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GENERALIZED BARYCENTRIC COORDINATES AND JENSEN

TYPE INEQUALITIES ON CONVEX POLYTOPES

ALLAL GUESSAB

Abstract. In this paper we obtain some direct and converse new multidimen-

sional Jensen’s type inequalities on convex polytopes. Among the inequalities
presented, we offer, as a particular case of our general results, a direct and

converse multivariate extension of Mercer inequality. The main results are

obtained with the aid of the generalized barycentric coordinates. For deriving

such inequalities, we will also establish, analyze, and discuss links between

barycentric codinates and certain class of partitions of unity. This method

also allows us to derive continuous versions of various discrete inequalities
established in our recent paper [7].

1. Introduction

One of the most popular results, establishing effective liaison between convexity
and probability, is the so-called Jensen’s inequality for the expectation of a convex
real-valued function [23, p. 288]. It can be stated in the following way: Let I ⊆ R
be an interval, and let f : I → R be a continuous convex function on I. Let
(X,A, μ) be a probability space, and let g : X → I be a μ-integrable function over
X. Then Eμ [g] ∈ I, Eμ [f(g)] exists, and it holds that

(1.1) f(Eμ [g]) ≤ Eμ [f(g)] ,

where Eμ denotes (mathematical) expectation with respect to the probability mea-
sure μ on X.
This inequality has been refined, extended and applied in many areas such as prob-
ability and statistics (see, e g, [5, 15]). Its applications therein include the EM
algorithm, Bayesian estimation and Bayesian inference to name a few, see, e g [3].
Among many extensions about Jensen’s inequality the following are fundamental.
Throughout this paper, X and L will be reserved exclusively to denote, respec-
tively, a (nonempty) set and a subspace of the vector space of real-valued functions
defined on X, such that

• L contains the constant functions.

We shall be concerned with a linear functional A which is defined on L, and is posi-
tive in the sense that it takes nonnegative values when applied to each nonnegative
function in the set L. Furthermore, we will also assume that

• A is normalized in the sense that A[1] = 1.
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In the context of positive linear functionals the simplest generalization of Jensen’s
inequality (1.1) may be formulated as follows: Let f : I ⊆ R → R be a continuous
convex function on an interval I. Then for all g ∈ L with f(g) ∈ L we have that
A[g] ∈ I and

(1.2) f (A[g]) ≤ A[f(g)].

The above inequality (1.1) was later generalized by McShane, see [22], as follows:
Let f : Ω ⊆ R

d → R be a continuous convex function on the polytope Ω. Let
gi ∈ L, i = 1, . . . , d, such that g(z) := (g1(z), . . . , gd(z)) ∈ Ω, for all z ∈ X, and
f(g) ∈ L. Let us denote by A[g] := (A[g1], . . . , A[gd]). Then A[g] is in Ω, f(A[g])
is defined and

(1.3) f (A[g]) ≤ A[f(g)].

Since Jensen’s inequality is of great interest, it seems worthwhile to extend it to
a very general setting to cover a wide variety of applications.
One of our basic aims here is to derive some new direct and converse multidimen-
sional Jensen’s type inequalities of the form (1.3). All the inequalities obtained
here may be seen as continuous analogue versions of some discrete inequalities es-
tablished in our recent paper [7], and hence the reader is referred to [7] for a more
general discussion of these issues. The extensions are obtained in a natural way by
using the generalized barycentric coordinates, which turn out to be appropriate to
the more general setting of positive linear functionals. Another basic aim here is to
obtain some fundamental properties of partitions of unity on (convex) polytopes.
As we shall see, such results offer a rich insight into the structure of partitions
of unity that are not barycentric systems. Among the inequalities presented, we
derive, as an application of our results, a direct and converse multivariate exten-
sion of Mercer inequality [21, Theorem 1.2]. Recently, there has been considerable
interest to look for refined inequalities of Mercer-type. In the one-dimensional case
this inequality was generalized in many directions, for more details, we refer the
interested reader to [1, 6, 18, 2, 19] and the references therein.
More concretely, the contributions and structure of the paper are as follows. In
Section 2, we establish the main properties of partition of unity and barycentric
coordinates, along with additional necessary background and notation. We also
give a link between the two systems. In Section 3, after some pertinent results
about the convexity preserving property and the convex hull property of a map, we
apply the obtained results to establish direct and converse new multidimensional
Jensen’s type inequalities.

The following notations and conventions are used throughout the sequel. All
linear spaces considered are understood to be real. The setting for this paper is
d-dimensional Euclidean space Rd, (d ≥ 1). By x, y, . . . , we denote elements of Rd.
Throughout this paper, Ω will always denote a convex polytope with non-empty
interior (that is, the convex hull of (n+ 1), ( n ≥ d ≥ 1), vertices {v0,v1, . . . ,vn}
in R

d). The vector e =
∑n

i=0 vi denotes the characteristic vector of the polytope
Ω.
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2. Partition of unity and barycentric coordinates

In this section, we establish the main structures of partitions of unity and
barycentric coordinates. They will be used later in the section for the study of
a tautological map that will play an important role in this paper. Particular atten-
tion is paid to the question of a link between these two systems.
Since perhaps not every reader of this paper is familiar with these coordinates, we
wish to give a brief overview of the basic elements of barycentric coordinates in d
dimensions, see, e. g., [17, pp. 132-135] for more details.
Suppose that n is a positive integer and Ω ⊂ R

d be a polytope with vertices
V = {v0,v1, . . . ,vn} . A partirion of unity on Ω is a family {pi, i = 0, . . . , n} of
continuous functions from Ω into [0, 1] such that at each x ∈ Ω, they sum to the
constant function one; that is, for all x ∈ Ω

(2.1)
n∑

i=0

pi(x) = 1.

The functions {pi, i = 0, . . . , n} are called barycentric coordinates with respect to
Ω or its set of vertices V , if they form a partition of unity and allow to write any
point x ∈ Ω as an affine combination of the vertices,

(2.2) x =
n∑

i=0

pi(x)vi.

This last property is also sometimes referred to as linear precision since the coor-
dinate functions can reproduce the linear function x. The barycentric coordinates
defined in this way satisfy nonnegativity, continuity, partition of unity and since
vi, i = 0, . . . , n, are extreme points of Ω, by (2.2) we have the Lagrange property

(2.3) pi(vj) = δij ,

where δij is Kronecker’s delta. Due to the properties (2.1) and (2.2), barycentric
coordinates may be used to decide if a point lies inside a polytoope, and to inter-
polate a function: indeed, it is clear from equations (2.2) that every point in the
polytope is a convex combination of its vertices. In addition, the Lagrange property
immediately implies vertex interpolation: the interpolation operator

(2.4) S[f ](x) =
n∑

i=0

pi(x)fi

interpolates the data fi at the set of vertices V , and properties (2.1) and (2.2)
further guarantee the reproduction of affine functions by the operator S. Obviously,
the interpolant S inherits the continuity properties of the functions pi.
Let p = {pi, i = 0, . . . , n} be a partition of unity on Ω defined as before. We say
that p has a linear precision if for every affine function f defined on P,

(2.5) f(x) =
n∑

i=0

pi(x)f(vi).

We observe that any barycentric coordinates have the linear precision property.
Next we define a function that can be used to characterize such coordinates. The
tautological map associated to the partition unity p is the transformation Tp : Ω →
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Ω defined by

(2.6) Tp(x) =

n∑
i=0

pi(x)vi.

This function will play a crucial role throughout the paper. The following propo-
sition, whose easy proof is omitted, give us a precise connection between the two
notions of partition of unity and barycentric coordinates.

Proposition 2.1. A partition of unity forms a barycentric coordinate system if
and only if its tautological map is the identity map of the domain polytope Ω.

For a partition of unity {pi, i = 0, . . . , n}, we simply write p and say that it is a
pu-system. The collection of all pu-systems will be denoted by P n+1. Analogously,
for a set of functions {bi, i = 0, . . . , n} that defines a barycentric coordinates system
on Ω, we simply write b and say that it is a bc-system. The collection of all bc-
systems will be denoted by Bn+1.
If Ω is a nondegenerate simplex, then n = d, (e.g., a triangle in 2D or a tetrahedron
in 3D), with vertices v0, . . . ,vd ∈ R

d that are affinely independent, then each
point x of their convex hull Ω has a (unique) representation, that is there exist

unique nonnegative real numbers {λi(x), i = 0, . . . , d} so that
∑d

i=0 λi(x) = 1,

and x =
∑d

i=0 λi(x)xi. The barycentric coordinates λ0, . . . , λd are nonnegative
affine functions on Ω, see [4, p. 288]. Note that a d-simplex is a special polytope
given as the convex hull of d + 1 vertices in d dimensions, each pair of which is
joined by an edge.
Barycentric coordinates also exist for more general types of polytopes, see [16,
Theorem 2]. The next lemma is due essentially to Kalman [16]. Our statements
are stronger than the ones provided in [16], but the proof proceeds along the same
lines as the proof of theorem 2 in [16], so we omit it.

Lemma 2.2. Let Ω be a polytope in R
d, {v0,v1, . . . ,vn} its vertices and x∗ a

given point in Ω with x∗ =
∑n

i=0 λ
∗
i vi, 1 =

∑n
i=0 λ

∗
i , λ

∗
i ≥ 0. Then there are real

continuous functions on Ω, {λ0, . . . , λn}, such that

(2.7) x =
n∑

i=0

λi(x)vi,
n∑

i=0

λi(x) = 1, and λi(x) ≥ 0

for each x ∈ Ω and λi(x
∗) = λ∗

i .

The set of all affine functions Ω → R
d is a vector space denoted A(Ω). We use

PAff
n+1 to denote the set of pu-systems whose tautological maps are in A(Ω). In

the sequel we will need the following fact: for any p ∈ PAff
n+1, there exist a matrix

M ∈ R
d,d and a vector a ∈ R

d, such that the associated tautological map Tp can
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be expressed as follows:

Tp(x) = Mx+ a

= M

(
n∑

i=0

bi(x)vi

)
+ a

=

n∑
i=0

bi(x)M(vi) + a

=

n∑
i=0

bi(x)(M(vi) + a)

=

n∑
i=0

bi(x)Tp(vi), (∀x ∈ Ω),

where {b0, b1, . . . , bn} is any bc-system. Therefore, for any pu-system p in PAff
n+1,

we have the following representation formula for its tautological map:

Tp(x) =
∑n

i=0 bi(x)Tp(vi), (∀x ∈ Ω).(2.8)

Note that the above representation formula is geometric in the sense that it does
not depend on the choice of bc-coordinates, and in particular implies that an affine
function is uniquely determined by its values at the vertices of the polytope.
In order to make a connection between pu- and bc-systems, we are concerned with
the following problem:

• What are the necessary and sufficient conditions for p ∈ PAff
n+1 to be a

bc-system?

To give more complete results than those established in Proposition 2.1, the next
theorem gives several characterizations of elements of P n+1 which have tautological
maps in A(Ω). (Later on we will develop a stronger form of this Theorem.)

Theorem 2.3. Let p be a pu-system belonging to PAff
n+1. Then, the following

assertions are equivalent:

(i) p has the Lagrange property.
(ii) Tp has the vertices preserving property: that is Tp(vi) = vi, i = 0, . . . , n.
(iii) The tautological map of p is the identity map.
(iv) p is a bc-system.

Proof. Let p = {p0, p1, . . . , pn} be any pu-system which belongs to PAff
n+1. As-

sume that p has the Lagrange property, then since pi(vj) = δij and Tp(x) :=∑n
i=0 pi(x)vi, for all x ∈ Ω, we get by substituting vj for x

Tp(vj) = vj , j = 0, . . . , n,

this shows that p has the vertices preserving property.
Let {λ0, λ1, . . . , λn} be the bc-system defined by Lemma 2.2. If p has the vertices
preserving property, then by (2.8) we will have

Tp =

n∑
i=0

λivi.

Combining this with the fact that {λ0, λ1, . . . , λn} is a bc-system, we then deduce
that the tautological map Tp is the identity map. The implication (iii) ⇒ (iv) is
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trivial, due to the fact that p is already a pu−system. Finally, since any bc-system
has the Lagrange property we have immediately the implication (iv) ⇒ (i). �

Let us now discuss a more general subclass of the set of pu-systems. Of course,
Lemma 2.2 shows thatBn+1 is a nonempty set. Property (2.7) is often split into two
equivalent properties: that the barycentric coordinates form a partition of unity,
for each x ∈ Ω,

(2.9)

n∑
i=0

λi(x) = 1, and λi(x) ≥ 0,

and that any x ∈ Ω, x can be written as an affine combination of the polytopes
vertices,

(2.10) x =

n∑
i=0

λi(x)vi.

The function value λi(x) can be viewed as the ‘probability of influence of a vertex
vi at x,’ and the linear precision conditions (2.10) are the under-determined con-
straints. Such a representation is generally non-unique, but this is inconsequential
for our purposes. It can also happen that Bn+1 may be reduced to a singleton set:
For example, this is the case when the polytope is a simplex. Moreover, since every
bc-system is a pu-system and has the identity function as tautological map, then
Bn+1 ⊆ PAff

n+1 ⊆ P n+1. The next two Lemmas, which are central to our analysis,

show that these inclusions are strict and the set PAff
n+1 contains a large class of

pu-systems.

Lemma 2.4. Let Ω be a polytope in R
d. Then for any fixed positive real numbers

α, β such that β ≤ α and any bc-system {b0, b1, . . . , bn} the functions defined by

(2.11) pα,βi =
α− βbi

(n+ 1)α− β
, i = 0, . . . , n,

form a partition of unity on Ω.

Proof. Since, any bc-system froms a partition of unity, it is easy to check that under

the condition β ≤ α, the system
{
pα,β0 , . . . , pα,βn

}
is a set of continuous functions,

from Ω to the unit interval [0, 1] . �

Note that for any 0 < α ≤ β, the partition of unity defined by Lemma 2.4
does not form a bc-system, since 1

n+1

∑n
i=0 vi is the only point of Ω such that∑n

i=0 p
α,β
i (x)vi = x.

Another simple but useful fact is the tautological map associated to pu-system
pα,β , defined by (2.11), can be easily expressed in terms of an affine function. For
ease of notation, for any real numbers α, β such that 0 < β ≤ α, we write p := pα,β

the pu-system defined in Lemma 2.4. More precisely:

Lemma 2.5. For any real numbers α, β such that 0 < β ≤ α, the tautological map

associated to p, Tα,β
p : Ω → Tα,β

p (Ω) is a bijection and it can be written in the
alternative form as:

(2.12) Tα,β
p (x) =

αe− βx

(n+ 1)α− β
,
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for each x ∈ Ω.

Proof. To prove that Tα,β
p is injective, assume that Tα,β

p (x) = Tα,β
p (y), for two

elements x and y of Ω. Then, a computation based on (2.11) shows that this is
equivalent to Tb(x) = Tb(y), where b is the bc-system used to define the partition
of unity p. But, by Proposition 2.1 the tautological map of the bc-system b is the
identity map of Ω, therefore x = y.
To establish identity (2.12), we use the fact that if b is a bc-system, then equations
(2.1) and (2.2) are satisfied for any x ∈ Ω. Indeed, by multiplying both sides of
(2.11) by vi, and next summing over all i, it follows that, for any x ∈ Ω, the

tautological map Tα,β
p may also be written down exactly as in (2.12). �

For fixed positive real numbers β ≤ α, denote by Pα,β
n+1 the class of pu-systems p∗

that has as tautological map the affine function Tα,β
p∗ (x) = αe−βx

(n+1)α−β , for any x ∈ Ω.

We obviously have Pα,β
n+1 ⊆ PAff

n+1 and the set Pα,β
n+1 contains all pu-systems defined

by (2.11). Write PLP
n+1 the set of pu-systems that satisfy the Lagrange property

(2.3). Since every bc-system satsisfy the Lagrange property we have Bn+1 ⊆ PLP
n+1.

Thus, we always have the inclusions

(2.13) Bn+1 ⊆ PLP
n+1 ⊆ Pn+1.

We already know by Proposition 2.1 that every element in Bn+1 is not contained

in Pα,β
n+1. The next result gives a connection between the two sets PLP

n+1 and Pα,β
n+1.

Proposition 2.6. Every element in PLP
n+1 is not contained in Pα,β

n+1.

Proof. Let p be a pu-system and vi be any vertex of Ω. If p satisfies the Lagrange

property then the tautological map Tp has vi as fixed point. If p belongs to Pα,β
n+1

it would contradict the fact that e
n+1 is the unique fixed point of Tp. Hence every

element of PLP
n+1 cannot belong to Pα,β

n+1. �

Equation (2.12) in Lemma 2.5 says that, instead of linear precision given by (2.2),
the pu-system pα,β satisfy identity (2.12). Thus, by Proposition 2.1, the associated

tautological map Tα,β
p connot be the identity function. Let us note here that the

alternative form given by equation (2.12) is independent of the bc-system used to
define pα,β . Since, for fixed α and β, using transformation (2.11), any bc-system

generates the same tautological map Tα,β
p . Lemma 2.5 also says that Tα,β

p maps Ω

into a subset of itself, and it has the convex hull property, that is the image Tα,β
p (Ω)

lies in the convex hull of the vertices of the polytope Ω.
Here and in the sequel, the symbol cg(C) denotes the center of gravity of a set
C ⊂ R

d, which is defined as

cg(C) :=

∫
C
x dx∫

C
dx

,

assuming C is bounded and has nonempty interior. The vertex centroid of a poly-
tope C ⊂ R

d with vertices {c0, c1, . . . , cn} is defined as the average of the vertices
in C:

vc(C) =
1

n+ 1

n∑
i=0

ci.
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We recall that cg(C) and vc(C) are always located inside C, and, in general, they
do not necessarily coincide. Equipped with the above results, we now show that

the function Tα,β
p also enjoys a number of additional, interesting properties that we

elaborate on below.

Theorem 2.7. Let Ω be a polytope in R
d and {v0,v1, . . . ,vn} its vertices. Let p be

a pu-system defined as in the statement of Lemma 2.4. Then for any fixed positive

real numbers β ≤ α, the associated tautological map Tα,β
p satisfies the following

properties:

(i) It maps vertices to vertices and preserves any barycentric coordinates.
(ii) It sends Ω to a polytope with vertices

Tα,β
p (V ) :=

{
Tα,β
p (v0), T

α,β
p (v1), . . . , T

α,β
p (vn)

}
.

(iii) If the polytope Ω is a simplex, then its image Tα,β
p (Ω) is also a simplex.

(iv) It leaves the vertex centroid and the center of gravity of Ω invariant: vc(Ω) =

vc(Tα,β
p (Ω)) and cg(Ω) = cg(Tα,β

p (Ω)).

(v) It preserves a point x of Ω if and only if x is the vertex centroid of Ω.

(vi) It preserves convexity: f(Tα,β
p ) is convex if f is convex.

(vii) A vertex of Ω belongs to the image Tα,β
p (Ω) if and only if d = n = 1.

Proof. Let us fix a bc-system {b0, . . . , bn} . Start by observing that since Tα,β
p ∈

A(Ω), then by the representation formula derived in (2.8) we have

(2.14) Tα,β
p (x) =

n∑
i=0

bi(x)T
α,β
p (vi).

From this it follows that Tα,β
p preserves barycentric coordinates. Moreover, the

same equation tells us that the image Tp(Ω) lies in the convex hull of Tα,β
p (V ).

Now, we show that Tα,β
p (Ω) has the set Tα,β

p (V ) as extreme points. To see this,

assume that there exists a vertex Tα,β
p (vi) such that

(2.15) Tα,β
p (vi) =

n∑
j=0

αjTp(vj),

where α0, . . . , αn are nonnegative real numbers that sum to 1. We may use the fact

that Tα,β
p is affine, to show that Tα,β

p (vi) = Tα,β
p (

∑n
j=0 αjvj). Since by Lemma

2.5, Tα,β
p is injective, then clearly vi =

∑n
j=0 αjvj . The vj are the extreme points

of Ω then αi = 1 and αj = 0 if i 
= j. This means that Tα,β
p (V ) is exactly the set

of the vertices of the polytope Tα,β
p (Ω).

Clearly, (iii) is an immediate consequence of the alternative representation of the

function Tα,β
p given by equation (2.14). To show that the vertex centroid is pre-

served, let λi, i = 0, . . . , n be the barycentric coordinates given by Lemma 2.2 such
that λi(vc(Ω)) =

1
n+1 . Then (2.14) implies that

(2.16) Tα,β
p (vc(Ω)) =

1

n+ 1

n∑
i=0

Tα,β
p (vi).



GENERALIZED BARYCENTRIC COORDINATES AND JENSEN TYPE INEQUALITIES 9

Since Tα,β
p (V ) is the set of the vertices of the polytope Tα,β

p (Ω), from the above

equation we see that Tα,β
p (vc(Ω)) = vc(Tα,β

p (Ω)). Moreover, equation (2.12) in

Lemma 2.5 tells us that the vector Tα,β
p (vc(Ω)) can also be written as

Tα,β
p (vc(Ω)) =

1

n+ 1

n∑
i=0

vi := vc(Ω).

This shows that the vectors vc(Ω) and vc(Tα,β
p (Ω)) coincide. Using the change of

variables x′ = Tα,β
p (x) and so the Jacobian of this transformation is vol(Ω)/vol(Tα,β

p (Ω)),

we then get cg(Ω) = cg(Tα,β
p (Ω)). This establishes (v).

Let us assume now that Tα,β
p has a fixed point x ∈ Ω. Then, Tα,β

p (x) = x, and

consequently, it is equivalent to x = vc(Ω), completing the proof of (iv).

The convexity preserving of f(Tα,β
p ) is an immediate consequence of the classical

result on composition of a convex function with affine function.

To prove (vii), assume that there exists i such that vi ∈ Tα,β
p (Ω). Then, there exists

an y∗ in Ω such that vi = Tα,β
p (y∗). Consequently, by Lemma 2.5, equation (2.12),

the vector vi can be represented as follows:

vi =
n∑

j=0

α− βλj(y
∗)

(n+ 1)α− β
vj .

Therefore, since vi are extreme points of Ω, we have λj(y
∗) = α−((n+1)α−β)δij

β . It

is now obvious that n must be equal to 1 and therefore d = 1, since n is assumed to
satisfy n ≥ d ≥ 1. The inverse implication is immediate, thus the one-dimensional

case is the only case in which the two polytopes Ω and its image Tα,β
p (Ω) are equal.

The proof of Theorem 2.7 is now complete. �

Our final result in this section shows that for any 0 < β′ ≤ α′, the tautological

map Tα′,β′
p also satisfies the inclusion property: All the polytopes Tα′,β′

p (Ω) are

contained in the polytope T 1,1
p (Ω). This result follows easily from the following

general fact:

Proposition 2.8. Let α, β, α′, β′ be positive real numbers satisfying β ≤ α, β′ ≤ α′,
and α/β ≤ α′/β′. Then, the polytope Tα′,β′

p (Ω) is contained in the polytope Tα,β
p (Ω).

Proof. Let us fix y in Tα′,β′
p (Ω). Then there exists x in Ω such that Tα′,β′

p (x) = y
or equivalently

y =
α′e− β′x

(n+ 1)α′ − β′ .

Let us set t := α/β, and t′ := α′/β′. Observe that t and t′ are bigger than 1 and
therefore, obviously, they are strictly bigger than 1/(n+1). Then, short calculations
establish that y may also be written in the following form:

y =
αe− βz

(n+ 1)α− β
(:= Tα,β

p (z)),

where

z =
(n+ 1)(t′ − t)

(n+ 1)t′ − 1
vc(Ω) +

(n+ 1)t− 1

(n+ 1)t′ − 1
x.
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Then, it follows that z ∈ Ω, since it is immediate to verify, from the conditions sat-
isfied by t and t′, that z is written as a convex combination of two vetors belonging

to Ω. Hence, y belongs also to the polytope Tα,β
p (Ω). Therefore we conclude that

Tα′,β′
p (Ω) ⊆ Tα,β

p (Ω). �

We would like to close this section by noting that, as already observed, any

pu-system p belonging to Pα,β
n+1 does not have the Lagrange property, see Proposi-

tion 2.6. We emphasize, however, that the later is always satisfied at the vertices

Tα,β
p (vi) of the transformed polytope Tα,β

p (Ω). Indeed, this result is an immediate

consequence of the representation formula (2.14) available for any affine function,
and the fact that any bc-system has the Lagrange property.

3. New inequalities related to the Jensen-type inequalities

The main objectives of this section are:

(i) to derive some pertinent results concerning convex hull and convexity pre-
serving properties for a collection of functions of Ω into R

d.

(ii) to establish some generalizations of inequality (1.3). The method developed
yields direct and converse new multidimensional Jensen’s type inequalities
on convex polytopes. Among the inequalities presented, we offer, as a
particular case of our general results, a direct and converse multivariate
extension of Mercer inequality.

Here and in the rest of this section, Tα,β
p is the tautological map associated to pu-

system p defined in Lemma 2.4. We have seen in the preceding section the three

fundamental properties of Tα,β
p , that we will use repeatedly in this section:

• Tα,β
p is generated by a pu-system. That is there exists a pu-system p =

{pi,= 0, . . . , n}, such that for all x ∈ Ω, T (x) =
∑n

i=0 pi(x)vi. Hence, Tα,β
p

sends Ω into itself.

• Affine representation: For all x ∈ Ω, we have Tα,β
p (x) = αe−βx

(n+1)α−β .

• Convexity preserving: f(Tα,β
p ) is convex if f is convex.

First, we would like to study such properties for more general classes of functions.
To be more precise, for T an arbitrary, but fixed, function defined on Ω with values
in R

d, let us say that T is generated by a pu-system if there exists a pu-system
p = {pi,= 0, . . . , n}, such that for all x ∈ Ω, T (x) =

∑n
i=0 pi(x)vi. Note that if T

is the identity map and T is generated by a pu-system p, then this means exactly
that p forms a bc-system.

Inspired by our earlier development in the case of discrete inequalities [7], it is
natural to ask:

• Let T : Ω → R
d be an arbitrary function. What are the necessary and

sufficient conditions for T to be generated by a pu-system?

The first contribution to this problem gives a sufficient condition for T to be gen-
erated by a pu-system.
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Proposition 3.1. Let T : Ω → R
d be an arbitrary function which maps Ω into Ω.

Then, T is generated by a pu-system.

Proof. Let λi, i = 0, . . . n, be the bc-system defined in Lemma 2.2. For every
i, i = 0, . . . n put pi = λi(T ), so that pi is well-defined because T maps Ω into
Ω. Moreover, a simple inspection shows that the set p := {pi = λi(T ), i = 0, . . . , n}
forms a pu-system, and since T also sends Ω, into itself, it follows from linear
precision barycentric coordinates that for all x ∈ Ω

(3.1) T (x) =
n∑

i=0

pi(x)vi.

Hence, T is generated by the pu-system p, as required. �

Our next result shows that the above sufficient condition is also a necessary
condition. We shall formulate conditions similar to those given in the discrete
cases, see [7]. More precisely, we have the following characterizations:

Theorem 3.2. Let Ω be a convex polytope with vertices {v0,v1, . . . ,vn} , and let
T be an arbitrary function defined on Ω with values in R

d. For each real-valued

convex function defined on R
d define T̃ as follows:

(3.2) T̃ [f ] = f(T ).

Then the following statements are equivalent:

(i) T is generated by a pu-system;

(ii) T̃ is nonnegative for nonnegative affine functions;
(iii) T maps Ω into itself.

Proof. Assume that (i) holds. Let us recall that the polytope Ω may also be defined
by m inequalities:

Ω =
{
x ∈ R

d : 〈ak,x〉+ bk ≥ 0, k = 1, . . . ,m
}
,

here ak ∈ R
d and bk ∈ R, see, e. g., [26]. Fix now a nonnegative affine function l

on Ω. Then, by the so-called affine form of Farkas’ lemma, l is a nonnegative affine
combination of the affine forms used to define the polytope Ω, see [25]. Therefore,
there exist some nonnegative values μk ≥ 0, for any k = 0, . . . ,m such that

(3.3) l(x) = μ0 +

m∑
k=1

μk (〈ak,x〉+ bk) , (x ∈ Ω).

Then, since

T̃ [l](x) = l(T (x)),

and T is generated by a pu-system {pi, i = 0, . . . , n} we get by an obvious calculation

T̃ [l](x) =

n∑
i=0

pi(x)l(vi).

This permits us to rewrite T̃ [l] as a convex combination of the values of l at the

vertices. Consequently, it follows that T̃ [l] is nonnegative on Ω since l takes non-
negative values. This shows that property (ii) holds.
Assume that the operator T sends Ω into itself, and on the contrary that there ex-
ists a y ∈ Ω such that T (y) /∈ Ω. Then, due to the Separation Theorem for closed
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convex sets (see, e.g., [27, p. 65, Theorem 2.4.1]), there exists a point x∗ ∈ Ω such
that the affine function

(3.4) l(x) := 〈T (y)− x∗,x− x∗〉
satisfies l(x) ≤ 0, for all x ∈ Ω. Here 〈., .〉 denotes the usual scalar product in

R
d. Hence T̃ [l] ≤ 0, since l ≤ 0 and T̃ is nonnegative for every nonnegative affine

function. Consequently,

T̃ [l](y) = l(T (y)) := ‖T (y)− x∗‖2 ≤ 0,

where ‖.‖ denotes the usual Euclidean norm on R
d. This clearly implies T (y) = x∗,

and contradicts the fact that T (y) /∈ Ω. Hence this contradiction proves that
assertion (iii) holds.
Finally, the implication (iii) ⇒ (i) follows from Proposition 3.1. �
Remark 3.3. The nonnegative restriction condition (ii) in Theorem 3.2 for affine
functions may seem too restrictive, it is often satisfied by many approximation
operators, see [8, 9, 10, 11, 13, 14].

A function T : Ω → R
d will be said to preserve bc-systems if

T (x) =
∑n

i=0 bi(x)T (vi), (∀x ∈ Ω),(3.5)

holds for any bc-system {b0, . . . , bn} . The collection of all functions from Ω to R
d

that preserve bc-systems is denoted Hn+1(Ω). The representation formula (3.5)
informs us that for any T ∈ Hn+1(Ω), we have T (Ω) is a subset of the set generated
by the image of vertices of the polytope. Thus, if T maps {v0,v1, . . . ,vn} into Ω,
then T carries Ω into a subset of Ω.
Identity (2.8) guarantees that any affine function preserves bc-systems. Conse-
quently, we have the inclusion A(Ω) ⊆ Hn+1(Ω).

Theorem 3.4. Let Ω be a convex polytope with vertices {v0,v1, . . . ,vn} , and let T
be an arbitrary function defined on Ω with values in R

d. Assume that T is generated
by a pu-system p. Then, the following assertions are equivalent:

(i) p has the Lagrange property.
(ii) T has the vertices preserving property: that is T (vi) = vi, i = 0, . . . , n.

If, in addition, T preserves bc-systems then (i), (ii) and the following are all equiv-
alent:

(iii) T is the identity map.
(iv) p is a bc-system.

Proof. Since T preserves bc-systems then T satisfies identity (3.5). Hence, the
proof can be done by almost the same arguments as in Theorem 2.3, with the only
modification that we use identity (3.5) instead of the representation formula proved
in (2.8). �

We are now concerned with the following question:

• What are the necessary and sufficient conditions for T ∈ Hn+1(Ω) to be
generated by a pu-system?

The next answer will give an easy and practical characterization of a function in
Hn+1(Ω) that is generated by a pu-system. Indeed, we shall give simple conditions
for a function in Hn+1(Ω), which can be generated by a pu-system by looking only
the images of the vertices of the polytope.
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Proposition 3.5. Let Ω be a convex polytope with vertices {v0,v1, . . . ,vn} , and
let T be an arbitrary function in Hn+1(Ω). Then the following statements are
equivalent:

(i) T is generated by a pu-system.
(ii) T maps the set of vertices of Ω into Ω.

Proof. The direct implication is a consequence of Theorem 3.2. For the converse
implication, let us assume that (ii) holds. Then, since T belongs to Hn+1(Ω), it
follows by the representation formula (3.5) that

T (x) =
n∑

i=0

λi(x)T (vi),

where {λi, i = 0, . . . , n} is the bc-system defined in Lemma 2.2. This means that T
sends Ω into Ω, since for any point x in Ω, T (x) is written as a convex combination
of (n+ 1) points belonging to Ω. In order to complete the proof of Proposition 3.5
we just use Proposition 3.1. �

We are now in a position to show an analogue of Lemma 2.4, which includes
more general classes of functions. This result is a direct corollary of Proposition
3.5.

Corollary 3.6. Let T : Ω → R
d be defined by

(3.6) T (x) =
n∑

i=0

αivi − βx,

where αi, i = 0, . . . , n and β are given positive real numbers such that

(3.7)

n∑
i=0

αi − β = 1 and β ≤ min
0≤i≤n

αi.

Then T is generates by a pu-system.

Proof. Clearly, since T is an affine function, consequently, T ∈ Hn+1(Ω), then in
view of Proposition 3.5 we need to prove only that T maps all the vertices of Ω into
Ω. It is immediate to verify that, for all j = 0, . . . , n, we have

T (vj) =

n∑
i=0

αivi − βvj

=

n∑
i=0,i �=j

αivi + (αj − β)vj .

Hence, T (vj) ∈ Ω, since T (vj) is written as convex combination of the vertices of
the polytope Ω. �

Remark 3.7. Note that Corollary 3.6 applies to the tautological maps Tα,β
p defined

in Lemma 2.5.

Proposition 3.5 informs us that an affine function can be generated by a pu-
system if and only if it sends every vertex in Ω to a point of Ω. For an arbitrary
function T , which is not affine, it is easy to give an example to show that T (Ω) is
not necessary a subset of Ω, even if the images of the vertices are transformed in
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Ω. By Theorem 3.2, this means that T cannot be generated by a pu-system. To
see this, let us consider the following simple one-dimensional example:

Example 3.8. As a trivial example, take Ω = [0, 1] and consider the following
function T : [0, 1] → R, defined by

(3.8) T (x) = 2x2 − x.

For this particular function we have T (0) = 0 and T (1) = 1. Consequently, the
endpoints are preserved, however, obvious verification shows that T does not map
[0, 1] into itself. More precisely, it is easy to see that T ([0, 1]) = [− 1

8 , 1], and so, by
Theorem 3.2, this function cannot be generated by a pu-system.
There is another way of proving the above result. To this end, let l be the nonneg-
ative affine function defined by l(x) := 1− x on [0, 1]. It is not difficult to see that,
for all x ∈ [0, 1], we have T (l(x)) = (1− 2x)l(x). Note, however, that the function
T (l) changes its sign in [0, 1] . Hence by Theorem 3.2, (ii), T cannot be generated
by a pu-system.

To state our next result, we need some more preparations. Let T : Ω →
R

d be a given function, and assume that T is generated by a pu-system p =
{pi, i = 0, . . . , n}. Let us consider the associated function T̃ : Ω → R

d defined
by

(3.9) T̃ (x) =
n∑

i=0

αivi − βT (x),

where αi, i = 0, . . . , n and β are given positive real numbers such that
∑n

i=0 αi−β =
1 and β ≤ min0≤i≤n αi. Now, completely analogous arguments to those in the proof

of Lemma 2.4 show that T̃ can be generated by a pu-system p̃ with

(3.10) p̃i = αi − βpi, i = 0, . . . n.

For a given continuous convex function on Ω, let us define the auxiliary function f̃
on Ω as follows:

(3.11) f̃ =
1

|α|f
(
T̃
)
+

β

|α|f (T ) ,

where |α| = ∑n
i=0 αi. Note that f̃ is well-defined since T and T̃ are, respectively,

generated by the pu-systems p and p̃, therefore by Theorem 3.2 they map Ω in
itself.
The next general lemma formulates a crucial observation, that allows us to obtain
upper and lower bounds for the function f̃ over the polytope Ω.

Lemma 3.9. Let αi, i = 0, . . . , n and β be defined as in Corollary 3.6. Let Ω be a
polytope in R

d, {v0,v1, . . . ,vn} its vertices, and f : Ω → R be a convex function.
Then, the following inequalities always hold for all x ∈ Ω

(3.12) f

(
n∑

i=0

αi

|α|vi

)
≤ f̃(x) ≤

n∑
i=0

αi

|α|f(vi),

where |α| =∑n
i=0 αi.

Proof. To prove Lemma 3.9 we shall make use the classical Jensen’s discrete inequal-
ity. Indeed, to establish the right hand inequality, note that since the function T̃ is
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generated by the pu-system {p̃i, i = 0, . . . , n}, then, we have T̃ (x) =
∑n

i=0 p̃i(x)vi,
for all x ∈ Ω. Thus, using the classical Jensen’s discrete inequality for f we have

(3.13) f(T̃ (x)) ≤
n∑

i=0

p̃i(x)f(vi).

Since p̃i = αi − βpi where {p0, . . . , pn} is a pu-system, which generates T , then the
right-hand side of the above equation can be rewritten as follows

n∑
i=0

p̃i(x)f(vi) =

n∑
i=0

αif(vi)− β

n∑
i=0

pi(x)f(vi).

From this, we get the following inequality

f̃(x) ≤
n∑

i=0

αi

|α|f(vi) +
β

|α|

(
f (T (x))−

n∑
i=0

pi(x)f(vi)

)
.

Due the convexity of f and the fact that T (x) =
∑n

i=0 pi(x)vi, Jensen’s inequality
shows that the term on the right is negative, then we get the right-hand side of
(3.12).
To prove the left hand side inequality, note that, obviously, for all x ∈ Ω, by
equation (3.9) we have the identity

(3.14)
n∑

i=0

αi

|α|vi =
1

|α| T̃ (x) +
β

|α|T (x).

The above shows that
∑n

i=0
αi

|α|vi can be expressed, independently of x, as a con-

vex combination of elements belonging to Ω, T̃ (x) and T (x). Then, by Jensen’s
inequality, we conclude

(3.15) f

(
n∑

i=0

αi

|α|vi

)
≤ 1

|α|f(T̃ (x)) +
β

|α|f(T (x)),

which is clearly the desired result. �

Observe that if we assume that the function T is generated by a bc-system, then
Proposition 2.1 tells us that T is the identity map of the domain polytope Ω. Hence
by using the formula (3.9), we get that T̃ is the affine function defined in (3.6).

One particular consequence is that the associated function f̃ defined by (3.11) is

automatically convex, since composition with affine function: f(T̃ ) is convex if f is
convex.

To further simplify the analysis, it will be assumed from now on that

αi =
α

(n+ 1)α− β
, i = 0, . . . , n,

and β is replaced by β
(n+1)α−β , where α and β are two positive real numbers.

Hence as a corollary the main Lemma 3.9, we have the following result which is a
crucial step in deriving our new inequalities.
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Corollary 3.10. Given two positive real numbers α, β such that β ≤ α. Let Ω be
a polytope in R

d, {v0,v1, . . . ,vn} its vertices, and f : Ω → R be a convex function.
Then the function f+ defined for all x ∈ Ω by

(3.16) f+(x) = f

(
αe− βx

(n+ 1)α− β

)
+

β

(n+ 1)α− β
f(x),

is a convex function on Ω and the following inequalities always hold for all x ∈ Ω

(3.17)
(n+ 1)α

(n+ 1)α− β
f(vc(Ω)) ≤ f+(x) ≤ α

(n+ 1)α− β

n∑
i=0

f(vi),

and both inequalities are attained for all affine functions.

Proof. Just apply Lemma 3.9 by replacing each αi with
α

(n+1)α−β , β with β
(n+1)α−β ,

and then multiplying the expression of f̃ by (n+1)α
(n+1)α−β . Finally, the equality cases

can be easily verified. �

Remark 3.11. We want to draw the reader’s attention to the fact that there is, of
course, an obvious extension of Corollary 3.10 to the situation when, as in Lemma
3.9, αi, i = 0, . . . , n and β are given positive real numbers such that equations (3.7)
are fulfilled. The reader can state and prove the corresponding assertion himself
if he notices that for any convex function f the function f̃ satisfies the equation
(3.11). Furthermore, we should observe that when T is only generated by a pu-

system, then the associated fucntion f̃ is not necessarily convex. Since the function
T̃ is not generally affine.

The convexity-preserving transformation f+ defined by (3.16) is the key to the
subsequent development. As regards this transformation, we will be much more

modest, by choosing the function T̃ (= Tα,β
p ) as an affine function, but the next

results shows that we cannot do more.
We shall denote the set of all convex functions defined on Ω byK(Ω) and let B(Ω) be
the set of all real-valued functions defined on Ω. For an operator S : K(Ω) → B(Ω),
if f is convex on Ω implies S[f ] is also convex on Ω, then we say that S preserves
convexity.

Proposition 3.12. Let T : Ω → Ω be an arbitrary function. Define the operator

T̃ on K(Ω) by

(3.18) T̃ [f ] = f(T ).

Then, the following assertions are equivalent:

(i) T̃ preserves convexity.
(ii) T is an affine function.

Proof. Let us assume that T̃ preserves convexity. First we note that to establish T
is affine it suffices to show that for all i = 1, . . . , d, ei(T ) is affine, where e1, . . . , ed,
denote the projections ei : x = (x1, . . . , xd) → xi. Since ei and −ei are both

convex, then it follows from the assumed convexity of T̃ that ±ei(T ) are convex.
Consequently, ei(T ) is affine.
The inverse implication is obvious, since composition with affine function: f(T ) is
convex if f is convex. �
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From now on, if it is not explicitly mentioned, α and β represent positive real
numbers such that β ≤ α.
Before going further, let us first observe the next result which gives some basic
information about the ‘best’ choices for the parameters α and β in (3.17). To this
end, let us define the following function: K(t) from [1,+∞[ to R by:

(3.19) K(t) :=
t

(n+ 1)t− 1
.

It seems reasonable to choose and adjust the parameters α and β in such a way
that they minimize the function K. Indeed we have the following result:

Proposition 3.13. Under the hypotheses of Corollary 3.10, let K be the function
defined by (3.19). Then, for any positive real numbers α, β, with β ≤ α, and x ∈ Ω,
it always holds that

(3.20) 0 ≤ f+(x)− (n+ 1)α

(n+ 1)α− β
f(vc(Ω)) ≤ K(α/β)

(
n∑

i=0

f(vi)− (n+ 1)f(vc(Ω))

)
.

In addition, the function K is not increasing and

K(1) =
1

n
= sup

t≥1
K(t) ≥ 1

n+ 1
= inf

t≥1
K(t).

Proof. This is an immediate consequence of the estimates (3.17) given in Corollary
3.10. �

Remark 3.14. We would like to mention that for all 0 < β ≤ α,K(αβ ) ≤ 1
n , with

equality if α = β = 1. Hence, the values of the parameters α = β = 1 yield the
worst approximation, in the sense that they maximize the function K(α/β) involved
in the inequality (3.20). Note that, the minimum value 1/(n+1) is not attainable,
however, we have K(αβ ) → 1

n+1 when α → +∞ and β is maintained fixed. Thus,

the choice of appropriate parameters α, β, in inequality (3.17), can be archived by
taking α as large as possible and β as small as possible.

The following applications are intended as examples of how the main results of
the paper can be used. Before we state the next theorem, let us introduce more
notation. Recall that, as mentioned in the Introduction, X is a (nonempty) set, L
is assumed a subspace of the vector space of real-valued functions defined on X,
that contains the constant functions. If g = (g1, . . . , gd) is an d-tuple of functions
in L, such that g carries X into Ω, we define

A[g] :=
(
A[g1], . . . , A[gd]

)
.

With the help of Corollary 3.10, we are now in a position to derive the following
extension of Jensen-Mcshane’s inequality.

Theorem 3.15. Let Ω be a polytope in R
d, {v0,v1, . . . ,vn} its vertices, and f :

Ω → R be a convex function. Then, for any d-tuple of functions g = (g1, . . . , gd)

such that gi, f(g), f

(
α
∑n

i=0
vi−βA[g]

(n+1)α−β

)
∈ L, we have for any 0 < β ≤ α, the

following variant of Jensen’s inequality

(3.21) f

(
α
∑n

i=0vi − βA[g]

(n+ 1)α− β

)
≤ α

(n+ 1)α− β

n∑
i=0

f(vi)− β

(n+ 1)α− β
A[f(g)].
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Proof. Since g(t) ∈ Ω for all t ∈ X, it follows, by [22, theorem 1], that A[g] ∈ Ω
and then we have immediately by Mcshane’s inequality (1.3)

f

(
α
∑n

i=0vi − βA[g]

(n+ 1)α− β

)
= f

(
A

[
α
∑n

i=0vi − βg

(n+ 1)α− β

])
≤ A

[
f

(
α
∑n

i=0vi − βg

(n+ 1)α− β

)]
.

To obtain the desired inequality, it suffices to apply A on both sides of the right-
hand inequality (3.17) and make use of the positivity and linearity of A. �

Our general result has the following corollary in the functional integral context:

Corollary 3.16. Let (X,A, μ) be a probability measure space, and let g : X → Ω
be a measurable function. Then for any 0 < β ≤ α, and any continuous convex
function f : Ω → R

(3.22) f

(
α
∑n

i=0vi − β
∫
X
gdμ

(n+ 1)α− β

)
≤ α

(n+ 1)α− β

n∑
i=0

f(vi)− β

(n+ 1)α− β

∫
X

f(g)dμ.

Proof. This is a special case of the more general result established in Theorem 3.15.
This comes immediately by taking L := L1(μ) the set of real valued functions,
defined on X, which are integrable on (X,A, μ), and A(g) =

∫
X
gdμ. �

Several known generalizations of Jensen’s inequality follows from Corollary 3.16
by fixing the probability measure. We list some special cases. In particular, for the
case of d = 1 (therefore n = 2) one-dimensional case, if in Corollary 3.16, we take
Ω = [a, b] , (a 
= b, ) and μ a counting measure, then we obtain the corresponding
discrete versions of (3.22):

Corollary 3.17. If f is a convex function on a real interval [a, b] containing the
points xi, i = 1 . . . ,m and positive real numbers ωi, i = 1 . . . ,m such that

∑m
i=1 ωi =

1, then for any 0 < β ≤ α,

(3.23) f

(
α(a+ b)− β

∑m
i=1 ωixi

2α− β

)
≤ α (f(a) + f(b))

2α− β
− β

2α− β

m∑
i=1

ωif(xi).

By using the previous inequality evaluated at α = β, we obtain, in the present
particular situation, an inequality due to Mercer [21, Theorem 1.2]:

(3.24) f

(
a+ b−

m∑
i=1

wixi

)
≤ f(a) + f(b)−

m∑
i=1

wif(xi).

Thus, inequality (3.21) can be seen as an extension in gereral settings of Mercer’s
inequality (3.24). However, it is important to observe that in order to obtain this
result, the proof given there was different and the author in [21] has assumed that
all points xi are nonnegative, as a part of whole assumptions. But in his proof, we
can see that this condition is needless to this theorem. We will show below that
Mercer’s result has a converse multivariate version.

The next theorem gives a natural converse inequality of (3.21). As in derivation
of Theorem 3.15, the lower bound given in Corollary 3.10 might also be used as a
starting point.
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Theorem 3.18. Let Ω be a polytope in R
d, {v0,v1, . . . ,vn} its vertices, and f :

Ω → R be a convex function. Then, for any d-tuple of functions g = (g1, . . . , gd)

such that gi, f(g), f(g), f

(
α
∑n

i=0
vi−βA[g]

(n+1)α−β

)
∈ L, we have for any 0 < β ≤ α, the

following variant of the converse Jensen’s inequality

(3.25)
(n+ 1)α

(n+ 1)α− β
f(vc(Ω))− β

(n+ 1)α− β
A [f(g] ≤ f

(
α
∑n

i=0vi − βA[g]

(n+ 1)α− β

)
.

Proof. Since g(t) ∈ Ω for all t ∈ X, again, from [22, theorem 1], it follows that
A[g] ∈ Ω and from the left inequality in Corollary 3.10 that

(3.26)
(n+ 1)α

(n+ 1)α− β
f(vc(Ω))− β

(n+ 1)α− β
f(A[g]) ≤ f

(
α
∑n

i=0vi − βA[g]

(n+ 1)α− β

)
.

Furthermore, by Mcshane’s inequality (1.3), we have −A[f(g)] ≤ −f(A[g]), then we
immediately get the desired inequality. �

As a corollary of Theorem 3.18 we have the following result:

Corollary 3.19. Let (X,A, μ) be a probability measure space, and let g : X → Ω
be a measurable function. Then for any 0 < β ≤ α, and any continuous convex
function f : Ω → R

(3.27)
(n+ 1)α

(n+ 1)α− β
f(vc(Ω))− β

(n+ 1)α− β

∫
X

f(g)dμ ≤ f

(
α
∑n

i=0vi − β
∫
X
gdμ

(n+ 1)α− β

)
.

In the univariate case, when Ω is the closed interval [a, b] of R, and p is a discrete
probability distribution on the set X := {x1 . . . , xm} ⊂ [a, b] with pi = p(xi), by
choosing α = β = 1, our inequality (3.27) becomes:

(3.28) 2f(
a+ b

2
)−

m∑
i=1

pif(xi) ≤ f

(
a+ b−

m∑
i=1

pixi

)
.

This particular inequality appears as a converse of Mercer’s inequality (3.24).

Remark 3.20. We finally observe that the reader can easily reformulate all our
results of Theorems 3.15, 3.18 and their Corollaries for the case where αi, i =
0, . . . , n and β are given positive real numbers such that

∑n
i=0 αi − β = 1 and

β ≤ min0≤i≤n αi. The proofs are those of Theorems 3.15 and 3.18, except that
Lemma 3.9 is used instead of its Corollary 3.10. Note that in Theorems 3.15, 3.18
and their Corollaries all the inequalities become equalities for every affine function.
It should also be mentioned that discrete analogues of inequalities given in Corol-
laries 3.16 and 3.19 were obtained in [7]. These inequalities can be rediscovered by
choosing T the identity map and taking the set X the polytope Ω.
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