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Scanning Gate Microscopy of Quantum Contacts
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Gabriel Lemarié
Laboratoire de Physique Théorique, UMR-5152, CNRS and Université de Toulouse, F 31062 France

We study the conductance g of an electron interferometer formed in a two dimensional electron gas
between the charged tip of a scanning gate microscope and a nanostructured quantum contact. If the
contact transmission exhibits successive resonances, we show that the images giving g as a function
of the tip position can exhibit novel interference rings in addition to Fabry-Pérot interference fringes
spaced by half the Fermi wavelength. This is due to a beating effect between the contribution of
two successive transmission peaks to g and can be observed when the contact is opened between
the peaks at a temperature of the order of the inter-peak energy spacing. We analytically study
two contacts exhibiting the required double-peak structure: (i) The first one is made of a single
quantum impurity with a parallel magnetic field, the spin degenerate Breit-Wigner resonance of its
transmission being split by Zeeman effect; (ii) The second one is made of an inversion-symmetric
double dot setup, where the pseudo-spin degeneracy is broken by the inter-dot coupling. Numerical
studies of a quantum point contact with quantized conductance plateaus confirm that similar beating
phenomena can be seen near a spin-split channel opening, when a parallel magnetic field is applied.

PACS numbers: 07.79.-v, 72.10.-d 73.63.Rt

Scanning gate microscopy (SGM) is a tool which al-
lows to probe by electron interferometry1 the properties
of nanostructures created in a two-dimensional electron
gas (2DEG). Using charged gates deposited on the sur-
face of a semi-conductor heterostructure, one can divide
the 2DEG beneath the surface in two parts connected via
a more or less simple contact region. This region can be

gate

FIG. 1: (Color online) Scanning gate microscopy of a quan-
tum contact: Metallic gates (yellow) create in the 2DEG
(blue) beneath the surface a nanostuctured contact (green)
which divide the 2DEG into a left and right parts. The de-
pletion region induced by a scannable charged tip (green disk)
and the contact form a 2d electron interferometer. The SGM
images give the interferometer conductance as a function of
the tip position.
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a quantum point contact2,3 (QPC) as sketched in Fig. 1,
a quantum dot4–6, a double dot setup7,8 or more complex
nanostructures. With the charged tip of an atomic force
microscope above the surface of the heterostructure, a de-
pletion region can be capacitively induced in the 2DEG
below the surface at a distance r from the contact. Scan-
ning the tip outside the contact, one can record SGM
images where a color code gives the conductance g of
the resulting electron interferometer as a function of the
tip position. These images exhibit Fabry-Pérot interfer-
ence fringes spaced by half the Fermi wavelength λF /2,
as observed by Topinka et al9 using a QPC opened on
its first conductance plateau. This has led to revisit the
theory of the 2d electron interferometers10–17 made with
a QPC. These studies have shown that a very rich variety
of interference phenomena can be observed if one scans
a gate near a quantum contact. The interference pattern
depends on the opening of the contact, on the presence of
electron-electron interaction effects12 inside the contact,
and can exhibit a non trivial temperature dependence,
as pointed out in Ref.14. At the same time, experimen-
tal SGM studies of QPCs performed at lower tempera-
tures have revealed unexpected interference effects: (i)
The interference fringes at 300mK exhibit18 successive
regions of enhanced and reduced contrasts as the distance
r between the QPC and the tip increases, with an unex-
plained increase of the spacing between the fringes when
r ≈ 0.5µm; (ii) A very recent SGM study19 at 20mK
shows that one can control the 0.72e2/h anomaly of a
QPC with a scanning gate, revealing possible relations
with Wigner and Kondo physics.

In this paper, we discuss novel interference effects
which characterize simple models where the interaction
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effects are neglected. The role of electron-electron inter-
action inside the contact will be considered in a second
paper, both in the perturbative and in the non perturba-
tive (Kondo) regimes. In a previous work14, a non inter-
acting lattice model where the contact between two semi-
infinite lattices is made of a single site (Resonant Contact
Model (RCM)) was analytically solved. The transmission
of such contact exhibits a single Breit-Wigner resonance.
If it is opened at resonance, the contact is almost trans-
parent for the electrons at the Fermi energy, and the
interference fringes become weakly visible as the temper-
ature T → 0. This is only when T is sufficiently large
that the electrons of energy around EF start to be re-
flected by the contact and that the interference fringes
start to be more visible. Such thermal enhancement of
the interference fringes was numerically observed for a
saddle point contact characterized by quantized conduc-
tance plateaus, if it is opened at the edges of the conduc-
tance plateaus. In this work, we study other thermally
induced interference phenomena which can be seen if the
contact transmission has at least two transmission res-
onances instead of a single one and if one opens it be-
tween these two resonances. A straightforward example
is provided by the previously studied RCM model when
the spin degeneracy of its resonance is lifted by a paral-
lel magnetic field. We will consider the cases where the
field is applied everywhere and only inside the contact.
Another example is given by a lattice model where the
contact is made by two sites in series instead of a single
one. Such model suitable for modeling a contact made
of a double-dot setup, exhibits a double peak structure
of its transmission. When the two dots are identical and
decoupled, there is a pseudo-spin degeneracy caused by
the inversion symmetry of the model. In this second ex-
ample, the inter-site hopping term in the contact plays
the role of a magnetic field, and its transmission has two
peaks without having to apply a magnetic field.

Using those models, we will show that interference
rings can be observed in the SGM images when the
contact is opened between two successive transmission
resonances. These rings are not spaced by λF /2, but
by other spacings for which we give analytical expres-
sions. Measuring these spacings, one can determine by
electron interferometry either the magnetic field in the
first example, or the inter-dot coupling in the second ex-
ample. The ring pattern is due to a beating effect be-
tween the contributions of transmission peaks of different
spins (RCM model with field) or pseudo-spins (double-
dot setup) to the SGM images. As in Ref.14, we will even-
tually show that the interference mechanisms which can
be analytically described for contacts exhibiting Breit-
Wigner transmission peaks remain relevant for saddle-
point contacts having a staircase energy dependence of
their transmission with quantized number of transmis-
sion channels. This is numerically illustrated taking a
QPC opened near a channel opening, when the spin de-
generacy is lifted by a parallel magnetic field.

FIG. 2: (Color online) Lattice model for the SGM of a QPC:
Two semi-infinite square lattices (leads) are contacted by a
region of length 2Lx + 1 and width 2Ly + 1. In the con-
tact region ((−Lx ≤ ix ≤ Lx)), the potential at a site i

of coordinates (ix, iy) is taken infinite (blue sites) if |iy| ≥
(Ly − k) + k (ix/Lx)

2 (Here Lx = Ly = 3 and k = 2). The
depletion region induced by the charged tip is reduced to a
single site of coordinates (x, y) with a potential V −4t. With-
out tip (V = 0), the QPC transmission T0(E) is given by a
staircase function, each channel opening giving rise to a new
step.

I. LATTICE MODELS FOR QUANTUM

CONTACTS

For studying the 2D interferometer formed in a 2DEG
between a QPC and the depletion region induced by
a scanning gate microscope, we will use lattice models
where two semi-infinite square lattices (leads) are con-
nected by a small contact region of length 2Lx + 1 and

maximum width 2Ly +1. ciσ (c†iσ) being the destruction
(creation) operator of an electron of spin σ at site i of

coordinates (ix, iy), and niσ = c†iσciσ, the Hamiltonians
of the left (ix ≤ −Lx) and right (ix ≥ Lx) leads read

Hleads =
∑

i,σ



−4tniσ + t
∑

j

c†iσcjσ



+H.C. (1)

The hopping terms are non-zero between nearest neigh-
bors sites i, j only. The energy scale is defined by taking
t = −1, such that the conduction bands of the leads are
in the energy interval [0, 8] when the site potentials are
equal to −4t. Hereafter, we will study the continuum
limit (E ≪ 1). The Hamiltonian of the contact reads

Hcontact =
∑

i,σ



(Vi − 4t)niσ + t
∑

j

c†iσcjσ



+H.C. (2)
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The summations are restricted to −Lx ≤ ix ≤ Lx

and to −Ly ≥ iy ≤ Ly. Moreover, the site poten-
tials Vi are taken infinite inside the contact region if
|iy| ≥ (Ly−k)+k (ix/Lx)

2
, where k is a parameter. This

restricts the electron motion inside a smoothly opening
region known to favor a sharp opening of the conduc-
tance channels as one increases the energy. A smooth
opening reduces also the interference effects induced by
the back-scattering of electron waves leaving the contact
region, effects which induce oscillations in the transmis-
sion function T (E). The Hamiltonians describing the
coupling between the contact and the two leads read

H l
c = tc

Ly
∑

iy=−Ly,σ

(

c†(−Lx,iy)σ
c(−Lx−1,iy)σ +H.C.

)

,(3)

Hr
c = tc

Ly
∑

iy=−Ly,σ

(

c†(Lx,iy)σ
c(Lx+1,iy)σ +H.C.

)

. (4)

In this simplified model, the QPC Hamiltonian reads
H0 = Hcontact +

∑

j=l,r(H
j
c +Hj

leads). The QPC trans-

mission T0(E) is a staircase function, each stair taking
an integer value which counts the number of open chan-
nels. To describe the depletion region induced by the
charged tip, a term Htip(x, y) =

∑

σ V nTσ is added to
H0, which modifies by an amount V the potential −4t
of a single site T of coordinates (x, y) located at a dis-

tance r =
√

x2 + y2 from the contact. The interferome-
ter Hamiltonian reads H = H0+Htip(x, y). Fig. 2 shows
such an interferometer when Lx = Ly = 3 and k = 2.

Before studying the SGM of a QPC when Lx and Ly

are large, it is very instructive to study the limit shown
in Fig. 3 where the contact is reduced to a single site I of
coordinates (0, 0) and potential −4t+VI. This defines the
resonant contact model (RCM) which can be solved ana-
lytically14 when the width of the leads becomes infinite.
As one varies the energy E for tc ≪ 1 and V = 0, the
RCM transmission function T0(E) exhibits a single spin-
degenerate Breit-Wigner resonance, and not the usual
staircase function which characterizes the QPC conduc-
tance quantization.

II. SGM OF THE RESONANT CONTACT

MODEL

A. RCM model: Spin-degenerate case at T = 0

Let us first study analytically the SGM of the RCM
model where the contact is made with a single site (Lx =
Ly = 0). Without tip, the transmission of an electron of
spin σ and energy E through the RCM contact is given
by the Fisher-Lee formula20:

T σ
0 (E) = Tr

[

Γl(E)GR
0 (E)Γr(E)GA

0 (E)
]

, (5)

FIG. 3: (Color online) SGM of the Resonant Contact Model
(RCM): Two semi-infinite square lattices are contacted via
a single site I of coordinates (0, 0), potential VI and coupling
term tc. Adding a potential V at a site T of coordinates (x, y)

gives rise to an electron interferometer of size r =
√

x2 + y2.

where GR
0 is the retarded Green’s function of the contact

dressed by the right (r) and left (l) leads:

GR
0 (E) = lim

η→0+
(E + iη − 4− VI − ΣR

l − ΣR
r )

−1 . (6)

The contact being reduced to a single site I coupled to
another single site per lead, the lead self-energies Σl,r(E)
are only two complex numbers Σl,r(E) = Rl,r(E) +
iIl,r(E) = t2c < ±1, 0|GR

l,r(E)| ± 1, 0 >, GR
l,r(E) being

the retarded Green’s function of the left and right leads
evaluated at the sites directly coupled to I. The cou-
pling rates to the right and left leads verify: Γr,l =
i(ΣR

r,l − ΣA
r,l). Using the method of mirror images21,

GR
l,r(E) can be expressed in terms of the Green’s function

GR
2d(E) of the infinite 2d square lattice22. Without tip

(V = 0), one gets:

T σ
0 (E) =

4IrIl
(E − 4− VI −Rr −Rl)2 + (Ir + Il)2

. (7)

If the variation of Σl,r(E) can be neglected when E varies
inside the resonance (typically tc < 0.5 in the continuum
limit where the Fermi momentum kF ≪ 1), this is a
Lorentzian of width Γ = −2I and center 4 + VI + 2R
since Rl = Rr ≡ R and Ir = Il ≡ I.
If one adds a tip potential V 6= 0 in the right lead, the

effect of the tip can be included by adding an amount
∆Σr(E) = ∆Rr(E) + i∆Ir(E) to Σr(E) (see Refs.14,23).
The interferometer transmission T σ(E) is still given by
Eq. (7), once Rr +∆Rr and Ir +∆Ir have been substi-
tuted for Rr and Ir. The effect of the tip being restricted
to a single site T, ∆Σr can be obtained from Dyson’s
equation for Gr+V (E) the Green’s function of the right
lead with the tip potential:

< 1, 0|GR
r+V (E)|1, 0 >=< 1, 0|GR

r (E)|1, 0 >

+
< 1, 0|GR

r (E)|T > V < T|GR
r (E)|1, 0 >

1− V < T|GR
r (E)|T >

(8)

In the continuum limit and for distances r ≫ k−1
F , one
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finds:

∆Σr

t2cρ
≈ −kFx

2

2πr3
exp[i(2kF r + π/2 + φ)] +O(

x3/2

r3
), (9)

where ρ and φ are the modulus and the phase of
the amplitude of diffusion of the tip potential V/(1 −
V 〈0, 0|GR

2d(E)|0, 0〉). In the continuum limit, one can
also approximate I ≈ −t2ck

2
F /4. Therefore, at sufficiently

large distances r ≫ λF /2, ∆ΣR
r (E) ≪ I and one can ex-

pand T σ(E) to the leading order ∝ x2/r3 in ∆Σr:

T σ(E)− T σ
0 (E)

T σ
0 (E)

≈ −s
√

T σ
0 (E)(1− T σ

0 (E)) ∆Rr(E)
I

+(1− T σ
0 (E)) ∆Ir(E)

I , (10)

where s = sign[V res
I − VI] and V res

I ≡ E − 4− 2R is the

value of VI where T ↑
0 = T ↓

0 = 1. This leads to the simple
prediction:

T σ(E)− T σ
0 (E)

T σ
0 (E)

≈ A0 cos(2kF r +Φ0) +O

(

x3/2

r3

)

(11)

where the amplitude A0 = 2ρ
πkF

x2

r3 sin ζ0 decreases as x2

r3 ,

the phase Φ0 = π/2+φ−ζ0 and sin ζ0 = −s
√

1− T σ
0 (E).

Eq. (11) describes the Fabry-Pérot fringes spaced by

λF /2 and their decay with r, assuming T σ
0 (E) < 1. One

needs to take into account corrections of higher order14

when T σ
0 (E) ≈ 1, a limit which we will not consider in

this work.

B. RCM model: Spin-degenerate case at T 6= 0

Let us now study the effect of the tip upon the con-
ductance in units of e2/h at a temperature T :

∆g = g − g0 =
∑

σ

∫

dE(T σ(E)− T σ
0 (E))(− ∂f

∂E
), (12)

where f is the Fermi-Dirac distribution. We shall con-
sider in the following the case of a sharp Lorentzian res-
onance (tc < 0.5) of the transmission T σ

0 (E). Then,
R and I do not vary rapidly inside the resonance. In
the same way, the amplitude of diffusion of the tip,
characterized by ρ and φ, vary slowly inside the reso-
nance and thus can be considered as constants. In order
to calculate the integral (12) analytically, we make the
approximation10 −∂f/∂E ≈ (1/4kBT ) exp−[

√
π(E −

EF )/(4kBT )]2, where EF and kB are the Fermi energy
and the Boltzmann constant. Then, we obtain that
∆g = D1 +D2 where:

D1 ≈ 2ρ

π3/2kF

x2

r3
lT
lΓ

ℜ
[

ei(2kF r+φ+π/2)

∫ ∞

−∞

q + v

[1 + (q + v)2]
2 e

−
(

lT
lΓ

q
)

2

e
i r
lΓ

q
dq

]

, (13)

D2 ≈ 2ρT
π3/2kF

x2

r3
lT
lΓ

ℑ
[

ei(2kF r+φT+π/2)

∫ ∞

−∞

(q + v)2

[1 + (q + v)2]
2 e

−
(

lT
lΓ

q
)

2

e
i r
lΓ

q
dq

]

. (14)

v ≡ (V res
I − VI)/Γ gives the energy shift of VI from the

resonance V res
I in units of Γ, and q = (E−EF )/Γ. lT and

lΓ are the two length scales associated respectively to T
(Fermi-Dirac statistics) and to Γ (resonant transmission):

lT =

√
πkF

4kBT
(15)

lΓ =
kF
Γ

. (16)

Calculating the Fourier transforms D1 and D2, we even-
tually obtain the following results:

∆g(T ) ≈ 2A(T ) cos(2kF r +Φ(T )) , (17)

where in the large distance regime r > r∗ ≡ 2lT [1 +
lT (1 + |v|)/lΓ]:

A(T ) =
ρx2lT√
πkF r3

exp−[(1 + v2)(
lT
lΓ

)2 +
r

lΓ
] (18)

Φ(T ) = φ+ v
r

lΓ
− 2v(

lT
lΓ

)2. (19)

The factor 2 in ∆g(T ) comes from the spin degeneracy.
In Fig. 4, one can see that the above expressions repro-
duce accurately the numerical results without adjustable
parameters.

C. RCM model: Effect of a parallel magnetic field

Let us consider now the case where a uniform paral-
lel magnetic field is applied upon the 2DEG. The spin
degeneracy is broken and the electrons of opposite spin
have energies which are shifted (Eσ → E(h = 0) ± h)
and which contribute to transport with different wave-
vectors. When EF is small enough, we can use the con-
tinuum dispersion relation kσ =

√
Eσ. If the Zeeman

energy h remains small compared to EF , the 2DEG is
not fully polarized. In Fig. 5, the conductance g0 of the
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RCM contact is given as a function of the contact po-
tential VI . One can see how the spin degenerate peak
of conductance (h = 0) of width Γ is split by the field
(h = 8Γ) for increasing values of T . Hereafter, we study
the SGM image at the symmetric point indicated by an
arrow, where VI = V res

I (h = 0).
The relative effect of the tip upon the transmission of

an electron of spin σ at an energy E becomes,

T σ(E)− T σ
0 (E)

T σ
0 (E)

≈ Aσ
0 cos(2k

σ
F r +Φσ

0 ) +O

(

x3/2

r3

)

(20)

where Aσ
0 = (2ρσ)/(πkσF )(x

2/r3) sin ζσ0 , Φ
σ
0 = π/2+φσ −

ζσ0 , sin ζσ0 = −sσ
√

1− T σ
0 (E) and sσ = sign(V res

I −
VI). If the contact is opened in the middle be-

tween the two transmission peaks, s↑ = −s↓, sin ζ↑0 =

− sin ζ↓0 . The contribution of electrons of opposite spins
to

∑

σ(T
σ(E)−T σ

0 (E))/T σ
0 (E) have opposite signs when

the tip is put at a distance

rD =
2πn+ (φ↓ − φ↑) + (ρ↑ − ρ↓)

2(k↑F − k↓F )
, (21)

where n is integer (0, 1, 2, . . .). At a temperature T = 0,
this means that the SGM image of a contact opened be-
tween its two transmission resonances exhibits a pattern
of rings of radii rD, where the beating between the con-
tribution of opposite spin is destructive. In contrast, the
beating becomes constructive on rings of radii rC . If we
neglect the spin dependence of the transmission without
tip at the symmetric point, (T σ

0 ≈ T0)) these radii are
given by

rD(n) ≈ πn+ arcsin(
√
1− T0)√

EF + h−
√
EF − h

(22)

k
 F
 x /  π

 ∆
 g

0

0.05

-0.05

0 5 10 15 20 25 30

FIG. 4: (color online) SGM of the RCM model at a tem-
perature T = 0.5Γ: Numerical calculations (black points) of
∆g(x, y = 0) as a function of kFx/π. The numerical results
coincide with the analytical results (red line - Eq. (17)) with-
out adjustable parameters. lT = 7λF /2 and lΓ = 16λF /2 for
EF = 0.1, V = −2 (i.e. ρ ≈ 3.91, φ ≈ −1.71, kF ≈ 0.317),
tc = 0.2 and v = 0.5).

−3.8 −3.78 −3.76
0

1

2

V
 I

g
0

FIG. 5: (Color online) RCM Conductance g0 (in units of e2/h)
without field (h = 0, solid line) and with field (h = 8Γ, dashed
line) as a function of VI for T = 0 (blue) T = Γ/2 (green) and
T = Γ (red). There is no tip (V = 0) and Γ = 0.003 (tc =
0.2 and EF = 0.15). The parallel magnetic field is applied
everywhere and a small asymmetry can be seen between the
right and left peaks. The arrow gives the symmetric point
where the SGM images are studied.

rC(n) ≈ (n+ 1/2)π + arcsin(
√
1− T0)√

EF + h−
√
EF − h

. (23)

In Fig. 6, one can see how looks an SGM image taken
with a parallel magnetic field at T = 0: The Fabry-Perot
fringes spaced by λF /2 are modulated by the beating ef-
fect between the contribution of opposite spins. We can
see the three first rings at the expected radii rD(n) with
n = 0, 1, 2, where the effect of the tip upon the inter-
ferometer conductance disappears, separated by regions
centered around rings of radii rC(n) where the visibility
of the fringes is enhanced by the applied magnetic field.
When the temperature T 6= 0 but satisfies the condi-

tion T /Γ ≪ v, the expressions can be simplified if r ≪
2lT [1 + (lT /lΓ)(1 + |v|)]. One finds that the SGM im-
ages are roughly identical to those described by Eq. (20)
for T = 0 within a circle of radius lT , and suppressed
outside (see Fig. 7).

∆g(T , h) ≈ ∆g(T = 0, h) exp−(
r

2lT
)2 . (24)

At higher temperatures (T /Γ ≥ v) and larger dis-
tances r ≫ 2lT [1 + (lT /lΓ)(1 + |v|)], ∆g(T ) is given by
∑

σ A
σ(T ) cos(2kσF r + Φσ(T )) where Aσ(T ) and Φσ(T )

are defined in Eq. (18) and Eq. (19) with σ-dependent
variables. One finds that the interference fringes of each
spin orientation cancel on rings of radii

rD(n) =
π(1 + 2n) + 2 [∆ṽ −∆φ]

2∆kF +∆w
, (25)
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FIG. 6: (Color online) Zero temperature and parallel mag-
netic field applied everywhere: Relative effect (upper color
scale) of the tip (V = −2) upon the RCM transmission
∆T/T0 as a function of tip coordinates (x, y). Zeeman en-
ergy h = 4Γ ≈ 0.0119, tc = 0.2 and EF = 0.15. The contact
potential has the value VI indicated by the arrow in Fig. 5
(symmetric point) where T0 = 0.12 and Γ ≈ 0.003.

−0.1

0

0.1

−0.1

0

0.1

∆
 g

50 100 150 200 250 300
−0.1

0

0.1

x

(a)

(b)

(c)

FIG. 7: (Color online) RCM contact in the presence of a par-
allel magnetic field h = 4Γ ≈ 0.0119 applied everywhere: ∆g
as a function of the tip coordinates (x, y = 0) with EF = 0.15,
V = −2, tc = 0.2 and Γ ≈ 0.003. The figures (a) T = 0, (b)
T = 10−4, (c) T = 8× 10−4 are in the regime T /Γ ≪ v. The
location rD(n) of the destructive interferences is independent
of the temperature T , in agreement with Eq. (24).

where ∆ṽ =
[

v(lT /lΓ)
2
]↑ −

[

v(lT /lΓ)
2
]↓
, ∆φ = φ↑ −

φ↓, ∆kF = k↑F − k↓F and ∆w = [v/lΓ]
↑ − [v/lΓ]

↓
. n =

0, 1, 2, . . . is an integer.

0

1

2

I
V

−3.84 −3.82 −3.8

g
0

FIG. 8: (Color online) RCM contact with a magnetic field
restricted to the contact. Conductance g0 (in units of e2/h)
without tip (V = 0, tc = 0.2, and Γ = 0.003) as a function of
VI for T = 0 (blue) T = Γ/2 (green) and T = Γ (red). The
Zeeman term shifts only the potential of the contact VI → VI±
h: Cases with (h = 0, solid line) and without spin degeneracy
(h = 4Γ, dashed line). The arrow gives the potential VI where
the effect of the tip will be studied (symmetric point).

D. RCM model: Effect of a parallel magnetic field

restricted to the contact

Let us consider now the case where a local parallel mag-
netic field is not applied upon the leads, but only upon
the contact. This removes the spin degeneracy in the con-
tact by a local Zeeman term ±h. This implies to shield
the applied field outside the contact. An alternative way
of having a local Zeeman term would consist in taking
an Anderson impurity for the contact (the RCM model

plus a local Hubbard interaction Un↑
In

↓
I in the contact).

In that case, a spontaneous magnetic moment would be
created in the contact if U > Γ for temperatures in the
range TK < T <

√
UΓ, TK being the Kondo tempera-

ture. Such a case without an external applied field will
be discussed in a following paper. Here, we consider the
simpler case where a local Zeeman term is induced by
an applied field. Its effect upon the conductance g0 of

the contact is illustrated in Fig. 8, g↑0(T ) having a peak
shifted by an amount v↑ = −h/Γ (electron with parallel
spin) while the shift is v↓ = h/Γ for the antiparallel spin.
In contrast to the case where the field is applied every-
where, kF and hence lT and lΓ do not depend on σ, while
∆φ = 0. Moreover one has v↑ = −v↓ at the symmetric
point indicated by an arrow in fig. 8. This allows us to
simplify Eq. (25) and to obtain

rD(n) =
2kF
Γ

(
lT
lΓ

)2 + (n+
1

2
)
πkF
h

, (26)

(n = 0, 1, . . .) for the radii of the rings where the effect of
the tip is suppressed by the magnetic field. Conversely,
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FIG. 9: (Color online) RCM contact with a Zeeman term
h = ±0.0136 in the contact. EF = 0.15 and λF /2 = 8.1.
∆g/g0(T

∗,Γ∗) as a function of the coordinates (x, y) of the
tip (potential V = −2). T ∗ = 0.0099, Γ∗ = 0.0035. The
parameters have been chosen such that the radius (Eq. (26))
of the first ring rD(n = 0) = 50.

the oscillations of ∆g↑(T ) and ∆g↓(T ) add if the dis-
tance r is given by rC(n) = rD(n)+πkF /(2h). The SGM
image giving ∆g(T ) as a function of the tip position is
characterized by a first ring at a distance rD(n = 0) fol-
lowed by other rings spaced by πkF /h where ∆g(T ) = 0.
To optimize the contrast in the images, we calculate for a
given value of h the temperature T ∗ and the width Γ∗ for
which ∆g(T , r = rC(n = 0)) is maximum. The extrema
are given by the conditions ∂A/∂lΓ = 0 and ∂A/∂lT = 0.
One obtains two coupled non-linear algebraic equations
which can be solved numerically, yielding T ∗ ≈ 0.73h
and Γ∗ ≈ 0.25h. Let us note that the observation of the
rings in the pattern of Fabry-Pérot fringes is only pos-
sible if their spacing exceeds λF , i. e. if h < (π/λF )

2.
In Fig. 9, one can see an SGM image exhibiting the ring
pattern induced by a local Zeeman term h when T = T ∗

and Γ = Γ∗. Eventually, we show in Fig. 10 how the
radii of the rings where the effect of the tip is suppressed
by a local field depend on T and h. For a fixed value of
Γ, one can see how rD(n) → ∞ when T → 0 or h → 0,
making impossible to observe the pattern of rings in the
SGM image.

In Fig. 11, ∆g(x, y = 0)/g0 is shown as one varies the
coordinate x of the tip in the presence of a field acting
on the contact. One can see the pattern of interferences
characterizing three different values of h, when the tem-
perature T and the resonance width Γ take their optimal
values T ∗ and Γ∗.
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FIG. 10: (Color online) RCM contact with local field and
Γ = 0.003: Radii rD(n) of the rings for n = 0, 1, 2 and 3 as a
function of T (left, h = 0.01) and of the local Zeeman term
h (right, T = 0.0028). The dots are obtained numerically,
their colors corresponding to a visibility scale indicated at
the right (0 without contrast, 1 for the best contrast). The
solid lines give the analytical expression (26) for rD(n) which
was derived assuming rD(n) > r∗.
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FIG. 11: (Color online) RCM contact with a Zeeman term h
in the contact: ∆g/g0(T

∗,Γ∗, y = 0) is plotted as a function
of x for a tip potential V = −2. EF = 0.1542 and λF /2 = 8.
(a): h = 0.0136, T ∗ = 0.0099, Γ∗ = 0.0035 (b): h = 0.0091,
T ∗ = 0.0066, Γ∗ = 0.0023; (c): h = 0.0068, T ∗ = 0.005,
Γ∗ = 0.0017.

Let us underline the difference between the effect of a
field restricted to the contact or applied everywhere. In
the first case (see Eq. (26)), the first ring has a radius
rD(n = 0) → ∞ as T → 0: The first destructive in-
terference cannot be seen. It is only when one increases
T → T ∗ that rD(n = 0) becomes small enough and that
the destructive interference caused by a local field can be
seen. In the second case, Eq. (24)) implies that the pat-
tern of rings does not depend on the temperature when
r ≪ lT and can be seen even when T → 0. Illustrations
of the differences of the SGM images when a field is ei-
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FIG. 12: (Color online) RCM contact with parallel magnetic
field h = 0.0136, EF = 0.1542, Γ∗ = 0.0035 and λF /2 = 8:
For a temperature T = 0, ∆g(x, y = 0) is plotted as a function
of x for a tip potential V = −2. Fig. (a): The field is applied
only inside the contact and no beating effect can be observed,
since rD(n = 0) → ∞ when T → 0. Fig. (b): The same field
is applied everywhere and the beating effect is very visible
when T → 0.
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FIG. 13: (Color online) RCM contact with parallel magnetic
field h = 0.0136, EF = 0.1542, Γ∗ = 0.0035 and λF /2 = 8:
For a temperature T ∗ = 0.0099, ∆g(x, y = 0) is plotted as a
function of x for a tip potential V = −2. (a): Magnetic field

inside the contact only (k↑
F = k↓

F ). (b): Magnetic field every-

where (k↑
F 6= k↓

F ). The difference of periodicity and frequency
are mainly due to the field dependence of kσ

F .

ther applied everywhere or restricted to the contact are
given in Fig. 12 for zero temperature and in Fig. 13 for
a finite temperature.

III. SGM OF A DOUBLE-DOT SETUP

Instead of using a magnetic field for breaking the spin
degeneracy of a single resonance, let us now show that
a contact characterized by a double-peak structure of its

FIG. 14: (Color online) Scheme of the SGM of a contact made
of two coupled identical quantum dots.

transmission without magnetic field gives rise also to a
similar pattern of interference rings when it is opened
between the transmission peaks. Instead of the previous
single-site contact, let us consider a contact made of two
sites of potentials VI −4t coupled by an hopping term td.
This gives rise to a two-level system which is often used8

to describe electron transport through double quantum
dots. A simplified lattice model relevant for describing
the SGM of two well-separated identical quantum dots
created in a 2DEG with a finite tunnel coupling between
their levels is shown in Fig. 14. As before, the deple-
tion region induced by the charged tip is described by a
scattering site in the right lead.
Taking again t = −1, the Green function of this model

is now given by a 2× 2 matrix which reads

G(E) =

[

E − 4− VI − Σl(E) −td
−td E − 4− VI − Σr(E)−∆Σr

]

where Σr,l = R + iI are the lead self-energies previously
introduced for the RCM contact, ∆Σr being the change
induced on Σr by the tip. Without tip, the transmission
of an electron of spin σ reads

T σ
0 (E) =

td

Ẽ

(

I2

(td − Ẽ)2 + I2
− I2

(td − Ẽ)2 + I2

)

(27)

where Ẽ = E−4−VI−R. This expression displays strong
similarities with the previously studied case, where the
spin degeneracy was broken by a field restricted to the
contact. As before, one has two peaks of equal height and
width Γ/2 = −I (instead of Γ for the RCM model) which
are spaced by a “Zeeman energy” 2td (instead of 2h for
the RCM model with a field restricted to the contact).
Of course, the transmission of the double-dot setup is
suppressed when the inter-dot coupling td → 0, in con-
trast to the RCM model through which the electrons are
transmitted when h → 0.
These similarities are a consequence of the inversion

symmetry of the double-dot model. If the two sites of
the contact have respective coordinates (0, 0) and (1, 0),
one can rewrite the Hamiltonian of the double-dot setup
in terms of fermion operators which destroy/create an
electron of spin σ in an even/odd combination of two
symmetric orbitals of the original model. For instance,
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FIG. 15: (Color online) Double-dot setup without tip (V =
0): Conductance g0 (in units of 2e2/h) with tc = 0.2 and
Γ = 0.0015 as a function of the dot potentials VI for td = 0.012
(blue) td = 0.006 (green) and td = 0.002 (red). Cases with
T = 0 (solid line) and T = Γ/2 (dashed line). The arrow
gives the potential VI used hereafter for the SGM study.

 

 

−200

−100

0

100

200

100 200 300 400 500
−4

0
4

x 10
−3

−4 −2 0 2 4

y

x 10
−3

x

FIG. 16: (Color online) Double-dot setup - Main Fig: ∆g/g0
as a function of the tip coordinates (x, y) at a temperature
T ∗ = 0.0022 (g0 = 0.3064, Γ = 0.0015, V = −2, td = 0.006,
tc = 0.2, EF = 0.1542 and λF /2 = 8). Above: Color code
giving the magnitude of the relative effect. Below: ∆g/g0(y =
0) as a function of x (same parameters as in the main figure).

for the destruction operators of a particle with spin σ
and pseudo-spin e, o, one has

aσ,o(x,y) = (cσ(−x+1,−y) − cσ(x,y))/
√
2 (28)

aσ,e(x,y) = (cσ(−x+1,−y) + cσ(x,y))/
√
2. (29)

This allows us to map the original model (electrons with
spins free to move on two semi-infinite square lattices

FIG. 17: (Color online) Double-dot setup with Γ = 0.003:
Radii rD(n) of the interference rings for n = 0, 1, 2 and 3
as a function of T (left fig. td = 0.01) and of the interdot
coupling td (right fig. T = 0.0028). The dots are obtained
numerically, their colors corresponding to a visibility scale
indicated at the right. The solid lines are the analytical values
of rD(n) derived assuming rD(n) > r∗. This gives the ranges
of temperature and interdot coupling where rD(n = 0) is
sufficiently small for seeing the rings in the SGM images.
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FIG. 18: (Color online) Lattice model (see Fig. 2) of a QPC
without tip (V = 0) with Ly = 20, Lx = 16 and k = 2:
Transmission T 0

σ of an electron of spin σ and total transmis-
sion T 0 =

∑

σ T 0
σ as a function of E when a parallel magnetic

field h = 0.0025 is applied (case 1) everywhere and (case 2)
only in the contact region (−Lx ≤ x ≤ Lx). The two arrows
give the energies where the SGM images are studied.

coupled by two sites of potential VI) onto a transformed
model of electrons with spins and pseudo-spins (even or
odd states) free to move on a single semi-infinite square
lattice coupled by a single hopping term tc to a single
site of potential VI ± td (+td for the odd states, −td for
the even states). In that sense, td gives rise indeed to
a “pseudo Zeeman energy” which removes the pseudo-
spin degeneracy, as before h was a Zeeman energy which
removed the spin degeneracy. For more details about
this mapping, we refer the reader to Ref.24, where an
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FIG. 19: (Color online). SGM images of a QPC at the opening of the second transmission channel (EF = 0.027, left arrow
of Fig. 18) at T = 0 (top) and T = 0.006 (bottom). A parallel magnetic field h = 0.0025 is applied everywhere (left) or only

in the contact region (right). For a better visibility, we have plotted as a function of the tip coordinates x, y, δ(∆g)
δx

× r when

T = 0 and δ(∆g)
δx

× r2 when T = 0.006.

inversion symmetric one dimensional model was studied,
the extension to two dimensions being straightforward.

The similarity between the two models is also evi-
dent when one compares the conductance g0 (in units
of 2e2/h) of the double-dot setup shown in Fig. 15 for
different values of td and T with the conductance g0 (in
units of e2/h) of the RCM model shown in Fig. 8 for dif-
ferent values of h and T . Such a similarity implies that
their SGM images must be also similar: When td 6= 0,
the SGM images of the double-dot setup should also ex-
hibit rings where the effect of the tip does not change the
conductance of the contact, the radii of these rings being
given by Eq. (26), after making the changes h → td and
Γ → Γ/2. This replacement implies also that the ring
spacing is equal to πkF /td for the double-dot setup. A
numerical check of such a prediction is given in Fig. 16
(which shows that the SGM of the double-dot setup gives
rise to a similar pattern of rings) and in Fig. 17 (which
shows that the location of the rings is indeed given by
Eq. (26) when one puts td instead of h and Γ/2 instead
of Γ).

IV. SGM OF A QPC WITH QUANTIZED

CONDUCTANCE PLATEAUS

We now consider contacts having many sites in the
transverse direction. This allows them to have more than
one open transmission channel. The energy dependence
of their transmission is given by a staircase function, in
contrast to the single Breit-Wigner resonance of the RCM
model without field. Such staircase functions with quan-
tized conductance plateaus are observed in the setups
sketched in fig. 1 where the gate potentials give rise to a
smooth saddle-point QPC potential for the 2DEG. These
staircase functions characterize also the lattice model for
a QPC sketched in fig. 2, as it is shown in Fig. 18 in
the cases where a parallel magnetic field is applied either
everywhere, or only inside the contact region.

An analytical approach being more difficult, we nu-
merically study these bigger contacts with leads made of
semi-infinite square lattices of finite but very large trans-
verse width 2Ly + 1. The self-energies Σl,r(E) which
allow us to describe them are now two matrices of size
(2Ly +1)× (2Ly +1), where Ly defines the width of the
contact region (see fig. 2). Their analytical expressions
without tip can be found in Ref.20. To include the effect
of the tip which modifies the potential of a single site
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FIG. 20: (Color online). Same as Fig. 19 at the opening of the third transmission channel (EF = 0.056, right arrow of Fig. 18).

in the right lead, we use again Dyson equation (V play-
ing the role of a perturbation), extending the method
used for the RCM model. The usual recursive numer-
ical method for calculating the Green function is only
used for narrower contact region of smaller transverse
size ≤ 2Ly + 1. With this method, we study leads of
very large transverse width Ly ≈ 2.104 and a contact re-
gion of size Lx = 16 and Ly = 20 where the potential Vi

of a contact site i of coordinates (ix, iy) is taken infinite

if |iy| ≥ (Ly − 2) + 2 (ix/Lx)
2
). Once the self energies

of leads with N open channels at an energy E are ob-
tained, the the total interferometer transmission T (E) is
calculated.

The channel openings of these QPCs play the role of
the resonances of the RCM contact. As one can split by a
parallel magnetic field the RCM resonance, one can also
use it to split the QPC channel openings. The role of
a parallel magnetic field upon the QPC transmission is
shown in Fig. 18, both when it is applied everywhere or
restricted to the contact region. For a QPC opened in
the energy interval where a new channel is opened for the
electrons with parallel spin, but not yet for those with an-
tiparallel spins, it is likely that the effect of the tip upon
the QPC conductance exhibits a beating of the contribu-
tions of the two channels with opposite spins, as we had
the beating of the contribution of the two peaks for the
RCM contact. This is indeed what can be seen in Fig. 19

when the contact is opened around the opening of the
second channel, the effect of the tip having the V-shape
which characterizes the second channel, or in Fig. 20 near
the opening of the third channel. In each case, the QPC
is opened between the openings of a new channel for the
electrons with parallel and anti-parallel spins. To make
the SGM images clearer, we have plotted as in Ref.18 the
effect of the tip over the conductance derivatives with
respect to x. In panels (a) and (b) of Figs. 19 and 20,
the SGM images are taken at zero temperature. One can
see the beating effect between the contributions of the
two channels of opposite spins when the field is applied
everywhere, but not when the field is restricted to the
contact region. In panels (c) and (d), the SGM images
are taken at a temperature T = 0.006, and one can see
also the beating effect when the field is applied only in
the contact region. Similar behaviors were observed and
explained previously using the RCM contact.

V. CONCLUSION

In summary, we have studied contacts where the trans-
mission exhibits a resonance or a channel opening. When
the spin degeneracy is broken by a magnetic field h or the
pseudo-spin degeneracy by an inter-dot coupling td, one
can split the resonance or the channel opening. We have
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shown that imaging these contacts opened between the
split resonances or channel openings with a scanning gate
microscope gives rings where the effect of the tip is totally
suppressed. If the magnetic field is applied everywhere,
these rings are produced by a beating effect between the
contributions of opposite spins which can be observed at
zero temperature. If the field is applied upon the contact
only, the temperature has to be around an optimum tem-
perature T ∗ of order of the peak spliting, such that the
first rings are sufficiently close to the contact for being
observable. When T → 0, the radii of the rings rD → ∞
and the beating effect disappears.
The spacing of the Fabry-Pérot fringes being λF /2, we

underline that SGM provides a new method for measur-
ing by electron interferometry λF together with either
the magnetic field h (RCM-contact) or the inter-dot cou-
pling td (double-dot setup). The spacing between the
rings is πkF /h in the first case or πkF /td in the second
case.
We have studied the ring pattern at the symmetric

point between the resonances or the channel openings.
If one opens the contact in the vicinity of the symmet-
ric point, the effect of the tip remains modulated without
canceling exactly on rings, as one scans the tip around the
contact. Similarly, if one takes the double-dot setup with
different terms tc for the right and left couplings, the in-
version symmetry is removed and one gets two transmis-
sion peaks of different widths. Nevertheless, one can still

observe a beating phenomenon when the contact trans-
mission varies between the peaks. We conclude that beat-
ing phenomena between contributions of different spins
or pseudo-spins are generic phenomena, while rings with
exact cancellation require a symmetry, as a spin or a
pseudo-spin rotation symmetry. With such a symmetry,
one gets two split resonances of identical width, and the
effect of the tip is totally suppresed on rings at the sym-
metric point.

We have shown that these beating effects can also be
seen in the SGM images of a QPC with quantized con-
ductance plateaus, in the vicinity of a spin-split channel
opening. As for the RCM model, we have underlined the
difference between a local or a global Zeeman effect. This
leads us to conclude that these beating effects are generic
interference phenomena.
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