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1 Introduction
Wall functions are widely used in CFD in order

to significantly reduce the computational cost com-
pared to so called Low-Reynolds number formula-
tions. They are, however, particularly restrictive in
terms of meshing as they require the first calculation
point to fall into the logarithmic region. Industrial
simulations of internal flows, such as the ones encoun-
tered in nuclear applications, are particularly challeng-
ing due to their inherent complexity that makes it dif-
ficult to satisfy those conditions everywhere.

Several proposals were formulated in the litera-
ture that aim at improving and generalizing wall treat-
ments. Chieng and Launder [1] improve the classical
wall function strategy by accounting for a linear varia-
tion of the shear stress and the turbulent kinetic energy
in the first near wall cell. A more general formula-
tion of this strategy was developed by Craft et al. [2],
who derive Wall Functions (WFs) on the basis of an
assumed eddy viscosity distribution through this cell.
A refined approach, also due to Craft et al. [3], pro-
poses the integration all the simplified transport equa-
tions over a fine embedded subgrid within the first cell.
Kalitzin [4] developed an adaptive strategy based on
curve-fitting of the variables using splines.

Another strategy, widely used in CFD, consists in
using a blending of the wall-limiting and fully turbu-
lent expressions for various flow variables. The blend-
ing functions ensure a smooth transition between the
two layers and provide accurate conditions for the first
cell even if it lies in the buffer region. Esch and
Menter [5] proposed a quadratic blending of the wall
shear stress to provide adequate boundary conditions
for the k − ω model. Popovac and Hanjalić [6] de-
veloped a compound wall treatment (CWT) that re-
duces to either the “Integration to the wall“ (ItW) or
the ”Wall function” approach, depending on the loca-
tion of the first near-wall cell. Basara [7], followed
by Rahman and Siikonen [8], used the same blending
method and attempted to improve the prediction of the
production and the dissipation rate.

The present study focuses on a new algebraic adap-

tive wall treatment for the Elliptic Blending Reynolds
Stress Model (EB-RSM) by extending some of those
recently proposed approaches. Blending functions that
ensure a correct asymptotic behaviour at the wall for
the velocity and the turbulent variables are introduced
and boundary conditions are prescribed at the first
near-wall cell. The approach shows very promising
results on fully developed channel flows, comparable
to what is obtained using a numerical integration down
to the wall.

2 The EB-RSM for ItW
Adaptive Wall Treatment requires the use of a tur-

bulence model integrable down to the wall. As atten-
tion is directed towards Second Moment Closures, the
EB-RSM [9] is chosen. It is a robust model able to
reproduce the near-wall physics. The transport equa-
tions for the turbulent variables are

Duiuj
Dt

= Pij + Φ∗
ij − εij +Dν

ij +DT
ij , (1)

Dε

Dt
=

C∗
ε1P − Cε2ε

τ
+Dν

ε +DT
ε , (2)

where Pij is the exact production term, the turbu-
lent diffusion term is expressed using the Daly-Harlow
model and the redistribution Φ∗

ij and dissipation εij
terms are expressed as a blending of models valid in
the fully turbulent and the wall regions,

Φ∗
ij = (1− α3)Φhij + α3Φwij , (3)

εij = (1− α3)
uiuj
k

ε+
2

3
α3εδij , (4)

where the superscript h denotes the homogeneous part,
taken from Speziale, Sarkar and Gatski [10] and w the
wall part, as proposed by Manceau and Hanjalić [9].
The elliptic equation solved for the blending parameter
α is

α− L2∇2α = 1. (5)

Finally, the integral time scale and length scale are



given by

L = CL max

(
k3/2

ε
, Cη

ν3/4

ε1/4

)
,

τ = max

(
k

ε
, CT

√
ν

ε

)
. (6)

The so-called E term in the ε equation, proposed
by Jones and Launder (1972) and originally introduced
used in the EB-RSM [9], is replaced, for numerical
stability reasons, by a variable C∗

ε1 coefficient of the
form [17]

C∗
ε1 = Cε1

(
1 +A1(1− α3)

P

ε

)
. (7)

The original values of the coefficients of the SSG are
used. Other coefficients are

Cη CL CT A1 Cε2 Cε1
80.0 0.122 6.0 0.1 1.83 1.44

3 Adaptive Algebraic Wall Treatment

Velocity U
Low-Reynolds number formulations are relevant

as long as the first node is located in the viscous sub-
layer (y+ ≤ 5). However, when this point is in the
fully turbulent region (y+ ≥ 30), natural boundary
conditions become inappropriate and the use of wall
functions is unavoidable. The principle of Adaptive
Wall Treatment (AWT) is to provide wall boundary
conditions valid whatever the first node location [6]
[8]. Continuous laws for all the variables are then nec-
essary and can be obtained, for example, by blending
the viscous region (noted Fw) and the fully turbulent
behaviour (Flog).

Many analytical laws of the wall valid through-
out the whole boundary layer were proposed, starting
from the pioneering work of Reichardt [11] and Spald-
ing [12]. Although they fit perfectly experimental data,
none of them would be applicable to non equilibrium
flows. More recently Popovac and Hanjalić proposed
such a law using Kader’s blending [6].

The natural boundary conditions at a wall u = v =
0 and ∂v/∂y = 0 lead to the asymptotic behaviour for
u and v {

u = a1y + a2y
2 +O(y3)

v = b2y
2 +O(y3)

Without any hypothesis, the asymptotic behaviour of
uv+ can then be expressed as uv+ = a1b2y

+3 +
O(y+4). Since uv is virtually independent of the fric-
tion Reynolds number Reτ , as confirmed by available
channel flow DNS data [13, 14], a1b2 is assigned here-
after the constant value a1b2 = Cuv = 1.0674×10−3.

Introducing the expansion of uv+ in the stream-
wise momentum equation of a 1D channel flow at
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Figure 1: Comparison of the terms of the asymptotic devel-
opment of U+,DNS at Reτ = 640 [15]

equilibrium leads to the asymptotic behaviour for U+

U+ = y+ − y+2

2Reτ︸ ︷︷ ︸
∆2(y+)

− Cuv
4
y+4︸ ︷︷ ︸

∆4(y+)

+O(y+5). (8)

Here, a twofold objective is aimed at:

(i) deriving a near-wall law whose validity extends
further to the wall than the leading order approx-
imation U+ = y+;

(ii) proposing a “universal“ law for U+, i.e., pre-
serving its independence of the friction Reynolds
number.

It then important to compare the weight of the higher
order terms (∆2 and ∆4) in equation (8).

The profile of (U+ − y+) is extracted from the
DNS data of Kasagi [15]. This data, normalized by
U+, represent the relative contribution of the nonlin-
ear terms in the Taylor series expansion of U+ at the
wall. Fig. 1 shows that this contribution is negligible
for y+ < 5, such that U+ = y+ is a good approxima-
tion. Beyond y+ = 5, as long as ∆2 + ∆4 is close to
y+ − U+, higher order terms (O(y+5)) remain negli-
gible. An interesting feature is that, the separate con-
tributions of ∆2 and ∆4 to y+ − U+ are dominant in
different regions: below y+ = δlim, the term of order
2, ∆2, is dominant, but in this region, y+−U+ is very
small (the linear approximation is accurate), such that
the contribution of ∆2 to U+ is below 0.3%; above
y+ = δlim, ∆4 is the dominant nonlinear term, and
gradually becomes significant beyond y+ = 5.

Two conclusions can be drawn from this analysis:

(i) Since it represents a minor part of U+ when
y+ < δlim and is dominated by ∆4 when y+ >
δlim, the term ∆2, which depends onReτ , can be
neglected everywhere.

(ii) Taking into account the term ∆4 extends the va-
lidity of the polynomial approximation of U+

without introducing a dependence in Reτ .



Consequently, the following blended law is proposed:

U+ = fuFw + (1− fu)Flog,

fu(y+) = exp

(
−Cuv

4
y+3

)
, (9)

where Fw(y+) = y+. The introduction of the term
∆4/y

+ in the exponential function yields the asymp-
totic behaviour of U+ at the wall

U+ = y+ − Cuv
4
y+4 +O(y+5), (10)

which is Eq. (8) in which the Reynolds number depen-
dent term, ∆2, is neglected.

The blending function being defined, one could be
tempted to use for Flog the standard log law. However,
Eq. (9) can be recast as

fu =
U+ − Flog
Fw − Flog

(11)

Since they cross at y+ = 11, using the linear law for
Fw and the standard log law for Flog requires the use
of a blending function fu singular at this location. This
problem can be circumvented by using

Flog(y
+) = du(y+)

[
1

κ
ln(y+) +B

]
,

du(y+) = 1− exp

[
−
(
y+

y0

)n]
(12)

where y0 = 14.5 and n = 2.25. The introduction of
the damping function du in front of the standard log
law gets rid of the intersection of Fw and Flog , thus
avoiding the singularity. Figure 2 compares the pro-
posed law with standard ones, as well as the blended
law proposed by Popovac and Hanjalić[6]. It is clearly
seen, in particular focusing on the velocity gradient,
that the present proposal, by accounting for higher or-
der terms in the Taylor series expansion of U+ at the
wall, significantly improves the reproduction of the
profiles in the buffer layer.

Reynolds Stresses uiuj
Instead of solving the Reynolds stress equations

in the near-wall cell and imposing a boundary con-
dition at the cell face adjacent to the wall, it is pro-
posed here to impose the components of the Reynolds
stress tensor uiuj in the first cell evaluated from an Al-
gebraic Stress Model derived from the EB-RSM (EB-
ASM [16]). When used in the whole domain, the EB-
ASM model solves equations for k, ε and α, and evalu-
ated the Reynolds stresses by locally solving a system
of algebraic equations.

This system is derived from Eq. (1), by introducing
the anisotropy tensor bij = uiuj/(2k)− δij/3 and by
using the weak equilibrium hypotheses,

Dbij
Dt

= 0, (13)

Dν
ij +DT

ij

Dν
kk +DT

kk

=
uiuj
ukuk

, (14)
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Figure 2: Comparison of the present law with that of Popo-
vac et al.[6] and Reichardt, at Reτ = 950 [14]

which yields an algebraic system of equations for the
anisotropy tensor

− 1

a4
b− a3

(
bS+ Sb− 2

3
{bS}I

)
+ a2 (Wb− bW)

− a5
(
bM+Mb− 2

3
{bM}I− 1

2
{bM}M

)
= a1S+

a5
2
M, (15)

where S and W are the mean strain and mean rotation
rate tensors, respectively. They are given by the veloc-
ity law described in (9) and illustrated in figure 2. M
is the deviatoric part of a ”wall normal tensor“ [16]

Mij = ninj −
1

3
δij (16)

where n is the wall normal vector. Coefficients ak are
functions of α, k, ε, P and the constants used in the



EB-RSM:

a1 =
2

3
− 1

2

(
C3 − C∗

3

√
II
)
α3

a2 = 1− 1

2
C5α

3

a3 = 1− 1

2
C4α

3

a4 = gτ

a5 =
5

τ
(1− α3)

g =

[(
1 +

C∗
1

2
α3

)
P

ε
+

(
13

3
− C1

2

)
α3 +

10

3

]−1

τ =
k

ε
(17)

The non linear term
√
II =

√
bklbkl involved in the

coefficient a1 is treated explicitly, i.e., evaluated at the
previous iteration. At each time step, the resolution
of this system at the first near wall node provides all
the components of the anisotropy tensor. Given the
anisotropy at the first near-wall cell, it is then possi-
ble, if appropriate boundary conditions are defined for
all the other turbulent variables involved in this sys-
tem (the turbulent kinetic energy k, the dissipation rate
ε, the production P and the parameter α), to obtain
the Reynolds stress, to be imposed in the resolution of
equation (1).

Dissipation ε
The same principle as for the velocity is used for

the dissipation rate. ε is fixed at the first near-wall cell
using a blending function, which blends the near wall
and fully turbulent standard behaviour as

ε = fε

[
2ν

k

y2

]
+ (1− fε)dε

[
u3
τ

κy

]
(18)

with dε and fε blending functions of y+ only, con-
structed as (9), where dε plays the same role as du in
the velocity law,

fε(y
+) = exp

(
−
(
y+

7

)3/2
)
,

dε(y
+) = 1− exp

(
−
(
y+

10.5

)3/2
)
. (19)

It is to be noted that this law is chosen in order to
closely fit the wall-resolved EB-RSM results rather
than DNS data, since the objective is to correctly re-
produce behaviour of the model in the buffer layer.

Parameter α
In order to identify a wall law for the elliptic blend-

ing parameter α, it is useful to remark that, for the case
of a constant length scale L, the analytical solution of
Eq. (5) is

α = 1− exp

(
−y

+

L

)
. (20)

Although L, modelled by Eq. (6), is not a constant,
using a linearly variable L in this equation, under the
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Figure 3: Comparison of the ε blended law with a full EB-
RSM resolution and DNS at Reτ = 950 [14]

form

α = 1− exp

(
− y+

16.5 + 0.04y+

)
, (21)

leads to an excellent approximation of α, as can be
seen in Fig. 4 that compares this analytical law with
the parameter α obtained from an a priori channel flow
analysis.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 0.1 1 10 100 1000 10000

α

y+

Reτ = 180
Reτ = 590
Reτ = 950

Reτ = 2000
Reτ = 4200

Analytical law
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Turbulent Kinetic Energy k
In order to compute the Reynolds stresses from

the anisotropy tensor via Eq. (15), it is necessary to
evaluate the turbulent energy k independently of the
Reynolds stresses. For this purpose, the eddy viscos-
ity hypothesis is introduced,

νt = fµk
2/ε, (22)

which yields an expression for turbulent production

P = fµ
k2

ε

(
dU

dy

)2

. (23)

Introducing expression (19) for ε in this equation
yields the local second order polynomial equation for



k

k2 −

 2νPfε

fµ
(
dU
dy

)2
y2

 k − [Pdε(1− fε)u3
τ

κy

]
= 0 (24)

In order for this equation to provide an approximation
for k, the damping function fµ and the kinetic energy
production P are required. Two analytical laws for
these quantities are proposed in the following sections.

Damping function fµ.
Since k behaves as y+2 in the vicinity of the wall,

fµ must behave as 1/y+ in order to ensure the cor-
rect behaviour in y+3 of uv. Therefore, the blending
function for fµ is introduced,

fµ = f1
Cw
y+

+ (1− f1)Cµ. (25)

An a priori analysis of channel flow DNS data, shown
in figure 5, suggests to the following set of equations
and constants :

f1 = exp

[
−
(

y+

39 + 0.2y+

)2
]
,

Cw = 0.016,

Cµ = 0.09, (26)

such a way that fµ reaches the standard value Cµ =
0.09 far from the wall.
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Figure 5: Comparison of the analytical law derived for fµ
with the a priori evaluation of fµ from DNS data.

Production P .
Since, production writes

P+ = −uv+ dU
+

dy+
, (27)

under the assumption that the total shear remains con-
stant from the wall up to the log layer,

dU+

dy+
− uv+ = 1, (28)

equation (27) yields

P+ =
dU+

dy+

(
dU+

dy+
− 1

)
. (29)

The law derived above for the velocity thus provides
the law for the production. Figure 6 shows very good
agreement of this law with the DNS data of Hoyas
and Jimenez [14], and a significant improvement com-
pared to previous proposals.
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Figure 6: Comparison with the DNS data of Hoyas and
Jimenez at Reτ = 950 [14] of the analytical law
derived for P+, using the velocity law (9)–(10)–
(12), and the laws from Popovac et al. [6] and Re-
ichardt [11].

Final law for k.
Using these laws for fµ and P , Eq. (24) can be

solved to obtain k. It can be seen in Fig. 7 that the pro-
file of k+ in the wall region is correctly reproduced,
and the standard asymptote k = 1/

√
Cµ is recovered

far from the wall. However, some small wiggles ap-
pearing in the blended law for U+ are amplified by
spatial derivation and are observed near the peak of
k. Although this weakness is of minor importance in
practice, future work will be devoted towards the im-
provement of this behaviour. It is worth emphasizing
that turbulence models available in the literature, and
in particular the EB-RSM, are not able to reproduce
the correct sensitivity to the Reynolds number of the
turbulent energy profile k+. Since the wall functions
developed herein are aimed at reproducing at best the
results given by the underlying turbulence model in
wall-resolved computations, such a dependence is not
considered.

4 Adaptive Numerical Wall Function
As an alternative to algebraic wall functions, and

following previous work of Craft et al. [3] (UMIST-
N wall functions), a numerical adaptive wall treatment
(NAWT) is proposed. Wherever the first calculation
node is located, the one dimensional form of the EB-
RSM is solved on a sub-mesh embedded in the first
wall control volume. Consistently with the previous
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algebraic strategy, the value of the variables are then
imposed in the first cell. This strategy is schematically
described in figure 8. One can notice that with a 1D

Boundarycondition for 
the subgrid interpolated
fromthe main grid

Main grid
nodes

Subgrid

Figure 8: Arrangement of the subgrid in the near wall cell.

assumption between the first calculation node and the
wall, we cannot obtain better results than the ones ob-
tained with this approach.

5 Results
Both the numerical (NAWF) and algebraic

(AAWF) approaches described above are tested in sev-
eral fully developed channel flows. Figures 9, 10 and
11 show the results for different locations of the first
near wall cell (y+ = 1, 5, 10, 30, 50) at Reτ = 590,
in comparison with the DNS data of Moser et al. [13].
For all meshes, the obtained profiles agree very well
with the reference data. The most notable difference
obtained in these computations is the presence of a
kink in the profiles of the variables, mostly when the
first point lies in the buffer layer. This is not due to the
wall functions themselves, but rather to the coarse dis-
cretization of the transport equations in the few coarse
cells adjacent to the first cell: this discretization er-
ror vanishes with refinement, i.e., when all the cells
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Figure 9: Prediction of U+ and uv+

but the first one are refined (not shown here). Fig-
ure 12 presents the velocity for three different turbu-
lent Reynolds number at three different locations for
the AAWF approach and confirms the quality of the
results.

The behaviour of the law in the buffer layer is par-
ticularly satisfactory. The exposed strategy can indeed
reproduce the bump of the dissipation rate and shows
very good prediction of the turbulent kinetic energy
and the mean velocity around y+ = 10. It can be
seen that both strategies show equivalent results in this
channel flow configuration. It is however expected
that, in non equilibrium configurations, the integration
over a subgrid (NAWF) will lead to better agreement
with experimental data [3], such that future work will
be devoted to the introduction of non-equilibrium ef-
fects in the analytical algebraic wall functions.

6 Conclusions
Adaptive wall functions for the EB-RSM, based on

either algebraic relations or a numerical 1D integra-
tion, are introduced. They are applicable whatever the
position of the first cell centre and show good agree-
ment with the wall-resolved EB-RSM results for all
the variables on channel flow configurations. Further
work is in progress to make these wall functions sen-
sitive to pressure gradient and streamwise acceleration
effects, in order to address more complex validation
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Figure 11: Prediction of u2,v2 and w2
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Figure 12: Velocity U+, compared with DNS of Moser et
al. [13] and Hoyas and Jimenez [14]
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