula (2.13) is well-known (see e.g. [4]), but for completeness we recall the
derivation here. It is quite standard and straightforward from the Schrödinger equation
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(2.1)–(2.2) that the quantity Im
(
∂xψk(x)ψk(x)

)
does not depend on x. Therefore, for

k > 0, we have from the boundary conditions (2.4)

Im
(
∂xψk(x)ψk(x)

)
= Im

(
∂xψk(x2)ψk(x2)

)
= Im

(
ik+(k)|ψk(x2)|2

)
= kT (k), (2.16)

where we use the definition of transmission amplitude T (k) (2.6) in the last identity. For
k < 0, we have from (2.5)

Im
(
∂xψk(x)ψk(x)

)
=

{
−k−(k)|ψk(x1)|2, if k < −k+(0),
0, if − k+(0) < k < 0.

Therefore, using the definition (2.6), we have

Im
(
∂xψk(x)ψk(x)

)
=

{
kT (k), if k < −k+(0),
0, if − k+(0) < k < 0.

(2.17)

Then, we can rewrite

∫

k<0

f(x2, k)Im
(
∂xψk(x)ψk(x)

)
dk =

∫ −k+(0)

−∞

f(x2, k)kT (k) dk.

Using the change of variables k′ = k−(k), which implies k′ dk′ = k dk, we have kT (k) dk =
k′T (−k+(k′)) dk′. From the reciprocity relation (2.9), we deduce

∫

k<0

f(x2, k)Im
(
∂xψk(x)ψk(x)

)
dk = −

∫ +∞

0

f(x2,−k+(k′))k′T (k′) dk′.

This proves formula (2.13).
Then, we use the definition (2.14). If E > V1, we set k1(E) = k(x1, E) and k2(E) =

k(x2, E) (we recall that we assume V1 ≥ V2). We have k2(E) = k+(k1(E)), so that k2(E) >
k+(0) for E > V1. We define, for E > V1,

JQ(E) = f(x1, k1(E))
Im
(
∂xψk1(x)ψk1(x)

)

|k1(E)|
+ f(x2,−k2(E))

Im
(
∂xψ−k2(x)ψ−k2(x)

)

|k2(E)|
,

(2.18)
so that, we have clearly ∫ +∞

V1

JQ(E) dE = JQ, (2.19)

where JQ is defined in (2.12). Then, from (2.16) and (2.17), we have

JQ(E) = f(x1, k1(E))
k1(E)T (k1(E))

|k1(E)|
+ f(x2,−k2(E))

−k2(E)T (−k2(E))
|k2(E)|

.

Since k2(E) = k+(k1(E)), we deduce (2.15) from the reciprocity relation (2.9).
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3 Classical region

3.1 Description of the kinetic regime

We consider the one dimensional Boltzmann transport equation for semiconductors [6] in
scaled form

∂tf
α +

1

α

k

m
∂xf

α +
1

α
∂xV ∂kf

α =
1

α2

(
Qimp(f

α) +Qα
ph(f

α)
)
+

1

β
Qe(f

α),

where fα = fα(t, x, k). In this equation x ∈ C = [0, x1]∪ [x2, L] and k ∈ B where B is the
Brillouin zone. α and β are dimensionless parameters that satisfy α << β << 1. Qimp

is an elastic collision operator, accounting for collisions with the impurities of the lattice.
It writes

Qimp(f) =

∫

B

φimp(k, k
′)δ(ε′ − ε)(f ′ − f) dk′, (3.1)

where ε and ε′ (resp. f and f ′) stand for ε(k) and ε(k′) (resp. f(k) and f(k′)). ε(k) is the
kinetic energy defined in (2.3) and δ is the Dirac measure. The electron-electron collision
operator Qe is given by

Qe(f) =

∫

B3

φe(k, k1, k
′, k′1)δ

(
ε(k′) + ε(k′1)− ε(k)− ε(k1)

)
×

(
f(k′)f(k′1)

(
1− ηf(k)

)(
1− ηf(k1)

)
− f(k)f(k1)

(
1− ηf(k′)

)(
1− ηf(k′1)

))
dk′dk1dk

′
1.

(3.2)
η ≥ 0 is a dimensionless distribution function scaling factor and the terms 0 ≤ 1−ηf ≤ 1
express the Pauli exclusion principle. Collisions with phonons (acoustical and optical) are
described thanks to the operator Qα

ph :

Qα
ph(f) =

∫

B

φph(k, k
′)
[(

(Nα
ph + 1)δ(ε− ε′ + α2εph) +Nα

phδ(ε− ε′ − α2εph)
)
f ′(1− ηf)

−
(
(Nα

ph + 1)δ(ε′ − ε+ α2εph) +Nα
phδ(ε

′ − ε− α2εph)
)
f(1− ηf ′)

]
dk′.

(3.3)

εph is the phonon energy and Nα
ph =

(
eα

2εph − 1
)−1

is the phonon occupation number. We
can expand the latter collision operator Qα

ph in term of α2 : Qα
ph(f) = Q0

ph(f) + α2Qα
1 (f).

Then, we define the elastic collision operator Q0 by

Q0(f) =

∫

B

φ0(k, k
′)δ(ε′ − ε)(f ′ − f) dk′, (3.4)

where φ0 = φimp + (2Nph + 1)φph with Nph the 0-th order term of Nα
ph.

In all these definitions, the scattering coefficients φimp, φe and φph are nonnegative
quantities. Also, in the sequel, we shall assume the following micro-reversibility properties

φ0(k, k
′) = φ0(k

′, k) for all k, k′. (3.5)

φe(k, k1, k
′, k′1) = φe(k1, k, k

′, k′1) = φe(k
′, k′1, k, k1), for all k, k1, k

′, k′1. (3.6)
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Notice that (3.5) implies that φ0(k,−k) is only dependent on the modulus of k (and on x).

Finally the Boltzmann transport equation for semiconductors writes

∂tf
α +

1

α

k

m
∂xf

α +
1

α
∂xV ∂kf

α =
1

α2
Q0(f

α) +
1

β
Qe(f

α) +Qα
1 (f

α), t > 0, x ∈ C, k ∈ B.

(3.7)
The system should be complemented with boundary condition for x ∈ {0, x1, x2, L}. At
x = 0 and x = L, the inflow particles are assumed to be prescribed :

fα(0, k) = f in(k), for k > 0; fα(L, k) = f in(k), for k < 0.

At x = x1 and x = x2 the interface with the quantum region should be taken into account.
In particular particles can be transmitted or reflected through this region. It is proved in
[4] that these conditions write




fα(x1, k) = R(−k)fα(x1,−k) + T (−k+(k))fα(x2,−k+(k)), for k < 0,

fα(x2, k) = R(−k)fα(x2,−k) + T (k−(k))f
α(x1, k−(k)), for k > k+(0),

fα(x2, k) = fα(x2,−k), for 0 < k < k+(0),

(3.8)

providing current conservation on the entire domain. For the sake of simplicity of the
notations, we will synthetise the interface conditions (3.8) as

B(fα
1 , f

α
2 ) = 0, (3.9)

where fα
i (k) := fα(xi, k), i = 1, 2.

In one dimension and for the parabolic band approximation, we have B = R, hence
the kinetic model simplifies. In fact, the set of constant energy {ǫ(x, k) = E} is given by
{k(x, E),−k(x, E)} with definition (2.14). For a function f , it will be useful to define the
even part of this function by

F (E) =
1

2

(
f(
√
2m(E − V )) + f(−

√
2m(E − V ))

)
, ∀ E ≥ V. (3.10)

In other words, we have

F
( k2
2m

+ V
)
=

1

2
(f(k) + f(−k)), ∀ k ∈ R.

Also, we can use the fact that, for a function h,
∫

B

h(k′)δ(ε− ε′)dk′ =
m

|k|
(
h(k) + h(−k)

)
.

Consequently, the elastic collision operator Q0 (3.4) simplifies as

Q0(f)(k) = φ0(k,−k)
(
f(−k)− f(k)

)m
|k| . (3.11)

Similar transformations can be done for the other collision terms.
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3.2 Derivation of the one dimensional SHE model

The dimensionless parameter α > 0 compares the inelastic and electron-electron interac-
tions to the elastic collisions. When α → 0 the elastic interactions dominate and we can
derive the so-called SHE model.

First, we deduce easily from (3.11) the following standard properties for the collision
operator Q0, considering t and x as parameters :

Lemma 3.1 Under the micro-reversibility assumption (3.5), we have :

(i) Q0(f) is odd (i.e. Q0(f)(k) +Q0(f)(−k) = 0).

(ii) Ker Q0 = {f even, i.e. f(k) = F (ǫ(x, k))}.

(iii) R(Q0) = (Ker Q0)
⊥ = {f odd, i.e. f(k) + f(−k) = 0}.

(iv) For every h ∈ R(Q0), the equation Q0(f) = h has a unique solution f ∈ R(Q0).

Let us now consider the following Hilbert expansion

fα = f 0 + αf 1 + α2f 2 + ...

Injecting this expression in (3.7) and identifying the terms with equal powers of α, we get

Q0(f
0) = 0 (3.12)

Q0(f
1) =

k

m
∂xf

0 + ∂xV ∂kf
0 (3.13)

∂tf
0 +

k

m
∂xf

1 + ∂xV ∂kf
1 = Q0(f

2) +
1

β
Qe(f

0) +Qα
1 (f

0). (3.14)

From (3.12) and Lemma 3.1 we deduce that f 0 is a function of the energy :

f 0(x, k) = F 0(x,ǫ(x, k)) (3.15)

Then, (3.13) rewrites

Q0(f
1) =

k

m
∂xF

0(x,ǫ(x, k)). (3.16)

Introducing the function λ ∈ R(Q0) such that Q0(λ) = − k
m

, we have

λ(x, k) =
k|k|

2m2φ0(x, k,−k)
. (3.17)

We deduce from Lemma 3.1 that the solution of (3.16) can be written as

f 1(x, k) = −λ(x, k)∂xF 0(x,ǫ(x, k)) + F 1(x,ǫ(x, k)), (3.18)

for any real-valued function F 1. Next, (3.14) leads to

∂tF
0 + ∂tV ∂EF

0 +
k

m
∂xf

1 + ∂xV ∂kf
1 − 1

β
Qe(F

0)−Qα
1 (F

0) = Q0(f
2).
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This equation admits a solution f 2 provided the left hand side is an odd function (see
item (iv) of Lemma 3.1), that is

2m

|k|
(
∂tF

0 + ∂tV ∂EF
0
)
− ∂xJSHE =

1

β
Se(F

0) + Sα
1 (F

0), (3.19)

JSHE(x,ǫ(x, k)) = D(x, k)∂xF
0(x,ǫ(x, k)), (3.20)

where the diffusion coefficient is given by

D(x, k) = 2λ(x, |k|), (3.21)

and the scattering operators are

Se(F
0)(x, E) = Se(F

0)(x, k,−k) = 2m

|k|
(
Qe(F

0)(x, k) +Qe(F
0)(x,−k)

)
,

Sα
1 (F

0)(x, E) = Sα
1 (F

0)(x, k,−k) = 2m

|k|
(
Qα

1 (F
0)(x, k) +Qα

1 (F
0)(x,−k)

)
.

Finally, the solution of (3.14) is given by

f 2(x, k) = − |k|
2mφ0(x, k,−k)

( k
m
∂xf

1 + ∂xV ∂kf
1
)
+ F 2(x,ǫ(x, k)), (3.22)

for any real-valued function F 2. System (3.19)–(3.20) is known as the one dimensional
spherical harmonic expansion (SHE) model.

To finish this section, let us notice that, using (3.17), the diffusion coefficient (3.21)
can be written as

D(x, E) =
2(E − V )

mφ0(x, E)
, (3.23)

by introducing, thanks to the micro-reversibility property, the notation

φ0(x, k,−k) = φ0(x,ǫ(x, k)). (3.24)

3.3 Derivation of the one dimensional Energy-Transport model

Let us denote by Fϕ,T the Fermi-Dirac distribution defined, for ϕ ∈ R and T > 0, by

Fϕ,T (E) =
1

η + e(E−ϕ)/T
, (3.25)

where η is a positive constant. We first recall useful results for the scattering operator Se

(see e.g. [6] for proofs) :

Lemma 3.2 Under the micro-reversibility assumption (3.6), we have :

1. Momentum conservation :
∫ +∞

V

Se(F )(E)

(
1
E

)
dE = 0.
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2. Entropy inequality :

∫ +∞

V

Se(F )(E) ln
( F (E)

1− ηF (E)

)
dE ≤ 0.

3. Kernel : Se(F ) = 0 iff there exists ϕ ∈ R and T > 0 such that F (E) = Fϕ,T (E).

Lemma 3.3 Let us denote by DSe(F) the Fréchet derivative of the operator Se at F . We
have the following properties

1. S := −√
EDSe(F) is a bounded nonnegative self-adjoint operator on the space

{
f(E) :

∫ +∞

V

|f(E)|2√
EF(1− ηF)

dE <∞
}
.

2. Ker S = Span {F(1− ηF), EF(1− ηF)}.

3. R (S) = (Ker S)⊥ =
{
f(E) :

∫ ∞

V

f(E)

(
1
E

)
dE = 0

}
.

To derive the Energy-Transport system, the starting point is the SHE model (3.19)–
(3.20)

√
2m

E − V

(
∂tF

β(x, E) + ∂tV ∂EF
β(x, E)

)
− ∂xJ

β
SHE =

1

β
Se(F

β)(x, E) + Sα
1 (F

β)(x, E),

Jβ
SHE(x, E) = D(x, E)∂xF

β(x, E).

Let us introduce the Hilbert expansion

F β = F 0 + βF 1 + ....

Injecting it into the above SHE model and identifying the terms with equal powers of β,
we get

Se(F
0) = 0, (3.26)

DSe(F
0) · F 1 =

√
2m

E − V

(
∂tF

0 + ∂tV ∂EF
0
)
− ∂xJ

0
SHE − Sα

1 (F
0). (3.27)

From (3.26) and Lemma 3.2, we deduce that there exist ϕ(t, x) ∈ R and T (t, x) > 0 such
that F 0(t, x, E) = Fϕ(t,x),T (t,x)(E). Then, J0

SHE is given by

J0
SHE(x, E) = D(x, E)Fϕ,T (E)

(
1− ηFϕ,T (E)

)
∂x

(ϕ− E

T

)
. (3.28)

Using Lemma 3.3, we deduce from (3.27) that F 1 exists when the following expression is
satisfied

∫ +∞

V

(
1
E

)(√ 2m

E − V

(
∂tFϕ,T + ∂tV ∂EFϕ,T

)
− ∂xJ

0
SHE − Sα

1 (Fϕ,T )
)
dE = 0. (3.29)
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Let us define NC and NE
C the charge density and the energy density associated to the

energy distribution (3.25) :

NC(t, x) :=

∫ +∞

V

√
2m

E − V
Fϕ,T (E) dE, (3.30)

NE
C(t, x) :=

∫ +∞

V

E

√
2m

E − V
Fϕ,T (E) dE. (3.31)

Then, solvability condition (3.29) leads, after an integration by parts, to the Energy-
Transport (ET) system :

∂tNC − ∂xJC = 0 , ∂tN
E
C − ∂tV NC − ∂xJ

E
C = W (ϕ, T ), (3.32)

JC = D00∂x

(ϕ
T

)
− D01∂x

( 1
T

)
, JE

C = D10∂x

(ϕ
T

)
− D11∂x

( 1
T

)
, (3.33)

where the diffusion matrix is defined by the coefficients

Dij(x) =

∫ +∞

V

E
i+jD(x, E)Fϕ,T (E)

(
1− ηFϕ,T (E)

)
dE, 0 ≤ i, j ≤ 1, (3.34)

and the relaxation term W is the α2 order coefficient of

Wα(ϕ, T ) =

∫ +∞

V

ESα
1 (Fϕ,T )(E) dE.

After straightforward but tedious computations, we get that W (ϕ, T ) is proportional
to TL−T , where TL is the lattice temperature. When the relaxation term is large compared
to the others terms, the second equation in (3.32) implies formally that T relaxes to TL.
Then, (3.32) reduces to the well-known Drift-Diffusion (DD) equation

∂tNC − ∂x

(
D00

TL
∂xϕ

)
= 0. (3.35)

4 Interface boundary conditions

4.1 Derivation at the SHE level

Following [18], we introduce the definition :

Definition 4.1 We say that fα is an order p approximation of the Boltzmann transmis-
sion problem (3.7)–(3.9), if

(i) fα solves the Boltzmann equation (3.7) up to order αp in the classical region C.

(ii) fα satisfies the boundary condition (3.9) up to order αp :

B(f1, f2)(p) = O(αp).
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(iii) The flux of particles with energy E ≥ V , given by

Jα(x, E) =
1

α

(
fα(x, k(x, E))− fα(x,−k(x, E))

)
, (4.1)

with k(x, E) =
√

2m(E − V ), is equal at the boundary up to order αp :

Jα(x1, E) = Jα(x2, E) +O(αp), ∀ E ≥ V1,

Jα(x2, E) = 0, for E ∈ [V2, V1).
(4.2)

We have already seen in Subsection 3.2 that the Hilbert expansion

fα(x, k) = F 0(x,ǫ(x, k)) + α
(
F 1(x,ǫ(x, k))− λ∂xF

0(x,ǫ(x, k))
)
+ α2f 2(x, k) +O(α3),

(4.3)
with F 0 and F 1 introduced respectively in (3.15) and (3.18) and f 2 given in (3.22), is
a second order approximation (in α) of the Boltzmann equation (3.7) away from the
interfaces. Also, with the definition (4.1), we can formally deduce the expansion

Jα(x,ǫ(x, k)) = J1(x,ǫ(x, k)) + αJ2(x,ǫ(x, k)) +O(α2), (4.4)

with J1(x, E) = −JSHE(x, E) (defined in (3.20)) and

J2(x, E) = f 2(x, k(x, E))− f 2(x,−k(x, E)) = −D(x, E)∂xF
1(x, E), (4.5)

thanks to the expression of f 2 (3.22).

However, the boundary conditions are not a priori satisfied. In order to take into
account the interface conditions, we introduce the corrector functions θ1 and θ2 which
are real-valued functions defined through the interface conditions (3.8)–(3.9) by

B
(
θ1
(
ǫ(x1, k)

)
− ℓ(k), θ2

(
ǫ(x2, k)

)
− ℓ(k)

)
= 0, (4.6)

where ℓ is a function only depending on k and given, using (3.21), by

ℓ(k) =
λ(x, k)

D(x, k)
=

k

2|k| , if k 6= 0 ; ℓ(0) = 0. (4.7)

Existence of such quantities is pointed out in Remark 4.3 below.

Then, we have the following result :

Theorem 4.2 Let fα be such as in (4.3), with F 0 a solution of the SHE system (3.19)–
(3.20). Then, fα is a second order approximation of the Boltzmann transmission problem

(3.7)–(3.9) iff F̃ α := F 0 + αF 1 satisfies the boundary conditions :

D(x1, E)∂xF̃
α(x1, E) = D(x2, E)∂xF̃

α(x2, E) =: J̃α(E), (4.8)

F̃ α(x1, E)− F̃ α(x2, E) = αJ̃α(E)
(
θ1(E)− θ2(E)

)
, (4.9)

where θ1 and θ2 are the corrector functions defined in (4.6). Moreover, F̃ α is a solution
of the SHE problem up to O(α2).
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Proof. Let us start by proving that for fα given by (4.3), fα satisfies the boundary
conditions (3.9) up to order α2 iff we have :

D(x1, E)∂xF
i(x1, E) = D(x2, E)∂xF

i(x2, E), ∀ E ≥ V1, i = 0, 1,

D(x2, E)∂xF
i(x2, E) = 0, for E ∈ [V2, V1), i = 0, 1,

(4.10)

F 0(x1, E)− F 0(x2, E) = 0, ∀ E ≥ V1, (4.11)

F 1(x1, E)− F 1(x2, E) = JSHE(E)
(
θ1(E)− θ2(E)

)
, ∀ E ≥ V1, (4.12)

where θ1 and θ2 are defined in (4.6) and JSHE is the common value of the current in x1
and x2 given in (4.10) for i = 0. For that, we first notice that, by definitions of ℓ in (4.7)
and of JSHE in (3.20), we have

λ(x, k)∂xF
0(x,ǫ(x, k)) = JSHE(x,ǫ(x, k))ℓ(k).

Then, injecting (4.3) in (3.9), we get

B(F 0
1 , F

0
2 ) + αB(F 1

1 − JSHE(x1)ℓ, F
1
2 − JSHE(x2)ℓ) = O(α2). (4.13)

Using the reciprocity relations (2.7) and (2.9), and the fact that ǫ(x2,−k+(k)) = ǫ(x1, k),
we deduce from (3.8) that B(F 0

1 , F
0
2 ) = 0 iff

F 0(x1,ǫ(x1, k)) = F 0(x2,ǫ(x1, k)), for k < 0,
F 0(x1,ǫ(x2, k)) = F 0(x2,ǫ(x2, k)), for k > k+(0).

Since for k > k+(0), we have ǫ(x2, k) ≥ V1, we deduce that these conditions imply (4.11).
For the second term of the left hand side of (4.13), we first assume the continuity of the
current at the interface :

JSHE(x1, E) = JSHE(x2, E) = JSHE(E), ∀ E ≥ V1. (4.14)

Then, the second term of the left hand side of (4.13) vanishes iff

B(F 1
1 − JSHE ℓ, F 1

2 − JSHE ℓ) = 0.

Using the functions θ1 and θ2 introduced in (4.6), this latter equality is equivalent to
impose

B(F 1
1 − JSHE θ1, F

1
2 − JSHE θ2) = 0.

Since all the functions are energy dependent functions, this latter equality implies

F 1(x1, E)− F 1(x2, E) = JSHE(E)(θ1(E)− θ2(E)), ∀ E ≥ V1. (4.15)

This proves that condition (ii) of Definition 4.1 is satisfied at second order iff (4.10)–(4.12)
are true. Moreover, using the expansion (4.4) and assuming (4.14), the condition (iii) of
Definition 4.1 is satisfied at second order iff

D(x1, E)∂xF
1(x1, E) = D(x2, E)∂xF

1(x2, E), ∀, E ≥ V1. (4.16)
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Finally, conditions (4.10)–(4.12) are deduced from (4.14)–(4.16)–(4.15).
Now, let us define

F α(x,ǫ(x, k)) = 1

2

(
fα(x, k)+fα(x,−k)

)
and Jα(x,ǫ(x, k)) = 1

α

(
fα(x, k)−fα(x,−k)

)
.

We formally deduce from (4.3) and (4.4) that

F α(x, E) = F 0(x, E) + αF 1(x, E) +O(α2), (4.17)

and
Jα(x, E) = −D(x, E)∂x

(
F 0(x, E) + αF 1(x, E)

)
+O(α2). (4.18)

Also, with these notations and using (3.11), we can rewrite the Boltzmann transport
equation (3.7) as

∂tf
α(x, k) +

1

α

( k
m
∂xf

α(x, k) + ∂xV ∂kf
α(x, k)

)
= − 1

α

m

|k|φ0(x,ǫ(x, k))Jα(x,ǫ(x, k))

+
1

β
Qe(f

α) +Qα
1 (f

α).

Adding this latter equation for k and for −k and multiplying by m/|k|, we get

2m

|k|
(
∂tF

α + ∂tV ∂EF
α
)
+ ∂xJ

α =
1

β
Se(F

α) + Sα
1 (F

α). (4.19)

Consequently, we deduce that F̃ α = F 0 + αF 1 is a solution of the SHE problem up to
O(α2) with the boundary conditions (4.8)-(4.9).

Remark 4.3 The correctors θ1 and θ2 that have been introduced above are actually the
solutions of the Milne problem, widely used in the study of boundary layer correctors in
kinetic theory (see e.g. [2, 19, 24, 37])





k

m

∂θi
∂ξ

= Q0(θi), k ∈ R, ξ ∈ Ωi, i = 1, 2,

B
(
θ1(0, k)− ℓ(k), θ2(0, k)− ℓ(k)

)
= 0,

(4.20)

where Ω1 = (−∞, 0] and Ω2 = [0,+∞). In fact, adding and substracting the equations for
k and −k, it is clear that bounded solutions of (4.20) should satisfy θi(ξ, k) = θi(ξ,−k)
and therefore belong to the kernel of Q0. Then, θi are independent of ξ.

4.2 Imposing continuity of the current

We have obtained above interface conditions between the classical and the quantum re-
gions directly thanks to an approximation of the boundary conditions for the kinetic
model. Following the idea of [3], there is another way to derive boundary conditions for

15



the SHE model by imposing continuity of the classical and quantum current at the inter-
faces. First, we remind that using definitions (2.3) and (2.14), we have ǫ(x1, k1(E)) = E

for E > V1. Also, k2(E) = k+(k1(E)). Consequently, thanks to (4.3), we have, for α ≪ 1,
the approximations

fα(x1, k1(E)) ≈ F̃ α(x1, E) and fα(x2,−k+(k1(E))) ≈ F̃ α(x2, E).

So, we use F̃ α(x1, E) and F̃ α(x2, E) as alimentation functions in (2.15) and we obtain

JQ(E) =
(
F̃ α(x1, E)− F̃ α(x2, E)

)
T (k1(E)). (4.21)

Therefore, imposing continuity of the rescaled current at interface, i.e.

−αJ̃α(E) = JQ(E),

we obtain the interface condition

F̃ α(x1, E)− F̃ α(x2, E) = −α J̃α(E)

T (k1(E))
, ∀ E ≥ V1, (4.22)

which is different from (4.9). The following proposition allows to link the two interface
approaches (4.22) and (4.9).

Proposition 4.4 Let θ1 and θ2 be nonnegative real-valued functions satisfying (4.6).
Then, for all E ≥ V1, we have

θ1(E)− θ2(E) = 1− 1

T (k1(E))
, (4.23)

where k1(E) =
√

2m(E − V1) and T is the transmission coefficient defined in (2.6).

Proof. Let us consider the problem (4.6). Then, for k < 0, the interface condition
writes, according to (3.8),

θ1
(
ǫ(x1, k)

)
− ℓ(k) = R(−k)

(
θ1
(
ǫ(x1,−k)

)
− ℓ(−k)

)

+ T (−k+(k))
(
θ2
(
ǫ(x2,−k+(k))

)
− ℓ(−k+(k))

)
.

From (4.7), we have ℓ(k) = −1/2 for k < 0 and ℓ(k) = 1/2 for k > 0. Then, we can
rewrite the latter identity as

θ1(ǫ(x1, k)) +
1

2
= (1− T (−k))

(
θ1(ǫ(x1, k))−

1

2

)
+ T (−k)

(
θ2(ǫ(x1, k)) +

1

2

)
,

where we have used the reciprocity relations (2.7), (2.9) and the relation ǫ(x2,−k+(k)) =
ǫ(x1, k). We deduce that, for k < 0,

1 = T (−k)
(
θ2(ǫ(x1, k))− θ1(ǫ(x1, k))

)
+ T (−k). (4.24)

By the same token, we obtain for k > 0 that

1 = T (−k)
(
θ2(ǫ(x2, k))− θ1(ǫ(x2, k))

)
+ T (−k).

Finally, let E ≥ V1 be given, we take k = −k1(ǫ) ≤ 0 and after a change of variable, we
deduce (4.23) from (4.24).
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4.3 Application to Energy-Transport and Drift-Diffusion models

When β → 0, we have seen in Section 3.3 that F̃ α converges to the Fermi-Dirac distri-
bution Fϕ,T defined in (3.25) and therefore J̃α converges to D(x, E)∂xFϕ,T . Therefore,
condition (4.8) with (3.28) implies, for all E ≥ V1, that

D(x1, E)Fϕ,T (1− ηFϕ,T )∂x
(ϕ(x1)− E

T (x1)

)
= D(x2, E)Fϕ,T (1− ηFϕ,T )∂x

(ϕ(x2)− E

T (x2)

)
=: J0

SHE.

Multiplying this equation by the vector

(
1
E

)
and integrating with respect to E leads to

the conservation of the classical current :

JC(x1) = JC(x2) =: JC , JE
C(x1) = JE

C(x2) =: JE
C , (4.25)

where JC and JE
C are defined in (3.33). Secondly, the conditions (4.9) rewrites, thanks to

(4.23) :

T (k1(E))
(
Fϕ,T (x1, E)−Fϕ,T (x2, E)

)
= αJ0

SHE(E)
(
1− T (k1(E))

)
, ∀ E ≥ V1.

Again, multiplying this equation by the vector

(
1
E

)
and integrating with respect to E, we

obtain
∫ +∞

V1

(
Fϕ,T (x1, E)−Fϕ,T (x2, E)

)
T (k1(E))

(
1
E

)
dE = α

∫ +∞

V1

J0
SHE(E)

(
1
E

)(
1−T (k1(E))

)
dE.

(4.26)
Then, the interface conditions for (ET) are given by equation (4.25)-(4.26).

The drift-diffusion system is formally obtained by taking a constant temperature T =
TL, then conditions (4.25)-(4.26) lead to the following interface conditions for (DD) :

D00

TL
∂xϕ(x1) =

D00

TL
∂xϕ(x2) =: JC . (4.27)

∫ +∞

V1

(
Fϕ,T (x1, E)−Fϕ,T (x2, E)

)
T (k1(E)) dE = α

∫ +∞

V1

J0
SHE(E)

(
1−T (k1(E))

)
dE. (4.28)

Remark 4.5 (Continuity of the current) As notice in Subsection 4.2, we can derive
boundary conditions at the interface by imposing continuity of the classical and quantum

current. Multiplying (4.22) by the vector

(
1
E

)
and integrating with respect to E, we get :

∫ +∞

V1

(
Fϕ,T (x1, E)−Fϕ,T (x2, E)

)
T (k1(E))

(
1
E

)
dE = α

∫ +∞

V1

J0
SHE(E)

(
1
E

)
dE = α

(
JC
JE
C

)
.

(4.29)
Therefore the two conditions (4.26) and (4.29) are comparable when the following condi-
tion is satisfied ∫ +∞

V1

J0
SHE(E)T (k1(E))

(
1
E

)
dE ≪

(
JC
JE
C

)
.
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Since in the integral the most relevant energies are the lowest energies (for which the
transmission coefficient is small except for the few resonant values), this condition is in
general verified in applications. We will provide some numerical evidence for this issue in
Section 6.

5 Numerical hybrid approach

5.1 Stationary Transport - Poisson system

We present in this Section the numerical strategy to implement the developed hybrid ap-
proach for the stationary case. For the sake of completeness, we first recall the stationary
system which is used in the simulations, writing it in unscaled form.

5.1.1 Classical model

For simplicity, we introduce the notation for the entropy variables

u =
ϕ

kBT
and v = − 1

kBT
, (5.1)

kB being the Boltzmann constant. Also, in the sequel, the notations u1, u2, v1 and v2 will
stand for u(x1), u(x2), v(x1) and v(x2), respectively.

We remind that we consider the so-called parabolic band approximation. It means
that the particle kinetic energy ε is given by ε(k) = ~2k2

2m
, where ~ is the reduced Planck

constant. For numerical purpose, we also consider that the Fermi-Dirac distribution (3.25)
is approximated by the Boltzmann statistics, i.e. we choose η = 0. It gives

Fu,v(E) = eu+Ev. (5.2)

Then, the density (3.30) can be calculated explicitly in function of u and v and we obtain

NC =
( 2m
π~2

)1/2(
− 1

v

)1/2
eu+vV = N0

( 1

kBTL

)1/2(
− 1

v

)1/2
eu+vV , (5.3)

where TL is the lattice temperature and N0 = 2
(

kBTLm
2π~2

)1/2
is the effective density of

states.
Next, we assume that the scattering coefficient φ0 (3.24) is assumed to be an energy

dependent function given by the following expression (see [15, 6])

φ0(x, E) =
(E − V )γ

qτ

(
~2

2m

)1/2

where q is the elementary charge and τ is the relaxation time. Typical choices for the
parameter γ are γ = 1

2
which corresponds to the so-called Chen model [13] and γ = 0,

used by Lyumkis et al [30]. We consider here the case γ = 1
2
. We also introduce the

mobility constant µ defined by

µ =
qτ

m
. (5.4)
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Stationary Energy-Transport system :
Then, the stationary ET system writes

∂xJC(u, v) = 0, (5.5)

−1
q
∂xJ

E
C(u, v) = W (u, v), (5.6)

with

JC(u, v) = −
(
D00∂xu+ D01∂xv

)
and JE

C(u, v) = −
(
D10∂xu+ D11∂xv

)
. (5.7)

The diffusion coefficients Dij (3.34) are given by

Dij = µ
2

π

(2m
~2

)1/2
eu+vV

∫ +∞

0

(ε+ V )i+j
√
εeεvdε.

After calculations, we obtain the following explicit expressions

D00 = µ
( 2m
π~2

)1/2(
− 1

v

)3/2
eu+vV = −µNC

v
, (5.8)

where the expression of NC is given in (5.3);

D01 = D10 = D00

(
− 3

2v
+ V

)
and D11 = D00

( 15

4v2
− 3V

v
+ V 2

)
. (5.9)

Finally, we can show that the relaxation term W is given by

W (u, v) =
3

2τ
NC

(1
v
+ kBTL

)
. (5.10)

Boundary conditions at x = 0 and x = L :
The ET system (5.5)-(5.6) is completed with Dirichlet conditions on u and v. We assume
that the temperature is the lattice temperature at the boundaries. It gives

v(0) = v(L) = − 1

kBTL
. (5.11)

We also impose quasi-neutrality between the density NC and the given doping density
ND. It gives

u(x) = log
(ND(x)

N0

)
+
V (x)

kBTL
, for x ∈ {0, L}. (5.12)

Stationary Drift-Diffusion system :
When the temperature is constant (T = TL), the ET system simplifies to the DD equation

∂xJC = 0, with JC = −µNC∂xϕ, (5.13)

where the classical density NC is given by

NC = N0e
(ϕ−V )/(kBTL). (5.14)
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5.1.2 Quantum model

For each wave vector k, we consider the following scattering states Schrödinger equation
in the quantum domain Q = [x1, x2]

− ~2

2m
∂xxψk(x) + V (x)ψk(x) = ǫ(k)ψk(x), with ǫ(k) =

{
ǫ1(k) = ε(k) + V1 if k > 0,

ǫ2(k) = ε(k) + V2 if k < 0,

(5.15)
with TBCs (2.4)-(2.5) written in unscaled form. The quantum densityNQ is given in (2.11)
where we choose the distribution function f to be the normalized Boltzmann statistics
defined by

f(x1, k) = ÑeV1v1eε(k)v1+u1 for k > 0, f(x2, k) = ÑeV2v2eε(k)v2+u2 for k < 0.

In this expression Ñ is a normalization coefficient such that

Ñ
(∫

k>0

eε(k)v1 dk +

∫

k<0

eε(k)v2 dk
)
= N0.

After straightforward calculations it gives :

Ñ = N0

(
~2

2πm

)1/2(√v1 +
√
v2

2

)
.

Finally, as discussed in Lemma 2.1, the quantum particle current can be written in the
following form

JQ =
q~

m
Ñ

(
eu1

∫ +∞

0

kT (k)eǫ1(k)v1dk − eu2

∫ +∞

0

kT (k)eǫ1(k)v2dk

)
, (5.16)

where T are the transmission coefficients defined in (2.6). Analogously, we also define the
quantum energy current by

JE

Q =
q~

m
Ñ

(
eu1

∫ +∞

0

kǫ1(k)T (k)eǫ1(k)v1dk − eu2

∫ +∞

0

kǫ1(k)T (k)eǫ1(k)v2dk

)
. (5.17)

5.1.3 Interface conditions

Now we describe the interface conditions in x1 and x2 that complete the hybrid Schrödinger
Energy-Transport (S-ET) model and the hybrid Schrödinger Drift-Diffusion (S-DD) model.
As explained in Section 4, these connection conditions can be obtained computing bound-
ary layer corrections from the kinetic model (approaches denoted S-ET1 and S-DD1 in
the sequel) or preserving the continuity of the current (approaches denoted S-ET2 and
S-DD2 in the sequel).

For the ET system, the conservation of classical currents (4.25) is completed with
(4.26) for S-ET1 or (4.29) for S-ET2. It gives

JQ = ΛJC , JE
Q = ΛE JE

C , (5.18)
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where Λ = ΛE = 1 for S-ET2, instead the following explicit expressions hold for S-ET1 :

Λ = 1− ∂xu1

∫ +∞

0
T (k)k2eε(k)v1dk + ∂xv1

∫ +∞

0
T (k)k2(ε(k) + V1)e

ε(k)v1dk

∂xu1

∫ +∞

0
k2eε(k)v1dk + ∂xv1

∫ +∞

0
k2(ε(k) + V1)eε(k)v1dk

, (5.19)

ΛE = 1− ∂xu1

∫ +∞

0
T (k)k2(ε(k) + V1)e

ε(k)v1dk + ∂xv1
∫ +∞

0
T (k)k2(ε(k) + V1)

2eε(k)v1dk

∂xu1

∫ +∞

0
k2(ε(k) + V1)eε(k)v1dk + ∂xv1

∫ +∞

0
k2(ε(k) + V1)2eε(k)v1dk

. (5.20)

To obtain these expressions, we use the explicit formulations of JC , JE
C and J0

SHE (coming
from (5.7) and (3.28)), and the fact that (4.26) can be also written (in rescaled variables)

(
JQ
JE
Q

)
=



JC

(
1− 1

JC

∫ +∞

V1
J0
SHE(E)T (k1(E)) dE

)

JE
C

(
1− 1

JE

C

∫ +∞

V1
J0
SHE(E)T (k1(E))E dE

)


 .

For the DD system, since the temperature is constant, conditions (5.18) are reduced
to

JQ = Λ JC , (5.21)

with Λ = 1 for S-DD2 and with the following explicit expression for S-DD1

Λ = 1−
∫ +∞

0
T (k)k2e−ε(k)/(kBTL)dk

∫ +∞

0
k2e−ε(k)/(kBTL)dk

. (5.22)

Therefore, the derivation of a hierarchy of models (passing through the SHE model) allow
us to obtain an explicit expression of the coupling conditions. Instead, in [14], several
approximate expressions of the so-called extrapolation coefficient were obtained. We
remark that (5.22) is highly related to the Marshak approximation proposed in Section
2.4.2 of [14].

5.1.4 Self-consistent formulation

Finally, we are interested in self-consistent computations. The transport equations are
coupled with the following Poisson equation for the electrostatic potential VP

−∇
(
ǫr∇VP (x)

)
=

q

ǫ0

(
ND(x)−N(x)

)
, x ∈ (0, L). (5.23)

ǫ0 is the permittivity in vacuum, ǫr the relative permittivity, ND the prescribed doping
density and N the hybrid charge density defined by

N(x) =

{
NQ(x) for x ∈ Q,

NC(x) for x ∈ C,

where NQ and NC are given in (2.11) and (5.3), respectively. Notice that V in (5.15)
or (5.5)-(5.6) is given by V = −qVP . Equation (5.23) is supplemented by the Dirichlet
boundary conditions VP (0) = 0 and VP (L) = Va in order to impose an applied voltage Va.
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5.2 Algorithm

We describe here the numerical issues related to the solution of the coupled hybrid trans-
port equations with the Poisson equation. We first consider the whole system for zero
applied voltage (Va = 0) and then we increment Va step by step. Because of the highly
nonlinear coupling between the density and the potential equations, we use an iterative
method of Gummel type [25]. The different steps of one iteration are detailed here.

1. Let V old
P be a given electrostatic potential. We define the potential energy V =

−qV old
P .

2. For each wave vector k, we solve in Q the Schrödinger equation (5.15) with TBCs.
It is transformed to an initial value problem and discretized with a Crank–Nicolson
scheme (see [8] for details). Then, the transmission coefficients T are obtained.

3. We solve the stationary classical model in C : either the ET system (5.5)-(5.6) with
the boundary conditions (5.11)-(5.12) and the connection conditions (4.25)-(5.18),
or the DD equation (5.13) with (5.12)-(4.27)-(5.21). These classical equations are
discretized by means of a mixed finite element scheme of lowest order in hybridized
form [1]. More precisely, we provide in the following a brief description of this
approach in the simply connected region [0, x1]. We introduce the notations

U = (u, v)T , J = (JC , J
E
C)

T , W (U) =
(
0,−qW (u, v)

)
and D =

(
D00 D01

D10 D11

)
.

Then, the system (5.5)-(5.6) can be written in compact form as

J = −D(U)∂xU, ∂xJ = W (U). (5.24)

Let us introduce a partition of [0, x1] with nodes zi, i = 0, . . . , Nx1
. Denoting by

Ui an approximation of U(xi), we take the piecewise constant approximation of U
given, in the interval Ii := (zi−1, zi) (i = 1, . . . , Nx1

), by

U i =
Ui−1 + Ui

2
,

and define piecewise constant diffusion coefficients as Dkl(U i) (for k, l = 0, 1) and a
piecewise constant relaxation term as W (U i).

To use a mixed finite element discretization of lowest order in hybridized form [1] (see
also [21, 22, 32] for applications to ET), we introduce the following finite dimensional
spaces :

Xh = {σ ∈ L2((0, L)) : σ(x) = ai + bi(x− zBi
) in Ii, i = 1, . . . , Nx1

},
Yh = {ξ ∈ L2((0, L)) : ξ is constant in Ii, i = 1, . . . , Nx1

},
Zh,χ = {q = (qi), i = 0, . . . , Nx1

, s. t. q0 = χ(0), qNx1
= χ(x1)},

where zBi
= 1

2
(zi−1 + zi) denotes the central point of the interval Ii, and χ is

prescribed.
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Then, the mixed-hybrid formulation of (5.24) reads as follows: Find Jh ∈ X2
h,

Ph ∈ Y 2
h , and Uh ∈ Zh,ub

× Zh,vb (where ub and vb are the boundary values of u and
v) such that

Nx1∑

i=1

(∫

Ii

φh · D(U i)
−1
Jhdx+

∫

Ii

Ph · ∇xφhdx− [φh · Uh]
zi
zi−1

)
= 0, (5.25)

Nx1∑

i=1

(∫

Ii

Ψh · ∇xJhdx−
∫

Ii

W (U i) ·Ψhdx

)
= 0, (5.26)

−
Nx1∑

i=1

[µh · Jh]zizi−1
= 0 (5.27)

for all φh ∈ X2
h, Ψh ∈ Y 2

h , and µh ∈ Z2
h,0. Equation (5.25) is derived from the weak

formulation of the first equations in (5.24); (5.26) comes from the weak form of the
second equations in (5.24); and (5.27) imposes the continuity of the currents at the
nodes. Finally, since we are dealing with an interface problem, the values of ub and
vb in x1 are not a priori given but are defined through the conditions (4.25)-(5.18),
and clearly the two classical regions [0, x1] and [x2, L] cannot be treated separately.

Thanks to the discontinuity of the spaces Xh and Yh, we can apply static conden-
sation in order to reduce the size of the discrete system and obtain an algebraic
system for the variable Uh only. More precisely, choosing first the test functions

φh =

{
(1, 0)T in Ii
(0, 0)T elsewhere

and φh =

{
(0, 1)T in Ii
(0, 0)T elsewhere

in (5.25) and then, analogously choosing Ψh in (5.26), we obtain the piecewise linear
(discrete) current

Jh|Ii = D(U i)
Ui − Ui−1

zi − zi−1

+W (U i)(x− zBi
). (5.28)

Imposing continuity at the nodes (through (5.27)) we obtain

D(U i)

zi − zi−1

Ui−1 −
(

D(U i)

zi − zi−1

+
D(U i+1)

zi+1 − zi

)
Ui +

D(U i+1)

zi+1 − zi
Ui+1 (5.29)

=
1

2

(
(zi − zi−1)W (U i) + (zi+1 − zi)W (U i+1)

)
.

for i = 1, . . . , Nx1
− 1. We point out explicitly that, since the first component

of W (U) is null, the approximation of the current J0 is piecewise constant (see
(5.28)) and that, thanks to (5.27), it is indeed globally constant. The full system
(made of (5.29), the analogous equations for the region [x2, L] and the two interfaces
conditions) forms a non-linear system that is solved using a Newton algorithm.

4. We compute the classical density NC (5.3) or (5.14), and the quantum density NQ

(2.11) using u and v at boundaries x1 and x2.
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5. We solve the Poisson equation (5.23) using finite differences, modified according to
the Gummel iteration algorithm, that is

−∇
(
ǫr∇V new

P ) =
q

ǫ0
ND − q

ǫ0
N [V old

P ]
(
1 +

q

kBTL
(V new

P − V old
P )
)
, in (0, L). (5.30)

6. We repeat the steps until the quantity ‖V old
P − V new

P ‖L∞ becomes sufficiently small.
Once the convergence is reached, we increment Va and start a new iteration.

6 Numerical results

In this section, we propose numerical simulations of a one-dimensional resonant tunneling
diode in order to test the interface conditions described previously. We choose the same
geometry and data as in [20]. The device (see Figure 1) has a total length of 135 nm.
It is made of two highly doped GaAs regions (N+

D = 1024 m−3) of 50 nm at extremities,
surrounding an active zone of 35 nm with smaller doping (N−

D = 5.1021 m−3). This active
zone contains a quantum well of 5 nm length sandwiched between two 5 nm AlGaAs
barriers placed between two 10 nm GaAs spacer layer. It is in this small region that the
important physical effects such as tunneling or scattering take place.

Figure 1: Geometry of the resonant tunneling diode and profile of the double barrier
(taken from [20]).

The physical parameters are chosen as follows. Simulations are done at room temper-
ature TL = 300 K. The double barrier height is of Vbar = 0.3 eV. However, for numerical
purposes, we will also consider the case in which Vbar = 0.15 eV. The physical effect of
the double barrier is a shift in the quasi-Fermi energy that we model by an additional
function added to the electrostatic potential. The electron effective mass m (relative to
the vacuum electron mass) is 0.067. The relative semiconductor permittivity ǫr is con-
stant throughout the structure and equal to 11.44. The relaxation time τ is 10−12 s, that
gives a mobility constant µ defined in (5.4) equal to 2.63 m2.V−1.s−1. Finally, in order
to obtain a physical density (expressed in m−3), we rescale the one dimensional density
N by the factor mkBTL

2π~2
. The same rescaling is used for the current to obtain a quantity

expressed in A.m−2.
The mesh size is h = 0.1 nm both in the quantum zone and in the classical zones.

The same discretization is used to solve the transport system and the Poisson equation.
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Due to resonant energies, we compute the scattering states of the Schrödinger equation
for each wave vector k being in a highly refined uniform grid (105 values) in order to
take into account the contribution of each significant energy. An adaptive algorithm (as
proposed in [33]) would be probably more appropriate. Finally, for the applied bias at
extremities of the device, we numerically found that an increment step equal to 0.02 V is
a reasonable choice, except close to the current peak where a step of 2.10−3 V is used.

For the numerical results presented in this paper, the classical-quantum interfaces are
placed exactly at the doping junctions (50 and 85 nm). As reported in [14, 3, 20], the
interface position affects the Current-Voltage characteristics. For instance, when x1 is
placed inside the active zone, the interface is too close to the double barrier and the
quantum resonances are not properly taken into account. On the contrary, when x1 is
moved towards the source region, the results are not affected. In our case, we observe a
similar behavior for the two interface condition approaches and we do not discuss further
this issue since our aim here is to compare the two approaches.

6.1 Results for the case Vbar = 0.3 eV

We display here the numerical results obtained thanks to the algorithm proposed in Sec-
tion 5.2, for a potential barrier Vbar = 0.3 eV. First, in Figure 2, we plot the output
Current-Voltage characteristics. We recall that the notations S-ET1 and S-ET2 refer to
the Energy-Transport model with the two different interface condition approaches (see
Section 5.1.3). The shape of the current is typical of resonant tunneling diodes (see e.g.
[33, 14, 20]) with a peak due to electrons having the resonant energies of the double
barrier. Zooms of these current-voltage characteristics are displayed in Figure 3 and the
difference of these two curves are presented in Figure 4. Figures 3 and 4 allow to notice
that both approaches give similar results. It is expected and has already been noted for
the Drift-Diffusion system in [3]. It confirms that the interface conditions derived by
imposing exact continuity of the current (much easier to implement) are comparable to
the interface conditions obtained by computation of an approximation of the boundary
layers. This behavior is confirmed with Figure 5 that represents the potential energy and
the density within the device for an applied voltage of 0.2 V. Moreover, we emphasize that
the two coupling approaches do not enforce density continuity at interfaces, as observed
in the right picture of Figure 5.

6.2 Results for the case Vbar = 0.15 eV

In the previous case, we observed minor differences between the two approaches that we
use to impose the interface conditions. In order to magnify the difference between these
two approaches, we present now simulations for a less physically significant case, dividing
the double barrier height by 2 (Vbar = 0.15 eV).

In Figure 6, we represent the logarithm of the transmission coefficient T within the
device as a function of the energy, for an applied voltage Va = 0.2 V and for the two poten-
tial barriers (Vbar = 0.3 eV and Vbar = 0.15 eV). We clearly observe that the transmission
coefficient is more important with a smaller barrier. A consequence is that the correction
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Figure 2: Current-Voltage characteristics obtained for the S-ET model with the two
interface condition approaches (Vbar = 0.3 eV).

Figure 3: Zoom of the Current-Voltage characteristics around the peak (left) and after
the peak (right).

Figure 4: Difference between the two Current-Voltage characteristics of Figure 2.

coefficients Λ and ΛE (5.19)-(5.20) get away from 1. Therefore, the output Current-Voltage
characteristics are slightly different for the two interface condition approaches (Figure 7),
specially after the peak. Notice however that the physical informations such as the peak
location and the peak-to-valley height are stable. Finally, Figure 8 represents the tem-
perature inside the classical zones for two applied voltages. Some perceptible differences
are observed. However, we would like to emphasize that the two approaches give similar
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Figure 5: Left: Potential energy (eV); Right: density (m−3) obtained for Va = 0.2 V.

quantities (including the current) inside the quantum zone.

Figure 6: Transmission coefficient for Va = 0.2 V.

Figure 7: Current-Voltage characteristics obtained for the S-ET model with the two
interface condition approaches (Vbar = 0.3 eV).

To finish, it is interesting to observe the behaviour of the algorithm when letting the
relaxation time τ going to 0. In fact, as it has been noticed in the previous sections, the
ET system relaxes towards the DD system. In Figure 9, we display the numerical results
obtained for the S-DD1 system and for the S-ET1 system with a relaxation time going
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Figure 8: Temperature in the classical zones for Va = 0.1 V (left) and Va = 0.4 V (right).

to 0. As expected the curves computed with the S-ET1 system converge towards the
one computed for the S-DD1. We recover the same behavior with S-ET2 and S-DD2 (as
well as for the two approaches in the case Vbar = 0.3 eV), except that in these cases the
variations between the two models (S-DD and S-ET) are much smaller.

Figure 9: Current-Voltage characteristics in function of the relaxation time τ . The figure
on the right is a zoom for high values of the applied bias.

7 Conclusion

We have proposed in this paper strategies for hybrid classical-quantum transport. These
strategies are applied to devices for which quantum effects are well localized in a small
region of the device. More precisely, a quantum region Q = [x1, x2] is sandwiched between
two classical regions C = [0, x1] ∪ [x2, L]. The classical region is assumed to be highly
collisional and diffusive approximation of the Boltzmann transport equation is consid-
ered leading to Energy-Transport or Drift-Diffusion equations. Then, we have considered
interface conditions to couple the Schrödinger equation with Energy-Transport. After re-
laxation towards the Drift-Diffusion system, we recover the same boundary conditions as
the ones of [14, 3]. Therefore, we have extended both approaches to the Energy-Transport
system in the classical region. Numerical results are provided in the last Section of this
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paper.
Let us finish with few comments on the two proposed strategies for the coupling.

The first one is based on the computation of the boundary layers at the interfaces by
performing a diffusive limit of interface conditions for the Boltzmann equation (see [14]).
Then, we observed that the continuity of the current is satisfied up to the second order. In
the second approach we impose an exact conservation of the current, as in the spirit of [3].
This leads to boundary conditions which are close to the ones derived in the first approach.
Numerical experiments show that current-voltage characteristics are similar with both
approaches. The numerical implementation of the second approach being easier, this
strategy could be interesting for much more complex system, such as strongly confined
structures.
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