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Visual Servoing Schemes for Automatic Nanopositioning Under

Scanning Electron Microscope

Naresh Marturi, Brahim Tamadazte, Sounkalo Dembélé, and Nadine Piat

Abstract— This paper presents two visual servoing ap-
proaches for nanopositioning in a scanning electron microscope
(SEM). The first approach uses the total pixel intensities of an
image as visual measurements for designing the control law.
The positioning error and the platform control are directly
linked with the intensity variations. The second approach is
a frequency domain method that uses Fourier transform to
compute the relative motion between images. In this case,
the control law is designed to minimize the error i.e. the 2D
motion between current and desired images by controlling the
positioning platform movement. Both methods are validated
at different experimental conditions for a task of positioning
silicon microparts using a piezo-positioning platform. The
obtained results demonstrate the efficiency and robustness of
the developed methods.

I. INTRODUCTION

Over the past couple of decades, nanomanipulation

has gained significant attention due to the advances in

nanoscience and nanotechnology. It is widely used in

many industrial and scientific works for handling micro-

nanostructures in order to perform dynamic analysis and

characterization of their structural, mechanical, electrical

or optical properties. Moreover, manipulation of nano-

metric objects also benefit in building complex nano-

electromechanical systems (NEMS) [1]. The consequence of

this strong demand is the emergence of an active research

area concerning the development of assembly and handling

technologies on a micro-nanoscale. So far, great progress has

already been realized in the development of microassembly

stations [2], microgrippers [3], precise manipulation systems

as well as robust control strategies. In order to perform

nanomanipulation, the basic tasks include identification, po-

sitioning and handling of the objects. Out of all, positioning

is more challenging at this particular scale mainly due to the

lack of accurate feedback information. This problem can be

resolved by considering microscopic imaging systems such

as SEM [4], transmission electron microscope (TEM) or

atomic force microscope (AFM) as the underlying sensors to

control the behavior of robotic devices during the process.

With its ability of producing images with high resolution at

high magnification in real-time, a SEM is always favoured
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as an imaging tool for automatic nanomanipulation applica-

tions.

In general, the method of controlling the robotic devices

using vision feedback is commonly termed as visual servoing

[5]. The basic visual servoing approaches are classified in

two types: position-based and image-based. For position-

based visual servoing, 3D pose of the robot is derived

from the images and is used to minimize the error be-

tween observed and reference poses in the cartesian space

[6]. Whereas for image-based visual servoing, the control

strategy is based on minimizing the error between current

and reference features observed in the images [7]. These

features are local geometric contents (i.e. edges, corners,

etc.) of an object or specially used fiducial markers and are

extracted from visual tracking. This tracking process plays

an essential role in the design of visual servoing strategies.

However, recent developments have shown that this tracking

process for visual servoing can be completely replaced by

using the global image information like pixel intensities [8]

or image entropy. Also, as the total image information is

used, it increases the robustness in minimizing the error and

simultaneously increases the overall accuracy of the system

because of the redundancy information.

With SEM as an imaging tool, acquiring images to use

them with visual servoing is always a challenging task. This

is mainly due to the addition of huge amount of noise during

image acquisition process at higher scan rates. Moreover,

the pixels are acquired one at a time slowing down the

overall acquisition rate. Apart from this, when the objects are

in motion, the images appeared to be distorted because of

the sequential raster scanning the surface. This phenomenon

mainly raises the difficulty in applying any visual tracking

algorithms. In order to tackle this problem, in this paper,

we consider the direct approach of using the global image

information rather than local features for visual servoing.

Using this technique, two methods have been implemented

for positioning the silicon micro-objects by controlling the

motion of the positioning platform. The first one uses the

global pixel intensity values and the second one is based on

the global motion estimation between images. The developed

methods are evaluated at different experimental conditions

such as varying scan speed and magnifications.

II. SET-UP AND MODELLING

A. Experimental set-up

The experimental set-up used for this work is shown in

the Fig. 1. It consists of a JEOL JSM 820 SEM, an image

acquisition system (DISS5 from Point electronic GmbH), a
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Fig. 1. Experimental set-up architecture.

3 degrees of freedom (x, y, z) open loop piezo positioning

platform (TRITOR 100 from Piezosystem Jena GmbH) and

two computers. The positioning platform is mounted inside

SEM vacuum chamber and is controlled using a 3 channel

piezo controller NV 40/3. The maximum possible motion

on all axes is up to 100 µm with a resolution of 0.2 nm.

The primary computer (PC 1: Intel Pentium 4, CPU 2.24

GHz and 512 MB of RAM) is connected to the SEM control

electronics and imaging system. It is solely responsible for

controlling the microscope. The work computer (PC 2: Intel

Core 2 Duo, CPU 3.16 GHz, and 3.25 GB of RAM) is

connected to the primary one using an Ethernet cross-over

cable. The communication between the two computers is

accomplished by implementing a client-server model using

TCP/IP. The server program runs continuously from the pri-

mary computer and is responsible for receiving and digitizing

the data coming from the image acquisition device. Later, the

acquired images are transferred to the client upon request. On

the work computer, the image client receives these images

and transfers them to the control server. The control server

computes the required control and issues a voltage command

to the platform controller via RS-232 (serial port).

B. Platform voltage-displacement model

In general, the displacement provided by the positioning

platform is a result of the voltage supplied to the piezo

actuator. As the control laws, explained in the next section,

can only provide the displacements, it is necessary to com-

pute the relationship between displacement and input voltage.

Apart from that, it is a well-known fact that the piezoelectric

materials exhibit strong nonlinear hysteresis. So, it is also

required to compensate this effect beforehand. In order to

accomplish this, the experiments are performed by increasing

the voltage from initial value (−19 V ) to maximum value

(110 V ) with a step change of 1 V and then decreasing

back to the initial value. The respective displacements are

measured using a laser interferometer (outside the SEM

chamber). The tests are conducted for each axis (x and y)

separately and the obtained hysteresis curves are shown in

Fig. 2(a) and Fig. 2(b). Note that, even though z axis motion

can be controlled up to 100µm, it is not used in this work

since this movement is smaller than the depth of field at the

used magnification and cannot be traced. The ascending and
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Fig. 2. Hysteresis curves for (a) x-axis (b) y-axis of the positioning
platform.

descending curves for each axis are approximated by fourth

order polynomial given by (1), (2), (3) and (4), respectively.

The coefficients of the polynomial are estimated by least

squares fit. Finally, the platform control is performed using

the displacement vector d(x,y) = [dx dy]
⊤ to supply voltages

[Vx Vy]
⊤ for the piezo-actuator

Vx−inc = a1id
4
x+a2id

3
x+a3id

2
x+a4idx+a5i if ẋ > 0 (1)

Vx−dec = a1dd
4
x+a2dd

3
x+a3dd

2
x+a4ddx+a5d if ẋ < 0 (2)

Vy−inc = b1id
4
y + b2id

3
y + b3id

2
y + b4idy + b5i if ẏ > 0 (3)

Vy−dec = b1dd
4
y+b2dd

3
y+b3dd

2
y+b4ddy+b5d if ẏ > 0 (4)

where, Vx, Vy and dx, dy are the input voltages and displace-

ments for x and y axes respectively, aki, akd, bki and bkd
are the polynomial coefficients for increasing and decreasing

curves, ẋ and ẏ are the change in displacements.

III. VISUAL SERVOING FOR NANOPOSITIONING

Considering the problem of using feature tracking for vi-

sual servoing in a SEM, in this section we develop two visual

servoing methods for nanopositioning. The first method is

based on the concept of photometric visual servoing [8]

that uses the total image pixel intensities for minimizing

the positioning error. The platform control is directly linked

with the variation of pixel intensity values in the image.

The second method uses the concept of phase correlation in

the frequency domain to compute relative motion between

two frames. In this case, the control law is designed to

minimize the error i.e. the 2D motion between current and

desired frames by controlling the platform. Both methods are

explained below.

A. Intensity-based visual servoing

The traditional image-based visual servoing approaches

are based on minimizing the error e between current features

s(t) and desired features s
∗ i.e. e = s(t) − s

∗ [7]. In order

to design a vision-based control law, an interaction matrix L

that links the time variation of visual features ṡ with camera

instantaneous velocities v, (ṡ = Lv) is required. Using this,

the final control law is then given by (5).

v = −λL†
e (5)

where, λ being a positive value to ensure an exponential

decrease of the error and L
† is the pseudoinverse of L.
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Fig. 3. Cost functions for (a) intensity-based visual servoing (b) Fourier-
based visual servoing.

As mentioned, in this work we use the pixel intensities as

the visual features i.e. s = I. By considering all the pixels

in image f(x, y) of size M ×N , the visual feature vector is

s = I =
(
I(1,1), I(1,2)...I(M,N)

)⊤
(6)

where, I(u,v) is the intensity of a pixel at location (u, v) and

I is a column vector of size M ×N . Now, the error is e =
I−I

∗. If we consider the problem of error minimization as an

optimization problem, the primary goal will be to minimize

the cost C given by (7).

C = e
⊺
e = (I− I

∗)
⊺
(I− I

∗) (7)

When C is minimum, the current position corresponds to

the desired position. Fig. 3(a) shows the shape of the cost

function that has been computed offline. Now, the interaction

matrix LI that links the intensity variation with camera

instantaneous velocities can be derived by considering the

optical flow constraint equation (OFCE) as shown in [9]. For

one pixel at (x, y), it can provide a control upto 6 degrees

of freedom and is given by

LI(x,y) = − [∇IxLx +∇IyLy]1×6 (8)

where, ∇Ix and ∇Iy are the image gradients. Considering

the entire image and using (8), the time variation of visual

features is then given by

İ = [LI(1,1) . . . LI(M,N)]
⊤
v (9)

Upon computing the interaction matrix, the control law

given by (5) can be used. However, a more feasible solution

can be by using a control law derived of the form Levenberg-

Maquardt optimization technique given by (10) that helps in

better convergence [10].

v = −λc
Vp (H+ µdiag(H))

−1
LI

⊺
e (10)

where, λ and µ are positive gains, c
Vp is the transformation

matrix from camera frame Rc to platform frame Rp and

H = LI
⊺
LI is the Hessian matrix. In this work, the gain

λ is chosen to be adaptive, whose value changes with the

variance of error.

Now, the displacement d(x,y) of the platform is computed

using (11).

d(x,y) = vavgt (11)

where, vavg = v0+vcur

2 is the average velocity, v0 is initial

velocity, vcur is the current velocity and t is the time taken.

For each iteration, the displacement is updated as given by

(12) and the corresponding voltage computed from (1), (2),

(3) and (4) is used to move the platform.

dnew = dprev + dcur (12)

where, dnew,dprev and dcur are the updated, previous and

current displacements, respectively.

B. Fourier-based visual servoing

This method is based on estimating the motion between the

images in the Fourier domain. The main reason for choosing

Fourier domain is that with SEM imaging, the brightness and

contrast are not constant and it is known that Fourier-based

motion estimation is robust to these variations and noise.

1) Motion estimation between images: The translation is

estimated using the phase correlation method. It is based on

the Fourier shift property which states that the translation in

the spatial domain can be seen as the linear phase differences

in Fourier domain. Suppose, we have an image f∗(x, y)
acquired at desired location and f(x, y) is the displaced

version of f∗(x, y), then

f(x, y) = f∗(x+ δx, y + δy) (13)

Let, F∗(u, v) and F(u, v) be the Fourier transforms of

f∗(x, y) and f(x, y), respectively and are computed as

F(u, v) =

M−1∑

x=0

N−1∑

y=0

f(x, y)e−j2π{ux
M

+ vy

N } (14)

According to Fourier shift property

F(u, v) = F∗(u, v)e−j2π{ u
M

δx+
v
N

δy} (15)

Now, the translation is reflected in the exponential part. It

can be estimated by computing the normalized cross-power

spectrum Ĉ(u, v) given by (16).

Ĉ(u, v) =
F∗(u, v)F(u, v)

| F∗(u, v)F(u, v) |
= ej2π{

u
M

δx+
v
N

δy} (16)

where, F(u, v) is the complex conjugate of F(u, v). It is

normalized in order to compensate the intensity variations.

Now, (16) can be solved for overall translation (δx, δy). The

convenient way that is used in this work is to find the inverse

Fourier transform of (16) that results in a Dirac delta function

given by (17).

D(δx, δy) = F−1(Ĉ(u, v)) (17)

Finally, the 2D translation is computed by finding the max-

imum of (17).

(τx, τy) = argmax {D(δx, δy)} (18)

where, τx and τy are the estimated translations in x and y

directions, respectively. Similar to the translation, the rotation

can also be estimated by correlating the magnitude spectra.

However, it is not described in this paper since the platform

can be controlled only in x and y directions.



2) Control scheme: For positioning the platform, a control

scheme has been designed considering the 2D translation as

the visual features computed from the previous step. If in

case, the rotation is used, the resulting control can allow us

to decouple the control of rotation and translation (in our

case only translation is used). The current visual features

are

s(t) = [sv]
⊤ (19)

where, sv = [τx τy 0]
⊤

are the translations in x, y and z

(= 0) axes. The final objective is to drive the platform to the

desired location i.e. s∗ = [01×3]
⊤

. The task function (error)

e to be regulated is then given by

e = ev = s− s
∗ = [τx τy 0]

⊤
(20)

In this case, the shape of the task function that has been

computed offline by considering only 2D translation is shown

in the Fig. 3(b). By comparing the shape of cost functions

given by both methods, it is clear that the Fourier-based

method shows better convergence. This is mainly due to

its robustness to intensity variations. Now, the relationship

between time variation of visual features and the camera

instantaneous velocities is given by (21).

ṡ = ṡv = Lvvv(3×1) (21)

where, Lv is a 3× 3 interaction matrix (identity) to link the

linear velocity. By considering the exponential convergence

of the error i.e. ė = −λe, where λ is a positive gain value,

the control law is then given by

v = −λvLvev (22)

where, λv is positive translational gain. The final control used

is [
vx
vy

]
= −λv

c
VpLv

−1

[
τx
τy

]
(23)

where, vx and vy are the platform velocities in x and y

directions, respectively. Later, similar to the intensity-based

visual servoing, the displacements and voltages are computed

using (11), (12), (1), (2), (3) and (4).

IV. EXPERIMENTAL VALIDATIONS

Positioning has been performed on silicon microparts (see

Fig. 4) of dimensions 10 µm × 100 µm × 20 µm placed

on the micropositioning stage. The task is to position the

parts automatically in the desired location by controlling the

platform’s 2 degrees of freedom (xy plane). For demonstra-

tion, the desired location has been selected by an operator

using GUI. Once it is selected, the platform moves back to

its initial position (−19V,−19V ) from where the servoing

starts. Different experimental conditions that include optimal

scan speed, high scan speed and high magnification are tested

for both methods. For all tests, the SEM secondary electron

images of size 512 × 512 pixels are used. Here after, we

call intensity-based method as method-1 and Fourier-based

method as method-2 for simplicity.

Fig. 4. Silicon micropart used for the experiments.

Fig. 5. Series of images depicting method-1 at optimal scan speed. (a)
Selected desired position. (b) Initial image. (c) - (f) Errors at different
positions. (g) Final error.

A. Positioning task using the images acquired with optimal

scan speed

The initial experiments are conducted to perform a po-

sitioning task and to validate the proposed methods with

an optimal scan speed of 720 nanoseconds per pixel. The

magnification is fixed to 300×. For method-1, the user

selected desired voltages are 50V for x-channel and 60V
for y-channel. Fig. 5(a) and Fig. 5(b) show respectively the

images acquired at desired and initial positions for method-1.

Fig. 5(c) to Fig. 5(f) show error (I−I
∗) at different locations.

Fig. 5(g) shows final error at the end of positioning task.

Platform displacement and cost variations during this test

are shown in Fig. 6(a) and Fig. 6(b) respectively. Similarly,

for method-2, an initial voltage of 50V has been selected

for both channels and Fig. 7(a) shows the image acquired at

this location. Fig. 7(b) shows initial image in visual servoing

process and Fig. 7(c) to Fig. 7(f) show the subtracted images

of reference and current images (visual representation of

error) during the process. Fig. 7(g) shows the error at final

location. The displacement and error variations during the
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Fig. 6. (a) Displacement (b) cost variations during the positioning task
with method-1 using optimal scan speed.



Fig. 7. Sequence of images acquired with method-2 at optimal scan speed.
(a) Desired location. (b) Initial image in the process. (c) - (f) Errors at
different positions. (g) Final error.
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Fig. 8. (a) Displacement (b) error variations with method-2 using optimal
scan speed.

process are shown in Fig. 8. From the obtained results, it

can be seen that both the methods succeeded in reaching the

desired position; however, method-2 shows better accuracy.

B. Positioning task using the images acquired with increased

scan speed

Second tests are performed with an increased raster scan-

ning speed where the image noise is more. It has been

performed to check the method’s efficiency in reaching the

desired position at noisy conditions. For this test a scan

speed of 360 nanoseconds per pixel (maximum allowed)

has been used. The selected desired voltages for method-

1 are 50 V and 60 V for x and y channels respectively.

Fig. 9(a) and Fig. 9(b) show the initial image and initial

error during the visual servoing process and Fig. 9(c) shows

the final error. Displacement and cost variations during this

test are shown in Fig. 11(a) and Fig. 11(b) respectively.

For method-2, 40 V and 50 V are selected respectively

for x and y channels. Fig. 10(a), Fig. 10(b) and Fig. 10(c)

show respectively the initial image, initial error and final

error during the visual servoing process using method-2. The

displacement and error variations are shown in Fig. 12. From

Fig. 9. (a) Initial image (c) error at initial position (d) error at final position
during the nanopositioning task using method-1 at high scan speed.

Fig. 10. (a) Image acquired at initial position (b) initial error (c) error
during the nanopositioning task using method-2 at high scan speed.

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

Iterations

D
is

p
la

c
e

m
e

n
t 

(µ
m

)

 

 

X−disp

Y−disp

(a)

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

Iterations

C
o

s
t 

(e
T
e

)

(b)
Fig. 11. (a) Displacement (b) cost variations during the positioning task
with method-1 using high scan speed.

the obtained results, despite having high image noise, both

methods reached the desired location. However, similar to

the previous test, method-2 shows better performance.

C. Positioning task with high magnification

Final experiments are conducted to perform the position-

ing task at a high magnification of 800×. Simultaneously,

both methods are also validated with increased scan speed

at the selected magnification. The selected scan time is 360
nanoseconds per pixel. The desired voltages selected for

method-1 are 30 V and 60 V respectively for x and y

channels. Fig. 13(a), Fig. 13(b) and Fig. 13(c) show the initial

image, error at initial position and final error respectively.

Displacement and cost variations during this test are shown

in Fig. 15(a) and Fig. 15(b) respectively. For method-2, the

selected voltages are 40 V and 50 V respectively for x and y

channels. Fig. 14(a), Fig. 14(b) and Fig. 14(c) show the initial
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Fig. 12. (a) Displacement (b) error variations with method-2 using high
scan speed for image acquisition.

Fig. 13. (a) Image at initial position (b) initial error (c) final error during
the nanopositioning task using method-1 at high magnification (800×).



Fig. 14. (a) initial image (b) initial error (c) final error during the
nanopositioning task using method-2 at high magnification (800×).
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Fig. 15. (a) Displacement (b) cost variations during the positioning task
with method-1 using high magnification.

image, error at initial position and final error respectively.

The displacement and error variations are shown in Fig. 16.

The obtained results clearly demonstrate that the posi-

tioning task has been successfully accomplished at high

magnification.

D. Accuracy of positioning

Since the existing system (SEM) does not allow using

any external displacement measuring devices like laser in-

terferometers, in this work, the positioning accuracy has

been measured directly from the images. Eventhough, the

estimated accuracy is not reliable (due to the presence of

noise); it has been computed to demonstrate the efficiency of

the methods in performing a nanopositioning task. Besides, it

depends on the magnification used (from (24)) and increases

with increase in the magnification. The accuracy is estimated

using the final error image by multiplying the number of

error pixels with pixel dimension on the sample. The pixel

dimension P on the sample is computed using (24).

P =
D

G
[µm] (24)

where, D is the pixel dimension on the screen (constant) and

G is the magnification. With our system, the computed D

value is 212.3 for a screen size of 512 × 512 pixels. The

accuracies computed with different tests demonstrated above
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Fig. 16. (a) Displacement (b) error variations with method-2 at high
magnification (800×).

TABLE I

ESTIMATED POSITIONING ACCURACY (µm) ACHIEVED BY BOTH

METHODS.

Condition
Method-1 Method-2

x (µm) y (µm) x (µm) y (µm)

Optimal speed 0.707 1.414 0.707 0.707

High scan rate 1.061 2.123 0.707 0.707

High magnification 0.398 0.5307 0.265 0.265

are summarized in table I. The obtained results clearly show

that method-2 provides good accuracy in positioning.

V. CONCLUSION

An automatic nanopositioning task of silicon microstruc-

tures using a SEM has been presented in this work. It has

been accomplished using two approaches of visual servoing.

The first method is a photometric approach where all the

gray level intensities of an image are used as visual features.

The error variation and platform movement are directly

linked with the intensity variation. The second method is

based on estimating the 2D motion between images using

image frequency spectral information. Both the methods are

validated at different experimental conditions. Even though

both methods succeeded in accomplishing the overall task,

Fourier-based method shows better behaviour and accuracy.

This is mainly due to its nature of robustness to image

noise and intensity variations (that is high in case of SEM

imaging). The future work will concentrate on using the

developed approaches for positioning a 3 degrees of freedom

micromanipulator containing a microgripper to perform a

complete nanomanipulation task.
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