
HAL Id: hal-01052208
https://hal.science/hal-01052208

Submitted on 7 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

JavaScript library for audio/video timeline
representation
Samuel Goldszmidt

To cite this version:
Samuel Goldszmidt. JavaScript library for audio/video timeline representation. WWW2012, Mar
2012, Lyon, France. �hal-01052208�

https://hal.science/hal-01052208
https://hal.archives-ouvertes.fr

Copyright is held by the author/owner(s).

WWW2012 Developer Track, April 18-20, 2012, Lyon, France.

JavaScript library for audio/video timeline representation
Samuel Goldszmidt

Ircam

1 Place Igor Stravinsky

75004 Paris

00 33 1 44 78 48 43

samuel.goldszmidt@ircam.fr

ABSTRACT

This short paper is a description of a JavaScript library developed

for temporal media (audio or video) navigation and segmentation

representation, using the HMTL5 specification.

Categories and Subject Descriptors

D.3.3 [Programming Languages]: Language classifications –

Javascript

I.7.2 [Document and text processing]: Document preparation –

HTML, Multi/mixed media, Standards

General Terms

Design, Experimentation, Human Factors, Standardization,

Languages.

Keywords

HTML5, JavaScript, temporal media, navigation, segmentation,

audio, video, representation.

1. INTRODUCTION
HTML5 provides two tags for temporal multimedia content:

<audio> and <video>. These tags have a controls attribute that

specifies whether or not to display media controls:

• play/pause buttons,

• navigation timeline to browse inside the media with a

cursor,

• a display for current time and duration of the temporal

media.

The HTML5 media events part can catch time update events

during media playback, so JavaScript can handle it.

<audio> element display with controls attribute in Firefox

HTML5 also provides a canvas element for drawing purposes.

HTML events can handle mouse events like click, mouseover,

mouseout, mousedown, mouseup to interact with a drawing inside

a canvas element.

After a partial state of the art about temporal media navigation,

synchronization, annotation and segmentation, we will describe a

JavaScript library, named timeline-js and available on github [1]

which can build in any web page an interactive timeline for

HTML5 media element inside a canvas element, based on

previously named specifications.

2. STATE OF THE ART

2.1 Players
Since <audio> and <video> tags has been proposed by W3C

inside HMTL5 working draft, a lot of JavaScript libraries have

been released in order to build custom media players:

mediaelement.js (mediaelementjs.com), jplayer (jplayer.org),

videojs (videojs.com), sublimevideo (sublimevideo.net). These

applications provide a way to have more control about the player

graphical aspect. They often offer Flash fallback for browsers that

don’t support HTML5 media elements. But these libraries propose

more or less just a timeline with a cursor, and play/pause buttons

combined with some playlist possibilities.

2.2 Media synchronization
For media synchronization purposes, popcorn.js (popcornjs.org),

mugeda (mugeda.com) and other experiments allow the user to

bring together different medias on a same timeline, and export the

result, a synchronization of static and temporal media (for

instance a text, an image, and a sound) into a predefined web

publication. These tools have been studied in our case for

functionalities they offer in authoring mode, in particular for the

timeline edition mode, even if in our use case, we focus on a

unique temporal media annotation.

2.3 Intra-song navigation
Our goal is a bit different from representing events on an

historical timeline. Even if historical timeline is time-based, we

deal with a master temporal media that the user can browse and

listen/view in real-time.

For intra-song navigation, SoundCloud (soundcloud.com) or

Freesound (freesound.org) propose a waveform representation of

the media (in fact an image server side processed which represents

the waveform) and, for SoundCloud service, markers on the

timeline added by users to point out interesting timecodes. This

annotation aspect and navigation possibility has retained our

attention. We had developed previously, in 2005, inside Semantic-

Hifi European project IST-FP7 a similar intra-sound navigation

widget, but based on automatic segmentation song representation

(vs. manual segmentation / annotation) and using Flash

technology [2].

2.4 Linking contents
We developed a demonstrator for Firefox audio tag, linking

segments of audio with specific text and images [3]. This demo

has been extended in timesheets.js, a library that proposes to rely

on declarative W3C standards (namely, SMIL Timing and SMIL

Timesheets) to synchronize HTML content [4]. In our demo, we

wanted to explore content linked with media timecodes in a way

that one temporal media could trigger all sort of rich multimedia

content (and vice versa), that don’t fall necessarily within a

Copyright is held by the author/owner(s).

WWW2012 Developer Track, April 18-20, 2012, Lyon, France.

predefined publication framework or templates, leaving open all

multimedia possibilities [5]. The library only focus on temporal

annotation visualization, not the semantic of the annotation or the

type of content linked from these annotations; this is leave open to

the user who can therefore integrate all kind of contents, for

instance: show a map, a web link …

This partial state of the art regarding intra-sound (or video)

navigation, has led us to develop timeline-js JavaScript library

(currently in alpha version). timeline-js tries to simplify temporal

media element integration and interaction with multimedia

content regarding intra-media navigation and inter-media

interaction.

3. timeline-js

3.1 Controls & navigation
When you have created via JavaScript a new instance of timeline-

js referencing these three required values :

• id attribute value of a media tag element,

• id attribute value of a div which will contain canvas,

• duration value of the media,

the timeline-js GUI widget is displayed on the web page, showing

in basic configuration:

• a cursor, default red,

• a timescale with some ticks for time graduation, default

black background,

• an empty track, default grey background.

timeline-js GUI widget (default configuration)

There are no play, stop and pause buttons. Theses controls can be

easily set up with standard HTML markup and a small piece of

JavaScript to interact with the media tag.

The widget listens to timeupdate event from the media element to

synchronize the cursor. If the user clicks on the timeline (black

background), the media element current time is set to the

requested time.

With default settings, the widget represents the entire duration of

the media. But the timeline-js instance has also scale and scroll

possibilities (to zoom inside the temporal media, especially useful

for long media) that can be bound to HTML5 range input element

as seen in the figure below:

Scale and scroll range input to navigate inside media

Then, you can assemble scale and scroll range type inputs into just

one user-friendly navigation bar using for instance jQueryUI

range input (jqueryui.com):

Range input integration (red) for a unique navigation bar

3.2 Annotation
One use case of timeline-js is to represent markers and periods in

a timeline to display segmentations of a media. A maker is a cue

point, a single time (like the ones used in SoundCloud), and a

period is a segment with a start time and an end time.

Period (green) and Marker (yellow)

Annotation of videos are quite similar to the annotation of sounds,

it’s a temporal segment of a video file. A period or a marker

annotation of a video file doesn’t define a shape in the video

stream. This is not in the timeline-js scope to deal with video

stream annotation, but it can be define outside, using events (cf.

3.4).

Four periods annotation of a video file

A timeline-js instance can also have multiple tracks (for the same

media element).

Skinned version of timeline-js for an audio file with play/stop

buttons, jQueryUI navigation bar and three tracks with

different periods attached

3.3 Edition
Timeline-js has four modes: create, read, update and delete. Each

mode can be set live, to change the type of interaction the user has

with the interface. So far in this description, we were by default in

read mode. In edit mode (see figure below), when the user clicks

on the timeline, he creates a period (or a marker if mousedown

and mouseup event are in the same position). In update mode, the

user is able to update periods begin and end points. In delete

mode, the user deletes periods or markers by clicking on it.

Copyright is held by the author/owner(s).

WWW2012 Developer Track, April 18-20, 2012, Lyon, France.

Create, read, update, delete mode for a three tracks timeline

(switch mode buttons are designed with jQueryUI)

3.4 Events
For integration with any web application, each time an action is

set on a period or a marker inside a timeline-js instance, it triggers

a custom events:

• For periods: createperiod, readperiod, updateperiod,

deleteperiod,

• For markers: createmarker, readmarker, updatemarker,

readmarker.

with custom parameters, (eg. for period: new start time and end

time values), and the id of the marker or period, allowing linking

with other multimedia contents for interaction purposes or forms

for edition purposes.

3.5 Miscellaneous
A configuration object can be used when instantiate the plug-in to

change width, height, number of tracks, colors … A lot of other

configuration parameters are available. This is intended to

facilitate integration of the plug-in inside applications (these

options are documented in source code). Besides, all of the

configuration variables can be set live via setOption method on

timeline-js instance (for instance: change mode, add track …).

4. Possible improvements
HTML5 <track> element could be used as a data provider for

building instance of timeline-js. The timeline-js website [1] should

propose soon an example.

For a better navigation experience, the scale and scroll should

have an auto-scroll mode when you're zoomed in to always keep

the current playback position on screen. This should be a

parameter passed to the timeline-js instance.

SVG could be used instead of canvas to allow more custom access

to the periods and markers, and express better semantic.

The Web Audio API, currently being discussed by W3C Audio

Working Group, could build some interesting sound

representation like waveform or spectrogram behind tracks. In the

same direction, we could have automatically computed track

example, for representing, for instance beats, chords, using sound

features extractors already available as JavaScript libraries.

For integration with other contents, we could have a way for the

user to group markers and periods together to trigger one event

linked to this group. We could also have an example showing

usage of media fragments working draft [6]. In this direction,

when a user would click on a period, we should append

#t=period_time_in,period_time_out to the src media element

attribute. Last, we could try some experiments with touch event

specification working draft [7] integration.

5. REFERENCES
[1] https://github.com/ouhouhsami/timeline-js/

[2] Guillaume Boutard, Samuel Goldszmidt, Geoffroy Peeters, «

Browsing inside a Music Track, the Experimentation Case

Study », SAMT, Athènes, 2006.

[3] http://apm.ircam.fr/page/audio-tag/

[4] Cazenave, F., Quint, V., and Roisin, C. 2011. Timesheets.js:

tools for web multimedia. In Proceedings of the 19th ACM

international Conference on Multimedia (Scottsdale,

Arizona, USA, November 28 - December 01, 2011). MM '11.

ACM, New York, NY, 699-702. DOI=

http://doi.acm.org/10.1145/2072298.2072423

[5] Nicolas Donin, Samuel Goldszmidt, « Annoter la musique :

de la segmentation de fichiers audio à la publication

d’articles multimédia », Annexes des actes d’IHM 2007

[19ème Conférence de l’Association Francophone

d’Interaction Homme-Machine (Paris, France, 13-15

novembre 2007)], 2007, p. 53-56.

[6] Davy Van Deursen, Raphaël Troncy, Erik Mannens, Silvia

Pfeiffer, Yves Lafon, and Rik Van de Walle. Implementing

the media fragments URI specification. In Proceedings of the

19th international conference on World wide web (WWW

'10). ACM, New York, NY, USA, 1361-1364.

DOI=10.1145/1772690.1772931

http://doi.acm.org/10.1145/1772690.1772931

[7] http://www.w3.org/TR/touch-events/

