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Abstract

Modifications of a low-Reynolds number

Reynolds-stress model, based on the elliptic-

blending approach of Manceau & Hanjalić (2002),

are proposed. The main objective is to facilitate

the use of Reynolds-stress approach in an industrial

context. The new model is validated on canonical

cases, such as channels and pipes and on a number

of 3D attached and separated flows. Caveats of using

Reynolds-Stress model are also emphasized, using a

number of examples.

1 Introduction

In the past 40 years, RANS models, in particular

eddy-viscosity models (EVMs), have been the work-

horse in industry for computing turbulent flows, and

they will remain the method of choice in the major-

ity of cases in the foreseeable future. Transient meth-

ods, such as DES or hybrid RANS/LES, are still too

time-consuming (set-up/meshing, computation, post-

processing) to replace completely RANS models in

industry as yet, for a number of reasons. In many

cases, the level of accuracy provided by EVMs is suf-

ficient. There is also a cost issue, associated not only

with computational time, but also with the skills nec-

essary to perform proper transient simulation, and ex-

tract the relevant information. There are of course very

well known limitations to EVM, such as insensitivity

to flow rotation or streamline curvature, poor perfor-

mance in far-from-equilibrium conditions or for very

anisotropic flows, or for intrinsically unsteady flows.

Reynolds-stress models (RSM) seem to be the natural

alternative to EVMs. However, they have been found,

over the years, to be less reliable than EVMs when

dealing with complex flow configurations, thus pre-

venting their wider use in industry. The RSM proposed

by Manceau & Hanjalić (2002), and referred to as EB-

RSM in the following, is used as a basis to develop

a more robust and industry-friendly RSM. The model

is then tested on a number of canonical and complex

flow configurations for which experimental and/or nu-

merical data are publicly available.

Several modifications and additions to the origi-

nal model and the subsequent formulation (Manceau,

2003; Dehoux et al., 2012) are proposed to solve some

of the known limitations of the RSMs: lack of nu-

merical robustness, consistent performance and accu-

racy on non-perfect meshes. The goal is to provide a

framework for the computation of complex flow con-

figuration using RSMs. The first of the modifications

proposed here deals with the near-wall formulation of

the model, especially regarding the turbulent dissipa-

tion rate source term. The second important modifi-

cation to the model is the addition of a new all-y+

wall-treatment, based on that proposed for the elliptic-

blending EVM of Billard & Laurence (2012). This

modification is important in the context of industrial

applications as it extends the use of the model to ir-

regular meshes, and with near-wall resolution coarser

than y+ ≈ 1. Further improvements are also pre-

sented. One point often cited in the literature but

rarely addressed in the context of RSMs is the round-

jet/plane-jet anomaly. The same approach as in the

Standard k−ω model of Wilcox (2008) has been tested

on free and rotating impinging jets. Effects of initial

and boundary conditions is also discussed, as well as

the pitfalls and limitations of the model.

2 Model formulation

The model derivation and the rational for using the

elliptic-relaxation equation for a blending function can

be found in Manceau & Hanjalić (2002), and is thus

not repeated here. The model has gone through a num-

ber of small improvements over the years, and what

we refer to as the original model is the one given in

Dehoux et al. (2012). The transport equations for the



Reynolds-stresses uiuj are

Duiuj

Dt
= Pij + φ∗

ij − εij +Dt
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∂uiuj
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(1)

where Pij is the production tensor, φ∗

ij is the pressure-

strain tensor, εij is the dissipation-rate tensor and Dt
ij

is the turbulent diffusion tensor. In the RSM frame-

work, all terms but the production need to be mod-

elled.

The following definitions are also used throughout

the text
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where P is the turbulent kinetic energy production, aij
is the anisotropy tensor, ωm is the system rotation vec-

tor, Sij and Wij being the strain-rate and rotation-rate

tensor, respectively.

The EB-RSM is based on a blending of near-wall

and weakly inhomogeneous models for the pressure-

strain and dissipation

φ∗

ij − εij = (1−α3)(φw
ij − εwij) +α3(φh

ij − εhij) (3)

where the blending parameter α is solution of the el-

liptic equation

α− L2∇2α = 1 (4)

with the length-scale L defined as
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(
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ε
, Cη

ν3/4

ε1/4

)

(5)

An important property of this model is that is does not

require the computation of an expensive wall distance.

Indeed, the wall-normal direction can be computed di-

rectly from the elliptic-blending parameter, using

nk =
∂α/∂xk
√

∂α
∂xl

∂α
∂xl

(6)

In the outer region, the quasi-linear version of the

SSG model Speziale et al. (1991) is used for the

pressure-strain
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and in the near-wall layer
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For the dissipation rate tensor, we use

εwij =
uiuj

k
ε; εhij =

2

3
εδij (9)

where ε is solution of

Dε
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=
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Here, we revert back to the original formulation pro-

posed by Manceau & Hanjalić (2002). It was recently

shown that the additional term E is instrumental in the

good performance of the B-EVM in the near-wall re-

gion, although the original formulation of this term is

slightly modified, following the developments of the

B-EVM (Billard & Laurence, 2012), and restricted to

the near-wall region

E = A1νukulnknl
k

ε

(

1− α3
)

(

∂||Sijni||nk

∂xk

)2

(11)

The constant A1 is calibrated by reference to channel

flow for a large range of Reynolds numbers. The tur-

bulent time-scale τ is simply defined as

τ = max

(

k

ε
, Ct

√

ν

ε

)

; (12)

Cε1 Cε2 Cs σk σε A1 Ct

1.44 1.83 0.21 1.0 1.15 0.085 6

Cl Cη C1 C∗

1 C3 C∗

3 C4 C5

0.133 80 1.7 0.9 0.8 0.65 0.625 0.2

Table 1: Model constants for the EB-RSM.

For the computation of the turbulent diffusion

terms in Eqs. (1) and (10) (Dt
ij and Dt

ε), unlike in the

original model, which was based on the Generalized

Gradient Diffusion Hypothesis, we use a more robust

Simple Gradient Diffusion Hypothesis where the tur-

bulent eddy-viscosity νt is defined as

νt =
[

(1− α3)uiujninj + α3k
]

Cµτ (13)

The first part of the RHS yields the correct near-wall

asymptotic behaviour, similarly to the B-EVM formu-

lation. The second part is introduced to avoid un-

wanted oscillations away from walls, in regions where

the gradient of α is not really well-defined. The con-

stant Cµ is equal to 0.07.

For all the cases presented in the paper, the RSM

results are compared with those obtained using two of



the most popular EVMs: the realizable k − ε model

(Shih et al., 1995), combined in the present case with

a two-layer wall-function, and the SST k − ω model

(Menter, 1994, including the most recent improve-

ments by the same author). Those two models are

considered to represent the best compromise in terms

of robustness and accuracy, and they are thus the mod-

els of choice for many industrial codes. An additional

correction was added to the two eddy-viscosity mod-

els, namely a curvature correction (CC). The aim is

to make the models more sensitive to curvature and

rotational effects. For the SST k − ω model, the mod-

ification proposed by Smirnov & Menter (2009) was

used. For the realizable k − ε, the model was adapted

from the model of Arolla & Durbin (2013). For the

former, the production term in both k and ω equation

are multiplied by a function frot, defined as

frot = (1+Cr1)
2r∗

1 + r∗
[

1− Cr3 tan
−1(Cr2 r̃

]

−Cr1

(14)

where Cr1 , Cr2 and Cr3 are constants, and r∗ = S/Ω
is the strain-to-vorticity-rate ratio, defined in the ab-

solute frame of reference. r̃ is function of the La-

grangian derivative of the strain-rate tensor DSij/Dt.
For the second model (Arolla & Durbin, 2013), the

eddy-viscosity coefficient Cµ of the realizable k − ε
model is directly modified to account for the same ef-

fect

C∗

µ =
Cµ

α1(|η3| − η3) +
√
1− α2η3

(15)

where η3 = η1 − η2, η1 = τ2SijSij , η2 =
τ2Ωmod

ij Ωmod
ij . Ωmod

ij is the modified rotation tensor,

also function of the Lagrangian strain-rate derivative.

Both models have been shown to improve significantly

the results for the cases presented below, and are thus

included here for a fairer comparison with the RSM.

Universal wall-treatment

For the near-wall treatment, the same strategy as

in Billard & Laurence (2012) for the elliptic-blending

EVM is adopted. The treatment of the dissipation

equation is the same as that used in other low-Re

EVM, and is thus not repeated here (Billard & Lau-

rence, 2012). The only term requiring a specific

treatment is the production of the Reynolds stresses

Pij . In the wall-oriented co-ordinate system (t, n),
and under local equilibrium conditions, the ratio of

the wall-normal component to the shear stress is

equal to (Hadzić, 2001) u2
n/utun = −0.413/0.314,

which gives a shear-stress production equal to Ptn =
−1.315P . The turbulent kinetic energy production P
is taken from Billard & Laurence (2012)

P = 0.95
ν+t

(1 + ν+t )2
(16)

with

ν+t = κy+
[

1− exp

(−y+

26

)]2

(17)

No other modification of the Reynolds-stress source

terms was found to be necessary.
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Figure 1: Evolution of wall friction velocity uτ as a function

of the Reynolds number for various mesh resolu-

tions. Symbols are shown below the correspond-

ing meshes.

Fig. 1 shows the evolution of the wall-shear stress

uτ as a function of the Reynolds number in channel

flows for various mesh resolution (from y+ ≈ 1 with

standard growth-rate to constant meshes with large

first cell, and to variable growth rate, situation that

is often found in practical applications). Results are

compared with the DNS data of Hoyas & Jimenéz



(2008), for Reynolds number, based on the friction

velocity, ranging from 180 to 2000. Both EVMs un-

derestimate the wall-shear stress for the finest reso-

lution (Mesh 1, •), while the EB-RSM is in good

agreement with the DNS data across the range of

Reynolds numbers computed. For the other mesh res-

olutions (Meshes 2-5), there is a small spreading in

the computed uτ , and this spreading seems to be more

Reynolds-number dependent with the EVMs that with

the EB-RSM. The relatively small spreading gives us

confidence that the EB-RSM, associated with the new

wall-function, will not be too sensitive to the mesh res-

olution in the near-wall region.

Round-jet/plane-jet anomaly and proposed correc-

tion

Following Pope (1978), the coefficient Cε2 in the

dissipation equation (Eq. 10) can be replaced by C∗

ε2 ,

defined as

C∗

ε2 = Cε2 − α3Cε3χ (18)

where χ is an invariant considered to be a measure of

the vortex stretching

χ = τ3WikWkjSij (19)

However, this substitution was found to be rather un-

stable, as χ is allowed to vary from very low to very

high values. A better method is to use a formulation

akin to that proposed for the Standard k−ω model. In

that case, the coefficient C∗

ε2 is defined as

C∗

ε2 = Cε2

[

1− α3

(

1− 1 + 90|χ|
1 + 100|χ|

)]

(20)

The coefficients in Eq. (20) were set to give the best

results for a simple case of round and free jets (Fig. 2).
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Figure 2: Streamwise evolution of a round jet and plane jet

half-width, without and with correction (Eq. 20).

The jet-spreading rates are given in the plots.

Initial condition

One of main issues faced when using many RANS

models is the slow or non-convergence in the initial

stage of the computation. This is particularly restric-

tive for low-Re model, and it has been attributed to a

bifurcation property inherited from the low-Reynolds

damping formulation. Rumsey et al. (2006) showed

that alternative converged solutions could be obtained,

depending on the initial and inflow conditions. To

overcome the problem, a new method for generating

initial conditions (Manceau, 2014) is used, which is

user-independent, the only input to the method being a

reference velocity Uref that is usually the bulk velocity

and can be computed from the inlet condition.

The method is divided into two steps. A first iter-

ation is computed in order to obtain a sensible eval-

uation of the elliptic blending parameter α in the do-

main, as well as a mean velocity field that satisfies the

main global constraint due to the geometry (flow rate,

flow direction, boundary conditions). In order to do so,

the turbulent variables are initialized so that the length

scale L involved in the equation for α (Eq. 4) has the

correct order of magnitude. This can be done by defin-

ing a friction velocity uτ = 0.05 Uref , from which k
and ε can be calculated, using

k =
u2
τ

√

Cµ

, ε =
u4
τ

κνd+ref
(21)

with κ = 0.41, Cµ = 0.09 and d+ref = 17.

The second step of the method consists in re-

initializing the flow field using the results α(1) of the

first iteration for α and U (1) for U to evaluate the dis-

tance to the wall and to provide the mean flow direc-

tion, respectively. α is bounded as α = min(α(1), 1−
10−6) (in effect, saturating the distance to the wall

at y+ = 235), and a value of the normalized wall-

distance d+ is given by

d+ = −d+ref ln(1− α) (22)

The direction of the velocity field is preserved, but its

amplitude is modified in order to impose a boundary

layer profile

Ui = min

(

1,
U+(d+)

||Upot||

)

Upot
i (23)

where U+(d+) is given by Reichardt’s law, and U
(1)
i

is the results of an inviscid soluion. The turbulent vari-

ables are then re-initialized using

ε =
1

max
(

d+ref , d
+
)

u4
τ

κν

and

k =
νε

2u2
τ

d+
2
(1− α)1/3 +

u2
τ

√

Cµ

α1/3.

The evolution of the normalized residuals for the

simulation of a separated flow over a swept wing at



Figure 3: Convergence rate without (top) and with (bottom)

new turbulence initialization, for the flow over a

swept wing at high angle of attack (14◦).

14◦ incidence is shown on Fig. 3. For both computa-

tions, the initial velocity field was first calculated us-

ing the inviscid solution, and for the second case, the

above method was applied. For the same degree of

convergence, the computational time was halved.

3 Results

For industrial practices, it is useful to distinguish

between internal flows (e.g. pipe, channels, ...) and

external flows (e.g. wings, cylinders, etc...). Elliptic-

based models are known to perform better in the

former category, provided that the mesh is regular

enough, and the near-wall flow is well resolved. For

external aerodynamics, flows are most of the time sep-

arated, the meshes are usually too coarse to properly

resolve the near-wall physics, and this is why models

such as the Spalart-Allmaras model or the Realizable

k−ε model are used, combined with a two-layer wall-

treatment, effectively reducing the model to 1 trans-

port equation in the viscous and buffer layers. For

this reason, we are presenting results for both classes

of flows, but focusing more on the second category,

which is more challenging for the elliptic-based mod-

els.

Periodic curved pipe

A challenging flow has been recently computed by
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Figure 4: Evolution of averaged wall-shear stress in curved

pipe flow (Noorani et al, 2013) as a function of the

curvature parameter κ.

Noorani et al (2013), in a curved periodic pipe flow

(Fig. 4), for three values (0.01, 0.1 and 0.3) of the

curvature parameters κ = Ra/Rc, where Ra is the ra-

dius of the pipe cross-section and Rc is the radius of

curvature of the pipe centerline. The Reynolds num-

ber, based on the pipe diameter and bulk velocity, is

equal to 11,700. At this Reynolds number, the flow

is expected to be fully turbulent for all but the highest

value of κ. For all cases, the mass-flow rate across the

periodic boundary is imposed, and the first point away

from the wall is located around y+ ≈ 1.

DNS EB-RSM

Real. k − ε SST k − ω

Figure 5: Contours of the in-plane (left half) and streamwise

(right half) velocity, for the three different mod-

els compared to the DNS results of Noorani et al

(2013), for κ = 0.1.

The spatially averaged wall-shear stresses τw are

compared in Fig. 4. For κ = 0.01, the skin friction is



slightly overestimated by the two EVMs, and very sat-

isfactory with the RSM, which is very similar to what

is observed in channel flows. For κ = 0.1 and above,

both EVMs tends to severely overestimate the wall-

shear stress, while the EB-RSM remains in the same

range as the DNS values. Note that for the highest

value, the flow was found in DNS to intermittently re-

laminarize, lowering the space-time average value of

τw, a feature impossible to capture with steady-state

RANS.

Contours of the streamwise and in-plane velocity

components are shown in Fig. 5. The EB-RSM is the

only model able to capture accurately the secondary

recirculation near the bottom axis of the flow, and the

strong velocity asymmetry between the outside and in-

side part of the pipe.

Wing-tip vortex for NACA0012 at 10◦
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Figure 6: Flow configuration and streamwise velocity on the

vortex centerline, of the NACA 0012 at 10◦ inci-

dence (Chow et al, 1997).

The results of the computation of a trailing-edge

vortex downstream of a NACA 0012 at 10◦ incidence

(Chow et al, 1997) are shown on Figs. 6-7. The

Reynolds number, based on the chord length C and the

free-stream velocity is 4.6×106. A number of polyhe-

dral meshes, with cell counts ranging from 250,000

to 7.7 million, were used for this study, but only re-

sults obtained with the finest mesh are shown here. A

good measure of the performance of the model is the

streamwise evolution of the wing-tip vortex centerline

velocity (Fig. 6). The EB-RSM is the only model able

to maintain the solid body-like rotation of the vortex

up to the domain exit. The centerline velocity for both

EVMs drops very quickly downstream of the trailing

edge, and this drop was shown to be even faster with-

out the CC. The results of the SST k−ω are consistent

with those reported in Smirnov & Menter (2009), and

illustrates the limit of such correction, compared to us-

ing a full RSM.
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Figure 7: Velocity profiles on a line passing through the cen-

ter of the vortex, at 3 different streamwise posi-

tions. Comparisons with the experiment of Chow

et al (1997).

The axial velocity, at three different locations

downstream of the trailing edge (located at x/C = 0),

are shown in Fig. 7. The early vortex breakdown is

also associated, in the case of EVMs, with a wider,

more diffuse, velocity profile. For all three models,

the results are nevertheless very much mesh depen-

dent, and a minimum of 30 cells across the vortex core

diameter (equal to twice the distance between the axial

velocity peak and its minimum value) was necessary to

avoid premature vortex breakdown.

Coanda Airfoil

The flow around a two-dimensional circulation air-

foil was computed by Rumsey & Nishino (2011), us-

ing LES. The configuration (shown in Fig. 8, top) con-

sists of a thick airfoil, with a small Coanda jet blowing

on the upper part of the trailing edge. The jet height

is h/C = 0.0023, and the radius of the Coanda sur-

face is r/C = 0.09463. The Reynolds number based

on the chord length and the free-stream velocity is

equal to 490,000. Two different blowing ratio are re-



ported in Rumsey & Nishino (2011), but only the re-

sults obtained with the lowest ratio (equal to 0.1255)

are given here. The domain was meshed using approx-

imately 60,000 polyhedral cells, with 12 prism-layer in

the near-wall region, where the resolution is such that

y+ ≈ 1 over the surface of the airfoil. The plenum

was also included in the computational domain.

Fig. 8 shows the velocity contours and streamlines

around the Coanda section of the flow, and in the recir-

culation region. At first, the EB-RSM is the best at pre-

dicting the length and shape of the recirculation flow.

The worst results are obtained with the SST model,

with too long a recirculation bubble, consistent with

results of Rumsey & Nishino (2011).

Model CL θsep

LES 1.36 67◦

EB-RSM 1.88 72 ◦

SST k − ω 1.27 52◦

Real. k − ε 1.61 70◦

Table 2: Lift coefficient and angle of separation for the

Coanda airfoil.

The performance of the model is quantified in Ta-

ble 2 by comparing the lift coefficient and the jet sep-

aration angles (θsep). Surprisingly, CL is significantly

over-estimated with the EB-RSM, although the sepa-

ration is close to the LES results. The origin of the

discrepancy between the lift coefficients can be more

clearly seen when comparing the evolution of the pres-

sure coefficient around the bluff body in Fig. 9. Both

the EB-RSM and the Realizable k − ε (with curvature

correction) tends to over-predict Cp on both sides. The

large discrepancy around the leading edge on the suc-

tion side is linked to a very low turbulence activity in

this region. This is similar to a relaminarization of the

flow field due to combined effects of low-Re damping,

time-scale limiter and favorable pressure gradient. The

boundary layer is thus thinner when interacting with

the Coanda jet, partly explaining the small difference

in the separation point.

4 Conclusions

Several modifications of the EB-RSM of Manceau

& Hanjalić (2002) have been proposed, in order to

promote numerical robustness, implemented in a com-

mercial code (STAR-CCM+) and tested on a number

of canonical and complex flow configurations. The

new model was compared with more established, sim-

pler, two-equations eddy-viscosity based models.

Overall, the model outperforms the two EVMs, on

all internal cases tested, and the results were obtained

with comparable convergence rates, albeit at a slightly

higher cost. For external aerodynamics, the results

have been found to be more mixed, in line with pre-

vious studies. The model is more sensitive to the ini-

LES

EB-RSM

Real. k − ε

SST k − ω

Figure 8: Velocity contours downstream of coanda airfoil at

low injection Mach number (Mj = 0.39) (Rum-

sey and Nishino, 2001).

tial conditions, thus requiring the type of methodology

developed by Manceau (2014), but also to the near-

wall meshing, and to the flow resolution far away from

walls. One of the main problem with the model is un-

wanted relaminarization, especially around bluff bod-

ies. This was illustrated by Coanda airfoil (Rumsey

and Nishino, 2011). For all cases, the mesh restriction

was also slightly higher than for standard EVM, and
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Figure 9: Profiles of the pressure coefficients around the

coanda airfoil (Rumsey & Nishino, 2011).

the new initialization, introduced in the first section,

was used for every computation, to reduce the compu-

tational cost, and avoid unwanted oscillations.
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