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Abstract 

A global sampling approach based on low discrepancy sequences has been applied in order to 

propose error bars on simulations performed using a detailed kinetic model for the oxidation 

of n-butane (including 1111 reactions). A two parameter uncertainty factor has been assigned to 

each considered rate constant. The cases of ignition and oxidation in a jet-stirred reactor (JSR) 

have both been considered. For t h e  JSR, not only the reactant mole fraction has been 

considered, but also that of some representative products. A temperature range from 500 to 

1250 K has been studied, including the negative temperature coefficient (NTC) region where 

the predictive error bars have been found to be the largest. It is this temperature region where 

the highest number of reactions play a role in contributing to the overall output errors. A global 

sensitivity approach based on high dimensional model representations (HDMR) has t h e n  

then b e e n  applied in order to identify those reactions which make the largest contributions to 
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the overall uncertainty of the simulated results. The HDMR analysis has been restricted to the 

most important reactions based on a non-linear screening method, using Spearman Rank 

Correlation Coefficients at all s t u d ie d  temperatures. The final global sensitivity analysis for 

predict ed ignition delays illustrates that the key reactions are mainly included in the primary 

mechanism, for temperatures from 700 to 900 K, and in the C0-C2 reaction base at higher 

temperatures. Interestingly, for predicted butane mole fractions in the JSR, the key reactions 

are almost exclusively from the reaction base, whatever the temperature. The individual 

contribution of some key reactions is also discussed. 

 

Keywords: Uncertainties, detailed kinetic model, global sampling, global sensitivity, oxidation 

 

INTRODUCTION 

The effective use of combustion mechanisms to model and design practical devices requires 

robust models that can be used in a predictive way over wide ranges of temperatures, 

pressures and compositions. A measure of the robustness of a model can be obtained by 

estimating predictive error bars based on our knowledge about the uncertainties within the 

model parameterization and model structure [1]. However, model error bars are not 

commonly presented when comparing experimental data with equivalent model simulations. A 

single comparison is usually made using the best estimates of the model input parameters, with 

a local sensitivity analysis often applied afterwards to evaluate which parameters most strongly 

influence the selected target model outputs. Whilst local sensitivities have been used 

successfully to highlight important parameters within mechanisms for many combustion 

systems, the estimation of model error bars cannot generally rely on their use. This is 

particularly true for non-linear models, with input uncertainties that cover large ranges and high 
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dimensional spaces. For such models, the propagation of uncertainties requires a sampling 

approach to ensure that all sensitive regions of the input space are covered. Within such an 

approach, the uncertainties within the inputs are represented by a given distribution (uniform, 

log-normal etc.), which is then sampled and propagated through the model, providing 

distributions of the final model predictions. A large number of model runs may be required in 

order to obtain stable output statistics, such as the mean and variance of the predicted targets. 

The sampling approach used is critical, since we would like to obtain stable statistics using the 

lowest possible number of model runs in order to minimize computational costs [2, 3] . Once 

stable output distributions are obtained, error bars may be calculated using variance based 

measures (e.g. 1σ or 2σ errors). 

 

We may also wish to determine by how much each of the input parameter uncertainties 

contributes to the total output variance i.e. to perform an ANOVA (ANalysis Of VAriance) 

decomposition [4]. Such global sensitivity analyses are also usually based on sampling 

approaches and could be particularly challenging for large models where the input parameter 

space is highly multi-dimensional. 

 

In this paper we develop a methodology for estimating error bars for model simulations which 

incorporate high dimensional combustion mechanisms. Here we focus on uncertainties within 

the temperature dependent rate coefficients, but the approach could be applied to a wider 

range of inputs including thermodynamic parameters, transport properties, etc. We use a global 

sampling approach based on low discrepancy sequences with application to an n-butane 

oxidation model containing 1111 reactions [5, 6]. A screening method is applied based on the 

calculation of Spearman Rank Correlation Coefficients (RCCs) of this input-output sample, in 



5 
 

order to determine a subset of the main parameters which may affect the final errors over a 

wide range of conditions. A fully global sensitivity analysis is then performed for this 

parameter subset using high dimensional model representations (HDMR) [7-9]. We demonstrate 

that it is possible to achieve an accurate variance decomposition of the output distributions 

using this two-step approach using reasonably small sample sizes. The work therefore provides 

a general method for estimating error bars for complex combustion models and obtaining a 

full ANOVA decomposition of these errors. 

 

METHODOLOGY 

Three types of experimental systems are mainly used to provide data for validating detailed gas 

phase oxidation mechanisms at low-temperatures: rapid compression machines (RCM), shock 

tubes (ST) and heated flow reactors, such as flow tubes or jet-stirred reactors (JSR). If models 

are able to reproduce s u c h  e x p e r i m e n t a l  data over wide ranges of temperatures and 

pressures, this suggests that the mechanisms may be appropriate for modeling practical 

combustion devices. However, discrepancies between model predictions and experimental data 

still exist for certain temperatures and it is therefore important to explore the impact of 

uncertainties in model input data on the model predictions.  

 

The n-butane mechanism used in this study comprises 176 species and 1111 reactions based 

updates to that proposed in [5] by Bahrini et al. [ 6 ] . It is an automatically generated 

mechanism using the computer package EXGAS, which was previously used to generate 

oxidat ion mechanisms for many hydrocarbons and oxygenated fuels [10, 11]. The system 

provides reaction mechanisms composed of three parts: 

1. A comprehensive primary mechanism, where the only molecular reactants considered 
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are the initial organic compounds and oxygen. The following reactions are considered: 

• From the initial reactants: production of alkyl radicals through unimolecular and 

bimolecular initiations, and H atom abstractions by small radicals; 

• From alkyl radicals: reactions with O2 (addition with subsequent reactions of 

peroxy radicals through isomerizations, second additions to O2, cyclic ether 

formations, and disproportionations with HO2 radicals) or decomposition to 

alkenes and HO2 radicals), and isomerizations; 

• From all radicals: decompositions of radicals by β-scission involving the 

breaking of C-C, C=O or C-H bonds. 

2. A C0 -C2 reaction base, including all the reactions involving radicals or molecules 

containing less than three carbon atoms. 

3. A lumped secondary mechanism, containing the reactions consuming the molecular 

products of the primary mechanism (e.g ketohydroperoxides, alkenes, cyclic ethers, 

aldehydes, ketones), which do not react in the reaction base. 

 

Thermochemical data for molecules or radicals are automatically calculated based on group 

and bond additivity methods. Kinetic data are estimated either based on thermochemical 

kinetics methods, or on quantitative structure-reactivity relationships obtained from a literature 

review [11]. The complete mechanism and its associated uncertainties are available as 

Supplementary Material. 

 

Uncertainty factors were adopted for each rate coefficient and propagated through to determine 

associated error bars for predictions of ignition delay times in RCMs/ST, and JSR mole 

fractions. Simulations were performed using CHEMKIN [ 1 2 ]  and statistical codes 



7 
 

deve lo ped  specifically for the present study. RCM/ST simulations were performed using 

SENKIN assuming a constant volume adiabatic reactor. Whilst this assumption has been 

questioned for RCM simulations where post compression volume changes may occur due to heat 

losses, for the shorter ignition delays simulated here this is not expected to have a major 

influence on the predictions as demonstrated by [13]. JSR simulations have been performed 

using the PSR code assuming a homogeneous isothermal reactor.  

 

UNCERTAINTY ANALYSIS 

Chemical kinetics databases provide recommended values of Arrhenius parameters for many 

elementary gas-phase reactions, as well as the temperature-dependence of their uncertainties. 

Ideally, input uncertainties in the temperature-dependence of reaction rates should be described 

as an analytical expression derived from the covariance matrix of the Arrhenius parameters, as 

recommended in [ 1 4 ,  1 5 ] .  However, this is difficult to realize in practice for many large 

combustion mechanisms where a large number of reactions have not been evaluated. Therefore, 

we estimate an uncertainty factor F(T) of a reaction rate k(T) at any given temperature 

following an expression adapted from [16] : �(�) = �(300�) ��� ��(
1� − 1300)�               (1) 

where F(300K) is the uncertainty in the rate constant k(T) at T = 300 K and g is the ”uncertainty-

extrapolating” coefficient used to obtain the rate constant uncertainty F(T) at different 

temperatures. The approach is based on the fact that rate constants are almost always known 

with a minimum uncertainty at room temperature, but allows u s  to quantify the temperature-

dependent uncertainties over a temperature range adequate for combustion studies. Uncertainty 

factors F(T) were assigned to each temperature-dependent rate constant, (1111 parameters here) 
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using appropriate evaluation studies where available. This is mostly the case for the C0-C2 

reaction base, where many reviews provide temperature-dependent uncertainties assuming that 

the minimum and maximum values of the rate coefficients correspond to 1σ [ 1 6 ] , 2σ [18] or 

3σ [ 1 7 ]  deviations from the recommended value on a logarithmic scale. For example, Baulch 

et al. [17]  recommended uncertainties for the rate of the reaction H + O2 = O + OH (reaction 

927) as F(300K) = 1.08 and F(5000K) = 1.47, giving  F(300K) = 1.08 and g = 100 over the 

temperature range 300-5000 K. For the calculated parameters within the primary and secondary 

mechanisms, factors F = 1.26, g = 0 were used for unimolecular or bimolecular initiations and 

additions with oxygen, whereas F = 1.12, g = 100 were used otherwise. 

 

Because of the highly non-linear nature of combustion models and their potentially large 

ranges of uncertainties, a linear uncertainty propagation is not expected to produce valid 

results. Propagation of distributions by random sampling across the whole space spanned by the 

input distributions is better adapted to such problems [ 1 9 ] . Due to the positivity constraint on 

these properties, their distributions are modeled by lognormal probability density functions: �(�) =
1√2� � � exp �− (�� �−�)2�2 �             (2) 

with µ  = ln k(T), the logarithm of the nominal value of the reaction rate at temperature T, and 

σ = lnF(T), the logarithm of the geometric standard uncertainty F(T) of the lognormal 

distribution. With these notations, the 67% confidence interval for a reaction rate at a given 

temperature is given as [k(T)/F(T), k(T)×F(T)]. Adopted F values are supplied with the 

mechanism in the Supplementary Material and represent 1σ values. Within the uncertainty 

analysis 3σ errors were propagated in order to encompass most possible values of the rate 

constants (99.7% confidence limits) and hence F=1.26 at 1σ equates to a factor of 2 uncertainty 
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at 3σ. A fuller description is given in Supplementary Material. For many reactions, particularly 

those from the primary and secondary mechanisms, these uncertainties have to be estimates since 

there is insufficient experimental or theoretical data from which to perform a full evaluation. The 

adopted uncertainties will inevitably affect the variance decomposition and this should be noted 

in the interpretation of the global sensitivity results. 

 

Many different sampling methods have been used for sensitivity and uncertainty analysis [20]. 

Monte Carlo methods are commonly used and involve generating a large number of 

independent random parameter sets that correspond to the joint probability density function of 

model inputs or cover their feasible region using a given distribution. Subsequently model 

simulations are carried out for each set and the scatter or distributions in the target model 

outputs are investigated. Random sampling forms the standard method, bu t  with the possible 

disadvantage of clustering occurring in some regions of the input space and gaps in other 

regions. A possible alternative is the use of low discrepancy sequences. Discrepancy is a 

measure of the uniformity of a sequence; high uniformity equals low discrepancy. Successive 

sample points are added to positions as far away as possible from existing sample points so 

that clustering can be avoided. One of the best known low discrepancy sequences was 

proposed by Sobol [21]
1
. 

 

A normal distribution of random numbers can be obtained from a uniform distribution of 

random numbers using the Box-Muller algorithm (e.g., [22]). However, for low discrepancy 

sequences, it should be avoided because it may damage their intrinsic properties, either by 

altering the order of the sequence or by scrambling the sequence uniformity [23, 24]. We 

                                                             
1
 SOBOL library : original FORTRAN77 version by Bennett Fox; FORTRAN90 version by John Burkardt : 

http://people.sc.fsu.edu/˜jburkardt/f src/sobol/sobol.html 
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therefore compute directly the inverse normal distribution of the Sobol sequence given its 

cumulative distribution function
2 . 

 

Fig. 1 displays a comparison of samples obtained from a uniform pseudo-random distribution and a 

Sobol sequence for a 2-parameter sample where the sample size N=1000. The Sobol sequence 

provides a more uniform coverage compared to the random sample. Clustering and gaps are 

visible for the random sample even within two dimensions, and for small sample sizes (~1000) 

these could become quite extreme within a 1111 dimensional space as studied here. However, 

using a Sobol sequence we found that the variance of the model outputs achieved convergence 

even using a small sample size of 1000, in agreement with previous work that evaluated the 

convergence properties of different sampling strategies [3]. 

 

After a quasi-random sample is drawn from the input distribution, the autoignition delay times 

and the J S R  mole fractions are predicted for each member of this quasi-random sample. Error 

bars on simulations represented by 1σ bands vs. temperature are shown in Fig. 2 in the case 

of autoignition, and in Fig. 3 in the case of JSR mole fractions. For the JSR, simulations were 

performed under the conditions of [ 6 ]  (Φ=1, P=1atm, T=500−1000K, t=6s). Simulated 

autoignition delay times in air were performed using the conditions of [ 25 ]  (Φ=1, P=10 atm, 

T=700−1300K). The related experimental results are also shown for comparison. To indicate 

the experimental uncertainty, several literature experimental ignition delays times obtained 

under conditions close to those of [25] are also plotted in Fig. 3.  

 

                                                             
2
 NORMINV: An algorithm for computing the inverse normal cumulative distribution function. Based on Peter John 

Acklam’s algorithm : http://home.online.no/p˜jacklam/notes/invnorm/ 
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Fig. 2 shows that the error bars are largest (up to a factor of 8) in the NTC region (750-

850 K) and are larger than the scatter in experimental data from various sources. Above 

850 K, these error bars significantly decrease, to around a factor of 2. Fig. 3 shows predicted 

means and confidence intervals for the mole fractions of the reactant in the JSR, as well as for 5 

representative products. Aldehydes and ethylene are considered as good indicators of low and 

high temperature reactivity, respectively. Butenes and 2-methyloxetane are amongst the 

important primary products. As for ignition, the error bars related to the reactivity are largest in 

the NTC region, as indicated by the reactant and aldehyde mole fractions. The errors for 

ethylene are especially large above 900 K. Also note that the error bars for the cyclic ether are 

perhaps lower than would be expected from the usual level of agreement found between 

simulations and experiments for this family of compounds [ 2 6 ] .  The simulated error bars 

and data points do not overlap in Fig. 3. This could be due to a number of reasons including 

experimental error, even for compounds with the largest experimental uncertainty such as CH2O 

[6] (see given experimental error bars), but a likely reason is that the adopted uncertainty factors 

for some reactions in the primary mechanism were perhaps too optimistic. The influence of input 

parameter uncertainty estimation, especially in the primary and secondary mechanisms, on 

predicted error bars should certainly be more thoroughly investigated in future work. 

  

GLOBAL SENSITIVITY ANALYSIS 

Global sensitivity analysis was then performed at various temperatures in order to provide a 

variance decomposition of the error bars shown in the previous figures. Butane was chosen as 

being representative of the overall reactivity of the oxidation scheme for the JSR simulations. A 

two-step process was used, since performing a variance decomposition within a 1111 

dimensional space is unlikely to lead to high fidelity results without resorting to very large 
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sample sizes with associated computational costs. A screening method was therefore first used 

in order to pre-select those parameters which are likely to contribute to the overall variance of 

the model predictions. Whilst linear sensitivity analysis is commonly used as pre-screening step, 

it was not used here since the response of the predicted outputs to changes in inputs may not be 

linear across the input uncertainty ranges. Focusing calculations around the nominal parameter 

values may therefore give misleading results [8].  A global screening approach based on 

Spearman Rank Correlation Coefficients (RCCs) was therefore adopted using the input-output 

distributions built from the original Sobol sequences.  

 

RCCs [31] provide a measure of the strength of the non-linear relationship between model 

inputs and target outputs, by assessing how well the relationship between two variables can be 

described using a monotonic function. The RCC threshold was set to 0.2 to give a reasonable 

yet restricted set of s ig n if icant  reactions as shown in Table 1 for simulated autoignition delay 

times and butane mole fractions in the JSR. 29 key reactions were identified for ignition delays 

and 34 for the JSR mole fractions. These inputs were then selected for the subsequent global 

sensitivity analysis.  

 

A further Sobol sequence was then generated for these restricted sets of inputs and checks were 

made to ensure that the total predicted output variance from this restricted sample was well 

matched to that from the original sample where all 1111 parameters were varied. This provides 

confidence that a successful screening was performed and that the following variance 

decomposition accurately provides the importance of each parameter in terms of its contribution 

to output uncertainties discussed above.  
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The global sensitivity study was performed using a high dimensional model representation 

(HDMR) method based on a hierarchical expansion of the input-output relationship generated 

from the Sobol sample as described in [9]. Using HDMR, variance based sensitivity indices can 

be determined in an automatic way from the hierarchical function expansion, hence providing a 

ranking of each parameter in terms of its contribution to the predicted output variance.  

 

Fig. 4 displays the global first-order sensitivity indices calculated for ignition delays every 

50 K from 700 to 1300 K. Two excel files in Supplementary Material present the results in 

more detail for ignition and PSR results, respectively. The analyzed reactions are numbered as 

shown in Table 1. If a full variance decomposition is achieved then the sum of the sensitivities 

should be 1. Second-order indices were calculated but are not shown here for simplicity of 

interpretation.  The white parts in Fig. 4 and in the boxes of Fig. 5 correspond to these and 

potentially higher order effects.  Based on the first order terms from the ANOVA analysis, 

Fig. 5 presents how the error bars shown in Figs. 2 and 3 are decomposed into contributions 

attributable to reactions included in the primary mechanism, the secondary mechanism, and 

the reaction base, respectively. For autoignition delay times, Figs. 4 and 5(a) highlight, as 

expected, the importance of reactions of the primary mechanism up to 900 K whilst at higher 

temperatures reactions from the C0-C2 reaction base dominate. Whilst the input uncertainties for 

reactions of the secondary mechanism are certainly large, their contribution to output 

uncertainty is very small and only significant  below 1000 K. T h is  suppor t s  t he 

lu mp ing  approach used in  t he  gener at io n o f seco ndar y mecha n is ms  by t he  

E XGAS so ftware  [ 11 ] .  Perhaps more surprisingly, Fig. 5(b) indicates that the JSR 

simulations are almost exclusively do minat ed by uncertainties in reactions from the C0-C2 

base, even at low temperatures. As shown in Supplementary Material, at 550 K, the 
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isomerization of one of the butylperoxy radicals (reaction 26 in Table 1) is the only identified 

contributor to the error bar, and at 600 K, the reactions of radicals derived from ethyl radicals (e.g 

reaction 897), which are mainly obtained from ketohydroperoxides decomposition, have a 

significant contribution. However at higher temperature only reactions of HO2, CH3, HCHO, and 

to minor extent CH3CHO have a notable contribution. Further studies of these reactions could 

help to improve the predictability of the mechanism. 

 

In Fig. 4 and better shown in Supplementary Material, under ignition conditions below 800 K, 

the reactions with the highest contributions are the isomerizations of both butylperoxy radicals 

(reactions 22 and 26) and oxidation to give butene and HO2 radicals from butyl radicals 

(reactions 153-155). Above 900 K, the contribution of the metathesis of butane with HO2 

radicals (reactions 207 and 208) and of the combination of methyl and HO2 radicals (reaction 

977) start to be significant, with the contribution of these last reactions being dominant for all 

temperatures above 1050 K. A notable contribution of the formation of H2O2 from HO2 

radicals (reaction 998) appears from 950 to 1050 K, and finally one of the reaction H + O2 = 

O + OH (reaction 927) starts from 1150 K, confirming the determinant role of branching steps 

in ignition. 

 

CONCLUSION 

We have demonstrated a computationally efficient method for providing predictive error bars on 

combustion simulations using complex reaction mechanisms, based on a sampling approach 

using low discrepancy sequences. The variance decomposition of these errors provides 

information on those reactions requiring further study in order to improve the robustness of the 

model simulations i.e. to reduce the error bars. This variance decomposition was achieved in a 
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two-step process using a prior screening of the parameters using Spearman Rank Correlation 

Coefficients, followed by HDMR analysis for the selected parameters to estimate global 

sensitivity indices. When applied to simulations of experimental data obtained from RCM, shock 

tube and a JSR for n-butane oxidation, the results provide a highly visual way to evaluate how the 

sensitivities to uncertainties within the mechanism change across the different temperature 

regimes. Very little sensitivity to the secondary mechanism was observed across all temperature 

ranges for all reactor studies. Sensitivities to the reactions within the primary butane scheme were 

mainly observed for the low temperature ignition delay experiments, suggesting that such 

experiments could provide useful constraints on the R+O2, and RO2 to QOOH isomerization 

pathways  if used within an optimization approach. Perhaps surprisingly, the predicted butane 

mole fractions within the JSR simulations were mainly sensitive to reactions within the base 

scheme, particularly reactions involving HO2, HCHO, CH3, and to a minor extent C2H5 or 

CH3CHO.  
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[14] E. Hébrard, M. Dobrijevic, P. Pernot, N. Carrasco, A. Bergeat, K. M. Hickson, A. Canosa, S. D. Le 



18 
 

Picard, I. R. Sims, J. Phys. Chem. A 113 (2009) 11227–11237.  
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Table 1: Key reactions during the simulations of the autoignitition delay times with SENKIN [S] 

and of the oxidation of n-butane with PSR [P]. Reactions are numbered in the first column as in 

the mechanism (see Supporting Information). 

N° Reactions S P 

6 1-C4H9+O2→C4H9−1−OO  1 

7 2-C4H9+O2→C4H9−2−OO  2 

22 C4H9−1−OO→C4H8−1−OOH 1  

26 C4H9−2−OO→C4H8−2−OOH 2  

81 2-C4H7−13−(OOH)2→HO2+C4H7OOH 3  

131 2-C4H7−34−(OOH)2→OH+2-methoxy-1,3-dioxolane  4 

132 1-C4H7−34−(OOH)2→OH+2-methoxy-1,3-dioxolane 4  

153 1-C4H9+O2→1-C4H8+HO2 5  

154 2-C4H9+O2→1-C4H8+HO2 6 5 

155 2-C4H9+O2→1-C4H8+HO2 7  

177 1-C4H7−24−(OOH)2+O2→1-C4H6-2,4,-(OOH)2+HO2 8  

204 C4H10+H→H2+2-C4H9 9  

205 C4H10+OH→H2O+1-C4H9 10  

206 C4H10+OH→H2O+2-C4H9 11  

207 C4H10+HO2→H2O2+1-C4H9 12  

208 C4H10+HO2→H2O2+2-C4H9 13  

256 CH3C(O)C2H4OOH→OH+CH3C(O)C2H4O  6 

282 C3H8+CH3→CH4+1-C3H7 14 7 

291 C5H12+HO2→H2O2+CH3+C2H4+C2H4 15  

297 C5H12+C2H5→C2H6+CH3+C2H4+C2H4  8 

314 methyloxirane+OH→H2O+CH3+CH2CO  9 

344 propyloxirane+OH→H2O+1-C3H7+CH2CO  10 

353 methylpropyloxirane+H→H2+1-C3H7+C2H3CHO 16  

364 methylpropyloxirane+C2H5→C2H6+1-C3H7+C2H3CHO  11 

425 C5H10+OH→CH3+C3H7CHO 17  

444 C5H10+H→H2+13−C4H6+CH3  12 

454 C5H10+CH3→CH4+13−C4H6+CH3 18  

470 C6H12+CH3→CH4+13−C4H6+C2H5 19 13 

497 C3H6+O→C3H5+OH 20 14 

509 C3H7OH+HO2→H2O2+OH+C3H6 21  

545 C2H5CHO+HO2→H2O2+C3H5O  15 

570 C5H9O→CO+1-C4H9  16 

587 C3H7CHO+HO2→H2O2+CH2CO+C2H5  17 

652 CH+H→C+H2 22  

704 C2H6+C2H→C2H2+C2H5  18 

730 H+O+M→OH+M  19 

780 HCHO+H→HCO+H2 23 20 

837 CH3OH+OH→CH3O+H2O  21 

845 HCCO+OH→HCO+CO+H 24  

897 C2H5O→HCHO+CH3  22 

911 C2H5OH+O2→C2H4−1−OH+HO2  23 

927 O2+H→OH+O 25 24 

977 HO2+CH3→CH3O+OH 26 25 

990 HO2+HCHO→HCO+H2O2  26 

995 HO2+CH3CHO→CH3CO+H2O2  27 

997 HO2+HO2→H2O2+O2  28 

998 HO2+HO2→H2O2+O2 27 29 

999 H2O2(+M)→OH+OH(+M) 28  

1038 CH3O2+H2O2→CH3OOH+HO2  30 

1041 CH3OOH→CH3O+OH  31 

1055 C2H5OO+HCHO→C2H5OOH+HCO  32 

1071 C2H5OOH→C2H5O+OH  33 

1073 C2H5OOH+CH3→CH3CHO+OH+CH4 29 34 
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FIGURE CAPTIONS 

Figure 1: A comparison of distributions for different sampling strategies for a 2-parameters 

sample with N = 1000. Uniform pseudo- random  sample  (top  left), Sobol’s quasi-random 

sequence sample (top right), Box-Muller transformation applied to an uniform pseudo-random 

sample (bottom left) and the normal inverse cumulative function of a Sobol’s quasi-random 

sequence sample (bottom right). 

 

Figure 2: Predictions of the autoignition delay times vs. temperature. Black solid line: nominal 

and mean profile. Blue-filled area corresponds to the standard deviation (1σ) of the modeled 

results. STD = shock-tube data. RCM = rapid compression machine [25,27,28,30]. 

 

Figure 3: Predictions of the mole fraction profiles vs. temperature of some representative 

products during the oxidation of n-butane in a JSR. Black solid lines: nominal and mean.profiles. 

Blue-filled area corresponds to the standard deviation (1σ) of the modeled results. Red squared 

symbols are GC measurements [6]. 

 

Figure 4: Normalized estimates of first-order contributions to the overall variance of predicted 

autoignition delay times vs. temperature calculated using the global HDMR method under the 

conditions of Fig. 2. Reactions are numbered on the boxplot as in the mechanism (see Supporting 

Information) but the colormap has been scaled to the limited set of reactions numbered and 

ordered as specified in the third column of the Table 1. 

 

Figure 5: Predictions of autoignition delay times and C4H10 mole fraction profiles vs. 

temperature under the conditions of Figs. 2 (left) and 3(a) (right). The boxplots display the 
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observed variance in a particular variable is partitioned into components attributable to different 

chemical sources of variation in the mechanism [6]: primary mechanism (blue), secondary 

mechanism (green), C0-C2 base (red). 

 

  



22 
 

 

 

Figure 1: A comparison of distributions for different sampling strategies for a 2-parameters 

sample with N = 1000. Uniform pseudo- random  sample  (top  left), Sobol’s quasi-random 

sequence sample (top right), Box-Muller transformation applied to an uniform pseudo-random 

sample (bottom left) and the normal inverse cumulative function of a Sobol’s quasi-random 

sequence sample (bottom right). 
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Figure 2: Predictions of the autoignition delay times vs. temperature. Black solid line: nominal 

and mean profile. Blue-filled area corresponds to the standard deviation (1σ) of the modeled 

results. STD = shock-tube data. RCM = rapid compression machine [25,27,28,30]. 
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Figure 3: Predictions of the mole fraction profiles vs. temperature of some representative 

products during the oxidation of n-butane in a JSR. Black solid lines: nominal and mean.profiles. 

Blue-filled area corresponds to the standard deviation (1σ) of the modeled results. Red squared 

symbols are GC measurements [6]. 
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Figure 4: Normalized estimates of first-order contributions to the overall variance of predicted 

autoignition delay times vs. temperature calculated using the global HDMR method under the 

conditions of Fig. 2. Reactions are numbered on the boxplot as in the mechanism (see Supporting 

Information) but the colormap has been scaled to the limited set of reactions numbered and 

ordered as specified in the third column of the Table 1. 
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Figure 5: Predictions of autoignition delay times and C4H10 mole fraction profiles vs. 

temperature under the conditions of Figs. 2 (left) and 3(a) (right). The boxplots display the 

observed variance in a particular variable is partitioned into components attributable to different 

chemical sources of variation in the mechanism [6]: primary mechanism (blue), secondary 

mechanism (green), C0-C2 base (red). 
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