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ABSTRACT
This paper studies the prediction of the output voltage reduction caused by degradation during nominal 
operating condition of a PEM fuel cell stack. It proposes a methodology based on Adaptive Neuro-
Fuzzy Inference Systems (ANFIS) which use as input the measures of the fuel cell output voltage 
during operation. The paper presents the architecture of the ANFIS and studies the selection of its 
parameters. As the output voltage cannot be represented as a periodical signal, the paper proposes to 
predict its temporal variation which is then used to construct the prediction of the output voltage. The 
paper also proposes to split this signal in two components: normal operation and external 
perturbations. The second component cannot be predicted and then it is not used to train the ANFIS. 
The performance of the prediction is evaluated on the output voltage of two fuel cells during a long 
term operation (1000 hours). Validation results suggest that the proposed technique is well adapted to 
predict degradation in fuel cell systems. 

1. Introduction 

Fuel Cell Systems (FCS) and in particular Proton Exchange Membrane Fuel Cells (PEMFC) appears 
to be an alternative to reduce the dependence on fossil energy, one of the economic and environmental 
challenges of modern society. The advantages of this technology include high efficiency, low 
emissions, fast system start-up ability, and high power density. However, they have several drawbacks 
such as complex water and heat management, intolerance to impurities in incoming gases and slow 
kinetics of oxygen reduction reaction. FCS are not yet ready to be considered for large scale industrial 
development, indeed further efforts must be undertaken to optimize this technology, particularly by 
increasing its reliability and lifespan [1-4]. PEMFC durability is affected by factors such as stack 
design and assembly, materials degradation, operating conditions, impurities and contaminants [5-8]. 
The operation of the fuel cell causes degradation which always involves a reduction in the output 
voltage and then a loss of performance because of the reduction in the output power. Moreover, each 
fuel cell has a unique degradation profile based on its history and operating conditions. Degradation is 
an unavoidable condition; nevertheless it can be minimized and even mitigated with effective 
prognostics and diagnostics tools.  

Prognostics is the process of predicting the future condition of a system based upon current and 
previous system states. Prognostics systems aim to predict the Remaining Useful Life (RUL) of the 
system and to determine when maintenance should be performed for avoiding equipment breakdown 



[9-15]. Several recent studies focus on the implementation of Prognostic and Health Management 
(PHM) methods to guarantee a safe longer term operation and to increase reliability and availability 
while reducing maintenance and operating cost. PHM encompasses the following core areas: avionics 
[16-18] electronic systems [19-22], power and energy systems [23-25], structural degradation [26-29], 
healthcare and medical technology [30, 31] and so forth. Prognostic of FCS is a relatively new field of 
research where only few works have been published. Among these works, Wang et al. [32] proposes 
to use Kalman Filters, in [33] the authors propose a Solid Oxide Fuel Cell model based on Neural 
Networks, and Jouin et al. [34] summarizes the current state of the art on prognostic and health 
management for PEM fuel cell systems. 

Prognostics approaches are classified into three categories: model-based also known as Physics of 
Failure (PoF), data-driven, and fusion approach. Model-based methods assume that an accurate 
mathematical model can be constructed from physical understanding of the system [35-38].  Data-
driven approaches use historical data to estimate degradation, their main interest is their ability to 
represent complex and non-linear relationships among data [39-42]. The fusion approach combines the 
advantages of data-driven and model-based methods [13, 43-45]. 

Fuel cell systems are complex multi physics (electric, fluidic, electrochemistry, thermal and 
mechanical phenomena) and multi scale (time and space) systems. The modeling of their degradation 
is a difficult task, as consequence of its nonlinear nature, the non-reversibility of their reactions and 
the interactions between their multiple subsystems. PHM tools must be implemented in a FCS to 
anticipate and avoid failures, to estimate mid-term and/or long-term State of Health (SoH) and to 
decide upon mitigation and control strategies. This is the reason why data-driven are more adapted 
than model-based approaches for performing prognostics of fuel cell systems.  

Data driven approaches for prognostic can be divided into two categories: statistical techniques and 
artificial intelligence techniques (such as neural networks, fuzzy systems, neuro-fuzzy systems). 
Among these techniques, Adaptive Neuro-Fuzzy Inference Systems (ANFIS) are considered because 
they do not require complex mathematical models, they are fast and adaptive and the developed 
prediction tool can be implemented on-line, which is essential for PHM of fuel cell systems. Their 
principal drawback is that the performance of the predictions is highly depending in quantity and 
quality of data [46-49]. Approaches based on the use of experimental data to construct neuro-fuzzy 
inference systems have been used in a variety of applications such as medical [50-52], motors [53-55] 
and fuel cell diagnosis [56]. Moreover, ANFIS has been used to performance (current-voltage curve) 
prediction of a PEMFC [57].  

The first contribution of this paper consists in defining the architecture of the ANFIS prediction 
system that is defining the inputs and outputs of the system as well as to determine the parameters to 
train. This is done by considering not only the accuracy of the system but also its ability to be 
implemented into real-time. The second main contribution of this paper consists in proposing a 
method to reduce the error in the predictions caused by external perturbations in the output voltage 
(such as transients when the fuel cell is started). Therefore, the paper proposes to split the signal in two 
components: the voltage due to normal operation and a second caused by external perturbations.  

This paper is organized as follows: Section 2 provides the research context about fuel cell systems, 
prognostics and health management, and ANFIS. Section 3 introduces the ANFIS-based prediction 
methodology and the evaluation of its performance. Section 4 illustrates the implementation of the 
methodology by predicting the Mackey-Glass temporal series, the prediction of this time-series is a 
benchmark problem widely used in the literature as reference to evaluate the performance of 
prediction tools [58-60]. The methodology to predict the output voltage in a fuel cell is presented in 
Section 5. The final section presents the conclusion and outlooks. 

2. Research context 

One of the challenges to develop fuel cell systems in an industrial scale is to optimize them, 
particularly by increasing their reliability and lifespan. FCS degradation has to be studied to quantify 
their Remaining Useful Life (RUL) and therefore reduce the risk of failure. As the stack voltage is the 
simplest indicator of the SoH and performance of the FCS, this paper proposes a methodology to 
predict the voltage decrease due to the degradation under nominal operating condition. Operation of 
the PEM fuel cell system under nominal conditions is referred to the parameters that have to be set by 



the user to keep the system in its optimum performance. Taking into account the high complexity of 
fuel cell systems, the methodology is based on ANFIS. In general, ANFIS enables 
diagnostics/prognostics because of its abilities to learn, to model nonlinear functions without explicit 
knowledge of its physical behavior [61-63]. Thus, it can be used to lifespan estimation and then 
integrated in the maintenance activities to ensure the reliability of FCS. 

2.1 Fuel cell prognostics and health management 

Prognostics and health management of fuel cell systems is performed by following the next four 
stages: data acquisition, data preprocessing, diagnostic and prognostic, and decision making, as 
illustrated in Fig. 1. This paper focuses on the first three stages of the PHM methodology explained 
below. 

Data acquisition: related to collecting and storing information about the state of operation of the 
FCS. These information is collected using sensors to measure as non-intrusive as possible, physical 
quantities such as cooling water, and inlet and outlet Air/H2 temperatures (thermal), stack voltage, 
stack current (electrical), Air/H2 inlet/outlet pressures, vibration (mechanical), and gas humidity level, 
presence of contaminants (chemical). 

Data preprocessing: allows filtering signal noise by extracting and selecting features (model 
parameters) from raw data collected by the sensors to characterize the operation of the FCS. Classical 
data pre-processing techniques for PEMFC include: electrochemical impedance spectroscopy 
(dynamic characterization) and polarization curve measurements (static characterization).  
The raw data is processed to be used in a prognostic model. This can include filtering or splitting of 
the signal as explained in Section 5.4. 

Diagnostic/Prognostic model: firstly, using data from the former stages, the operating mode of the 
FCS is compared with a reference healthy operation mode. Deviations from the normal operation 
allow identifying and isolating causes and mechanisms of failure. The module generates alerts based 
on defined operational limits [10, 15]. Secondly, the prediction of the future condition of the FCS 
system and its RUL based upon current and previous system states [10, 11, 15]. This module takes into 
account trends in the health history, operating conditions, power demands, and the maintenance 
history [15]. In this paper, the prediction of the degradation in the FCS is based on the output voltage 
because it is the simplest indicator, a non-intrusive and low expensive measure to implement. It should 
be noticed that this enables estimating the degradation but not identifying the failure or degradation 
modes. 

Decision Making: allows scheduling maintenance/actions to be taken before failures occurs. 
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Fig. 2 – ANFIS architecture. 

The ANFIS network is composed of five layers as shown in Fig. 2. A node within the same layer 
performs functions of the same type: note that a circle indicates a fixed node whereas a square 
indicates an adaptive node (the parameters are changed during adaptation or training).  

In Table 1 is presented layer by layer a brief description of the ANFIS architecture, 
)+&, defines the �"# node input in the ("# layer, and �)+&, denotes the �"# node output in the ("# layer. 

Table 1 – Layer by layer description of the ANFIS architecture.

Layer N° Brief description Equations Eq. N°
1 Generates a membership 

grade of a linguistic label �)+�, � -./0 1
)+�,2 � �
� � 3
)+�, 4 �)�) 3�5/�

� � ����  �'� � ����  ��! (2) 

where �)� is the linguistic label (small, large, etc.) associated to the �"#  input variable�
)+�, in the �"#
fuzzy rule, and +�) � 6) � �), is the parameter set that changes the shapes of the MF and are referred to 
as the premise parameters 

2 Generate the firing 
strengths of the �"#  fuzzy 
rule 

�)+�, � 7) �8-./0+
)+�,,)
� � ����  �'� � ����  ��! (3) 

3 Normalizes the firing 
strengths of each rule 

�)+�, � 79::: � 7); 7))� � � ����  �' (4) 

4 The output is comprised 
of a linear combination of 
the inputs multiplied by 
the normalized firing 
strength�7

�)+�, � 7<)�) � 7<)+���
� � ���
� � ���
� � ���
� � ���, � � ����  �'� � ����  ��! (5) 

where 7<) is the output of layer 3, and (��� � ��� � ��� � ��� � ���, denotes a set of unknown parameters 
called consequent parameters 

5 Computes the overall 
outputs as the summation 
of all incoming signals 

�)+�, �=7<)�))
� � ����  �'� � ����  ��! (6) 

ANFIS is trained with a set of input and output data. To reduce the error of the training, during the 
process of modeling a hybrid learning algorithm combining the gradient descent method and the least 
squares method is used to tune optimally the linear and nonlinear parameters of the ANFIS. The 



consequent parameters 	��� � ��� � ��� � ��� � �����are optimized by using the least squares method, 
whereas the premise parameters �) � 6) � and �) are updated via the gradient descent method. 

2.3 Prediction of time-series 

A time-series is a chronological sequence of observations on a particular variable denoted by�>" �$��� ���  � �"%, in which each observation �" is recorded at a particular time (for�� � ���� � �). 
Prediction of time-series refers to estimate the future values by using a set of regressors or observed 
values over a suitable time horizon. Time-series prediction is an active area of research due to the 
variety of applications in financial markets [66, 67], weather forecasting [68-70], among others. 
Moreover, different researches have demonstrated that ANFIS is adapted for time-series prediction 
such as Mackey-Glass [58, 60, 71], Box-Jenkins [71], Duffing forced-oscillation system [60], wind 
speed and direction [70], energy market [47] or machinery degradation data [49, 72]. 

In this paper the prediction of the output voltage of a fuel cell is considered. This physical quantity 
is represented as a time-series and included into a prediction methodology. This is the central idea 
presented on next section.  

3. ANFIS-based time-series prognostic  

This section presents an ANFIS-based methodology for prognostic of time-series. The observed values 
of the series are used to train an ANFIS which models the relationship among the time-series future 
and previous observed values. As hypothesis to do so, it is considered that the signal can be modeled 
by a near-periodical time-series. Section 5 of this paper shows how some non-periodical signals could 
be transformed into near-periodical signals. The proposed methodology is implemented by following 
the next steps: inputs and output definition, data organization, training and prediction, and finally,
performance evaluation. 

3.1 Inputs and outputs definition

The input of the ANFIS represented by ? is a set of @ values containing the present-time value and @ 4 � regressors (previous-time values) of the time-series represented by��+�,. A time delay 
represented by A determines the location of the @ 4 � regressors. The output of the ANFIS is a 
singleton representing the value of the time-series in a near future defined by a time delay represented 
by�B. The relationship among the inputs and the output is defined by Eq. 7, where the notation �C+�,�is 
retained for predicted values. 

�C+� � B, � ?D�+� 4 +@ 4 �,A,� � �+� 4 �A,� �+� 4 A,� �+�,E (7) 

As an example, Fig. 3 illustrates the relationship between the I/O (4 inputs/1 output) and the 
ANFIS system represented by�?. 

Fig. 3 – Architecture of the ANFIS system with 3 regressors +F � G,.
3.2 Data organization 

Available observed data is divided into two sets, one for training and another for validation. The 
training values are organized in sets like in Eq. 7. Table 2, shows how data is organized, in this 
example the signal is sampled from � � H to � � I with a frequency of 1 Hz. It can be observed that 
the number of data sets used to train the ANFIS is less than the number of observed values.  



Table 2 – Data-set organization for training (UK = Unknown value). � �+� � B, �+�,  �+� 4 @A,H �+B, �+H, - JKL - - - - A �+A � B, �+A, - JKL - - - - @A 4 � �+@A � B 4 �, �+@A 4 �, - JK@A �+@A � B, �+@A, - �+H,L - - - - I 4 B-1 �+I, �+I 4 B 4 �, - �+I 4 B 4 � 4 @A,I 4 B JK �+I 4 B, - �+I 4 B 4 @A,L - - - - I JK �+I, - �+I 4 @A,
If M�7N���� represents the quantity of these observed values, the quantity of exploitable sets to 

train the ANFIS (�M�N����, is defined by Eq. 8. �M�N���� � M�7N���� 4 +@ 4 �,A 4 B (8) 
Fig. 4 illustrates the data sets used to train the ANFIS. In this example, the Mackey-Glass (MG) 

chaotic time-series [73] is sampled in the interval H O � O �HH� with a frequency of 1 Hz. 
Here,�M�7N���� � �H��@ � P� A � �B � * and �M�N���� � Q!. 

Fig. 4 – Data-set organization for training. 

3.3 ANFIS training and prognostic 

The notation ? is retained to represent the input/output relationship of the ANFIS system. The ANFIS 
is trained using the observed data organized in sets as described in Section 3.2 and the relationship 
defined in Eq. 7. During training, only observed values of R+S, are considered. The last observed value 
is represented by��TU�, the first predicted value is represented as��T. The horizon of prediction 
represented by V determines the quantity of values to predict and then when the algorithm finishes. 
Multi-steps ahead prediction (MSP) modeling by using neural networks can be achieved in different 
manners. This is not addressed in this paper, but one can refer to [74] for more details. Here, MSP are 
performed by using an iterative approach. This approach uses a single model that is tuned to perform a 
one-step ahead prediction �C"W�. The estimated values are used as one of the regressors of the model to 
estimate next time outputs. The operation is repeated until the estimation of the value of the signal at 
the horizon of prediction �C"W#. This iterative procedure is illustrated in Fig. 5. 
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Fig. 5 – Iterative structure example with +F � X,, Y � Z � [, \] � X and ^ � [_. 

After few iterations the predictions uses predicted (not observed) values and the equation is 
represented as in Eq. 9. The principal drawback of this approach is the propagation of the error: the 
accuracy decreases as the length of the prediction horizon increases.  

�C+� � B, � ?D�C+� 4 +@ 4 �,A,� � �C+� 4 �A,� �C+� 4 A,� �C+�,E (9) 

Due to their generalization capabilities, Gaussian antecedent fuzzy sets are generally assumed to 
define the regions of fuzzy rules in which the local linear sub-models are valid [53, 58, 60, 65].  

A priori, it is expected than an increase of the number of MFs could improve the quality of the 
prediction. However, this also implies an increase in the complexity to train the ANFIS and therefore 
the computing-time. The same analysis applies to the number of inputs, moreover according to Eq. 8, 
an augmentation in @ implies less exploitable data sets to train the ANFIS. The influence of A and B is 
more difficult to define, and it will be shown that its selection depends on the specific time-series, and 
that there is dependence between the selection of A� B and the number of inputs. ANFIS parameters 
selection issue is deeper studied in Section 4. 

  
3.4 Performance evaluation 

The quality of the prediction is evaluated in accuracy and speed. The ANFIS is expected to give a 
good solution, able for implementation in real-time applications, i.e. related to the time needed to 
process a result under a very tight deadline facilitating decision making. The challenge is to define the 
parameters of the ANFIS: the number of inputs�@� the time delays between successive observed values A and�B and the number of membership functions whilst having a good balance between quality and 
speed.  

The performance of the prediction is quantified by using the following standard statistical criteria: 
the Root Mean Square Error (RMSE), the Mean Absolute Percent Error (MAPE) and the coefficient of 
determination (R2) as classically done in literature [75, 76]. These criteria are defined by Equations 10, 
11 and 12 respectively where �C) represents the predicted values, �) the observed values, �:) the average 
of the observed set, and I is the number of observed values. 



�`>a � b�I=+�C) 4 �),�T
)c� (10) 

`�da � �I=e�C) 4 �)ee�)e
T
)c� f �HH (11) 

�� � � 4 ; +�)U�C),�T)c�; +�) 4 �:),�T)c� (12) 

�`>a�and `�da are positive numbers, a perfect prediction gives values of RMSE and MAPE 
equals to zero. �� is a positive number between zero and one. A value for  �� close to one shows a 
good fit of prediction model and a value close to zero presents a poor fit [75]. Given two sets of 
parameters providing (almost) the same accuracy in prediction, the faster could be the better adapted 
to perform real-time implementation of the methodology. 

4. Prediction of Mackey-Glass temporal series 

The methodology presented in Section 3 is illustrated by performing the prediction of the MG chaotic 
time-series defined in Eq. 13. The MG time delay differential equation [73] was first proposed for 
modeling white blood cell production in a human body. The prediction of this time-series is a 
benchmark problem widely used in the literature as reference to evaluate the performance of 
prediction tools [58-60].  

�
+�,�� � �
+� 4 g,� � 
h+� 4 g, 4 6
+�, (13) 

As explained in precedent section, the challenge is to identify the ANFIS parameters: number of 
inputs�@� the time delays between successive values A and�B and number of membership functions, 
which better predict the time-series. To do so, multiple sets of parameters (@,�`?� A, are considered 
to predict the time-series. Moreover, two set of parameters (�,�6,��,�g and 
+H,)  are considered to 
evaluate if a unique set of ANFIS parameters can be used to predict different time-series.  

4.1 Validation 

The first time-series to evaluate the ANFIS is shown in Fig. 6. The values of the time-series are 
organized as explained in Section 3.2. The time-series are divided into two sets of values. The first set D�i� ��E is used to train the ANFIS and the second set D��� �� � �E  to validate the prognostic.  

Fig. 6 – MG time-series, j � kl m, n � kl[, o � [k, p � [_, q+k, � [l m.

4.1.1 Results 

In order to identify the best sets of parameters, multiple ANFIS are trained using all the combinations 
of the following parameters: `? (2, 3 and 4), @ (3, 4 and 5) and A (3, 6 and 9). The training is done 
with the following values,��i � H�, �� � *HH��and�� � rHH. Table 3 summarizes the best prediction 
results (R2>0.9). Fig. 7 shows the predictions obtained using the best set of parameters. 
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Table 3 – Best results summary for MG prediction (sm t Hlu). CT= Computing Time. @ A `? Prediction Error CT / CT N=4, �=6, MFs=3  
(best performance set) RMSE MAPE [%] R2

4 6 3 0,0435 3,7398 0,9636 1 
5 9 3 0,0497 3,5579 0,9525 31 
5 6 4 0,0567 4,0210 0,9382 735 
5 6 3 0,0576 4,3153 0,9362 31
4 6 4 0,0591 4,1141 0,9327 24 
5 6 2 0,0599 4,4278 0,9310 0.2

Fig. 7 – MG Time-series I Prediction, F � G, \]v � X, Y � w, �xk � k� x[ � ykk� ^ � _kk. 

4.1.2 Parameter selection 

A priori, it is expected than an increase of the number of `? could improve the quality of the 
prediction. However, this also implies an increase in the complexity to train the ANFIS and therefore 
the computing-time. The same analysis applies to the number of inputs, moreover according to Eq. 8, 
an increase in @ implies less exploitable data sets to train the ANFIS. The influence of A and B is 
more difficult to define, and it will be shown that its selection depends on the specific time-series, and 
that there is dependence between the selection of A� B and the number of inputs. Due to their 
generalization capabilities, Gaussian antecedent fuzzy sets are generally assumed to define the regions 
of fuzzy rules in which the local linear sub-models are valid [53, 58, 60, 65]. As the computing time to 
train the ANFIS depends on the number of fuzzy rules, increasing @ and `? corresponds to an 
increased computing time. Nevertheless it does not necessarily increase the quality of the prediction. 
This can be explained as an accurate model can be useful to represent periodical functions, but not 
necessarily improves the prediction of non-periodical functions. 

The two best sets of parameters provide almost the same accuracy in prediction (�� t Hlu*), 
however the set (z � ', {| � P, } � !) is more than 30 times faster in computing time and then it is 
better adapted for real-time implementation. It can be considered that prediction of time-series could 
be performed using 4 inputs and 3�`?. To evaluate this hypothesis, in section 4.3, a second MG 
time-series is predicted using these parameters. 

At this point it is difficult to conclude about the selection of�A and then an additional evaluation of 
this parameter is performed by training additional ANFIS (@ � ' and�`? � P), while A varies from 1 
to 20. The results (R2, MAPE and RMSE) are shown in Fig. 8. Here A � ! gives the best performance 
prediction. This can be explained because the ANFIS is trained by using the previous 18s (+@ 4 �, ~A) of the time-series, and this value is very close to the time constant of the time-series (g =17s). The 
training uses one and only one time constant period of the signal and then the ANFIS is able to better 
represent the signal. The selection of A is studied again in Section 4.3. 
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Fig. 8 – Prediction performances vs alpha (N=4, MF=3).

4.2 Horizon of prediction 

The prediction horizon � could be adapted to short, medium or long-term prediction. However, this 
depends on the quantity and quality of data to train the ANFIS. To evaluate the necessary amount of 
data, ANFIS are trained using different values of training data. Figures 9 and 10 present predictions of 
the MG time-series performed using ANFIS and trained with �� � �HH� and �� � �*H�respectively. 
In this example, the horizon of prediction is imposed as the quantity of data. As expected, the quality 
of the prediction increases with the quantity of data, however the ANFIS trained with �� � �*H
represents with relatively low error the MG series. The first ANFIS is trained with less than one period 
and then the results are not accurate at all, the second ANFIS is trained with data from two periods, 
and the results are more accurate. The ANFIS trained with  �� � *HH (Section 4.1) shows results with 
high quality. Figures 11, 12 and 13 illustrate the evolution of the error (R2, MAPE and RMSE) 
regarding the horizon of prediction and the quantity of data used to train the ANFIS. As expected the 
quality of prediction improves while increasing the training data, moreover the predictions at long 
horizon of prediction are only possible with relatively high data. 

Fig. 9 – Mackey-Glass time-series I xk � k� x[ �� [kk� ^ � [kk.

Fig. 10 – Mackey-Glass time-series I xk � k� x[ � myk� ^ � myk. 

Fig. 11 – MG time-series prediction, R
2

vs horizon of prediction.

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

�

R² MG Time Series I MAPE %

�

MG Time Series I

0 5 10 15 20
0

2

4

6

8

10
RMSE

�

MG Time Series I

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200
0

0.5

1

1.5

time [s]

MG Values

MG Prediction

h=t�=100[s]

0 100 200 300 400 500
0

0.5

1

1.5

time [s]

MG Values

MG Prediction

h=t�=250[s]

100 150 200
0

0.5

1
h=t1=100[s]

time [s]

R²

300 400 500
0

0.5

1
h=t1=250[s]

time [s]

R² R² h=t1=500[s]

600 800 1000
0

0.5

1

time [s]



Fig. 12 – MG time-series prediction, MAPE vs horizon of prediction. 

Fig. 13 – MG time-series prediction, RMSE vs horizon of prediction.

4.3 Evaluation using a second time-series 

Using the results obtained in Section 4.1, it can be inferred that to perform ANFIS prediction of a near 
periodical time-series, accurate results will be found by training the ANFIS with 4 inputs and 3 `?. 
The best value of A depends on the time constant of the time-series. To evaluate this hypothesis, a 
second MG time-series is considered and is illustrated in Fig. 14. Fig. 15 presents the best prediction 
obtained with�@ � ', `? � P and�A � �'. Figure 16 presents the error depending on�Al Values of 
alpha 13 and 14 enables the better performance predictions, in this case the ANFIS is trained by using 
the previous 39 and 42s of the time-series, and this value is very close to the time constant of the time-
series (g =40s). Predictions obtained with ANFIS trained using other values of A have very bad (very 
high errors) and the axes of Figure 16 are limited to present only reasonable errors.   

Fig. 14 – MG time-series II. j � kl X, n � kl k�, o � [y, p � Gk, q+k, � [l [.

Fig. 15 – MG time-series II. F � G, \]v � X, Y � [Gxk � k� x[ � ykk� ^ � _kk.
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Fig. 16 – Error measurements: Mackey-Glass Time-series II (Axes limited to show only the best results). 

As a conclusion of this section, ANFIS are appropriated to predict time-series. The results obtained 
with 4 inputs and 3 `? appear to be the best compromise quality between solution and computing 
time, at least for the considered Mackey-Glass series. The best value of A strongly depends on the 
time-series time constant. 

5. Fuel cell degradation prediction 

5.1 Fuel cell data acquisition 

This section deals with the prediction of the degradation during nominal operating condition of a PEM 
fuel cell stack. As the stack voltage is the simplest indicator of the state-of-health and performance of 
the FCS, the methodology is based on the prediction of the temporal output voltage variation. To do 
so, the methodology introduced in previous sections is considered on the prediction of the temporal 
variation in the output voltage of a fuel cell measured during a long term operation. To evaluate and 
validate the proposed methodology experimental data are considered. 

The data is issue of long-term tests performed on two PEM fuel cell stacks. Two 5 cell-350 cm2

active surface stacks are evaluated under different scenarios. The following conditions are maintained 
over periods of 1000 hours of continuous operation. The first stack is operated at a constant load 
current of 250 A, a temperature of 70 °C, an absolute pressure of 1600 mbar and Anode and Cathode 
Stoichiometry Factors SFC=SFA=2. The second stack is operated under similar conditions but 
incorporating a periodical perturbation in the current: a 5 kHz triangular signal with amplitude peak to 
peak 10% of the rated current. This type of stress is closer to the experimental conditions generated by 
connecting the fuel cell to a static DC/DC converter. The reader is addressed to [77] for a detailed 
description of the experimental set up. 

The experimental setup allows continuously measuring electrical, fluidic and thermal parameters. 
Moreover, polarization curves and impedance spectra measurements are periodically performed. Stack 
voltages of both fuel cell stacks are illustrated in Figures 17 and 18.   

Fig. 17 – Fuel cell stack 1 output voltage. Fig. 18 – Fuel cell stack 2 output voltage. 

5.2 Simplification hypotheses 
In the developed ANFIS, the voltage variations induced by degradation effects of two PEMFC 

stacks operated up to 1000 hours at nominal operating conditions were analyzed. The prediction model 
was constructed based on the following hypotheses: (i) aging processes are irreversible degradations; 
(ii) the stack is used under constant current solicitation and in stable environmental conditions; (iii) 
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electrical, fluidic and thermal parameters are controlled: solicitation is realized at the nominal 
operating point. 

Most of degradation processes, reversible or not, have an impact on the output voltage which it is 
always a monitored control variable. Furthermore, voltage measurements are non-intrusive, cheap and 
easy to implement. However, by using voltage measurements as inputs on the prediction model, the 
results will always predict a horizontal line. Voltage degradation presents a slow evolution in time, it 
can be considered as a time series to provide accurate predictions. The output voltage of a fuel cell 
stack cannot be considered as a quasi-periodical time-series because it has a tendency to decrease with 
time and operation. This paper proposes to consider the temporal variation of the output voltage as a 
quasi-periodical time-series. If this variation can be predicted using the proposed methodology, then 
the output voltage can be reconstructed using an integrator. However, to do so the structure of the 
ANFIS introduced on Section 3 has to be slightly modified as shown in Section 5.3. This section also 
proposes a method to reduce the error in the predictions caused for external perturbations in the output 
voltage such as transients when the fuel cell is started. It is proposed to split the signal in two 
components: one for the voltage due to normal operation and a second one caused by external 
perturbations. 

Experimentally, the voltage is measured with a frequency of 1 Hz; however, to train the ANFIS the 
observations are done with one hour intervals, sampling was defined with the aim of reducing 
estimation time, this by reducing the number of iterations necessary to meet the convergence criteria 
and, consequently to save computational cost. Considering the low rate of degradation of a fuel cell 
(typically few µV/cell/hour), the subtracted sets was small enough to maintain representative 
information from the original data. 

5.3 Inputs and outputs definition 

Eq. 7 is not adapted to train the ANFIS using the output voltage variation and then it is modified as 
shown in Eq. 14. As the output voltage has a tendency to decrease the voltage drop is considered as a 
positive variation, and in this equation the term in the left represents the voltage drop in the future B
seconds, the terms in the right the voltage drop in the past +@ 4 �,A� � A hours.  

�C+� � B, 4 �+�, � ?D�+�, 4 �+� 4 +@ 4 �,A,� � �+�, 4 �+� 4 A,� �+�, 4 �+�,E (14) 

Fig. 19 describes the modified input/output structure used to predict the voltage variation. In this 
figure the ANFIS uses 4 inputs and 4 regressors (N=regressors=4). 

    

Fig. 19 – Modified I/O architecture of the ANFIS. 

5.4 Results 

Following the results of Section 4, ANFIS are trained using 3 `? and 4 inputs. Due to the lack of 
knowledge about the time constant of the signal, in order to find the best value of �, ANFIS are trained 
with multiple values of �. Figures 20 and 21 present the results of this analysis done using the first 500 
hours to train the system. As it can be seen, values of A � ' and P (hours) represent in both cases the 
best performance predictions.  

Figures 22 and 23 present the predictions for fuel cell stacks 1 and 2 respectively. The predictions 
are performed with ANFIS trained with 4 inputs, 3 {|� and 3 hours intervals measures of voltage. The 
accuracy of the prediction is much lower than in previous examples (Mackey-Glass time-series). 
Nevertheless, as shown in Figures 22 and 23 the prediction follows the real tendency. 

  



Fig. 20 – Stack 1: Prediction performances vs alpha (N=4, MF=3). 

Fig. 21 – Stack 2: Prediction performances vs alpha (N=4, MF=3). 

Fig. 22 – Output voltage predictions: Stack 1, F � G,\]v � X,�Y � G, ^ � x[ � ykkv. 

Fig. 23 – Output voltage predictions: Stack 2. 

Figures 24 to 29 show the performance of the prediction when different training data (100, 250 and 
500 hours) are considered. The quality of the prediction is very low when few data are used to train the 
system, however reasonably good predictions can be obtained with high number of data. The horizon 
of prediction is highly reduced compared to Mackey Glass time-series.  
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Fig. 24 – Stack 1, R2 vs horizon of prediction. 

Fig. 25 – Stack 1, MAPE vs horizon of prediction. 

Fig. 26 – Stack 1, RMSE vs horizon of prediction.

Fig. 27 – Stack 2, R2 vs horizon of prediction. 

Fig. 28 – Stack 2, MAPE vs horizon of prediction. 
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Fig. 29 – Stack 2, RMSE vs horizon of prediction. 

5.5 Split signal prediction 

One of the principal challenges is that abrupt changes in the output voltage (i.e. stop procedures, 
variation in the operating conditions, polarization curves or impedance spectra measurements that are 
experimentally performed over time to estimate the SoH of the stack) cannot be predicted. As 
hypothesis to face this challenge, it is considered that during normal operation the voltage rate of 
change (V/s) remains between limits and abrupt perturbations can be identified and then not 
considered to train the ANFIS.  

This research proposes to split the voltage signal in two components: a component due to normal 
operation voltage and a component due to external perturbations. The parameters used to split the 
signal are the Arithmetic Mean +�`, and the standard deviation +�, of the voltage change between 
successive voltage measures. If the change in two successive measures is greater than the��` � P�, 
then it is considered as an external perturbation (in a normal distribution 99.7% of the values lie within 
3 standard deviations of the mean). The voltage signal is split as shown in Figure 30. The ANFIS is 
trained using the “normal operation” voltage. In the framework of the PHM methodology this step is 
performed by the data preprocessing module. 

Fig. 30 – Split voltage signal.

Fig. 31 – Stack 1: Prediction performances vs alpha (N=4, MF=3). 
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Fig. 32 – Stack 2: Prediction performances vs alpha (N=4, MF=3). 

Figures 33 and 34 show the best predictions obtained with A � * hours for stack 1 and A � ' hours 
for stack 2. These values of A were obtained after the same analysis explained in previous sections. 
Figures 35 to 40 show the performance of the prediction for different values of training data. It can be 
observed that the performances are highly improved when the voltage signal is split. Moreover, with 
this improved method good quality predictions are obtained using less training data.  

Fig. 33 – Output voltage predictions - Stack 1 Filter, F � G,�\]v � X,�Y � y
a)�^ � x[ � [kkv, b) ^ � x[ � mykv, c) ^ � x[ � ykkv.

Fig. 34 – Output voltage predictions - Stack 2 Filter, F � G,�\]v � X,�Y � G
a) ^ � x[ � [kkv, b) ^ � x[ � mykv, c) ^ � x[ � ykkv

Fig. 35 – Stack 1 Filter, R2 vs horizon of prediction. 
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Fig. 36 – Stack 1 Filter, MAPE vs horizon of prediction. 

Fig. 37 – Stack 1 Filter, RMSE vs horizon of prediction. 

Fig. 38 – Stack 2 Filter, R2 vs horizon of prediction.

Fig. 39 – Stack 2 Filter, MAPE vs horizon of prediction. 

Fig. 40 – Stack 2 Filter, RMSE vs horizon of prediction. 
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Table 4 – Best results summary for Stack Voltage prediction. CT= Computing Time. @ A `? Prediction Error 
CT [s] 

RMSE MAPE [%] R2

Stack 1 4 11 3 0.0263 0.6372 -0.0606 6.5007 
4 4 3 0.0317 0.8579 -0.4848 6.7360

Stack 1 Filter 4 5 3 0.0158 0.3467 0.8851 6.5356 
4 4 3 0.0414 1.0367 0.2113 6.6210 

Stack 2 4 3 3 0.0123 0.2810 0.5335 6.6389
4 4 3 0.0140 0.3197 0.3946 7.7040

Stack 2 Filter 4 4 3 0.0100 0.2455 0.8891 6.8208
4 3 3 0.0102 0.2372 0.8863 6.8503 

6. Conclusion 

This paper introduces an Adaptive Neuro-Fuzzy Inference System (ANFIS)-based methodology for 
prediction of time-series. The paper studies the architecture and the parameter selection of the ANFIS 
prediction system, it is done by considering not only the accuracy of the system but also its ability to 
be implemented into a real-time approach. The paper also proposes to split the signal in two 
components one due to normal operation and a second caused by external perturbations. This splitting 
allows reducing the error in the predictions caused by external perturbations (e.g. prediction of the fuel 
cell output voltage such as transients when the fuel cell is started). 

The methodology is evaluated by predicting the voltage output variation in a fuel cell stack under 
constant operation during a long term operation test. Results show that ANFIS is well adapted to 
prediction of time-series and particularly to predict loss of performance caused by degradation in fuel 
cell systems. Simulations results reveal that the obtained ANFIS model can efficiently predict the 
behavior of the PEM fuel cell. The ANFIS-based methodology is a soft computing approach that 
provides an excellent platform for PHM of complex and non-linear systems such as fuel cells. 
Specifically, such an approach does not require advanced physical modeling and is easy to implement 
and tune. Nevertheless, in ANFIS, the complexity of the training phase is directly dependent on the 
amount of experimental data and the number and the choice of parameters considered. An accurate 
approach combines a very low computational cost while keeping a competitive performance in terms 
of convergence speed, which is suitable for on-line uses. 

Further work has to be addressed to propose a robust prognostic tool to estimate the RUL in the 
fuel cell, with potential targets of reconfiguration control and/or preventive maintenance. The 
approach considered in this paper to predict the performance loss in FCS is based on the output 
voltage variation because it is the simplest indicator about its SoH. This enables estimating the 
degradation but not identifying the failure or degradation modes. For this reason and considering 
further research, it could be useful to integrate new parameters taking into account operating condition 
variations (such as start/stop cycling, dynamics loads ..) and changing environmental conditions 
suffered in a real transport application, and more information such as EIS or polarization curves into 
the PHM process. 

Acronyms

AM Arithmetic Mean 
ANN Artificial Neural Networks 
ANFIS Adaptive Neuro-Fuzzy Inference System
FCS Fuel Cell System 
FL Fuzzy Logic 
MAPE Mean Absolute Percent Error 
MF Membership Functions
MG Mackey Glass 
MSP Multi-steps ahead prediction
PEMFC Proton Exchange Membrane Fuel Cells 
PHM Prognostics and Health Management 
PoF Physics of Failure 
RMSE Root Mean Square Error 



RUL Remaining Useful Life
R2 Coefficient of determination 
SoH State of Health 

Notations@ Number of inputs A Input prediction step B Output prediction step � Final prediction horizon �M�N���� Number of learning data samples >" Univariate time-series: >" � $��� ���  � �"%� Time index �C"W� One-step ahead prediction �C"W# Final-step ahead prediction 
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