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Diffusion of energy in chains of oscillators with
conservative noise

Cédric Bernardin

Abstract These notes are based on a mini-course given during the conference Parti-

cle systems and PDE’s - II which held at the Center of Mathematics of the University

of Minho in December 2013. We discuss the problem of normal and anomalous dif-

fusion of energy in systems of coupled oscillators perturbed by a stochastic noise

conserving energy.

Key words: Superdiffusion, Anomalous fluctuations, Green-Kubo formula, Non

Equilibrium Stationary States, Heat conduction, Hydrodynamic Limits, Ergodicity.

The goal of statistical mechanics is to elucidate the relation between the microscopic

world and the macroscopic world. Equilibrium statistical mechanics assume the mi-

croscopic systems studied to be in equilibrium. In this course we will be concerned

with non-equilibrium statistical mechanics where time evolution is taken into ac-

count: our interest will not only be in the relation between the microscopic and the

macroscopic scales in space but also in time.

By microscopic system we refer to molecules or atoms governed by the classi-

cal Newton’s equations of motion. The question is then to understand how do these

particles manage to organize themselves in such a way as to form a coherent struc-

ture on a large scale. The “structure” will be described by few variables (tempera-

ture, pressure . . . ) governed by autonomous equations (Euler’s equations, Navier-

Stokes’s equation, heat equation . . . ). The microscopic specificities of the system

will appear on this scale only through the thermodynamics (equation of state) and
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Université de Nice Sophia-Antipolis, Laboratoire J.A. Dieudonné, UMR CNRS 7351, Parc Val-
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through the transport coefficients. Unfortunately, we are very far from understand-

ing how to derive such macroscopic equations for physical relevant interactions.

One of the main ingredients that we need to obtain the macroscopic laws is that

the particles, which evolve deterministically, have a behavior that one can consider

almost as being random. The reason for this is that the dynamical system consid-

ered is expected to have a very sensitive dependence on the initial conditions and

therefore is chaotic. This “ deterministic chaos” is a poorly understood subject for

systems with many degrees of freedom and even a precise consensual formulation

is missing.

A first simplification to attack these problems consists in replacing the deter-

ministic evolution of particles ab initio by purely stochastic evolutions. Despite this

simplification we notice that the derivation of the macroscopic evolution laws is

far from being trivial. For example, we do not have any derivation of a system of

hyperbolic conservation laws from a stochastic microscopic system after shocks.

Nevertheless, since the pioneering work of Guo, Papanicolaou,Varadhan ([35]) and

Yau ([67]), important progresses have been performed in several well understood

situations by the development of robust probabilistic and analytical methods (see

[41] and [55] for reviews).

In this course we will be mainly (but not only) interested in hybrid models for

which the time evolution is governed by a combination of deterministic and stochas-

tic dynamics. These systems have the advantage to be mathematically tractable and

conserve some aspects of the underlying deterministic evolution. The stochastic

noise has to be chosen in order to not destroy the main features of the Hamilto-

nian system that we perturb.

The central macroscopic equation of these lecture notes is the heat equation:





∂tu = ∂x(D(u)∂xu), x ∈ Ů , t > 0,

u(0,x) = u0(x), x ∈U,

u(t,x) = b(x), x ∈ ∂U, t > 0.

Here u(t,x) is a function of the time t ≥ 0 and the space x ∈U ⊂Rd , d ≥ 1, starting

from the initial condition u0 and subject to boundary conditions prescribed by the

function b. The advantage of the heat equation with respect to other macroscopic

equations such as the Euler or Navier-Stokes equations is that the notion of solu-

tion is very well understood. The dream would be to start from a system of N ≫ 1

particles whose interactions are prescribed by Newton’s laws and to show that in

the large N limit, the empirical energy converges in the diffusive time scale t = τN2

to u (τ is the microscopic time and t the macroscopic time). In fact, this picture is

expected to be valid only under suitable conditions and to fail for some low dimen-

sional systems. In the case where the heat equation (or its variants) holds we say

that the system has a normal behavior. Otherwise anomalous behavior occurs and

the challenging question (even heuristically) is to know by what we shall replace the

heat equation and what is the time scale over which we have to observe the system

in order to see this macroscopic behavior ( [19], [24],[47] for reviews).
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The course is organized as follows. In Chapter 1 we introduce the models stud-

ied. Chapter 2 is concerned with models which have a normal diffusive behavior.

In Chapter 3 we are interested in systems producing an anomalous diffusion. An

important issue not discussed here is the effect of disorder on diffusion problems. In

order to deal with lecture notes of a reasonable size, many of the proofs have been

suppressed or only roughly presented.

1 Chains of oscillators

1.1 Chains of oscillators with bulk noise

Chains of coupled oscillators are usual microscopic models of heat conduction in

solids. Consider a finite box ΛN = {1, . . . ,N}d ⊂ Zd , d ≥ 1, whose boundary ∂ΛN

is defined as ∂ΛN = {x /∈ ΛN ; ∃y ∈ ΛN , |x− y|= 1}. Here | · | denotes the Euclidian

norm in Rd and “ · ” the corresponding scalar product. Let us fix a nonnegative pair

interaction potential V and a pinning potential W on R. The atoms are labeled by x ∈
ΛN . The momentum of atom x is px ∈ R and its displacement from its equilibrium

position 1 is qx ∈ R. The energy Ex of the atom x is the sum of the kinetic energy,

the pinning energy and the interaction energy:

Ex =
|px|2

2
+W (qx)+

1

2
∑

|y−x|=1,
y∈ΛN

V (qx − qy). (1)

The Hamiltonian is given by

HN = ∑
x∈ΛN

Ex + ∂ HN (2)

where ∂ HN is the part of the Hamiltonian corresponding to the boundary conditions

which are imposed.

We will consider the following cases:

• Periodic boundary conditions: we identify the site 1 to the site N and denote the

corresponding box by TN , the discrete torus of length N (then ∂HN = 0).

• Free boundary conditions: this corresponds to the absence of boundary condi-

tions, i.e. to ∂HN = 0.

• Fixed boundary conditions: introduce the positions qy = 0, y ∈ ∂ΛN , of some

fictive walls. We add to the Hamiltonian HN a boundary term ∂HN = ∂ f HN

given by

1 We restrict us to the case where qx ∈R
n with n = 1 because the relevant dimension of the system

is the dimension d of the lattice. Most of the results stated in this manuscript can be generalized to

the case n ≥ 1.
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Fig. 1: A one-dimensional chain of pinned oscillators with free boundary conditions

∂ f HN = ∑
|y−x|=1,

x∈ΛN ,y∈∂ΛN

V (qx − qy) = ∑
|y−x|=1,

x∈ΛN ,y∈∂ΛN

V (qx).

• Forced boundary conditions: site 1 = (1, . . . ,1) is in contact with a wall at po-

sition q0 = 0 and each site y ∈ ∂ΛN\{0} is driven by a constant force τy. This

results in a boundary term ∂HN = ∂ τ HN given by

∂ τ HN = ∑
|y−x|=1,

x∈ΛN ,y∈∂ΛN

V (qx − qy)− ∑
y∈∂ΛN\{0}

τyqy. (3)

The equations of motion of the atoms are

q̇x = ∂pxHN , ṗx =−∂qxHN (4)

and the generator AN of the system is given by the Liouville operator

AN = ∑
x∈ΛN

{
∂pxHN ∂qx − ∂qxHN ∂qx

}
.

It will be also useful to consider the chain of oscillators in infinite volume, i.e.

replacing ΛN by Zd , d ≥ 1, in the definitions above. The formal generator AN is

then denoted by A . The dynamics can be defined for a large set of initial conditions

if V and W do not behave too badly ([45], [50], [12]). We define the set Ω as the

subset of RZd
given by
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Ω =
⋂

α>0

{
ξ ∈ R

Zd

; ∑
x∈Zd

e−α |x||ξx|2 <+∞

}
(5)

and Ω̃ = Ω ×Ω . We equip Ω with its natural product topology and its Borel σ -

field and Ω̃ by the corresponding product topology. For X = Ω or X = Ω̃ , the set

of Borel probability measures on X is denoted by P(X). A function f : X → R is

said to be local if it depends of ξ only through the coordinates {ξx ; x ∈ Λ f }, Λ f

being a finite box of Z. We also introduce the sets Ck
0(X), k ≥ 1 (resp. k = 0), of

bounded local functions on X which are differentiable up to order k with bounded

partial derivatives (resp. continuous and bounded).

In the rest of the manuscript, apart from specific cases, we will assume that one

of the following conditions hold:

• The potentials V and W have bounded second derivatives. Then the infinite dy-

namics (ω(t))t≥0 can be defined for any initial condition ω0 = (q0,p0) ∈ Ω̃ .

Moreover Ω̃ is invariant by the dynamics. This defines a semigroup (Pt)t≥0 on

C0
0(Ω̃) and the Chapman-Kolmogorov equations

(Pt f )(ω)− f (ω) =
∫ t

0
(PsA f )(ω)ds =

∫ t

0
(A Ps f )(ω)ds (6)

are valid for any f ∈C1
0(Ω̃ ).

• The potential W = 0 and the interaction potential V has a second derivative uni-

formly bounded from above and below. It is more convenient to go over the defor-

mation field η(x,y) = qy −qx, |x− y|= 1, which by construction is constrained to

have zero curl. In d = 1 we will denote η(x−1,x) = qx −qx−1 by rx. The dynamics

(4) can be read as a dynamics for the deformation field and the momenta. Given

say q0, the scalar field q = {qx}x∈Zd can be reconstructed from η . In the sequel,

when W = 0, we will use these coordinates without further mention. The dynam-

ics for the coordinates ω = (η ,p) = (η(x,x+e), px)|e|=1,x∈Z can be defined if the

initial condition satisfies ω0 ∈ Ω̃ . Moreover the set Ω̃ is invariant by the dynam-

ics. This defines a semigroup (Pt)t≥0 on C0
0(Ω̃) and the Chapman-Kolmogorov

equations

(Pt f )(ω)− f (ω) =
∫ t

0
(PsA f )(ω)ds =

∫ t

0
(A Ps f )(ω)ds (7)

are valid for any f ∈C1
0(Ω̃ ).2

Let us first consider the problem related to the characterization of equilibrium

states. For simplicity we take the finite volume dynamics with periodic boundary

conditions. Then it is easy to see that the system conserves one or two physical

quantities depending on whether the chain is pinned or not. The total energy HN is

always conserved. If W = 0 the system is translation invariant and the total momen-

tum ∑x px is also conserved. Notice that because of the periodic boundary conditions

2 The generator A has to be written in terms of the deformation field.
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the sum of the deformation field ∑x η(x,x+ei) is automatically fixed equal to 0 for any

i = 1, . . . ,d.

Liouville’s Theorem implies that the uniform measure λ N on the manifold ΣN

composed of the configurations with a fixed total energy (and possibly a fixed total

momentum) is invariant for the dynamics. The micro canonical ensemble is defined

as the probability measure λ N . The dynamics restricted to ΣN is not necessarily er-

godic. Two examples for which one can show it is not the case are the harmonic

lattice (V and W quadratic) and the Toda lattice (d = 1, W = 0, V (r) = e−r − 1+ r)

which is a completely integrable system ([61]). In fact what is really needed for our

purpose is not the ergodicity of the finite dynamics but of the infinite dynamics. We

expect that even if the finite dynamics are never ergodic the fraction of ΣN corre-

sponding to non ergodic behavior decreases as N increases, and probably disappears

as N = ∞ (apart from very peculiar cases). Therefore a good notion of ergodicity

has to be stated for infinite dynamics. The definition of a conserved quantity is not

straightforward in infinite volume (the total energy of the infinite chain is usually

equal to +∞). To give a precise definition we will use the notion of space-time in-

variant probability measures for the infinite dynamics defined above.

The infinite volume Gibbs grand canonical ensembles are such probability mea-

sures. They form a set of probability measures indexed by one (pinned chains) or

d + 2 (unpinned chains) parameters and are defined by the so-called Dobrushin-

Landford-Ruelle’s equations. To avoid a long discussion we just give a formal defi-

nition (see e.g. [34] for a detailed study).

• Pinned chains (W 6= 0): the infinite volume Gibbs grand canonical ensemble µβ

with inverse temperature β > 0 is the probability measure on Ω̃ whose density

with respect to the Lebesgue measure is

Z−1(β )exp

(
−β ∑

x∈Zd

Ex

)
.

• Unpinned chains (W = 0): the infinite volume Gibbs grand canonical ensemble
3 µβ , p̄,τ with inverse temperature β > 0, average momentum p̄ ∈ R and tension

τ = β−1λ ∈ Rd is the probability measure on Ω̃ whose density with respect to

the Lebesgue measure is

Z−1(β , p̄,τ) exp

(
−β ∑

x∈Zd

{Ex − p̄ px −
d

∑
i=1

τi η(x,x+ei)}
)
. (8)

Observe that in the one dimensional unpinned case we have simply product mea-

sures and that the tension τ is equal to the average of V ′(rx).
Fix an arbitrary Gibbs grand canonical ensemble µ . A probability measure ν is

said to be µ-regular if for any finite box Λ ⊂ Zd whose cardinal is denoted by |Λ |,
the relative entropy of ν|Λ w.r.t. µ |Λ is bounded above by C|Λ | for a constant C

3 They are defined with respect to the gradient fields η(x,y). It would be more coherent to call them

gradient Gibbs measures.
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independent of Λ . We recall that the relative entropy H(ν|µ) of ν ∈ P(X) with

respect to µ ∈ P(X), X being a probability space, is defined as

H(ν|µ) = sup
φ

{∫
φ dν − log

(∫
eφ dµ

)}
, (9)

where the supremum is carried over all bounded measurable functions φ on X .

For any arbitrary Gibbs grand canonical ensembles µ and µ ′, µ is µ ′-regular and

µ ′ is µ-regular. Therefore ν is µ-regular is equivalent to ν is µ ′-regular and we

simply say that ν is regular.

A notion of ergodicity for infinite dynamics which is suitable to derive rigorously

large scale limits of interacting particle systems is the following.

Definition 1 (Macro-Ergodicity). 4 We say that the dynamics generated by A is

macro-ergodic if and only if the only space-time invariant 5 regular measures ν for

A are mixtures (i.e. generalized convex combinations) of Gibbs grand canonical

ensembles.

If the microscopic dynamics is macro-ergodic, then, by using the relative entropy

method developed in [51], we can derive the hydrodynamic equations 6 in the Euler

time scale of the chain before the appearance of the shocks, at least in d = 1 ([12]).

These limits form a triplet of compressible Euler equations (for energy e, momentum

p and deformation r) of the form





∂tr= ∂qp

∂tp= ∂qτ

∂te= ∂q(pτ)

(10)

where the pressure τ := τ(r,e− p2

2 ) is a suitable thermodynamic function depending

on the potential V . A highly challenging open question is to extend these results after

the shocks. The proof can be adapted to take into account the presence of mechanical

boundary conditions ([20]).

We do not claim that the macro-ergodicity is a necessary condition to get Euler

equations for purely Hamiltonian systems. We could imagine that weaker or differ-

ent conditions are sufficient but in the actual state of the art the macro-ergodicity is

a clear and simple mathematical statement of what we could require from determin-

istic systems in order to derive Euler equations rigorously. We refer the interested

reader to [21] and [59] for interesting discussions about the role of ergodicity in

statistical mechanics.

4 The name has been proposed by S. Goldstein.
5 Observe that a probability measure ν is time invariant for the infinite dynamics if and only if∫

A f dν = 0 for any f ∈ C1
0(Ω̃ ). This is a consequence of the Chapman-Kolmogorov equations

(7).
6 The notion of hydrodynamic limits is detailed in Section 2.2.1 and Section 3.2.2.
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1.1.1 Conserving noises

In [31], Fritz, Funaki and Lebowitz prove a weak form of macro-ergodicity for a

chain of anharmonic oscillators under generic assumptions on the potentials V and

W that we do not specify here (see [31]).

Theorem 1 ([31]). 7 Consider the pinned chain W 6= 0 generated by A or an un-

pinned chain W = 0 in d = 1. The only regular time and space invariant measures for

A which are such that conditionally to the positions configuration q := {qx ; x∈Zd}
the law of the momenta p := {px ; x ∈ Zd} is exchangeable are given by mixtures of

Gibbs grand canonical ensembles.

They also proposed to perturb the dynamics by a stochastic noise that consists

in exchanging at random exponential times, independently for each pair of nearest

neighbors site x,y ∈ Zd , |x− y|= 1, the momenta px and py. The formal generator

L of this dynamics, that we will call the stochastic energy-momentum conserving

dynamics, is given by L = A + γS , γ > 0, where A is the Liouville operator and

S is defined for any local function f : Ω̃ →R by

(S f )(q,p) = ∑
x,y∈Zd

|x−y|=1

[ f (q,px,y)− f (q,p)] . (11)

Here the momenta configuration px,y is the configuration obtained from p by ex-

changing px with py. The previous discussion about existence of the dynamics on

Ω̃ for the deterministic case and its relation with its formal generator is also valid

for this dynamics and the other dynamics defined in this section.

With some non-trivial entropy estimates we get the following result.

Theorem 2 ([31]). Consider the pinned (W 6= 0) or the one-dimensional unpinned

(W 6= 0) stochastic energy-momentum conserving dynamics. The only regular time

and space invariant measures for these dynamics are given by mixtures of Gibbs

grand canonical ensembles, i.e. the stochastic energy-momentum conserving dy-

namics is macro-ergodic.

Consequently the stochastic energy-momentum conserving dynamics is macro-

ergodic. By using the relative entropy method developed in [51], one can show it

has in the Euler time scale and before the appearance of the shocks the same hy-

drodynamics (10) as the deterministic model. This is because the noise has some

macroscopic effects only in the diffusive time scale ([12]).

We consider now a different stochastic perturbation. Let us define the flipping

operator σx : p ∈ Ω → px ∈ Ω where px is the configuration such that (px)z = pz

for z 6= x and (px)x = −px. In [31] is also proved that the only time-space regu-

lar stationary measures for the Liouville operator A such that conditionally to the

7 The proof given in [31] assumes W 6= 0 but it can be adapted to the unpinned one dimensional

case (see [12]). It would be interesting to extend this theorem to the general unpinned case.
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positions the momenta distribution is invariant by any flipping operator σx are mix-

tures of Gibbs grand canonical ensembles with zero momentum average. Then we

consider the dynamics on Ω̃ generated by L = A + γS , γ > 0, with S the noise

defined by

(S f )(q,p) =
1

2
∑

x∈Zd

[ f (q,px)− f (q,p)] (12)

for any local function f : Ω̃ → R. This dynamics conserves the energy and the

deformation of the lattice but destroys all the other conserved quantities. We call this

system the velocity-flip model (sometimes the stochastic energy conserving model).

Theorem 3 ([31]). Consider the pinned d-dimensional velocity-flip model or the

one-dimensional unpinned velocity-flip model. The only regular time and space in-

variant measures are given by mixtures of Gibbs grand canonical ensembles. In

other words the velocity-flip model is macro-ergodic.

Since the velocity flip-model does not conserve the momentum its Gibbs invari-

ant measures are given by (8) with p̄ = 0. In particular the average currents with

respect to theses measures is zero. Therefore assuming propagation of local equi-

librium in the Euler time scale we get that it has trivial hydrodynamics in this time

scale: initial profile of energy does not evolve. This is only in the diffusive scale that

an evolution should take place.

1.1.2 NESS of chains of oscillators perturbed by an energy conserving noise

The models defined in the previous sections can also be considered in a non-

equilibrium stationary state (NESS) by letting them in contact with thermal baths at

different temperatures and imposing various mechanical boundary conditions. Let

us only give some details for the NESS of the one-dimensional velocity-flip model.

Consider a chain of N unpinned oscillators where the particle 1 (resp. N) is sub-

ject to a constant force τℓ (resp. τr). Moreover we assume that the particle 1 (reps. N)

is in contact with a Langevin thermal bath at temperature Tℓ (resp. Tr). The generator

LN of the dynamics on the phase space ΩN = RN−1 ×RN is given by

LN = A τℓ,τr

N + γSN + γℓB1,Tℓ + γrBN,Tr , γ > 0, (13)

where A τℓ,τr

N is the Liouville operator, B j,T the generator of the Langevin bath at

temperature T acting on the j–th particle and SN the generator of the noise. The

strength of noise and thermostats are regulated by γ , γℓ and γr respectively. The

Liouville operator is defined by

A τℓ,τr

N =
N

∑
x=2

(px − px−1)∂rx +
N−1

∑
x=2

(
V ′(rx+1)−V ′(rx)

)
∂px

−
(
τℓ−V ′(r2)

)
∂p1

+
(
τr −V ′(rN)

)
∂pN

.

(14)
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The generators of the thermostats are given by

B j,T = T ∂ 2
p j
− p j∂p j

. (15)

The noise corresponds to independent velocity change of sign, i.e.

(SN f )(r,p) =
1

2

N−1

∑
x=2

( f (r,px)− f (r,p)) , f : ΩN →R. (16)

We will also consider the case where the chain has fixed boundary conditions.

Proposition 1 ([10], [11],[22]). Consider a finite chain of pinned or unpinned oscil-

lators with fix, free or forced boundary conditions in contact with two thermal baths

at different temperatures and perturbed by one of the energy conserving noises de-

fined above. Then, there exists a unique non-equilibrium stationary state for this

dynamics which is absolutely continuous w.r.t. Lebesgue measure.

Proof. The proof of the existence of the invariant state can be obtained from the

knowledge of a suitable Liapounov function. To prove the uniqueness of the invari-

ant measure it is sufficient to prove that the dynamics is irreducible and has the

strong-Feller property. Some hypoellypticity, control theory and conditioning argu-

ments are used to achieve this goal. ⊓⊔

1.2 Simplified perturbed Hamiltonian systems

Introducing a noise into the deterministic dynamics help us to solve some ergodicity

problems. Nevertheless, as we will see, several challenging problems remain open

for chains of oscillators perturbed by a conservative noise. In [13] we proposed to

simplify still these models and the main message addressed there is that the models

introduced in [13] have qualitatively the same behaviors as the unpinned chains. For

simplicity we define only the dynamics in infinite volume.

Let U and V be two potentials on R and consider the Hamiltonian system

(ω(t))t≥0 = (r(t),p(t))t≥0 described by the equations of motion

d px

dt
=V ′(rx+1)−V ′(rx),

drx

dt
=U ′(px)−U ′(px−1), x ∈ Z, (17)

where px is the momentum of particle x, qx its position and rx = qx−qx−1 the “defor-

mation”. Standard chains of oscillators are recovered for a quadratic kinetic energy

U(p) = p2/2. The dynamics conserves (at least) three physical quantities: the to-

tal momentum ∑x px, the total deformation ∑x rx and the total energy ∑x Ex with

Ex = V (rx)+U(px). Consequently, every Gibbs grand canonical ensemble νβ ,λ ,λ ′

defined by

dνβ ,λ ,λ ′(η) = ∏
x∈Z

Z (β ,λ ,λ ′)−1 exp
{
−βEx −λ px−λ ′rx

}
drx d px (18)
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is invariant under the evolution. To simplify we assume that the potentials U and V

are smooth potentials with second derivatives bounded by below and from above.

To overcome our ignorance about macro-ergodicity of the dynamics, as before,

we add a stochastic conserving perturbation. In the general case U 6=V , the Hamil-

tonian dynamics can be perturbed by the energy-momentum conserving noise acting

on the velocities (as proposed in [31]) but conserving the three physical invariants

mentioned above. Then the infinite volume dynamics can be defined on the state

space Ω̃ . Its generator L is given by L = A + γS , γ > 0, where

(A f )(r,p) = ∑
x∈Z

{
(V ′(rx+1)−V ′(rx))∂px f + (U ′(px)−U ′(px−1))∂rx f

}
(r,p)

(S f ) = ∑
x∈Z

[
f (r,px,x+1)− f (r,p)

]

(19)

for any f ∈C1
0(Ω̃).

Theorem 4 ([13]). Assume that the potentials U and V are smooth potentials with

second derivatives bounded by below and from above. The dynamics generated by

L =A + γS with γ > 0 and A ,S given by (19) is macro-ergodic. Consequently,

before the appearance of the shocks, in the Euler time scale, the hydrodynamic limits

are given by a triplet of compressible Euler equations.

Our motivation being to simplify as much as possible the dynamics considered

in [1, 2] without destroying the anomalous behavior of the energy diffusion, we

mainly focus on the symmetric case U = V . Then the p’s and r’s play a symmetric

role so there is no reason that momentum conservation is more important than de-

formation conservation. We propose thus to add a noise conserving only the energy

and ∑x[rx + px]. It is more convenient to use the variables {ηx ; x ∈ Z} ∈RZ defined

by η2x = px and η2x−1 = rx so that (17) becomes

dηx =
[
V ′(ηx+1)−V ′(ηx−1)

]
dt, x ∈ Z. (20)

We might also interpret the dynamics for the η’s as the dynamics of an interface

whose height (resp. energy) at site x is ηx (resp. V (ηx)). It is then quite natural to

call the quantity ∑x ηx the “volume”.

Hence, we introduce the so-called stochastic energy-volume conserving dynam-

ics, which is still described by (20) between random exponential times where two

nearest neighbors heights ηx and ηx+1 are exchanged. Observe that in the momenta-

deformation picture this noise is less degenerate than the momenta exchange noise

since exchange between momenta and positions is now allowed. The generator L
of the infinite volume dynamics, well defined on the state space Ω , is given by

L = A + γS , γ > 0, where for any f ∈C1
0(Ω),
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(A f )(η) = ∑
x∈Z

[
V ′(ηx+1)−V ′(ηx−1)

]
(∂ηx f )(η),

(S f )(η) = ∑
x∈Z

[
f (ηx,x+1)− f (η)

]
.

(21)

The noise still conserves the total energy and the total volume but destroys the

conservation of momentum and deformation. Therefore, only two quantities are

conserved and the invariant Gibbs grand canonical measures of the stochastic dy-

namics correspond to the choice λ =λ ′ in (18). We denote νβ ,λ ,λ (resp. Z (β ,λ ,λ ))
by µβ ,λ (resp. Z(β ,λ )).

2 Normal diffusion

Normal diffusion of energy in purely deterministic homogeneous chains of oscilla-

tors is expected to hold in high dimension (d ≥ 3) or if momentum is not conserved,

i.e. in the presence of a pinning potential. The problem of anomalous diffusion will

be discussed in the next chapter. In this chapter we consider the case of normal

diffusion.

The first step to show such normal behavior is to prove that the transport co-

efficient, the thermal conductivity, is well defined. Once it has been achieved, the

following non-equilibrium problems can be considered:

• Hydrodynamic limits in the diffusive time scale tε−2, ε being the scaling param-

eter: if the system has trivial hydrodynamics in the time scale tε−1, i.e. if mo-

mentum is not conserved, we would like to show that in the diffusive time scale,

the macroscopic energy profile evolves according to a diffusion equation. If the

system has non-trivial hydrodynamics given by the Euler equations in the hy-

perbolic scaling (i.e. if momentum is conserved), in the diffusive time scale, we

would like to derive the incompressible Navier-Stokes equations. These would

be obtained by starting with some initial momentum macroscopic profile of or-

der O(ε) but an energy profile of order O(1).
• Validity of Fourier’s law: we consider the NESS of the system in contact at the

boundaries with thermal baths at different temperatures. Fourier’s law expresses

that the average of the energy current in the NESS is proportional to the gradient

of the local temperature. The proportionality coefficient is called the thermal

conductivity.

Assume for simplicity that d = 1 and that the energy is the only conserved quan-

tity. The corresponding microscopic current, denoted by je
x,x+1, is defined by the

local energy conservation law

L Ex =−∇ je
x−1,x (22)

where L is the generator of the infinite dynamics under investigation and ∇ is the

discrete gradient defined for any (ux)x ∈ RZ by ∇ux = ux+1 − ux. In the current
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state of the art, in all the problems mentioned above, the usual approach consists to

prove that there exist functions ϕx = θxϕ0 and hx = θxh0 (actually only approximate

solutions are needed) such that the following decomposition

je
x,x+1 = ∇ϕx +L hx (23)

holds. Here θx denotes the shift by x ∈ Z
d . Equation (23) is called a microscopic

fluctuation-dissipation equation. Then, taking arbitrary large integer ℓ ≥ 1, by us-

ing a multi-scale analysis we replace the block averaged function 1
2ℓ+1 ∑|y−x|≤ℓ ∇ϕy

by D(E ℓ
x )∇E ℓ

x where the function D is identified to a diffusion coefficient which

depends on the empirical energy E ℓ
x = 1

2ℓ+1 ∑|y−x|≤ℓEy in the mesoscopic box of

length (2ℓ+ 1) centered around x. Intuitively, L hx represents rapid fluctuation (in-

tegrated in time, it is a martingale) and the term ∇ϕx represents the dissipation. Gra-

dient models are systems for which the current is equal to the gradient of a function

(hx = 0 with the previous notations).

There are at least two reasons for which the problems listed above are difficult:

• The existence of a microscopic fluctuation-dissipation equation has been given

for the first time for reversible systems. It has been extended to asymmetric sys-

tems satisfying a sector condition. Roughly speaking this last condition means

that the antisymmetric part of the generator is a bounded perturbation of the

symmetric part of the generator 8. Later this condition has been relaxed into the

so-called graded sector condition: there exists a gradation of the space where the

generator is defined and the asymmetric part is bounded by the symmetric part

on each graded part (see [43], [36] and references therein). The Hamiltonian sys-

tems perturbed by a noise are non-reversible and since the noise (the symmetric

part of the generator) is very degenerate, none of these conditions hold.

• The system evolves in a non compact space and one needs to show that energy

cannot concentrate on a site. This technical problem turns out to be difficult

since no general techniques are available. For deterministic nonlinear chains the

bounds on the average energy moments are usually polynomial in the size N of

the system. Typically we need bounds of order one with respect to N.

2.1 Anharmonic chain with velocity-flip noise

2.1.1 Linear response theory: Green-Kubo formula

The Green-Kubo formula is one of the most important formulas of non-equilibrium

statistical mechanics. In the two problems mentioned in the introduction of the chap-

8 The antisymmetric (resp. symmetric) part of the generator L is given by L−L ∗
2 (resp. L+L ∗

2 )

where L ∗ is the adjoint of L in L
2(µ), µ being any Gibbs grand canonical measure. For the mod-

els considered in this course, the antisymmetric part is A and due to the deterministic dynamics,

the symmetric part is S and due to the noise.
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ter (hydrodynamic limits and Fourier’s law) the limiting objects are defined via some

macroscopic coefficients which can be expressed by a Green-Kubo formula. The

latter is a formal expression and showing that it is indeed well defined is a difficult

problem. It is usually introduced in the context of the linear response theory that we

describe below.

Consider a one dimensional unpinned chain of N harmonic oscillators with

forced boundary conditions and perturbed by the velocity-flip noise. The two ex-

ternal constant forces are denoted by τℓ and τr. Furthermore on the boundary parti-

cles 1 and N, Langevin thermostats are acting at different temperature Tℓ = β−1
ℓ and

Tr = β−1
r . The generator LN of the dynamics is given by (13) and we denote the

unique non-equilibrium stationary state by µss. The expectation w.r.t. µss is denoted

by 〈·〉ss.

Tℓ Tr

τrτℓ

Fig. 2: The unpinned chain with boundary thermal reservoirs and forced boundary

conditions.

The energy 9 of atom x is defined by

E1 =
p2

1

2
, Ex =

p2
x

2
+V(rx), x = 2, . . . ,N.

The local conservation of energy is expressed by the microscopic continuity

equation

LN(Ex) =−∇ je
x−1,x, x = 1, . . . ,N,

where the energy current je
x,x+1 from site x to site x+ 1 is given by

je
0,1 =−τℓp1 + γℓ(Tℓ− p2

1),

je
N,N+1 =−τr pN − γr(Tr − p2

N),

je
x,x+1 =−pxV

′(rx+1), x = 1, . . . ,N − 1.

(24)

9 The definition of the energy is slightly modified w.r.t. (1). It is more convenient since the energies

are then independent random variables in the Gibbs grand canonical ensemble.
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The energy current je
0,1 (and similarly for je

N,N+1) is composed of two terms: the

term −τℓp1 corresponds to the work done on the first particle by the linear force and

the term γℓ(Tℓ− p2
1) is the heat current due to the left reservoir.

Let Ps be the velocity of the center of mass of the system and Js be the average

energy current, which are defined by

Ps = 〈px〉ss and Js = 〈 je
x,x+1〉ss.

We have the simple relation between these two quantities

Js =−τℓPs + γℓ(Tℓ−〈p2
1〉ss), Js =−τrPs − γr(Tr −〈p2

N〉ss). (25)

The value of Ps can be determined exactly and is independent of the nonlinearities

present in the system. By writing that 〈LN(px)〉ss = 0 for any x = 1, . . . ,N we get

that the tension profile, defined by τx = 〈V ′(rx)〉ss, satisfies

τ2 − τℓ = γℓPs, τr − τN = γrPs,

τx+1 − τx = γPs, x = 2, . . . ,N − 1.

We have then:

Lemma 1 ([11]). The velocity Ps of the center of mass is given by

Ps =
τr − τℓ

γ(N − 2)+ γℓ+ γr

(26)

and the tension profile is linear:

τx =
γ(x− 2)+ γℓ

γ(N − 2)+ γℓ+ γr

(τr − τℓ)+ τℓ. (27)

Consequently

lim
n→∞

τ[Nu] = τℓ+(τr − τℓ)u, u ∈ [0,1]. (28)

For purely deterministic chain (γ = 0), the velocity Ps is of order 1, while the

tension profile is flat at the value (γℓ+ γr)
−1 [γℓτr + γrτℓ]. The first effect of the noise

is to make Ps of order N−1 and to give a nontrivial macroscopic tension profile.

It is expected that there exists a positive constant C independent of the size N

such that 〈Ex〉ss ≤ C for any x = 1, . . . ,N. Apart from the harmonic case we do not

know how to prove such a bound.

We shall denote by f̃ss the derivative of the stationary state µss with respect to the

local Gibbs equilibrium state µlg defined by µlg(dr,dp) = g(r,p)drdp with

g(r,p) =
N

∏
x=1

e−βx(Ex−τxrx)

Z(τxβx,βx)
, (29)
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where βx = βℓ+
x
N
(βr −βℓ) and τx = τℓ+

x
N
(τr −τℓ). In the formula above we have

introduced r1 = 0 to avoid annoying notations.

The function f̃ss is solution, in the sense of distributions, of the equation

L̃ ∗
N f̃ss = 0 (30)

where L̃ ∗
N is the adjoint of LN in L2(µlg). We assume that Tr = T +δT,Tℓ = T and

τr = τ − δτ,τℓ = τ with δT,δτ small. At first order in δT and δτ , we have

L̃ ∗
N = L ∗

N,eq.+ γrδT ∂ 2
pN

− δτ∂pN
− δT

T 2N

N−1

∑
x=1

(
je
x,x+1 + τ px

)
− δτ

NT

N−1

∑
x=1

px + o(δT,δτ)

where L ∗
N,eq. =−A τ,τ

N + γSN + γℓB1,T + γrBN,T is the adjoint in L2(µN
τ,T ) of

LN,eq. = A τ,τ
N + γSN + γℓB1,T + γrBN,T (31)

and µN
τ,T is the finite volume Gibbs grand canonical ensemble with tension τ and

temperature T . We now expand f̃ss at the linear order in δT and δτ:

f̃ss = 1+ ũδT + ṽδτ + o(δT,δτ) (32)

and we get that ũ and ṽ are solution of

L ∗
N,eq.ũ =

1

T 2N

N−1

∑
x=1

(
je
x,x+1 + τ px

)
,

L ∗
N,eq.ṽ =

1

NT

N−1

∑
x=1

px.

(33)

It is clear that the function hx appearing in the microscopic fluctuation-dissipation

equation (23) is closely related (up to a time reversal) to the functions ũ, ṽ, i.e. to

the first order correction to local equilibrium.

We can now compute the average energy current at the first order in δT and δτ
as N → ∞ but we need to introduce some notation. We recall that the generator of

the infinite dynamics is given by L = A + γS where, for any f ∈C1
0(Ω̃),

(A f )(r,p) = ∑
x∈Z

[
(px − px−1)∂rx f +

(
V ′(rx+1)−V ′(rx)

)
∂px f

]
(r,p),

(S f )(r,p) =
1

2
∑
x∈Z

[ f (r,px)− f (r,p)] .

Let H :=Hτ,T be the completion of the vector space of bounded local functions w.r.t.

the semi-inner product ≪ ·, · ≫ defined for bounded local functions f ,g : Ω̃ → R,

by

≪ f ,g ≫= ∑
x∈Z

{µτ,T ( f θxg)− µτ,T ( f )µτ,T (g)} . (34)
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Observe that in H every constant c∈R and discrete gradient ψ = θ1 f − f is equal to

zero since for any local bounded function h we have ≪ c,h≫= 0 and ≪ψ ,h≫= 0.

Assuming they exist let J̃s and P̂s be the limiting average energy current and

velocity:

J̃s = lim
N→∞

N〈 je
0,1〉ss, P̂s = lim

N→∞
N〈p0〉ss, (35)

and define Ĵs = J̃s + τP̂s. We expect that as N goes to infinity and, at first order in

δT and δτ , (
Ĵs

P̂s

)
=−κ(T,τ)

(
δT

δτ

)

with

κ(T,τ) =

(
κe κe,r

κ r,e κ r

)
(36)

the thermal conductivity matrix. Assume for simplicity that N = 2k is even. By (32)

and (33), we get that

N〈p0〉ss = N〈pk〉ss = N

∫
pk f̃ss dµlg

= N δT

∫
pk ũ dµlg + N δτ

∫
pk ṽ dµlg + o(δT,δτ)

=−
δT

T 2

∫
pk (−L ∗

N,eq.)
−1
(N−1

∑
x=1

( je
x,x+1 + τ px)

)
dµlg

−
δτ

T

∫
pk (−L ∗

N,eq.)
−1
(N−1

∑
x=1

px

)
dµlg + o(δT,δτ).

Since
dµlg

dµN
τ,T

is equal to 1+O(δT,δτ), we can replace µlg by µN
τ,T in the last terms of

the previous expression. Using that L ∗
N,eq. is the adjoint of LN,eq. in L

2(µN
τ,T ) and

denoting by 〈·,〉τ,T the scalar product in L2(µN
τ,T ), we obtain that

N〈p0〉ss =−δT

T 2

〈
(−LN,eq.)

−1 pk ,
N−1

∑
x=1

( je
x,x+1 + τ px)

〉

τ,T

− δτ

T

〈
(−LN,eq.)

−1 pk ,
N−1

∑
x=1

px

〉

τ,T

+ o(δT,δτ)

=−δT

T 2

〈
(−L2k,eq.)

−1 pk ,
k−1

∑
y=−k+1

( je
y+k,y+k+1 + τ py+k)

〉

τ,T

− δτ

T

〈
(−L2k,eq.)

−1 pk ,
k−1

∑
y=−k+1

py+k

〉

τ,T

+ o(δT,δτ)
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In the first order terms of the previous expression we can recenter everything around

k by a translation of −k and we get

N〈p0〉ss =−δT

T 2

〈
(−LΛk,eq.)

−1 p0 ,
k−1

∑
y=−k+1

( je
y,y+1 + τ py)

〉

τ,T

− δτ

T

〈
(−LΛk,eq.)

−1 p0 ,
k−1

∑
y=−k+1

py

〉

τ,T

+ o(δT,δτ)

where Λk = {−k+ 1, . . . ,k} and

LΛk ,eq. = A τ,τ
Λk

+ γSΛk
+ γℓB−k,T + γrBk,T

with

A τ,τ
Λk

=
k

∑
x=−k+2

(px − px−1)∂rx +
k−1

∑
x=−k+2

(
V ′(rx+1)−V ′(rx)

)
∂px

−
(
τ −V ′(r−k+2)

)
∂p−k+1

+
(
τ −V ′(rk)

)
∂pk

and

(SΛk
f )(r,p) =

1

2

k−1

∑
x=−k+2

( f (r,px)− f (r,p)) .

A similar formula can be obtained for N〈 je
0,1〉ss. As k → ∞, the finite volume

Gibbs measure converges to the infinite volume Gibbs measure. Moreover, we ex-

pect that since k → ∞ the effect of the boundary operators B±k,T around the site 0

disappears so that (−LΛk,eq.)
−1 p0 converges to (−L )−1 p0. Therefore, in the ther-

modynamic limit N → ∞ (i.e. k → ∞), the transport coefficients are given by the

Green-Kubo formulas

κe = T−2 ≪ je
0,1 + τ p0 , (−L )−1 ( je

0,1 + τ p0)≫,

κe,r = T−1 ≪ p0 , (−L )−1 ( je
0,1 + τ p0)≫,

(37)

and

κ r = T−1 ≪ p0 , (−L )−1 (p0)≫,

κ r,e = T−2 ≪ je
0,1 + τ p0 , (−L )−1 (p0)≫ .

(38)

The argument above is formal. In fact even proving the existence of the transport

coefficients defined by (37), (38) is a non-trivial task. The existence of P̂s defined by

the second limit in (35) can be made rigorous since we have the exact expression of

Ps. From Lemma 1, we have, even for δτ,δT that are not small,

P̂s =−δτ

γ
.
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On the other hand we show in Theorem 5 that the quantities κ r,κ r,e, formally given

by (38), can be defined in a slightly different but rigorous way, and are then equal to

κ r = γ−1, κ r,e = 0. (39)

Thus we can rigorously establish the validity of the linear response theory for the

velocity P̂s.

2.1.2 Existence of the Green-Kubo formula

One of the main results of [11] is the existence of the Green-Kubo formula for the

conductivity matrix. Let Ha (resp. Hs) be the set of functions f : Ω̃ → R antisym-

metric (resp. symmetric) in p, i.e. f (r,p) = − f (r,−p) (resp. f (r,p) = f (r,−p))
for every configuration (r,p) ∈ Ω̃ . For example, the functions je

0,1, p0 and every

linear combination of them are antisymmetric in p.

Theorem 5 ([11], [9]). Let f ,g ∈Ha. The limit

σ( f ,g) = lim
z→0
z>0

≪ f , (z−L )−1 g ≫

exists and σ( f ,g) = σ(g, f ). Therefore, the conductivity matrix κ(T,τ) is well de-

fined in the following sense: the limits

κe = lim
z→0
z>0

T−2 ≪ je
0,1 + τ p0 , (z−L )−1 ( je

0,1 + τ p0)≫,

κe,r = lim
z→0
z>0

T−1 ≪ p0 , (z−L )−1 ( je
0,1 + τ p0)≫,

κ r = lim
z→0
z>0

T−1 ≪ p0 , (z−L )−1 (p0)≫= γ−1,

κ r,e = lim
z→0
z>0

T−2 ≪ je
0,1 + τ p0 , (z−L )−1 (p0)≫

(40)

exist and are finite. Moreover Onsager’s relation κe,r = κ r,e(= 0) holds.

We have a nice thermodynamical consequence of the previous result. If δT and

δτ are small and of the same order, the system cannot be used as a refrigerator or a

boiler: at the first order, a gradient of tension does not contribute to the heat current

Ĵs. The argument above says nothing about the possibility to realize a heater or a

refrigerator if δτ is not of the same order as δT . For the harmonic chain, we will

see that it is possible to get a heater if δτ is of order
√

δT .

Remark 1. 1. The existence of the Green-Kubo formula is also valid for a pinned

or unpinned chain in any dimension.
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2. Observe that with respect to the establishment of a microscopic fluctuation-

dissipation equation (23) the computation of the Green-Kubo formula is less

demanding since only the knowledge of ∑x hx is necessary.

The proof of Theorem 5 is based on functional analysis arguments. The first

main observation is that there exists a spectral gap for the operator S restricted to

the space Ha.

Lemma 2. The noise operator S lets Ha and Hs invariant. For any local function

f ∈Ha we have that

≪ f , f ≫≤≪ f ,−S f ≫ . (41)

Moreover, for any local function f ∈ Ha, there exists a local function h ∈ Ha such

that

S h = f .

Proof. Since the Gibbs states are Gaussian states in the px’s it is convenient to

decompose the operator S (which acts only on the px’s) in the orthogonal basis

of Hermite polynomials. The the lemma follows easily. ⊓⊔
Proof (Theorem 5).

We observe first that Ha and Hs are orthogonal Hilbert spaces such that H =
Ha ⊕Hs. It is also convenient to define the following semi-inner product

≪ u,w ≫1=≪ u,(−S )w ≫ .

Let H1 be the associated Hilbert space. We also define the Hilbert space H−1 via the

duality given by the H norm, that is

‖u‖2
−1 = sup

w
{2 ≪ u,w ≫−≪ w,w ≫1 }

where the supremum is taken over local bounded functions w. By Lemma 2 we have

that Ha ⊂H−1. Thus g ∈H−1.

Let wz be the solution of the resolvent equation (z−L )wz = g. We have to show

that ≪ f ,wz ≫ converges as z goes to 0. We decompose wz into wz =w−
z +w+

z , w−
z ∈

Ha and w+
z ∈Hs. Since Ha is orthogonal to Hs and f ∈Ha we have ≪ f ,wz ≫=≪

f ,w−
z ≫. It is thus sufficient to prove that (w−

z )z>0 converges weakly in H as z → 0.

Since A inverts the parity and S preserves it and Ha ⊕Hs =H and g ∈Ha, we

have, for any µ ,ν > 0,

νw+
ν −A w−

ν − γS w+
ν = 0,

µw−
µ −A w+

µ − γS w−
µ = g.

(42)

Taking the scalar product with w+
µ (resp. w−

ν ) on both sides of the first (resp. second)

equation of (42), we get

ν ≪ w+
µ ,w

+
ν ≫−≪ w+

µ ,A w−
ν ≫+γ ≪ w+

µ ,w
+
ν ≫1= 0,

µ ≪ w−
ν ,w

−
µ ≫−≪ w−

ν ,A w+
µ ≫+γ ≪ w−

µ ,w
−
ν ≫1=≪ wν ,g ≫ .

(43)
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Summing the above equations we have

ν ≪ w+
µ ,w

+
ν ≫+µ ≪ w−

ν ,w
−
µ ≫+γ ≪ wµ ,wν ≫1=≪ wν ,g ≫ (44)

Putting µ = ν we get

ν ≪ wν ,wν ≫+γ ≪ wν ,wν ≫1≤ ‖wν‖1‖g‖−1.

Hence (wν )ν>0 is uniformly bounded in H1 and by the spectral gap property so is

(w−
ν )ν>0 in H. Moreover, (νwν )ν>0 converges strongly to 0 in H as ν → 0. We can

then extract weakly convergent subsequences. Taking first the limit, in (44), ν → 0

and then µ → 0 along one such subsequence (converging to w∗) we have

γ ≪ w∗,w∗ ≫1=≪ w∗,g ≫ .

Next, taking the limit along different weakly convergent subsequences (let w∗ be the

other limit) we have

γ ≪ w∗,w∗ ≫1=≪ w∗,g ≫
and, exchanging the role of the two sequences

2γ ≪ w∗,w∗ ≫1=≪ w∗,g ≫+≪ w∗,g ≫= γ ≪ w∗,w∗ ≫1 +γ ≪ w∗,w∗ ≫1

which implies w∗ = w∗, that is all the subsequences have the same limit. Thus

(wν )ν>0 converges weakly in H1 as well as (w−
ν )ν>0 in H by Lemma 2. ⊓⊔

In the harmonic case, V (r) = r2/2, much more is known. Indeed one easily

checks that the exact microscopic fluctuation-dissipation equation (23) holds with

hx =
1

2γ
rx+1(px + px+1)−

r2
x+1

4
, ϕx =− 1

2γ
(rxrx+1 + p2

x). (45)

It follows that we can compute explicitly (z−L )−1 je
0,1 and obtain that the value

of the conductivity matrix:

κ(τ,T ) =

(
1
2γ 0

0 1
γ

)
.

This value will be recovered by considering the hydrodynamic limits of the system

(Theorem 6) and also by establishing the validity of Fourier’s law (see Theorem 7).

2.1.3 Expansion of the Green-Kubo formula in the weak coupling limit

In the previous subsection we proved the existence of the Green-Kubo formula

showing that the transport coefficient is well defined if some noise is added to the

deterministic dynamics. We are now interested in the behavior of the Green-Kubo

formula as the noise vanishes. We investigate this question in the weak coupling
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limit, i.e. assuming that the interaction potential is of the form εV where ε ≪ 1 is

the (small) coupling parameter. For notational simplicity we consider the one dimen-

sional infinite pinned system but the arguments given below are easily generalized

to the (pinned or unpinned) d ≥ 1-dimensional case 10. The expansion presented in

this section is formal but we will precise at the end of the section what has been rig-

orously proved. In order to emphasize the dependence of κe (denoted in the sequel

by κ) in the coupling parameter ε and the noise intensity γ , we denote κ by κ(ε,γ).
Here we propose a formal expansion of the conductivity κ in the form

κ(ε,γ) = ∑
n≥2

κn(γ)ε
n. (46)

Then we study rigorously the first term of this expansion κ2(γ). It is intuitively

clear that the expansion starts from ε2 since the Green-Kubo formula is a quadratic

function of the energy current and that the latter is of order ε (see (49)).

When the system is uncoupled (ε = 0), the dynamics is given by the generator

L0 = A0 + γS with S the flip noise defined by (12) and

A0 = ∑
x∈Z

px∂qx −W ′(qx)∂px .

When ε > 0, the generator of the coupled dynamics is denoted by

Lε = L0 + εG (47)

where

G = ∑
x∈Z

V ′(qx − qx−1)(∂px−1
− ∂px).

The energy of each cell, which is the sum of the internal energy and of the inter-

action energy, is defined by

E ε
x = Ex +

ε

2
(V (qx+1 − qx)+V(qx − qx−1)) , Ex =

p2
x

2
+W(qx). (48)

Observe that Ex = E 0
x is the energy of the isolated system x. The dynamics gener-

ated by L0 preserves all the individual energies Ex. The dynamics generated by Lε

conserves the total energy. The corresponding energy currents ε jx,x+1, defined by

the local conservation law

LεE
ε
x = ε ( jx−1,x − jx,x+1)

are given by

ε jx,x+1 =−ε

2
(px + px+1) ·V ′(qx+1 − qx). (49)

10 If W = 0 the variables qx have to take values in a compact manifold.
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Let us denote by µβ ,ε = 〈·〉β ,ε the canonical Gibbs measure at temperature

β−1 > 0 defined by the Dobrushin-Lanford-Ruelle equations, which of course de-

pends on the interaction εV . We shall assume in all the cases considered that µβ ,ε is

analytical in ε for sufficiently small ε (when applied to local functions). In partic-

ular we assume that the potentials V and W are such that the Gibbs state is unique

and has spatial exponential decay of correlations (this holds under great general

conditions on V and W , see [33]).

In order to emphasize the dependence in ε we reintroduce some notation. For any

given local functions f ,g, define the semi-inner product

≪ f ,g ≫β ,ε = ∑
x∈Z

[〈θx f ,g〉β ,ε −〈 f 〉β ,ε〈g〉β ,ε ]. (50)

We recall that θx is the shift operator by x. The sum is finite in the case ε = 0,

and converges for ε > 0 thanks to the exponential decay of the spatial correlations.

Denote by Hε =L2(≪ ·, · ≫β ,ε) the corresponding closure. We define the subspace

of antisymmetric functions in the velocities

H
a
ε = { f ∈Hε : f (q,−p) =− f (q,p)} . (51)

Similarly we define the subspace of symmetric functions in p as Hs
ε . On local func-

tions this decomposition of a function into symmetric and antisymmetric parts is

independent of ε . Let us denote by Pa
ε and Ps

ε the corresponding orthogonal pro-

jections, whose definition in fact does not depend on ε . Therefore we sometimes

omit the index ε in the notation. Finally, for any function f ∈ L
2(µβ ,ε), define

(Πε f )(E ) = µβ ,ε( f |E ), Qε = Id−Πε

where E := {Ex ; x ∈ Z}. According to Theorem 5 the conductivity is defined by

κ(ε,γ) = ε2 lim
ν→0

≪ j0,1 , (ν −Lε)
−1 j0,1 ≫β ,ε . (52)

It turns out that, for calculating the terms in the expansion (46), it is convenient to

choose ν = ε2λ in (52), for a λ > 0, and solve the resolvent equation

(λ ε2 −Lε)uλ ,ε = ε j0,1 (53)

for the unknown function uλ ,ε . The factor ε2 is the natural scaling in view of the

subsequent computations. We assume that a solution of (53) is in the form

uλ ,ε = ∑
n≥0

Uλ ,nεn = ∑
n≥0

(vλ ,n +wλ ,n)ε
n, (54)
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where Πvλ ,n = Qwλ ,n = 0, i.e. wλ ,n = ΠUλ ,n and vλ ,n = QUλ ,n. Here Π = Π0 and

Q = Q0 refer to the uncoupled measure µβ ,0
11. Given such an expression we can, in

principle, use it in (52) to write

κ(ε,γ) = lim
λ→0

∑
n≥0

εn+1 ≪ j0,1,vλ ,n +wλ ,n ≫β ,ε

= ∑
n≥1

lim
λ→0

εn ≪ j0,1,vλ ,n−1 ≫β ,ε

(55)

where we have used the fact that that ≪ j0,1,wλ ,ε ≫β ,ε= 0 and we have, arbitrarily,

exchanged the limit with the sum. Note that this is not yet of the type (46) since

the terms in the expansion depend themselves on ε . To identify the coefficients κn

we would need to expand in ε also the expectations. This is not obvious since the

functions vλ ,n are non local.

Let us consider the operator L= ΠG Pa(−L0)
−1G Π . We show below that the

operator L is a generator of a Markov process so that (λ −L)−1 is well defined for

λ > 0. Pluging (54) in (53) we obtain the following hierarchy

vλ ,0 = 0,

wλ ,0 = (λ −L)−1ΠG Pa(−L0)
−1 j0,1,

vλ ,1 = (−L0)
−1
[

j0,1 +G wλ ,0

]
,

wλ ,n = (λ −L)−1ΠG Pa(−L0)
−1
[
−λ vλ ,n−1+QG vλ ,n

]
, n ≥ 1

vλ ,n+1 = (−L0)
−1
[
−λ vλ ,n−1+G wλ ,n +QG vλ ,n

]
, n ≥ 1.

(56)

Observe that in the previous equations the (formal) operator (−L0)
−1 is always

applied to functions f such that Π f = 0 (this is the minimal requirement to have

consistent equations). This is however not sufficient to make sense of the functions

vλ ,n and wλ ,n. Nevertheless, by using an argument similar to the one given in Theo-

rem 5, we have that the local operator T0 on H
a
0 defined by

T0 f = lim
ν→0

Pa(ν −L0)
−1 f , f ∈H

a
0,

is well defined. Therefore, it is possible to make sense, as a distribution, of

α01 = ΠG Pa(−L0)
−1 j0,1 := ΠG T0 j0,1. (57)

Nevertheless, the function wλ ,0 is still not well defined since we are not sure that

T0 j0,1 is in the domain of G .

Even if the previous computations are formal a remarkable fact is that the opera-

tor L, when applied to functions of the internal energies, coincides with the Markov

generator LGL of a reversible Ginzburg-Landau dynamics on the internal energies.

11 The reason to use the orthogonal decomposition of Uλ ,n = vλ ,n +wλ ,n is that at some point we

will have to consider, for a given function f , the solution h to the Poisson equation L0h = f . The

minimal requirement for the existence of h is that Π f = 0.
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Let us denote by ρβ the distribution of the internal energies E = {Ex ; x ∈ Z} under

the Gibbs measure µβ ,0. It can be written in the form

dρβ (E ) = ∏
x∈Z

Z−1
β exp(−βEx −U(Ex))dEx

for a suitable function U . We denote the formal sum ∑x U(Ex) by U := U (E ).
We denote also, for a given value of the internal energy Ẽx in the cell x, by νx

Ẽx

the microcanonical probability measure in the cell x. i.e. the uniform probability

measure on the manifold

ΣẼx
:= {(qx, px) ∈ Ω ; Ex(qx, px) = Ẽx}.

Then, the generator LGL is given by

LGL = ∑
x

eU (∂Ex+1
− ∂Ex

)
[
e−U γ2(Ex,Ex+1)(∂Ex+1

− ∂Ex
)
]
, (58)

where

γ2(Ẽ0, Ẽ1) =

∫

ΣẼ0
×ΣẼ1

(
j0,1 T0 j0,1

)
dν0

Ẽ0
dν1

Ẽ1
. (59)

The operator LGL is well defined only if the function γ2 has some regularity prop-

erties, that are actually proven in specific examples [48, 25]. We can show that the

Dirichlet forms 12 associated to L and LGL coincide. Then in the cases where γ2 is

proven to be smooth (58) is well defined and L= LGL.

Proposition 2 ([9]). For each local smooth functions f ,g of the internal energies

only we have

≪ g,(−L) f ≫β ,0=≪ g,(−LGL) f ≫β ,0 . (60)

The operator LGL is the generator of a Ginzburg-Landau dynamics which is re-

versible with respect to ρβ , for any β > 0. It is conservative in the energy ∑x Ex and

the corresponding currents are given by θxα0,1 where α0,1 has been defined in (57).

The corresponding finite size dynamics appears in [48, 26] as the weak coupling

limit of a finite number N (fixed) of cells weakly coupled by a potential εV in the

limit ε → 0 when time t is rescaled as tε−2. Moreover, the hydrodynamic limit of the

Ginzburg-Landau dynamics is then given (in the diffusive time scale tN2, N →+∞),

by a heat equation with diffusion coefficient which coincides with κ2 as given by

(62) below ([65]). This is summarized in Figure 3.

According to the previous expansion it makes sense to define κ2(γ) by

κ2(γ) = lim
ε→0

lim
λ→0

{
≪ j0,1,T0 j0,1 ≫β ,ε +≪ j0,1,T0G wλ ,0 ≫β ,ε

}
(61)

12 They are well defined even if γ2 is not regular.
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N cells coupled by εV ∂tT = ∇(κ(ε ,γ)∇T )
tN2, N → ∞, ε ∼ 1

Ginzburg-Landau dynamics for N particles

ε−2t , ε → 0

∂tT = ∇(κ2(γ)∇T )

tN
2 , N → ∞

Fig. 3: The relation between the hydrodynamic limit, the weak coupling limit and

the Green-Kubo expansion. The dotted arrow (hydrodynamic limits in the diffusive

time scale) has not been proved. The weak coupling limit (vertical arrow) has been

proved in [48] (see also [26]) and the diagonal arrow (hydrodynamic limits for a

Ginzburg-Landau dynamics) has been obtained in [65] in some cases which however

do not cover our cases. In [9] it is argued that κ(ε,γ)∼ ε2κ2(γ) as ε → 0.

if the limits exist. In fact, a priori, it is not even clear that the term T0G wλ ,0 makes

sense since wλ ,0 is not well defined. In [9] we argue that

κ2(γ) =
〈
γ2

0,1

〉
β
−≪ α0,1 , (−LGL)

−1α0,1 ≫β . (62)

Here 〈·〉β and ≪·≫β refer to the scalar products w.r.t. ρβ . In the special case W = 0
13, we prove rigorously in [9] that we can make sense for any λ ,ε of the term in the

righthandside of (61) and that (62) is valid, supporting the conjecture that (62) is

valid in more general situations. Observe that (62) is the Green-Kubo formula for

the diffusion coefficient of the Ginzburg-Landau dynamics.

In specific examples, it is possible to study the behavior of κ2(γ) defined by (62)

in the vanishing noise limit γ → 0:

1. Harmonic chain: it is known that the conductivity of the (deterministic) har-

monic chain is κ(ε,0) = ∞. If γ > 0, κ(ε,γ) = cγ−1ε−2, c > 0 a constant, and

we get thus that limγ→0 κ2(γ) = ∞.

2. Disordered pinned harmonic chain: V is quadratic and the one-site potential W

is site-dependent given by Wx(q) = νxq2 where {νx ; x ∈ Z} is a sequence of

independent identically distributed positive bounded random variables 14. It is

known ([8]) that κ(ε,0) = 0 so that κ2(ε,0) = 0. It can be proved that κ2(γ)
vanishes as γ goes to 0.

13 If W = 0 the variables qx have to take values in a compact manifold.
14 Even if this model does not belong stricto sensu to the class of models discussed above it is easy

to generalize to this case, at least formally, the previous results.
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3. Harmonic chain with quartic pinning potential: V is quadratic and W (q) = q4.

Then it can be shown that limsupγ→0 κ2(γ) < ∞. This upper bound does not

prevent the possibility that limγ→0 κ2(γ) = 0.

To prove these results we use the upper bound κ2(γ) ≤
〈

γ2
0,1

〉
β

. Recalling (59)

we see that if we are able to compute T0 j0,1 then we can estimate
〈
γ2(E0,E1)

〉
β

. It

is exactly what is done in [9] for the specific cases above.

It would be highly interesting to have a rigorous derivation of the formal expan-

sion above. Bypassing this problem, another relevant issue is to decide if genuinely

limγ→0 κ2(γ) is zero or not. Some authors (see [23] and references therein) con-

jecture that, in some cases, the conductivity of the deterministic chain κ(ε,0) has

a trivial weak coupling expansion (κ(ε,0) = O(εn) for any n ≥ 2). Showing that

κ2(γ)→ 0 as γ → 0 would support this conjecture.

2.2 Harmonic chain with velocity-flip noise

In this section we assume that V (r) = r2/2.

2.2.1 Hydrodynamic limits

As explained in the beginning of this chapter an interesting problem consists to de-

rive a diffusion equation for a chain of oscillators perturbed by an energy conserv-

ing noise. Consider a one dimensional unpinned chain of N harmonic oscillators

with periodic boundary conditions perturbed by the velocity flip noise in the diffu-

sive scale. In other words let ω(t) = (r(t),p(t))t≥0 be the process with generator

N2LN = N2 [AN + γSN ] where SN is given by (12), Zd being replaced by TN , the

discrete torus of length N, and AN is the Liouville operator of a chain of unpinned

harmonic oscillators with periodic boundary conditions. The system conserves two

quantities: the total energy ∑x∈TN
Ex, Ex =

p2
x

2
+ r2

x
2

, and the total deformation of the

lattice ∑x∈TN
rx. Consequently, the Gibbs equilibrium measures νβ ,τ are indexed by

two parameters β > 0, the inverse temperature, and τ ∈ R, the pressure. They take

the form

dνβ ,τ(dr,dp) = ∏
x∈TN

Z −1(β ,τ) exp{−β (Ex− τrx)}drxd px

where

Z (β ,τ) =
2π

β
exp(β τ2/2).

Observe the following thermodynamic relations
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∫
Ex dνβ ,τ = β−1 + τ2

2
,

∫
rx dνβ ,τ = τ

or equivalently

τ =

∫
rx dνβ ,τ , β =





∫
Ex dνβ ,τ −

(
∫

rx dνβ ,τ

)2

2





−1

.

Definition 2. Let T= [0,1) be the continuous torus. Let e0 : T→R and r0 : T→R

be two continuous macroscopic profiles such that e0 >
r2

0
2

. A sequence of probability

measures (µN)N≥1 on (R×R)TN is said to be a sequence of Gibbs local equilibrium

states associated to the energy profile e0 and the deformation profile r0 if

dµN(dr,dp) = ∏
x∈TN

Z −1(β0(
x
N
),τ0(

x
N
)) exp{−β0(x/N)(Ex − τ0(x/N)rx)}drxd px

where the functions β0 and τ0 are defined by

τ0 = r0, β0 = {e0 − r2
0
2 }

−1.

Once we have the microscopic fluctuation-dissipation equation (see (45)) and

assuming the propagation of local equilibrium in the diffusive time scale it is easy

to guess the hydrodynamic equations followed by the system. In [54] the following

theorem is proved.

Theorem 6 ([54]). Consider the unpinned velocity-flip model with periodic bound-

ary conditions. Let (µN)N be a sequence of Gibbs local equilibrium states 15 asso-

ciated to a bounded energy profile e0 and a deformation profile r0. For every t ≥ 0,

and any test continuous functions G,H : T→ R, the random variables

( 1

N
∑

x∈TN

G( x
N
)rx(tN

2),
1

N
∑

x∈TN

H( x
N
)Ex(tN

2)
)

(63)

converge in probability as N → ∞ to

(∫

T

G(y)r(t,y)dy,

∫

T

H(y)e(t,y)dy
)

where r and e are the (smooth) solutions to the hydrodynamical equations

{
∂tr=

1
γ ∂ 2

y r,

∂te=
1
2γ ∂ 2

y

[
e + r2

2

] , y ∈ T, (64)

with initial conditions r(0,y) = r0(y), e(0,y) = e0(y).

15 One can consider more general initial states, see [54].
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The proof of this theorem is based on Yau’s relative entropy method ([67], [51]).

The general strategy is simple. Let µN
t be the law of the process at time tN2 starting

from µN and let µ̃N
t be a sequence of Gibbs local equilibrium state corresponding

to the deformation profile rt(·) := r(t, ·) and energy profile et(·) := e(t, ·) solution

of (64). We expect that since e and r are the hydrodynamic profiles, the probability

measure of the process µN
t is close, in some sense, to the local Gibss state µ̃N

t . Yau’s

relative entropy method consists to show that the entropic distance 16

HN(t) := H(µN
t |µ̃N

t ) = o(N) (65)

between the two states is relatively small. Assuming (65), in order to prove for

example the convergence of the empirical energy, we use the entropy inequality 17

which states that for any α > 0 and test function φ

∫
φdµN

t ≤ H(µN
t |µ̃N

t )
α +

1

α
log

(∫
eαφ dµ̃N

t

)
. (66)

We take then α = δN, δ > 0, and

φ =

∣∣∣∣∣
1

N
∑

x∈TN

H( x
N
)Ex −

∫

T

H(y)e(t,y)dy

∣∣∣∣∣ .

Since µ̃N
t is fully explicit and even product, by using large deviations estimates, it is

possible to show that

limsup
N→∞

1

δN
log

(∫
eδNφ dµ̃N

t

)
= I(δ ) (67)

where I(δ )→ 0 as δ → 0. By using (65), we are done. It remains then to prove (65)

and for this we rely on a Gronwall inequality for the entropy production (C > 0 is a

constant)

∂tHN ≤CHN(t)+ o(N). (68)

The proof of (68) is quite evolved and we refer the interested reader to [54], [12]

(see also [41] for some overview on the subject). It is in this step that the macro-

ergodicity of the dynamics is used in order to derive the so-called one-block esti-

mate.

For non-gradient systems, i.e. systems such that the microscopic currents of the

conserved quantities are not given by discrete gradients 18, the previous strategy

has to be modified. Indeed, in order to have (65) it is necessary to replace the local

equilibrium Gibbs state µ̃N
t by a local equilibrium state with a first order correction

16 There is some abuse of language here since the relative entropy is not a distance between prob-

ability measures.
17 It is a trivial consequence of the definition (9).
18 Observe that if a system is gradient then a microscopic fluctuation-dissipation equation (23)

holds with a zero fluctuating term.
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term of the form

dµ̂N
t (dr,dp)

= Z−1
t,N ∏

x∈TN

exp
{
−βt(x/N)(Ex − τt(x/N)rx)+

1
N

F(t,x/N)(θxg)(r,p)
}

drxd px

(69)

where Zt,N is a normalization constant,

τt = rt , βt = {et − r2
t
2 }

−1

and the functions F and g are judiciously chosen. The choice is guided by the

fluctuation-dissipation relation (45) and done in order to obtain the first order ”Tay-

lor expansion” (71) below.

Let Ω N = (R×R)TN be the configurations space and denote

ĤN(t) := H
(
µN

t |µ̂N
t

)
=
∫

ΩN
f N
t (ω) log

f N
t (ω)

φN
t (ω)

dν∗(ω) , (70)

where f N
t is the density of µN

t with respect to the Gibbs reference measure ν∗ :=
ν1,0. In the same way, φN

t is the density of µ̂N
t with respect to ν∗ (which is fully

explicit). The goal is to get (68) with HN replaced by ĤN .

We begin with the following entropy production bound. Let us denote by L ∗
N =

−AN + γSN the adjoint of LN in L2(ν∗).

Lemma 3.

∂tĤN(t)≤
∫

1

φN
t

(
N2L ∗

NφN
t − ∂tφ

N
t

)
f N
t dν∗ =

∫ [
1

φN
t

(
N2L ∗

NφN
t − ∂tφ

N
t

)]
dµN

t .

Proof. We have that f N
t solves the Fokker-Plack equation ∂t f N

t = N2L ∗
N f N

t . As-

suming it is smooth to simplify, we have

∂tĤN(t) =

∫
∂t f N

t [1+ log f N
t ]dν∗−

∫
∂t f N

t logφN
t dν∗−

∫
∂tφ

N
t

f N
t

φN
t

dν∗

= N2
∫

L ∗
N f N

t [log f N
t − logφN

t ]dν∗−
∫

∂tφ
N
t

f N
t

φN
t

dν∗

= N2
∫

f N
t LN [log

f N
t

φ N
t
]dν∗−

∫
∂tφ

N
t

f N
t

φN
t

dν∗

= N2
∫

f N
t

φ N
t

LN [log
f N
t

φ N
t
]φN

t dν∗−
∫

∂tφ
N
t

f N
t

φN
t

dν∗

≤ N2
∫

LN [
f N
t

φ N
t
]φN

t dν∗−
∫

∂tφ
N
t

f N
t

φN
t

dν∗

= N2
∫

f N
t

φN
t

L ∗
NφN

t dν∗−
∫

∂tφ
N
t

f N
t

φN
t

dν∗
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where we used that for any positive function h, hLN(logh)≤ LNh (this is a conse-

quence of Jensen’s inequality). ⊓⊔

We define ξx := (Ex,rx) and π(t,q) := (e(t,q),r(t,q)). If f is a vectorial function,

we denote its differential by D f .

Proposition 3 ([54]). Let (λ ,β ) be defined by β = (e− r2

2
)−1 and λ = −β r. The

term (φN
t )−1

(
N2L ∗

NφN
t − ∂tφ

N
t

)
can be expanded as

(φN
t )−1

(
N2L ∗

NφN
t − ∂tφ

N
t

)

=
5

∑
k=1

∑
x∈TN

vk

(
t,

x

N

)[
Jk

x −Hk

(
π
(

t,
x

N

))
− (DHk)

(
π
(

t,
x

N

))
·
(

ξx −π
(

t,
x

N

))]

+ o(N) (71)

where

k Jk
x Hk(e,r) vk(t,q)

1 p2
x + rxrx−1 + 2γ pxrx−1 e+ r2/2 −(2γ)−1∂ 2

q β (t,q)

2 rx + γ px r −γ−1∂ 2
q λ (t,q)

3 p2
x (rx + rx−1)

2 (2e− r2)
(
e+ 3r2/2

)
(4γ)−1[∂qβ (t,q)]2

4 p2
x (rx + rx−1) r (2e− r2) γ−1∂qβ (t,q) ∂qλ (t,q)

5 p2
x e− r2/2 γ−1[∂qλ (t,q)]2

Observe that Hk(e,r) is equal to
∫

Jk
x dνβ ,τ where β ,τ are related to e,r by the

thermodynamic relations. Thus, the terms appearing in the righthand side of (71)

can be seen as first order “Taylor expansion”. The form of the first order correction

in (69) plays a crucial role in order to get such expansions.

A priori the first term on the right-hand side of (71) is of order N, but we want to

take advantage of these microscopic Taylor expansions to show it is in fact of order

o(N).
First, we need to cut-off large energies in order to work with bounded variables

only. To simplify, we assume they are bounded ab initio.

Let ℓ be some integer (dividing N). We introduce some averaging over micro-

scopic blocks of size ℓ and we will let ℓ → ∞ after N → ∞. We decompose TN in

a disjoint union of p = N/ℓ boxes Λℓ(x j) of length ℓ centered at x j, j ∈ {1, . . . , p}.

The microscopic averaged profiles in a box of size ℓ around y ∈ TN are defined by

ξ̃ℓ(y) =
1

ℓ ∑
x∈Λℓ(y)

ξx.

Similarly we define

J̃k
ℓ (y) =

1

ℓ ∑
x∈Λℓ(y)

Jk
x .
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In (71) we rewrite the sum ∑x∈TN
as ∑

p
j=1 ∑x∈Λℓ(x j) and, by using the smoothness of

the function vk, Hk, it is easy to replace the term

1

N
∑

x∈TN

vk

(
t,

x

N

)[
Jk

x −Hk

(
π
(

t,
x

N

))
− (DHk)

(
π
(

t,
x

N

))
·
(

ξx −π
(

t,
x

N

))]

by

1

p

p

∑
j=1

vk

(
t,

x j

N

)[
J̃k
ℓ (x j) − Hk

(
π
(

t,
x j

N

))
− (DHk)

(
π
(

t,
x j

N

))
·
(

ξ̃ℓ(x j)−π
(

t,
x j

N

))]

in the limit N, ℓ→ ∞ with some error term of order o(1).
Then, the strategy consists in proving the following crucial estimate, often called

the one-block estimate: we replace the empirical average current J̃k
ℓ (x j) which is

averaged over a box centered at x j by its mean with respect to a Gibbs measure

with the parameters corresponding to the microscopic averaged profiles ξ̃ℓ(x j), i.e.

Hk(ξ̃ℓ(x j)). This non-trivial step is achieved thanks to some compactness argument

and the macro-ergodicity of the dynamics.

Consequently we have to deal with terms in the form

1

p

p

∑
j=1

vk

(
t,

x j

N

)[
Hk

(
ξ̃ℓ(x j)

)
− Hk

(
π
(

t,
x j

N

))

−(DHk)
(

π
(

t,
x j

N

))
·
(

ξ̃ℓ(x j)−π
(

t,
x j

N

))] (72)

The final step consists then in applying the entropy inequality (66) with respect

to µ̂N
t with φ := φℓ,N given by (72) and α = δN, δ > 0 fixed but small. This will

produce some term of order ĤN(t)/N plus the term

limsup
ℓ→∞

limsup
N→∞

1

δN
log

(∫
eδNφ dµ̂N

t

)
= I(δ ).

By using some large deviations estimates (observe that µ̂N
t is explicit and product at

first order in N) one can show that I(δ ) is nonpositive for δ sufficiently small. Thus

we get the desired Gronwall inequality.

There is some additional difficulty that we hid under the carpet in the sketch of

the proof. Since the state space is non compact, a control of high energies is re-

quired for the initial cut-off. This is a highly non trivial problem 19. In the harmonic

case considered here this control is obtained thanks to the following remark: the

set of mixtures of Gaussian probability measures 20 is preserved by the (harmonic)

velocity-flip model. Since for Gaussian measures all the moments are expressed in

19 A similar problem appears in [51] where the authors derived Euler equations for a gas perturbed

by some ergodic noise. There, to overcome this difficulty, the authors replace ab initio the kinetic

energy by the relativistic kinetic energy.
20 A Gibbs local equilibrium state is a Gaussian state in the harmonic case.
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terms of the covariance matrix, required bounds can be obtained by a suitable con-

trol of the covariance matrices appearing in the mixture.

The extension of this result in the anharmonic case is a challenging open problem

(see however [52] where equilibrium fluctuations are considered for an anharmonic

chain perturbed by a conservative noise acting on the momenta and positions).

2.2.2 Fourier’s law

Since in the harmonic case an exact fluctuation-dissipation equation is available

Fourier’s law can be obtained without too much work 21.

Theorem 7 ([10, 11]). Consider the one-dimensional harmonic chain in contact

with two heat baths and with forced boundary conditions as in Section 2.1.1. Then

Fourier’s law holds:

J̃s := lim
N→∞

N〈 je
0,1〉ss =

1

2γ

{
(Tℓ−Tr)+ (τ2

ℓ − τ2
r )
}

(73)

and we have

Ĵℓ = lim
N→∞

N(〈p2
1〉ss −Tℓ) =

1

2γγℓ

[
(Tr −Tℓ)+ (τℓ− τr)

2
]
,

Ĵr = lim
N→∞

N(Tr −〈p2
N〉ss) =

1

2γγr

[
(Tr −Tℓ)− (τℓ− τr)

2
]
.

(74)

Proof. We divide the proof in two steps:

• We first prove that there exists a constant C independent of N such that |〈 je
0,1〉ss| ≤

C/N. This is obtained by using the fluctuation-dissipation equation and the fact

that 〈 je
x,x+1〉ss is independent of x:

〈 je
0,1〉ss =

1

N − 3

N−2

∑
x=2

〈 je
x,x+1〉ss (75)

= −
1

2γ

1

N − 3

N−2

∑
x=2

〈
∇
[
p2

x + rxrx+1

]〉
ss

=
1

2γ

1

N − 3

{
(〈p2

2〉ss + 〈r2r3〉ss)− (〈p2
N−1〉ss + 〈rN−1rN〉ss)

}
.

By using simple computations, one can show that (〈p2
2〉ss+〈r2r3〉ss)−(〈p2

N−1〉ss+
〈rN−1rN〉ss) is uniformly bounded in N by a positive constant.

• Now we have only to evaluate the limit of each term appearing in (〈p2
2〉ss +

〈r2r3〉ss)− (〈p2
N−1〉ss + 〈rN−1rN〉ss). Notice that assuming local equilibrium we

21 The a posteriori simple but fundamental remark that an exact fluctuation-dissipation equation

exists for the harmonic model (see (45)) is the real contribution of [10].
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easily get the result. The first step implies that 〈 je
0,1〉ss and 〈 je

N,N+1〉ss vanish

as N → +∞. Since Vs goes to 0 by Lemma 1, one has that 〈p2
1〉ss and 〈p2

N〉ss

converge respectively to Tℓ and Tr. By using some “entropy production bound”

one can propagate this local equilibrium information to the particles close to the

boundaries and show (73).

⊓⊔
It follows from this Theorem that the system can be used as a heater but not as a

refrigerator. Assume for example that Tr > Tℓ. The term Ĵℓ (resp. Ĵr) is the macro-

scopic heat current from the left reservoir to the system (resp. from the system to

the right reservoir). Whatever the values of τℓ,τr are, Ĵℓ > 0 and we can not realize

a refrigerator. But if (Tr −Tℓ)< (τr − τℓ)
2 then Ĵr < 0 and we realized a heater.

The proof of the validity of Fourier’s law for anharmonic chains perturbed by an

energy conserving noise is still open.

2.2.3 Macroscopic Fluctuation Theory for the energy conserving harmonic

chain

The macroscopic fluctuation theory ([17]) is a general approach developed by

Bertini, De Sole, Gabrielli, Jona-Lasinio and Landim to calculate the large deviation

functional of the empirical profiles of the conserved quantities of Markov processes

in a NESS. Its main interest is that it can be applied to a large class of boundary

driven diffusive systems and does not require the explicit form of the NESS but

only the knowledge of two thermodynamic macroscopic parameters of the system,

the diffusion coefficient D(ρ) and the mobility χ(ρ). This theory can be seen as an

infinite dimensional generalization of the Freidlin-Wentzel theory [28] and is based

on the large deviation principle for the hydrodynamics of the system.

In order to explain (roughly) the theory we consider for simplicity a Marko-

vian system {η(t) := {ηx(t) ∈R ; x ∈ {1, . . .N}}t≥0 with only one conserved quan-

tity, say the density ρ , in contact with two reservoirs at each extremity. Here N

is the size of the system which will be sent to infinity. We denote by µN
ss the

nonequilibrium stationary state of {η(t)}t≥0. For any microscopic configuration

η := {ηx ; x ∈ {1, . . . ,N}} let

πN(η , ·) =
N−1

∑
x=1

ηx1[ x
N
,
x+1
N

)(·)

be the empirical density profile. In the diffusive time scale, we assume that πN(η(tN2), ·)
converges as N goes to infinity to ρt(·) := ρ(t, ·) solution of





∂tρ = ∂y(D(ρ)∂yρ), y ∈ [0,1], t ≥ 0,

ρ(t,0) = ρℓ, ρ(t,1) = ρr, t ≥ 0,

ρ(0, ·) = ρ0(·)
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where ρ0(·) is the initial density profile, D(ρ)> 0 is the diffusion coefficient and ρℓ,

ρr the densities fixed by the reservoirs. As t →∞ the solution ρt of the hydrodynamic

equation converges to a stationary profile ρ̄ : [0,1] → R solution of D(ρ̄)∂yρ̄ =
J = const. with ρ̄(0) = ρℓ, ρ̄(1) = ρr. We assume that under µN

ss , the empirical

density profile πN(η , ·) converges to ρ̄ . This assumption is nothing but a law of

large numbers for the random variables πN .

We are here interested in the corresponding large deviation principle. Thus, we

want to estimate the probability that in the NESS µN
ss the empirical density profile

πN is close to an atypical macroscopic profile ρ(·) 6= ρ̄ . This probability typically

is of order e−NV(ρ) where V is the rate function:

µN
ss(π

N(η , ·)≈ ρ(·))≈ e−NV(ρ).

The goal of the macroscopic fluctuation theory is to obtain information about this

functional.

The condition to be fulfilled by the system to apply the theory of Bertini et al.

is that it satisfies a dynamical large deviation principle with a rate function which

takes a quadratic form 22 like (77).

Let us first explain what we mean by dynamical large deviation principle. Imag-

ine we start the system from a Gibbs local equilibrium state corresponding to the

macroscopic profile ρ0. We want to estimate the probability that the empirical den-

sity πN(η(tN2), ·) is close during the macroscopic time interval [0,T ], T fixed, to a

smooth macroscopic profile γ(t,y) supposed to satisfy 23 γ(0, ·) = ρ0. This proba-

bility is exponentially small in N with a rate I[0,T ](γ |ρ0)

P
[
πN(η(tN2),y)≈ γ(t,y), (t,y) ∈ [0,T ]× [0,1]

]
∼ e−NI[0,T ](γ|ρ0). (76)

The rate function is assumed to be of the form

I[0,T ](γ |ρ0) =
1

2

∫ T

0
dt

∫ 1

0
dy χ(ρ(t,y)) [(∂yH)(t,y)]2 (77)

where ∂yH is the extra gradient external field needed to produce the fluctuation γ ,

namely such that

∂tγ = ∂y [D(γ)∂yγ − χ(γ)∂yH] . (78)

Thus, I[0,T ](γ|ρ0) is the work done by the external field ∂yH to produce the fluctu-

ation γ in the time interval [0,T ]. The function χ appearing in (78) is the second

thermodynamic parameter (with the diffusion coefficient D) mentioned in the be-

ginning of this section. The two parameters D and χ are in fact related together

by the Einstein relation so that knowing one of them and the Gibbs states of the

microscopic model is sufficient to obtain the second.

22 Such property has been proved to be valid for a large class of stochastic dynamics ([42], [41]).
23 This assumption avoids taking into account the cost to produce the initial profile, cost which is

irrelevant for us.
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To show this result the strategy is the following. We perturb the Markov process

{η(t)}t≥0 thanks to the function H := H(γ), which is solution of the Poisson equa-

tion (78), by adding locally a small space inhomogeneous drift provided by ∂yH.

In doing so we obtain a new Markov process {ηH(t)}t≥0 such that in the diffusive

time scale πN(ηH(tN2), ·) converges to γ(·). Let PH (resp. P0) be the probability

measure on the empirical density paths space induced by {ηH(tN2)}t∈[0,T ] (resp.

{η(tN2)}t∈[0,T ]) . Then, by using hydrodynamic limits techniques similar to the

ones explained in Section 2.2.1 we show that in the large N limit, under PH , the

Radon-Nikodym derivative is well approximated by 24

dP0

dPH
(π)≈ exp

{
−NI[0,T ](π |ρ0)

}
.

Here π := {π(t,y) ; t ∈ [0,T ],y ∈ [0,1]} is any space-time density profile. Thus,

since

P
0
[
πN(η(tN2), ·)∼ γ(t, ·), t ∈ [0,T ]

]
= E

H

[
dP0

dPH
(π)1{π(t,·)∼γ(t,·),t∈[0,T ]}

]

we obtain (76).

The macroscopic fluctuation theory claims that the large deviations functional

V(ρ) of the empirical density in the NESS coincides with the quasi-potential W(ρ)
defined by

W(ρ) = inf
γ:γ(−∞)=ρ̄

γ(0)=ρ

I[−∞,0](γ|ρ̄).

Here I[−∞,0] is obtained from I[0,T ] by a shift in time by −T , T being sent to +∞
afterwards. In words, the quasi potential determines the cost to produce a fluctuation

equal to γ at t = 0 when the system is macroscopically in the stationary profile ρ̄ at

t =−∞.

Thus, the problem is reduced to computing W . It can be shown that W solves (at

least formally) the infinite-dimensional Hamilton-Jacobi equation

1

2

〈
∂y

[
δW

δρ

]
,χ(ρ)∂y

[
δW

δρ

]〉
+

〈
δW

δρ
, ∂y [D(ρ)∂yρ ]

〉
= 0 (79)

where 〈·, ·〉 denotes the usual scalar product in L
2([0,1]). Note that there is no

uniqueness of solutions (W = 0 is a solution) and up to now a general theory of

infinite dimensional Hamilton-Jacobi equations is still missing. This implies that

we have in fact to solve by hand the variational problem and the solution is only

known for few systems. This is an important limitation of the macroscopic fluctua-

tion theory. Even getting interesting qualitative properties on W is difficult.

24 We use Girsanov transform to express the Radon-Nikodym derivative. A priori it is not a func-

tional of the empirical density and we need to establish some replacement lemma (see [41]).
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The rigorous implementation of this long program has only been carried for the

boundary driven Symmetric Simple Exclusion Process and extended with less rigor

to a few other systems (see [15], [18], [27] for rigorous results).

Let us now try to apply this theory for the harmonic chain with velocity-flip

noise. Since we have a fully explicit microscopic fluctuation-dissipation equation

(even when some harmonic pinning is added) we can easily guess what is the form

of the hydrodynamic equations under various boundary conditions by assuming that

the propagation of local equilibrium in the diffusive time scale holds. Nevertheless,

let us observe that a rigorous derivation is missing, the obstacle being a sufficiently

good control of the high energies 25. The boundary conditions we impose to the

system are the following. At the left (resp. right) end we put the chain in contact

with a Langevin bath at temperature Tℓ (resp. Tr) and consider the system with fixed

boundary conditions or with forced boundary conditions with the same force τ at

the two boundaries. Then, for the unpinned chain, the equations (64) are still valid

but they are supplemented with the boundary conditions ([14])

[
e−

r2

2

]
(t,0) = Tℓ,

[
e−

r2

2

]
(t,1) = Tr, (80)

since the Langevin baths fix the temperatures at the boundaries and

∂yr(t,0) = ∂yr(t,1) = 0 (81)

for fixed boundary conditions (the total length of the chain is constant 26) and

r(t,0) = r(t,1) = τ (82)

for forced boundary conditions.

If the chain is pinned by the harmonic potential W (q) = νq2/2 then only the

energy is conserved and the macroscopic diffusion equation takes the form





∂te= ∂y(κ∂ye),

e(0,y) = e0(y),

e(t,0) = Tℓ, e(t,1) = Tr,

y ∈ (0,1) (83)

where the conductivity κ is equal to ([14])

κ =
1/γ

2+ν2 +
√

ν(ν + 4)
. (84)

Assuming a good control of high energies, it is possible to derive the dynami-

cal large deviations function of the empirical conserved quantities. The goal would

be to compute the large deviation functional of the NESS which according to the

25 This control is only available in the case of periodic boundary conditions ([54]).
26 Indeed, by (64), we have ∂t(

∫ 1
0 r(t,y)dy) = γ−1

∫ 1
0 ∂ 2

y r(t,y)dy = γ−1[∂yr(t,1)−∂yr(t,0)] = 0.
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macroscopic fluctuation theory coincides with the quasi potential. We recall that the

quasi potential is defined by a variational problem and that it depends only on two

thermodynamic quantities, the diffusion coefficient and the mobility (the latter are

matrices if several conserved quantities are involved).

Let us first consider the pinned velocity flip model where the energy is the only

conserved quantity. It turns out that the mobility is a quadratic function. Conse-

quently, the methods exposed in Theorem 6.5 of [16] apply and the variational for-

mula can be computed. The quasi potential V(·) is given by ([14])

V(e) =

∫ 1

0
dq

[
e(q)

F(q)
− 1− log

(
e(q)

F(q)

)
− log

(
F ′(q)

Tr −Tℓ

)]
, (85)

where F is the unique non decreasing solution of





F ′′ =
F − e

F2
(F ′)2 ,

F(0) = Tℓ, F(1) = Tr .
(86)

Surprisingly, the function V is independent of the pinning value ν and of the inten-

sity of the noise γ . It is thus natural to conjecture that in the NESS of the unpinned

velocity flip model the large deviation function of the empirical energy profile coin-

cides with V but we did not succeed to prove it. Observe that at equilibrium (Tℓ=Tr),

F(q) = Tℓ = Tr and the last term in (85) disappears so that the quasi potential is lo-

cal. On the other hand, if Tℓ 6= Tr, this is no longer the case and this reflects the

presence of long-range correlations in the NESS. In particular, an approximation of

the NESS by a Gibbs local equilibrium state in the form (29) would not give the

correct value of the quasi potential.

For the unpinned chain we have two conserved quantities. Solving the variational

problem of the quasi potential for these two conserved quantities is a very difficult

open problem27 (see [5] for a partial result for some other stochastic perturbation of

the harmonic chain).

3 Anomalous diffusion

An anomalous large conductivity is observed experimentally in carbon nanotubes

and numerically in chains of oscillators without pinning, where numerical evidence

shows a conductivity diverging with the size N of the system like Nα , with α < 1 in

dimension d = 1, and like logN in dimension d = 2. If some nonlinearity is present

in the interaction, finite conductivity is observed numerically in all pinned case or in

dimension d ≥ 3 ([24],[47]). Consequently it has been suggested that conservation

27 Here we do not have any exactly solvable model like the Symmetric Simple Exclusion Process

which could give us some hints for the form of the quasi-potential.
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of momentum is an important ingredient for the anomalous conductivity in low

dimensions (see however [66]).

In Chapter 2 we considered chains of oscillators perturbed by a noise conserving

only energy and destroying the possible momentum conservation. In the harmonic

case we obtained Fourier’s law and in the anharmonic case we proved existence of

the Green-Kubo formula for the thermal conductivity.

In this chapter the added perturbation conserves both energy and momentum (en-

ergy and volume for the Hamiltonian systems considered in Section 1.2). These

systems qualitatively have the same behavior as Hamiltonian chains of oscilla-

tors (without any noise), i.e. anomalous transport for unpinned chain in dimension

d = 1,2 and normal transport otherwise. We could even be more optimistic and

hope that they share with the deterministic systems common limits for the energy

fluctuation fields, two point correlation functions . . . This is because one expects

that the microscopic details of the dynamics are irrelevant. Therefore some univer-

sality should hold. Recently H. Spohn ([58]), by following ideas of [64], used the

nonlinear fluctuating hydrodynamics theory to classify very precisely the different

expected universality classes. The nonlinear fluctuating hydrodynamics theory is

based on the assumption that the microscopic dynamics evolve in the Euler time

scale according to a system of conservation laws. The theory is macroscopic in the

sense that all the predictions are done starting from this system of conservation laws

without further references to the microscopic dynamics. Since we have seen that the

presence of the energy-momentum conserving noise does not change the form of the

hydrodynamic equations, the theory claims in fact that the limit of the fluctuations

fields of the conserved quantities for purely deterministic chains of oscillators and

for noisy energy-momentum conserving chains are exactly the same.

3.1 Harmonic chains with momentum exchange noise

Getting some information on the behavior of the energy fluctuation field in the large

scale limit remains challenging. So far, satisfactory but not complete results have

only been obtained in the harmonic case. The anharmonic case is much more diffi-

cult.

In [1], [2] we explicitly compute the time correlation current for a system of

harmonic oscillators perturbed by an energy-momentum conserving noise 28 and

we find that it behaves, for large times, like t−d/2 in the unpinned cases, and like

t−d/2−1 when on-site harmonic potential is present.

These results are given in the Green-Kubo formalism. Their counterpart in the

NESS formalism have been considered in [46] but a rigorous proof is still missing.

Several variations of the Green-Kubo formula can be found in the literature: one

can start with the infinite system in the canonical ensemble, as we did in Subsec-

tion 2.1.2, or with a finite system, in the canonical or micro-canonical ensembles,

28 It is straightforward to adapt the proofs given in [1], [2] to the case of the momenta exchange

noise.



40 Cédric Bernardin

sending the size of the system to infinity. It is widely believed that all these def-

initions coincide (also in the case of infinite conductivity). As shown in [2], this

is essentially true for the energy-momentum conserving harmonic chain. Here we

consider the simplest possible definition avoiding to discuss the rigorous definition

of the canonical ensemble in infinite volume and the problem of equivalence of

ensembles.

The set-up is the following. We consider a chain perturbed by the energy-

momentum conserving noise (see (11)) with periodic boundary conditions. Its

Hamiltonian is given by HN = ∑x∈Td
N
Ex where the energy Ex of atom x is

Ex =
|px|2

2
+W(qx)+

1

2
∑

|y−x|=1

V (qx − qy). (87)

The system is considered at equilibrium under the Gibbs grand-canonical mea-

sure

dµN,T =
e−HN/T

ZN,T
dqdp

where ZN,T is the renormalization constant.

The Green-Kubo formula for the thermal conductivity in the direction ek, 1 ≤
k ≤ d, is 29 the limiting variance of the energy current J

e,γ
x,x+ek

([0, t]) up to time t in

the direction ek in a space-time box of size N × t:

κ(T ) =
1

2T 2
lim

t→+∞
lim

N→∞
EµN,T





 1√

Ndt
∑

x∈Td
N

J
e,γ
x,x+e1

([0, t])




2

 . (88)

The energy currents {J
e,γ
x,x+ek

([0, t]) ; k = 1, . . . ,d} are defined by the energy conser-

vation law

Ex(t)−Ex(0) =
d

∑
k=1

(
J

e,γ
x−ek ,x

([0, t])− J
e,γ
x,x+ek

([0, t])
)
.

The energy current up to time t can be written as

J
e,γ
x,x+ek

([0, t]) =
∫ t

0
j
e,γ
x,x+ek

(s)ds+Mx,x+ek
(t) (89)

where Mx,x+ek
(t) is a martingale and j

e,γ
x,x+ek

is the instantaneous current which has

the form

j
e,γ
x,x+ek

= j̃e
x,x+ek

+γ
[
p2

x+ek
− p2

x

]
, j̃e

x,x+ek
=−1

2
V ′(qx+ek

−qx)(px+ek
+ px). (90)

The term j̃e
x,x+ek

is the Hamiltonian contribution while the gradient term is due to

the noise.

29 By symmetry arguments this is independent of k.
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We now expand the square in (88). Notice first that since we have periodic bound-

ary conditions the gradient term appearing in (90) does not contribute. By a time

reversal argument one can show that the cross term between the martingale and the

time integral of the instantaneous current vanishes. Moreover a simple computation

shows that the square of the martingale term gives a contribution equal to γ (see [2]

for details). Thus we obtain

κ(T ) = T−2 lim
t→+∞

lim
N→∞

1

2Ndt
EµN,T





 ∑

x∈Td
N

∫ t

0
j̃e
x,x+ek

(s)ds




2

 + γ

= T−2 lim
t→+∞

lim
N→∞

∑
x∈Td

N

∫ +∞

0
ds
(

1− s

t

)+
EµN,T

[
j̃e
0,ek

(0) j̃e
x,x+ek

(s)
]

ds + γ

(91)

where the last line is obtained by time and space stationarity of the Gibbs measure

and u+ denotes max(u,0)30. It is then clear that the divergence of the Green-Kubo

formula, i.e. anomalous transport, is due to a slow decay of the time correlation

function C(t) defined by

C(t) = lim
N→∞

∑
x∈Td

N

EµN,T

[
j̃e
0,ek

(0) j̃e
x,x+ek

(t)
]
. (92)

Theorem 8 ([2]). Consider the harmonic case: V (r) = αr2, W (q) = νq2 where

α > 0 and ν ≥ 0.

Then the limit defining C(t) in (92) exists and can be computed explicitly. In partic-

ular, we have that C(t)∼ t−d/2 if ν = 0 and C(t)∼ t−d/2−1 if ν > 0.

Consequently, the limit (91) exists in (0,+∞] and is finite if and only if d ≥ 3 or

ν > 0. When finite, κ(T ) is independent of T and can be computed explicitly.

Proof. We compute the Laplace transform LN(z) =
∫ +∞

0 e−ztCN(t)dt, z > 0, of

CN(t) = ∑x∈Td
N
EµN,T

[
j̃0,ek

(0) j̃e
x,x+ek

(t)
]
. Since we have

LN(z) = N−1µN,T




 ∑

x∈Td
N

j̃e
x,x+,ek


 (z−LN)

−1


 ∑

x∈Td
N

j̃e
x,x+,ek






it is equivalent to solve the resolvent equation (z−LN)hN = ∑x∈Td
N

j̃e
x,x+ek

. Notice

that LN maps polynomial functions of degree 2 into polynomial functions of degree

2 and that ∑x j̃e
x,x+ek

is a polynomial function of degree 2. Thus, the function hN is

a polynomial function of degree 2. Moreover it has to be space translation invariant

since ∑x j̃e
x,x+ek

is. Therefore we can look for a function hN of the form

30 Observe that replacing (1− s
t
)+ by e−s/t and limN→∞ ∑x∈Td

N
by ∑x∈Zd we formally get an ex-

pression similar to the Green-Kubo formula of Theorem 5.
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hN = ∑
x,y

a(y− x)pxpy +∑
x,y

b(y− x)pxqy +∑
x,y

c(y− x)qxqy

where a,b and c are functions from Td
N into R. We compute explicitly a,b and c and

we get a = c = 0 while b is the solution to

(z+ 2ν − γ∆)b =−α(δek
− δ−ek

)

where ∆ is the discrete Laplacian. Then we deduce LN(z), hence CN(t) by inverse

Laplace transform. The limit C(t) = limN→+∞ CN(t) follows. ⊓⊔

Consequently in the unpinned harmonic cases in dimension d = 1 and 2, the

conductivity of our model diverges as N goes to infinity. Otherwise it converges as

N → ∞. In the anharmonic case we obtained some upper bounds showing that the

divergence cannot be worse than in the harmonic case. These upper bounds also

show that the conductivity cannot be infinite if d ≥ 3 (see [2] for details and precise

statements).

3.2 A class of perturbed Hamiltonian systems

In [13] is proposed a class of models for which anomalous diffusion is observed.

These models have been introduced in Section 1.2 of Chapter 1. The goal of [13]

was to show that these systems have a behavior very similar to that of the standard

one-dimensional chains of oscillators conserving momentum 31.

3.2.1 Definition of thermodynamic variables

Let us fix a potential V and consider the stochastic energy-volume conserving model

defined by the generator L = A + γS , γ ≥ 0, where A and S are given by (21).

Recall that the Gibbs grand-canonical probability measures µβ ,λ , β > 0, λ ∈ R,

defined on Ω by

dµβ ,λ (η) = ∏
x∈Z

Z(β ,λ )−1 exp{−βV(ηx)−λ ηx}dηx

form a family of invariant probability measures for the infinite dynamics. We as-

sume that the partition function Z is well defined on (0,+∞)×R. The following

thermodynamic relations relate the chemical potentials β ,λ to the mean volume v

and the mean energy e under µβ ,λ :

31 They could be defined in any dimension.
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v(β ,λ ) = µβ ,λ (ηx) =−∂λ

(
logZ(β ,λ )

)
,

e(β ,λ ) = µβ ,λ (V (ηx)) =−∂β

(
logZ(β ,λ )

)
.

(93)

These relations can be inverted by a Legendre transform to express β and λ as a

function of e and v. Define the thermodynamic entropy S : (0,+∞)×R→ [−∞,+∞)
as

S(e,v) = inf
λ∈R,β>0

{
β e+λ v+ logZ(β ,λ )

}
.

Let U be the convex domain of (0,+∞)×R where S(e,v)>−∞ and Ů its interior.

Then, for any (e,v) := (e(β ,λ ),v(β ,λ )) ∈ Ů , the parameters β ,λ can be obtained

as

β = (∂eS)(e,v), λ = (∂vS)(e,v). (94)

We also introduce the tension τ(β ,λ ) = µβ ,λ (V
′(η0)) = −λ/β . The microscopic

energy current j
e,γ
x,x+1 and volume current j

v,γ
x,x+1 are given by

j
e,γ
x,x+1 =−V ′(ηx)V

′(ηx+1)− γ∇[V(ηx)],

j
v,γ
x,x+1 =−[V ′(ηx)+V ′(ηx+1)]− γ∇[ηx].

(95)

With these notations we have

µβ ,λ ( j
e,γ
x,x+1) =−τ2, µβ ,λ ( j

v,γ
x,x+1) =−2τ. (96)

In the sequel, with a slight abuse of notation, we also write τ for τ(β (e,v),λ (e,v))
where β (e,v) and λ (e,v) are defined by relations (94).

3.2.2 Hydrodynamic limits

Consider the finite closed stochastic energy-volume dynamics with periodic bound-

ary conditions, that is the dynamics generated by LN,per = AN,per + γSN,per where

(
AN,per f

)
(η) = ∑

x∈TN

[
V ′(ηx+1)−V ′(ηx−1)

]
∂ηx f (η), (97)

and (
SN,per f

)
(η) = ∑

x∈TN

[
f (ηx,x+1)− f (η)

]
.

We choose to consider the dynamics on TN rather than on Z to avoid (nontrivial)

technicalities. We are interested in the macroscopic behavior of the two conserved

quantities on a macroscopic time-scale Nt as N → ∞.

Remark 2. The results of this section shall be compared to the results of Section

2.2.1. For the velocity-flip model, the hydrodynamic limits where trivial in the Euler

time scale. It was only in the diffusive time scale that some evolution of the profiles
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was observed and the hydrodynamic limits were given by parabolic equations (see

(64). Here, the evolution is not trivial in the Euler time scale and the hydrodynamic

limits are given by hyperbolic equations (see below (99).

We assume that the system is initially distributed according to a local Gibbs

equilibrium state corresponding to a given energy-volume profile X0 : T→ Ů :

X0 =

(
e0

v0

)
,

in the sense that, for a given system size N, the initial state of the system is described

by the following product probability measure:

dµN
e0,v0

(η) = ∏
x∈TN

exp{−β0(x/N)V (ηx)−λ0(x/N)ηx}
Z(β0(x/N),λ0(x/N))

dηx, (98)

where (β0(x/N),λ0(x/N)) is actually a function of (e0(x/N),v0(x/N)) through re-

lations (94).

Starting from such a state, we expect the state of the system at time Nt to be

close, in a suitable sense, to a local Gibbs equilibrium measure corresponding to an

energy-volume profile

X(t, ·) =
(
e(t, ·)
v(t, ·)

)
,

satisfying a suitable partial differential equation with initial condition X0 at time t =
0. In view of (96), and assuming propagation of local equilibrium, it is not difficult

to show that the expected partial differential equation is the following system of two

conservation laws: {
∂te− ∂qτ2 = 0,

∂tv− 2∂qτ = 0,
(99)

with initial conditions e(0, ·) = e0(·),v(0, ·) = v0(·). We write (99) more compactly

as

∂tX + ∂qJ(X) = 0, X(0, ·) = X0(·),
with

J(X) =

(
−τ2(e,v)
−2τ(e,v)

)
. (100)

The system of conservation laws (99) has other nontrivial conservation laws.

In particular, the thermodynamic entropy S is conserved along a smooth solution

of (99):

∂tS(e,v) = 0. (101)

Since the thermodynamic entropy is a strictly concave function on Ů , the sys-

tem (99) is strictly hyperbolic on Ů (see [53]). The two real eigenvalues of (DJ)(ξ̄ )
are 0 and −

[
∂e(τ

2)+ 2∂v(τ)
]
, corresponding respectively to the two eigenvectors
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(
−∂vτ
∂eτ

)
,

(
τ
1

)
. (102)

It is well known that classical solutions to systems of n ≥ 1 conservation laws in

general develop shocks in finite times, even when starting from smooth initial con-

ditions. If we consider weak solutions rather than classical solutions, then a criterion

is needed to select a unique, relevant solution among the weak ones. For scalar con-

servation laws (n = 1), this criterion is furnished by the so-called entropy inequality

and existence and uniqueness of solutions is fully understood. If n ≥ 2, only partial

results exist (see [53]). This motivates the fact that we restrict our analysis to smooth

solutions before the appearance of shocks.

We assume that the potential V satisfies the following

Assumption 3.1 The potential V is a smooth, non-negative function such that the

partition function Z(β ,λ ) =
∫ ∞
−∞ exp(−βV (r)−λ r) dr is well defined for β > 0

and λ ∈R and there exists a positive constant C such that

0 <V ′′(r)≤C, (103)

and

limsup
|r|→+∞

rV ′(r)
V (r)

∈ (0,+∞), (104)

limsup
|r|→+∞

[V ′(r)]2

V (r)
<+∞. (105)

Provided we can prove that the infinite volume dynamics is macro-ergodic, then

we can rigorously prove (even if γ = 0), using the relative entropy method of Yau

([67]), that (99) is indeed the hydrodynamic limit in the smooth regime, i.e. for

times t up to the appearance of the first shock (see for example [41, 62]). Observe

that the expected hydrodynamic limits do not depend on γ . We need to assume γ > 0

to ensure the macro-ergodicity of the dynamics.

Remark 3. As argued in [62], it turns out that the conservation of thermodynamic

entropy (101) is fundamental for Yau’s method where, in the expansion of the time

derivative of relative entropy, the cancelation of the linear terms is a consequence of

the preservation of the thermodynamic entropy.

Averages with respect to the empirical energy-volume measure are defined, for

continuous functions G,H : T→R, as (similarly to (63))

(
EN(t,G)
VN(t,H)

)
=




1

N
∑

x∈TN

G
( x

N

)
V (ηx(t))

1

N
∑

x∈TN

H
( x

N

)
ηx(t)


 .

We can then state the following result.
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Theorem 9 ([13]). Fix some γ > 0 and consider the dynamics on the torus TN gen-

erated by LN,per where the potential V satisfies Assumption 3.1. Assume that the

system is initially distributed according to a local Gibbs state (98) with smooth en-

ergy profile e0 and volume profile v0. Consider a positive time t such that the solution

(e,v) to (99) belongs to Ů and is smooth on the time interval [0, t]. Then, for any

continuous test functions G,H : T → R, the following convergence in probability

holds as N →+∞:

(
EN(tN,G),VN(tN,H)

)
−→

(∫

T

G(q)e(t,q)dq,
∫

T

H(q)v(t,q)dq

)
.

The derivation of the hydrodynamic limits beyond the shocks for systems of

n ≥ 2 conservation laws is very difficult and is one of the most challenging prob-

lems in the field of hydrodynamic limits. The first difficulty is of course our poor

understanding of the solutions to such systems. Recently, J. Fritz proposed in [29]

to derive hydrodynamic limits for hyperbolic systems (in the case n = 2) by some

extension of the compensated-compactness approach [60] to stochastic microscopic

models. This program has been achieved in [32] (see also the recent paper [30]),

where the authors derive the classical n = 2 Leroux system of conservation laws.

In fact, to be exact, only the convergence to the set of entropy solutions is proved,

the question of uniqueness being left open. It nonetheless remains the best result

available at this time. The proof is based on a strict control of entropy pairs at the

microscopic level by the use of logarithmic Sobolev inequality estimates. It would

be very interesting to extend these methods to systems such as the ones considered

here.

3.2.3 Anomalous diffusion

We investigate now the problem of anomalous diffusion of energy for these models.

If V (r) = r2 then Theorem 8 is mutatis mutandis valid and we get the same

conclusions: the time-space correlations for the current behave for large time t like

t−1/2 . Thus the system is super-diffusive (see [13] for the details).

For generic anharmonic potentials, we can only provide numerical evidence of

the super-diffusivity. However, it is difficult to estimate numerically the time auto-

correlation functions of the currents because of their expected long-time tails, and

because statistical errors are very large (in relative value) when t is large. Also, for

finite systems (the only ones we can simulate on a computer), the autocorrelation

is generically exponentially decreasing for anharmonic potentials, and, to obtain

meaningful results, the thermodynamic limit N → ∞ should be taken before the

long-time limit.

A more tenable approach consists in studying a nonequilibrium system in its

steady-state. We consider a finite system of length 2N + 1 in contact with two ther-

mostats which fix the value of the energy at the boundaries. The generator of the

dynamics is given by
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LN = AN + γSN +λℓB−N,Tℓ +λrBN,Tr , (106)

where AN and SN are defined by

(AN f )(η) =
N−1

∑
x=−(N−1)

(
V ′(ηx+1)−V ′(ηx−1)

)
(∂ηx f )(η)

−V ′(ηN−1)(∂ηN
f )(η)+V ′(η−N+1)(∂η−N

f )(η),

(SN f )(η) =
N−1

∑
x=−N

[
f (ηx,x+1)− f (η)

]
,

and Bx,T = T ∂ 2
ηx
−V ′(ηx)∂ηx . The positive parameters λℓ and λr are the intensities

of the thermostats and Tℓ,Tr the “temperatures” of the thermostats.

The generator Bx,T is a thermostatting mechanism. In order to fix the energy

at site −N (resp. N) to the value eℓ (resp. er), we have to choose βℓ = T−1
ℓ (resp.

βr = T−1
r ) such that e(βℓ,0) = eℓ (resp. e(βr,0) = er). We denote by 〈·〉ss the unique

stationary state for the dynamics generated by LN .

The energy currents j
e,γ
x,x+1, which are such that LN,open(V (ηx)) =−∇ j

e,γ
x−1,x (for

x = −N, . . . ,N − 1), are given by the first line of (95) for x = −N + 1, . . . ,N − 1

while

j
e,γ
−N−1,−N = λℓ

[
TℓV

′′(η−N)− (V ′(η−N))
2
]
,

j
e,γ
N,N+1 =−λr

[
TrV

′′(ηN)− (V ′(ηN))
2
]
.

Since 〈LN,open(V (ηx))〉ss = 0, it follows that, for any x =−N, . . . ,N + 1, 〈 j
e,γ
x,x+1〉ss

is equal to a constant J
γ
N(Tℓ,Tr) independent of x. In fact,

J
γ
N(Tℓ,Tr) =

〈
J

γ
N

〉
ss
, J

γ
N =

1

2N

N

∑
x=−N−1

j
e,γ
x,x+1. (107)

The latter equation is interesting from a numerical viewpoint since it allows to per-

form some spatial averaging, hence reducing the statistical error of the results. We

estimate the exponent δ ≥ 0 such that

κ(N) := NJ
γ
N ∼ Nδ (108)

using numerical simulations. If δ = 0, the system is a normal conductor of energy.

If on the other hand δ > 0, it is a superconductor.

The numerical simulations giving the value of δ are summarized in Table 1.

They have been performed for the harmonic chain V (r) = r2/2, the quartic potential

V (r) = r2/2+ r4/4 and the exponential potential V (r) = e−r + r−1. In Section 3.4

we will motivate our interest in the exponential potential.

Exponents in the harmonic case agree with their expected values. For nonlinear

potentials, except for the singular value δ = 1 when γ = 0 and V (r) = e−r + r− 1,
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γ V (r) = r2/2 V (r) = r2/2+ r4/4 V (r) = e−r + r−1

0 1 0.13 1

0.01 – 0.14 0.12

0.1 0.50 0.27 0.25

1 0.50 0.43 0.33

Table 1: Conductivity exponents

the exponents seem to be monotonically increasing with γ . A similar behavior of the

exponents is observed for Toda chains [37] with a momentum conserving noise. This

strange behavior casts some doubts on the convergence of conductivity exponents δ
with respect to system size N (see the comment after Theorem 3 in [6]). A detailed

study, including the nonlinear fluctuating hydrodynamics predictions, is available in

[57].

Note also that the value found for γ = 0 with the anharmonic FPU potential

V (r) = r2/2+ r4/4 is smaller than the corresponding value for standard oscillators

chains, which is around 0.33 (see [49]). We performed also numerical simulations

for a “rotor” model, V (r) = 1−cos(r), and we found δ ≈ 0.02, i.e. a normal conduc-

tivity. A similar picture is observed for the usual rotor 32 model which is composed

of a chain of unpinned oscillators with interaction potential V (r) = 1− cos(r). The

normal behavior is conjectured to be due to the absence of long waves (that carry

energy ballistically) because some rotors turning fast in between will break them

([38]). See [56] and references therein for a recent study of the rotors model.

3.3 Fractional superdiffusion for a harmonic chain with bulk noise

In this section we consider the energy-volume conserving model with quadratic

potential. Fix λ ∈R and β > 0, and consider the process {η(t);t ≥ 0} generated by

(21) with V (η) =η2/2 and with initial distribution µβ ,λ . Notice that the distribution

of the process {η(t)+ρ ;t ≥ 0} with initial measure µβ ,ρ+λ is the same for all values

of λ ∈R. Therefore, we can assume, without loss of generality, that λ = 0. We write

µβ = µβ ,0 to simplify notation, and denote by P the law of {η(t);t ≥ 0} and byE the

expectation with respect to P. The energy correlation function {St(x);x ∈ Z, t ≥ 0}
is defined as

St(x) =
β 2

2
E
[(

η0(0)
2 − 1

β

)(
ηx(t)

2 − 1
β

)]
(109)

for any x ∈ Z and any t ≥ 0. The constant
β 2

2
is just the inverse of the variance of

η2
x − 1

β under µβ . By translation invariance of the dynamics and the initial distribu-

tion µβ , we see that

32 The variable r has to be interpreted as an angle and belongs to the torus 2πT.
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β 2

2
E
[(

ηx(0)
2 − 1

β

)(
ηy(t)

2 − 1
β

)]
= St(y− x) (110)

for any x,y ∈ Z.

Theorem 10 ([7]). Let f ,g : R→R be smooth functions of compact support. Then,

lim
n→∞

1
n ∑

x,y∈Z
f
(

x
n

)
g
(

y
n

)
Stn3/2(x− y) =

∫∫
f (x)g(y)Pt(x− y)dxdy, (111)

where {Pt(x);x ∈R, t ≥ 0} is the fundamental solution 33 of the skew fractional heat

equation on R

∂tu =− 1√
2

{
(−∆)3/4 −∇(−∆)1/4

}
u. (112)

A fundamental step in the proof of this theorem is the analysis of the correlation

function {St(x,y);x 6= y ∈ Z, t ≥ 0} given by

St(x,y) =
β 2

2
E
[(

η0(0)
2 − 1

β

)
ηx(t)ηy(t)

]
(113)

for any t ≥ 0 and any x 6= y ∈ Z. Notice that this definition makes perfect sense for

x = y and, in fact, we have St(x,x) = St(x). For notational convenience we define

St(x,x) as equal to St(x). However, these quantities are of different nature, since

St(x) is related to energy fluctuations and St(x,y) is related to volume fluctuations

(for x 6= y).

Remark 4. It is not difficult to see that with a bit of technical work the techniques

actually show that the distribution valued process {E n
t (·) ; t ≥ 0} defined for any test

function f by

E n
t ( f ) =

1√
n

∑
x∈Z

f
(

x
n

)
{ηx(tn

3/2)2 − 1
β }

converges as n goes to infinity to an infinite dimensional 3/4-fractional Ornstein-

Uhlenbeck process, i.e. the centered Gaussian process with covariance prescribed

by the right hand side of (111).

Remark 5. It is interesting to notice that Pt is the maximally asymmetric 3/2-Levy

distribution. It has power law as |x|−5/2 towards the diffusive peak and stretched

exponential as exp[−|x|3] towards the exterior of the sound cone ([63, Chapter 4]).

As mentioned to us by H. Spohn, this reflects the expected physical property that no

propagation beyond the sound cone occurs.

Remark 6. With a bit of technical work the proof of this theorem can be adapted

to obtain a similar statement for a harmonic chain perturbed by the momentum ex-

changing noise (see [39] where such statement is proved for the Wigner function). In

this case the skew fractional heat equation is replaced by the (symmetric) fractional

heat equation.

33 Since the skew fractional heat equation is linear, it can be solved explicitly by Fourier transform.
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Proof. Denote by C ∞
c (Rd) the space of infinitely differentiable functions f : Rd →

R of compact support. Then, ‖ f‖2,n denotes the weighted ℓ2(Zd)-norm

‖ f‖2,n =

√
1

nd ∑
x∈Zd

f
(

x
n

)2
. (114)

Let g∈C ∞
c (R) be a fixed function. For each n∈N we define the field {S n

t ;t ≥ 0}
as

S n
t ( f ) = 1

n ∑
x,y∈Z

g
(

x
n

)
f
(

y
n

)
S

tn3/2(y− x) (115)

for any t ≥ 0 and any f ∈ C ∞
c (R). By the Cauchy-Schwarz inequality we have the

a priori bound ∣∣S n
t ( f )

∣∣ ≤ ‖g‖2,n‖ f‖2,n (116)

for any t ≥ 0, any n ∈ N and any f ,g ∈ C ∞
c (R). For a function h ∈ C ∞

c (R2) we

define {Qn
t (h);t ≥ 0} as

Qn
t (h) =

1

n3/2 ∑
x∈Z

∑
y6=z∈Z

g
(

x
n

)
h
(

y
n
, z

n

)
S

tn3/2(y− x,z− x). (117)

Notice that Qn
t (h) depends only on the symmetric part of the function h. Therefore,

we will always assume, without loss of generality, that h(x,y) = h(y,x) for any x,y ∈
Z. We point out that Qn

t (h) does not depend on the values of h at the diagonal

{x = y}. We have the a priori bound

∣∣Qn
t (h)

∣∣≤ 2‖g‖2,n‖h̃‖2,n, (118)

where h̃ is defined by h̃
(

x
n
, y

n

)
= h
(

x
n
, y

n

)
1x6=y.

For a function f ∈ C ∞
c (R), we define ∆n f : R→R as

∆n f
(

x
n

)
= n2

(
f
(

x+1
n

)
+ f
(

x−1
n

)
− 2 f

(
x
n

))
. (119)

In other words, ∆n f is a discrete approximation of the second derivative of f . We

also define ∇n f ⊗ δ : 1
n
Z2 →R as

(
∇n f ⊗ δ

)(
x
n
, y

n

)
=





n2

2

(
f
(

x+1
n

)
− f
(

x
n

))
; y = x+1

n2

2

(
f
(

x
n

)
− f
(

x−1
n

))
; y = x−1

0; otherwise.

(120)

Less evident than the interpretation of ∆n f , ∇n f ⊗ δ turns out to be a discrete ap-

proximation of the (two dimensional) distribution f ′(x)⊗ δ (x = y), where δ (x = y)
is the δ of Dirac at the line x = y. We have that

d
dt

S n
t ( f ) =−2Qn

t (∇n f ⊗ δ )+S n
t (

1√
n
∆n f ). (121)
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In this equation we interpret the term Qn
t (∇n f ⊗ δ ) in the obvious way. By the

a priori bound (116), the term S n
t (

1√
n
∆n f ) is negligible, as n → ∞.We describe

now the equation satisfied by Qn
t (h). For this we need some extra definitions. For

h ∈ C ∞
c (R2) we define ∆nh : R2 →R as

∆nh
(

x
n
, y

n

)
= n2

(
h
(

x+1
n
, y

n

)
+ h
(

x−1
n
, y

n

)
+ h
(

x
n
, y+1

n

)
+ h
(

x
n
, y−1

n

)
− 4h

(
x
n
, y

n

))
.

(122)

In words, ∆nh is a discrete approximation of the 2d Laplacian of h. We also define

Anh : R→ R as

Anh
(

x
n
, y

n

)
= n
(

h
(

x
n
, y−1

n

)
+ h
(

x−1
n
, y

n

)
− h
(

x
n
, y+1

n

)
− h
(

x+1
n
, y

n

))
. (123)

The function Anh is a discrete approximation of the directional derivative (−2,−2) ·
∇h. Let us define Dnh : 1

n
Z→R as

Dnh
(

x
n

)
= n
(

h
(

x
n
, x+1

n

)
− h
(

x−1
n
, x

n

))
(124)

and D̃nh : 1
n
Z2 →R as

D̃nh( x
n
, y

n
) =





n2
(
h
(

x
n
, x+1

n

)
− h
(

x
n
, x

n

))
; y = x+ 1

n2
(
h
(

x−1
n
, x

n

)
− h
(

x−1
n
, x−1

n

))
; y = x− 1

0; otherwise.

(125)

The function Dnh is a discrete approximation of the directional derivative of h

along the diagonal x = y, while D̃nh is a discrete approximation of the distribu-

tion ∂yh(x,x)⊗ δ (x = y). Finally we can write down the equation satisfied by the

field Qn
t (h):

d
dt

Qn
t (h) = Qn

t

(
n−1/2∆nh+ n1/2Anh

)
− 2S n

t

(
Dnh

)
+ 2Qn

t

(
n−1/2D̃nh

)
. (126)

Given f ∈ C ∞
c (R), if we choose h := hn( f ) such that

n−1/2∆nh+ n1/2Anh = 2∇n f ⊗ δ

then summing (121) and (126) we get

d
dt

S n
t ( f ) =− d

dt
Qn

t (h)+S n
t (

1√
n
∆n f )− 2S n

t

(
Dnh

)
+ 2Qn

t

(
n−1/2D̃nh

)
.

We integrate in time the previous expression. By the a priori bounds, the term∫ t
0 S n

s (
1√
n
∆n f )ds is small as well as

∫ t
0

d
ds

Qn
s (h)ds = Qn

t (h)−Qn
0(h). The term

∫ t

0
Qn

s (n
−1/2D̃nh)ds
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is quite singular since it involves an approximation of a distribution but it turns

out to be negligible, although this does not follow directly from the a priori

bounds (see [7]). By using Fourier transform one can see that −2Dnh converges

to − 1√
2

{
(−∆)3/4 −∇(−∆)1/4

}
f and we are done.

⊓⊔

3.4 Anomalous diffusion for a perturbed Hamiltonian system with

exponential interactions

We investigate here in more details the exponential case Vexp(r) = e−r − 1+ r. The

deterministic system with generator (97) and with the exponential potential above is

well known in the integrable systems literature 34. It has been introduced in [40] by

Kac and van Moerbecke and was shown to be completely integrable. Consequently,

using Mazur’s inequality, it is easy to show that the energy transport is ballistic

([13]).

As we will see the situation dramatically changes when the momentum exchange

noise is added: the energy transport is no more ballistic but superdiffusive. Thus the

situation is similar to the harmonic case. Nevertheless we expect the time autocorre-

lation of the current to decay like t−2/3. We are not able to show this but we proved

in [6] lower bounds sufficient to imply superdiffusivity.

The results are stated in infinite volume: we consider the stochastic energy-

volume conserving dynamics {η(t)}t≥0 with potential V := Vexp. Its generator is

given by L = A + γS where A and S are defined by (21). Since the exponen-

tial potential grows very fast as r → −∞, some care has to be taken to show that

the infinite dynamics is well defined (see [6]). We recall that grand canonical Gibbs

measures are denoted by µβ ,λ and take the form

dµβ ,λ (η) = ∏
x∈Z

e−βV(ηx)−λ ηx

Z(β ,λ )
dηx, β > 0, λ +β < 0.

In this section, β and λ are fixed and we denote by e (resp. v) the average energy

(resp. volume) w.r.t. µβ ,λ (see (93)).

The microscopic energy current j
e,γ
x,x+1 and volume current j

v,γ
x,x+1 are given by

j
e,γ
x,x+1(η) =−e−(ηx+ηx+1)+(e−ηx + e−ηx+1)− γ∇(V(ηx))

and

j
v,γ
x,x+1(η) = e−ηx + e−ηx+1 − γ∇ηx.

We will use the compact notations

34 It seems that although the Hamiltonian structure of the Kac-van-Moerbecke system was known,

the interpretation of the latter as a chain of oscillators with exponential kinetic energy and expo-

nential interaction was not observed before [13].



Diffusion of energy in chains of oscillators with conservative noise 53

ωx =

(
V (ηx)

ηx

)
, Jx,x+1 =

(
j
e,γ
x,x+1

j
v,γ
x,x+1

)
.

In the hyperbolic scaling, the hydrodynamical equations for the energy profile e

and the volume profile v take the form

{
∂te− ∂q((e−v)2) = 0

∂tv+ 2∂q(e−v) = 0.
(127)

They can be written in the compact form ∂tX + ∂qJ(X) = 0 with

X =

(
e

v

)
, J(X) =

(
−(e−v)2

2(e−v)

)
. (128)

The differential matrix of J is given by

(∇J)(X) = 2

(
−(e−v) e−v

1 −1

)
.

For given (e,v) we denote by (T+
t )t≥0 (resp. (T−

t )t≥0) the semigroup on S(R)×
S(R) generated by the linearized system

∂tε +MT ∂qε = 0, (resp. ∂tε −MT ∂qε = 0), (129)

where

M := M(e,v) = [∇J](ω), ω =

(
e

v

)
.

We omit the dependence of these semigroups on (e,v) for lightness of the notations.

Above S(R) denotes the Schwartz space of smooth rapidly decreasing functions.

The first result of [6] gives a lower bound on the time-scale for which a non-trivial

evolution of the energy-volume fluctuation field can be observed.

We take the infinite system at equilibrium under the Gibbs measure µβ̄ ,λ̄ corre-

sponding to a mean energy ē and a mean volume v̄. Our goal is to study the energy-

volume fluctuation field in the time-scale tn1+α , α ≥ 0:

Y n,α
t (G) =

1√
n

∑
x∈Z

G(x/n) ·
(
ωx(tn

1+α)− ω̄
)
, (130)

where for q ∈ R, x ∈ Z,

G(q) =

(
G1(q)
G2(q)

)
, ωx =

(
V (ηx)

ηx

)

and G1,G2 are test functions belonging to S(R).

We need to introduce some notation. For each z ≥ 0, let Hz(x) = (−1)zex2 dz

dxz e−x2

be the Hermite polynomial of order z and hz(x) = (z!
√

2π)−1Hz(x)e
−x2

the Hermite
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function. The set {hz,z ≥ 0} is an orthonormal basis of L2(R). Consider in L2(R)
the operator K0 = x2 −∆ , ∆ being the Laplacian on R. For an integer k ≥ 0, denote

by Hk the Hilbert space obtained by taking the completion of S(R) under the norm

induced by the scalar product 〈·, ·〉k defined by 〈 f ,g〉k = 〈 f ,Kk
0 g〉0, where 〈·, ·〉0

denotes the inner product of L2(R) and denote by H−k the dual of Hk, relatively

to this inner product. Let 〈·〉 represent the average with respect to the Lebesgue

measure.

If E is a Polish space then D(R+,E) (resp, C(R+,E)) denotes the space of

E-valued functions, right continuous with left limits (resp. continuous), endowed

with the Skorohod (resp. uniform) topology. Let Qn,α be the probability measure

on D(R+,H−k ×H−k) induced by the fluctuation field Y n,α
t and µβ ,λ . Let Pµβ ,λ

denote the probability measure on D(R+,RZ) induced by (η(t))t≥0 and µβ ,λ . Let

Eµβ ,λ
denote the expectation with respect to Pµβ ,λ

.

Theorem 11 ([6]). Fix an integer k > 2. Denote by Q the probability measure on

C(R+,H−k ×H−k) corresponding to a stationary Gaussian process with mean 0

and covariance given by

EQ [Yt(H)Ys(G)] = 〈T−
t H · χ T−

s G〉

for every 0 ≤ s ≤ t and H,G in Hk ×Hk. Here χ := χ(β ,λ ) is the equilibrium

covariance matrix of ω0. Then, the sequence (Qn,0)n≥1 converges weakly to the

probability measure Q.

The theorem above means that in the hyperbolic scaling the fluctuations are triv-

ial: the initial fluctuations are transported by the linearized system of (127). To see

a nontrivial behavior we have to study, in the transport frame, the fluctuations at a

longer time scale tn1+α , with α > 0. Thus, we consider the fluctuation field Ŷ n,α
· ,

α > 0, defined, for any G ∈ S(R)× S(R), by

Ŷ n,α
t (G) = Y n,α

t

(
T+

tnα G
)
. (131)

Our second main theorem shows that the correct scaling exponent α is greater

than 1/3:

Theorem 12 ([6]). Fix an integer k > 1 and α < 1/3. Denote by Q the probability

measure on C(R+,H−k×H−k) corresponding to a stationary Gaussian process with

mean 0 and covariance given by

EQ [Yt(H)Ys(G)] = 〈H · χ G〉

for every 0 ≤ s ≤ t and H,G in Hk ×Hk. Then, the sequence (Qn,α)n≥1 converges

weakly to the probability measure Q.

The proofs of these theorems can be reduced to the proof of a so-called equilib-

rium Boltzmann-Gibbs principle. Let us explain what it means. Observables can be

divided into two classes: non-hydrodynamical and hydrodynamical. The first ones
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are the non conserved quantities and they fluctuate on a much faster scale than the

conserved ones. Hence, they should average out and only their projection on the

hydrodynamical variables should persist in the scaling limit. For any local function

g := g(η), the projection Pe,v g of g on the fields of the conserved quantities is

defined by

(Pe,vg)(η) = g(η)− g̃(e,v)− (∇g̃)(e,v) · (ω0 −ω)

where g̃(e,v) = 〈g〉µβ ,λ
and ∇g̃ is the gradient of the function g̃. As explained above

we expect that in the Euler time scale, for any test function H ∈ S(R)× S(R), the

space-time variance

lim
n→∞

Eµβ ,λ



(∫ t

0

1√
n

∑
x∈Z

H(x/n) · [θxPe,v g(η(sn))] ds

)2

= 0 (132)

vanishes as n goes to infinity. In fact it suffices to show (132) for the function g= J0,1
35. Thus let us first define the normalized currents by

Ĵx,x+1 = [θxPē,v̄ J0,1] =

(
j
e,γ
x,x+1(η)

j
v,γ
x,x+1(η)

)
−J(ω)− (∇J)(ω)

(
Vexp(ηx)− e

ηx − v

)
. (133)

To estimate the space-time variance involved we use the following inequality (see

[43]):

Eµβ ,λ

[(∫ t

0
f (η(sn1+α))ds

)2
]
≤

Ct

n1+α

〈
f ,

(
1

tn1+α
− γS

)−1

f

〉

µβ ,λ

(134)

where f =
1√
n

∑x∈Z H(x/n) · Ĵx,x+1. Due to the very simple form of the operator

S the RHS of (134) can be estimated and shown to vanish as n goes to infinity.

Nevertheless it has to be done with some care since S is very degenerate so that

without the term 1
tn1+α the RHS of (134) blows up.

Theorem 12 does not exclude the possibility of normal fluctuations, i.e. the con-

vergence in law of the fluctuation field of the two conserved quantities to an infinite

dimensional Ornstein-Uhlenbeck process in the diffusive time scale (α = 1). To see

that it is not the case we will show that the diffusion coefficient D := D(e,v) ap-

pearing in this hypothetical limiting process would be infinite, excluding thus this

possibility. Up to a constant matrix coming from a martingale term (due to the noise)

and thus irrelevant for us (see [2], [13]), the matrix coefficient D is defined by the

Green-Kubo formula

D =
∫ ∞

0
Eµβ ,λ

[
∑
x∈Z

Ĵx,x+1(t)
[
Ĵ0,1(0)

]T
]

dt. (135)

35 For Theorem 12, the Boltzmann-Gibbs principle has to be proved in the longer time scale tn1+α

and in the transport frame.
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The signature of the superdiffusive behavior of the system is seen in the divergence

of D , i.e. in a slow decay of the current-current correlation function. To study the

latter we introduce its Laplace transform

F (γ,z) =

∫ ∞

0
e−zt

Eµβ ,λ

[
∑
x∈Z

Ĵx,x+1(t)
[
Ĵ0,1(0)

]T
]

dt

which is well defined for any z > 0. This can be rewritten as

F (γ,z) =≪ Ĵ0,1,(z−L )−1Ĵ0,1 ≫β ,λ

where ≪ ·, · ≫β ,λ is the semi-inner product defined with respect to µβ ,λ in the same

way as in (34).

Our third theorem is the following lower bound on F (γ,z). Observe that F (γ,z)
is a square matrix of size 2 whose entry (i, j) is denoted by Fi, j.

Theorem 13 ([6]). Fix γ > 0. There exists a positive constant c := c(γ) > 0 such

that

F1,1(γ,z) ≥ cz−1/4

and

Fi, j(γ,z) = 0, (i, j) 6= (1,1).

Moreover, there exists a positive constant C :=C(γ) such that for any z > 0,

C−1F1,1(1,z/γ)≤ F1,1(γ,z) ≤CF1,1(1,z/γ). (136)

The last part of the theorem follows easily by a scaling argument and is in fact

also valid for general potentials V and for generic “standard” anharmonic chains

of oscillators. In [3, 37, 13], numerical simulations indicate a strange dependence

w.r.t. the noise intensity γ > 0 of the exponent δ in the energy transport coefficient

κ(N)∼Nδ (N is the system size, see (108) for the definition of κ(N)): δ := δ (γ)> 0

is increasing with the noise intensity γ . This is very surprising since the more

stochasticity in the model is introduced, the more the system is superdiffusive! The

inequality (136) shows that the time decay of the current autocorrelation function

is independent of γ (up to possible slowly varying functions corrections, i.e. in a

Tauberian sense). It is common folklore that there should be a simple relationship

between the slow long-time tail decay of the autocorrelation of the current in the

Green-Kubo formula (described by some power law decay) and the divergence of

the thermal conductivity of open systems in their steady states. The argument is that

the autocorrelation should be integrated over times of order N. If we believe in this

argument it means that the numerical simulations of [3, 37, 13] are not converged.

There is however no clear mathematical result backing up this belief.

The proof of the first part of Theorem 13 is based on the three following argu-

ments.
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• The first idea consists in performing the microscopic change of variables ξx =
e−ηx , x ∈ Z, that defines a new Markov process {ξ (t)}t≥0 = {ξx(t) ; x ∈ Z}t≥0

with state space (0,+∞)Z and conserving ∑x ξx and ∑x logξx. Its generator is

given by L̃ = ˜A + γS̃ where for any local differentiable function f ,

( ˜A f )(ξ ) = ∑
x∈Z

ξx(ξx+1 − ξx−1)(∂ξx
f )(ξ ),

(S̃ f )(ξ ) = ∑
x∈Z

[
f (ξ x,x+1)− f (ξ )

]
.

The invariant measures for (ξ (t))t≥0 are obtained from the Gibbs measures µβ ,λ

by the change of variables above. They form a family {νρ ,θ}ρ ,θ of translation

invariant product measures indexed by two parameters ρ and θ which satisfy

ρ = νρ ,θ (ξx), θ = νρ ,θ (logξx).

In fact the marginal of νρ ,θ is a Gamma distribution. The parameters (ρ ,θ ) are

in a one-to-one explicit correspondence with the parameters (e,v).
Rewriting Ĵx,x+1 with these new variables we see that it is sufficient to prove

a similar statement for the process (ξ (t))t≥0 under the equilibrium probability

measure νρ ,θ . Introducing the inner product ≪ ·, · ≫ defined, for any local func-

tions f ,g on (0,+∞)Z by

≪ f ,g ≫= ∑
x∈Z

{
νρ ,θ ( f θxg)−νρ ,θ ( f )νρ ,θ (g)

}

we can show that the proof of the first claim of Theorem 13 reduces to showing

that there exists a positive constant c such that for any z > 0,

≪W0,1,(z− L̃ )−1W0,1 ≫≥ cz−1/4 (137)

where W0,1(ξ ) = (ξ0 −ρ)(ξ1 −ρ).
• The second step consists in using a variational formula to express the LHS of

(137). Indeed we have

≪W0,1,(z− L̃ )−1W0,1 ≫= sup
g

{
2 ≪W0,1,g ≫−≪ g,(z− γS̃ )g ≫

−≪ ˜A g,(z− γS̃ )−1 ˜A g ≫
}

where the supremum is taken over local compactly supported smooth functions g.

To get a lower bound it is sufficient to find a function g for which one can show

that

2 ≪W0,1,g ≫−≪ g,(z− γS̃ )g ≫−≪ ˜A g,(z− γS̃ )−1 ˜A g ≫≥ cz−1/4.

• Let H be the Hilbert space obtained by completion of the set of local functions

w.r.t. the inner product ≪ ·, · ≫. Since νρ ,θ is a product of Gamma distributions,

the set of multivariate Laguerre polynomials form an orthogonal basis of H. It is
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then possible to decompose H as an orthogonal sum ⊕n∈NHn of subspaces Hn

such that

S̃ : Hn →Hn, ˜A : Hn →Hn−1 ⊕Hn ⊕Hn+1.

The function W0,1 belongs to H2. Then we restrict the variational formula to

functions g ∈ H2 and we estimate the corresponding new variational problem

which is still infinite dimensional but involves only functions belonging to H1 ⊕
H2 ⊕H3. To solve this variational problem we adapt ideas developed first in the

context of Asymmetric Simple Exclusion Process ([4], [44]) and exploited later

for other models. One of the difficulties comes again from the fact that the noise

is degenerate.

The extension of Theorem 13 to other interacting potentials is a challenging prob-

lem. The general strategy presented here could be carried out but the orthogonal ba-

sis (formed by Laguerre polynomials in the exponential case) is no longer explicit

and only defined by some recurrence relations.
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62. B. Tóth and B. Valkó. Onsager relations and Eulerian hydrodynamic limit for systems with

several conservation laws. J. Statist. Phys., 112(3-4):497–521, 2003.

63. Vladimir V. Uchaikin and Vladimir M. Zolotarev. Chance and stability. Modern Probability

and Statistics. VSP, Utrecht, 1999. Stable distributions and their applications, With a foreword

by V. Yu. Korolev and Zolotarev.

64. H. Van Beijeren. Exact results for anomalous transport in one dimensional hamiltonian sys-

tems. Phys. Rev. Lett., 108, 2012.

65. S. R. S. Varadhan. Nonlinear diffusion limit for a system with nearest neighbor interactions.

II. In Asymptotic problems in probability theory: stochastic models and diffusions on fractals

(Sanda/Kyoto, 1990), volume 283 of Pitman Res. Notes Math. Ser., pages 75–128. Longman

Sci. Tech., Harlow, 1993.

66. J. Wang Y. Zhong, Y. Zhang and H. Zhao. Normal heat conduction in one-dimensional mo-

mentum conserving lattices with asymmetric interactions. Phys. Rev. E, 85(6), 2012.

67. H.-T. Yau. Relative entropy and hydrodynamics of Ginzburg-Landau models. Lett. Math.

Phys., 22(1):63–80, 1991.


	Diffusion of energy in chains of oscillators with conservative noise
	Cédric Bernardin
	Models
	Chains of oscillators with bulk noise
	Simplified perturbed Hamiltonian systems

	Normal diffusion
	Anharmonic chain with velocity-flip noise
	Harmonic chain with velocity-flip noise

	Anomalous diffusion
	Harmonic chains with momentum exchange noise
	A class of perturbed Hamiltonian systems
	Harmonic interactions
	Exponential interactions

	References



