
Supplemental material for ”Using Activated Transport in Parallel Nanowires for
Energy Harvesting and Hot Spot Cooling”

Riccardo Bosisio, Cosimo Gorini, Geneviève Fleury, and Jean-Louis Pichard
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I. RESOLUTION OF THE RANDOM RESISTOR NETWORK PROBLEM

Hereafter, we summarize the numerical method used to solve the random-resistor network problem1–3. The three-
terminal setup configuration is reminded in Fig. 1, with emphasis on the hopping transport mechanism taking place
in the NWs. Starting from a set of states i localized at positions xi inside the NWs, with energies Ei and localization
lengths ξi, we first evaluate the transition rates Γiα from the localized state i to the reservoir α = L or R, and Γij
from states i to j within the same wire (inter-wire hopping being neglected). They are given by the Fermi Golden
rule as

Γiα = γiαfi[1− fα(Ei)] (1)

Γij = γijfi(1− fj)[Nij + θ(Ei − Ej)] (2)

where fi is the occupation probability of state i, fα(E) = [exp((E − µα)/kBTα) + 1]−1 is the Fermi distribution of
reservoir α, Nij = [exp(|Ej − Ei|/kBT )− 1]−1 is the probability of having a phonon with energy |Ej − Ei| assisting
the hop, and θ is the Heaviside function. In Eq. (1), γiα = γe exp(−2xiα/ξi), xiα denoting the distance of state i from
reservoir α, and γe being a constant quantifying the coupling from the localized states in the NW to the extended states
in the reservoirs. Usually, ξi ≈ ξ(µ) is assumed and the rate γij in Eq. (2) is simply given by γij = γep exp(−2xij/ξ(µ)),
with xij = |xi − xj | and γep measuring the electron-phonon coupling. Since this approximation does not hold in the
vicinity of the impurity band edges, where the localization lengths vary strongly with the energy, we use a generalized
expression for γij that accounts for the different localization lengths ξi 6= ξj (see Ref.4).

By using Eqs. (1)-(2) and imposing charge conservation at each network node i, we deduce the N fi’s of the M
independent NWs. The charge and heat currents flowing from reservoir α to the system can then be calculated as
Ieα = e

∑
i Iαi and IQα =

∑
i Iαi(Ei − µα), where Iαi = Γαi − Γiα and e is the electron charge. In principle, the

heat current IQP = (1/2)
∑
i I
Q
i coming from the phonon bath can be calculated as well but in the letter, we only

investigated the behavior of the local heat currents IQi =
∑
j (Ej − Ei) INij with INij = Γij − Γji. Without loss of

generality, we choose the right terminal R as the reference, i.e. we set µR = µ, TR = T and we impose on the left side

µL = µ+δµ, TL = T +δT . Using the Onsager formalism, we relate the particle (IeL) and heat (IQL ) currents computed
in linear response to the small imposed bias δµ and δT 5. This allow us to deduce the thermoelectric coefficients G,
Ke and S.

FIG. 1. Phonon-assisted hopping transport through the localized states (dots) of a disordered NW connected to two electrodes
L and R, and to a phonon bath. The electronic reservoirs L and R are thermalized at temperatures TL[R] and held at
electrochemical potentials µL[R] (their Fermi functions are sketched by the black curves at both sides). A metallic gate (shaded
grey plate drawn on top) allows to shift the NW impurity band (blue central region). Here, the gate potential Vg is adjusted
such that electrons tunnel in and out of the electronic reservoirs near the lower edge of the impurity band. Therefore, electrons
tend to absorb phonons at the entrance in order to reach available states of higher energies, and to emit phonons on the way
out. The two wavy arrows indicate the local heat flows between the NW electrons and the phonon bath. They give rise to a
pair of cold (blue) and hot (red) spots in the substrate beneath the NW (in the deposited setup configuration).
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FIG. 2. (Color online) Convergence of G/M (left, in units of e2/~) and S (right) with the number M of parallel NWs. Symbols
correspond to Vg = 1.9 t (◦), 2.1 t (�) and 2.3 t (�) at kBT = 0.1 t, and Vg = 1.9 t at kBT = 0.5 t (4). The horizontal lines
indicate the corresponding mean values (dashed lines) and typical values (full lines) of lnG and S of a single wire (M = 1).
Parameters: W = t, γe = γep = t/~ and L = 450a.

II. SCALING OF THE THERMOELECTRIC COEFFICIENTS WITH THE NUMBER OF NANOWIRES

The typical conductance G0 and thermopower S0 of a single NW were studied in Ref.4. They are defined as
the median of the distribution of lnG and S, obtained when considering a large statistical ensemble of disorder
configurations. In Fig. 2 we show that, if the system is made of a sufficiently large number M > M∗ of parallel
NWs, the overall electrical conductance scales as the number of wires times the typical value (G ≈M G0), while the
thermopower averages out to the typical value of a single wire (S ≈ S0). For completeness the mean values are also
shown and seen to be a less accurate estimate. As expected, convergence is faster at higher temperatures. Note that
identical results have been obtained for the electronic thermal conductance Ke ≈MKe

0 (not shown).

III. SIZE EFFECTS

We have investigated the effects on the various transport coefficients G, Ke and S, the power factor Q, and the
electrical figure of merit ZeT , of varying the length L of the NWs. The results are shown in Fig. 3, for three values
of the temperatures kBT = 0.1t, 0.5t and 1.0t, and for two configurations corresponding to bulk (Vg = t) and edge
transport (Vg = 2.5t). We observe that they are essentially always size-independent, for µ inside the impurity band
and also around its edge. The only exception is the electrical conductance at low temperatures and in the case of
edge transport: this causes the electrical figure of merit ZeT to decrease in this regime (◦ in Fig. 3(d)) roughly as
1/L. However, being interested in the regime of temperatures where the power factor is largest (kBT ' 0.5t), we can
conclude that the size effects on the results shown in the letter are completely negligible. Also, we note that the small
fluctuations observed especially at the smallest sizes are a consequence of having taken a finite number of parallel
NWs (M=150): they would vanish in the limit M→∞ due to self-averaging.

IV. ON THE DEPENDENCE ON THE COUPLINGS γe AND γep

In this section, we investigate how the transport coefficients G, Ke and S, the power factor Q = S2G and the
electrical figure of merit ZeT = S2GT/Ke depend upon varying the couplings γe and γep of the localized states with
the electrodes and the phonon bath, respectively. We introduce the notation α ≡ γep/γe. We first notice that if α
is kept fixed, the electrical conductance G and the electronic thermal conductance Ke are strictly proportional to
γe, while the thermopower S is independent of it. This behavior is a direct consequence of the formulation of the
random resistor network problem and can be seen at the stage of writing the equations (see Ref.4), before solving
them numerically. Therefore, for any fixed α, Q/γe and ZeT are necessarily independent of the choice of γe. We thus
find that G/γe, K

e/γe, S, Q/γe and ZeT are functions of the single parameter α, and not of the couple of parameters
γe and γep separately. Those functions are plotted in Fig. 4(a)-(c) for two different temperatures. The conductances,
the power factor and the figure of merit increase with α (as long as lack of phonons is a limiting factor to transport
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FIG. 3. (Color online) Behavior of the transport coefficients as function of the NWs size L (in units of the spacing a). Panels
from left to right show (a) the rescaled electronic contribution to the thermal conductance Ke (in units of kBt/~), (b) the
thermopower S (in units of kB/e)), (c) the rescaled power factor Q (in units of k2B/~) and (d) the electrical figure of merit ZeT .
In all the four panels, different symbols correspond to kBT = 0.1t (circles), kBT = 0.5t (squares) and kBT = t (rhombus),
while different colors refer to the case of bulk transport (Vg = t, black) and edge transport (Vg = 2.5t, red). Dotted lines are
guides to the eye. Other parameters are fixed to W = t and γe = γep = t/~.

0.01 0.1 1 10
γ

ep
 / γ

e

0.2

0.4

0.6

0.8

1

G
 /

 M

0

0.2

0.4

0.6

0.8

1

K
e  /

 M

(a)

0.01 0.1 1 10
γ

ep
 / γ

e

3

4

5

S

(b)

0.01 0.1 1 10
γ

ep
 / γ

e

1

2

3

4

 Q
 /

 M
1

2

3

4

Z
eT

(c)

FIG. 4. (Color online) Dependency of G, Ke, S, Q and ZeT on the ratio γep/γe. (a) Electrical (G/M , black full symbols)
and thermal (Ke/M , red empty symbols) conductances, in units of e2/~ and kBt/~ respectively. (b) Thermopower in units of
kB/e. (c) Q/M in units of k2B/~ (black full symbols) and ZeT (red empty symbols). In all panels, different symbols correspond
to kBT = 0.2t (circles) and kBT = 0.5t (triangles), while dotted lines are guides to the eye. Data have been plotted for a given
set of M = 150 parallel NWs of length L = 450a, with γe = t/~, W = t and Vg = 2.4t. Note that when γep & γe all these
coefficients are nearly constant.

through the NWs), while the thermopower decreases. All of them tend to saturate for α & 1. This shows us, inter
alia, that Q/γe and ZeT are essentially independent of γe and γep if γep & γe and that they only deviate slowly from
this limit if γep < γe. Such a robustness of Q/γe and ZeT to variations of γe and γep reinforces the impact of the
results shown in the letter.

V. HOT SPOTS

In this section, we provide more details concerning the effect of generating hot and cold spots using a semiconductor
NWs-based device in the field effect transistor configuration. As stated in the letter, each NW exchanges locally a
certain amount of heat with the substrate. The global effect of substrate heating/cooling is visible after summing the
heat currents inside areas of size ≈ Λph, the (inelastic) phonon mean free path, which is a measure of the thermalization
length in the substrate.

Before detailing this, we illustrate in Fig. 5 an example of the map of the raw heat currents IQi locally exchanged
with the substrate. The horizontal coordinate is the position along the NW (in units of a, the average distance

between localized states), while the vertical one labels each NW. In this case, we see that the IQi ’s fluctuate between
positive and negative values at random positions of the substrate, and thus no net effect emerges.
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FIG. 5. Map of the local heat currents IQi exchanged between the NWs and the substrate at each NWs site i = (x, y), for

kBT = 0.05t and Vg = 2.25t. The presence of hot and cold spots is hidden by the fluctuations. They emerge when the raw IQi
data are summed up within areas of size Λph ×Λph. Parameters: M = 150, L = 450a, W = t, γe = γep = t/~ and δµ = 10−5t.

The formation of the hot and cold spots is a process which becomes visible only upon summing in a single term IQx,y
all the contributions IQi coming from states i located in a small area around the point of coordinates (x, y). Physically,
the typical size of those areas corresponds to the thermalization length of the substrate. It is given by the inelastic
phonon mean free path Λph. This mean free path may be different for different phonon wavelengths, and while it does
not change much around room temperatures, it can vary significantly at lower (still not vanishing) temperatures. It
is possible to relate Λph to the dominant phonon wave length6 as Λph = 300λdomph , where the coefficient 300 is for

SiO2 and may be different for other materials. This allows the calculation of the mean free path, once λdomph is known.

According to Refs.7,8, the latter can be estimated as

λdomph ' hvs
4.25kBT

, (3)

where h is the Planck constant. Taking vs = 5300 m/s the sound velocity in SiO2
8, we can easily deduce λdomph ' 0.2 nm

from which Λph ' 60 nm at room temperature T = 300 K. Values of Λph at other temperatures follow immediately
from the temperature dependence in Eq. (3). We shall stress that the real values of Λph may differ from our prediction
by a small numerical factor, which however is not important within our qualitative approach. To convert these lengths
in the units used in the letter, we assume the average distance between localized states a ≈ 3.2 nm in highly doped
silicon NWs, which together with t/kB ≈ 150K allows us to estimate for example Λph ≈ 75a at T = 0.5t/kB = 75 K.

In Fig. 6, we consider a set of M = 150 parallel NWs of length L = 1500a ≈ 4.8µm with interspacing 15a ≈ 50 nm
among them. This choice of interspacing value corresponds to an array made of NWs of 10 nm diameter with 20%
packing density. We show in the figure how IQx,y vary spatially with the positions x, y in the substrate below the
two-dimensional array of parallel NWs. Data are given for two different values of the temperature (top/bottom)
and of the gate voltage (left/right). The top panels are the same as those presented in Fig. 2 of the letter. In
this case, T = 0.25t/kB = 37.5 K and Λph ≈ 150a. Data show us that the hot and cold spots are visible only in
presence of a large gate voltage, when the distribution of the energy states in the NWs is strongly asymmetric with
respect to µ. The bottom panels of Fig. 6 show how the heat maps are modified when the temperature is doubled
to T = 0.5t/kB ≈ 75 K. According to the prescription briefly discussed above, Λph = 75a in this case. The fact
that the surface inside which the heat currents are summed up is now smaller is compensated by a smoothing of the

IQi ’s fluctuations at larger temperature. This makes the hot and cold spots still clearly visible and well-defined in
panel (d).

1 A. Miller and E. Abrahams, Phys. Rev. 120, 745 (1960).
2 V. Ambegaokar, B. I. Halperin, and J. S. Langer, Phys. Rev. B 4, 2612 (1971).
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FIG. 6. Map of the local heat exchanges IQx,y between the NWs and the phonon bath (substrate), in units of t2/~. Various
panels correspond to different gate voltages and temperatures: Vg = 0.0 in (a) and (c), Vg = 2.25t in (b) and (d), kBT = 0.25t
in (a) and (b), kBT = 0.5t in (c) and (d). The heat currents have been summed inside areas of size Λph = 75a for kBT = 0.5t
and Λph = 150a for kBT = 0.25t, as explained in the text. Note that the formation of hot and cold spots at the boundaries of
the NWs is clearly visible for both temperatures when Vg is tuned in order to probe their band edges ((b) and (d)), while no
net effect is evident in absence of any gate voltage ((a) and (c)). In all panels, data have been plotted for M = 150 NWs of
length L = 1500a with interspacing 15a. Other parameters are W = t, γe = γep = t/~ and δµ = 10−3t.
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