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Abstract—In the perspective of decreasing polluting emissions
and developing alternative energies, fuel cells, and more precisely
Proton Exchange Membrane Fuel Cells (PEMFC), represent a
promising solution. Even if this technology is close to being
competitive, it still suffers from too short life duration. As a
consequence, prognostic seems to be a great solution to antic-
ipate PEMFC stacks degradation. However, a PEMFC implies
multiphysics and multiscale phenomena making the construction
of an aging model only based on physics very complex. One
solution consists in using a hybrid approach for prognostics
combining the use of models and available data. Among these
hybrid approaches, particle filtering methods seem to be really
appropriate as they offer the possibility to compute models
with time varying parameters and to update them all along
the prognostics process. But to be efficient, not only should
the prognostics system take into account the aging of the stack
but also external events influencing this aging. Indeed, some
acquisition techniques introduce disturbances in the fuel cell
behavior and a voltage recovery can be observed at the end
of the characterization process. This paper proposes to tackle
this problem. First, PEMFC fuel cells and their complexities
are introduced. Then, the impact of characterization of the
fuel cell behavior is described. Empirical models are built
and introduced in both learning and prediction phases of the
prognostics model by combining three particle filters. The new
prognostic framework is used to perform remaining useful life
estimates and the whole proposition is illustrated with a long term
experiment data set of a PEMFC in constant load solicitation
and stable operating conditions. Estimates can be given with an
error less than 5% for life durations of more than 1000 hours.
Finally, the results are compared to a previous work to show that
introducing a disturbance modeling can dramatically reduce the
uncertainty coming with the predictions.

I. INTRODUCTION

Development of cleaner power sources is one of the major

current challenges. Different kinds of fuel cells exist, made

of different materials and using different fuel. In this study,

we only focus on Proton Exchange Membrane Fuel Cell

(PEMFC).

Although this technology is close from being competitive,

it still suffers from a too short life duration impeding a

large scale deployment. Extending this life duration can be

achieved by several ways, one of them is Prognostics and

Health Management(PHM). PHM allow following the state of

health of the system and take the right decision at the right time

to extend remaining useful life (RUL) of that system thanks

mainly to prognostics. Applying PHM to a PEMFC stack is

quite new and very few papers dealing with this subject can be

found in literature. Of course a lot of works regarding PEMFC

are available but considering them with a PHM point of view

is a recent topic of research. [1] drew a state of the art of

PHM of PEMFC and highlighted few challenges in that field.

Performing prognostics on PEMFC stacks is one of them. Two

papers intending to estimate the RUL of a stack are available

until now. In [2], the authors propose a prognostic model based

on an unscented Kalman filter in order to link the operating

conditions to the degradation rate of the electrochemical active

surface area. It shows interesting results according to the α-

performance metrics described in [3]. However, this prognostic

is performed on a single cell (not a whole stack) and covers a

short period of time (300 h), which is limited if we consider

the expected 5,000 hours of lifetime needed for transportation

applications or the 80,000 hours required for stationary ones.

In [4], the voltage drop during the aging of a 5-cell stack is

considered. A hybrid prognostics method is developed based

on particle filtering. Three models are tested to estimate the

global trend of voltage evolution through time and then predict

the RUL. Promising results are showed. Yet, these models did

not take into account any disturbance occurring during the

stack aging, limiting the accuracy of predictions. This is the

problem adressed in this paper.

This work intends to pursue and improve the work presented

in [4] by including characterization-induced disturbances and

voltage recoveries that can be observed during the stack aging.

The main idea is to model the effects of disturbances and to

integrate it into the prognostics scheme. To achieve that goal,

PEMFC are first introduced, as well as their aging and the

data used are presented in Section II. Then, the prognostics

framework is introduced in Section III. A stack remaining

useful life is estimated and the results are discussed. To prove

the improvement with respect to our previous work, RUL

estimates are performed on another stack and compared to

our older predictions before concluding.

II. FUEL CELL AGING

A. PEMFC System overview

PEMFC technology uses hydrogen and oxygen to provide

electricity, also producing heat and rejecting water. It is based



on an electrochemical reaction that transforms chemical energy

into electrical one (Figure 1). PEMFC can be used in several

applications such as transportation, combined heat and power

systems (micro-cogeneration) but also as a clean and efficient

portable power converter for low power electronic devices.

A PEMFC system is composed of a stack that converts the

chemical energy into electrical one, surrounded by different

ancillaries providing reactant to the system, collecting elec-

tricity or controlling the operating conditions. As the stack is

the core of the system, the study is limited only to that element.

The stack is an assembly of cells which are themselves

made of different components. Descriptions of a stack and

its components can be found in [5]. The total power provided

by the stack is the sum of the power provided by the cells that

are connected in series.

For prognostics purpose, it is interesting to know how the

supplied power decrease as the stack ages. Due to mul-

tiphysics (thermodynamics, chemistry, etc.) and multiscale

(from nanoscale particles to the system level) phenomena, the

aging of a stack is difficult to observe and to understand.

And it is even more difficult to model. Some mechanisms

responsible for the performance degradation can be found in

[6], [7], [8]. As an example, we can quote carbon corro-

sion, catalyst dissolution, membrane degradation, etc. Some

degradation models are available [9]. However, they are not

suited for prognostics as they take into account a limited

number of degradation mechanisms or include parameters hard

to measure, etc. Moreover, none of them is able to take into

account the effects of disturbances appearing during the aging.

In order to illustrate this last paragraph and to introduce what

the disturbances introduced during the aging can be, the data

available for prognostics are presented now and the authors’

propositions on how to model the aging will be discussed after.

B. Aging and characterizations data

Data used for prognostics come from the aging of a 5-cell

PEMFC stack. This stack was run under constant current

load of I = 60A during approximately 1750 hours. Different

measurements were made through the aging :

• load (to compare with imposed one);

• stack voltage evolutions through time;

• polarization curves;

Fig. 1. PEMFC functioning principle

Fig. 2. PEMFC stack power degradation showing v and Rec

• electrochemical impedance spectroscopy (EIS).

For this study only the voltage and load measurements are

used. However, it is important to mention the other char-

acterization methods used because they are the ones that

introduce the perturbations and recoveries observed on the

voltage signals.

Indeed, for polarization curves and impedance measurements,

current density variations are imposed to the stack. One can

refer to [10] and [11] for more precisions on procedures. When

the stack returns in its nominal functioning conditions after

characterization, it recovers some performance, as it can be

seen on Figures 2 and 3. No clear explanation can be given

on what happened inside the stack. But, it can be assumed

that returning to a nominal load demand after current vari-

ations re-homogenize the liquid and gas distributions within

the stack, reset the operating conditions and allow thereby

canceling what are called reversible degradations. Based on

that, the recovery observed after characterizations is limited

by irreversible degradations taking place into the stack. This

distinction between reversible and irreversible degradation is

discussed in [12].

Another interesting fact to observe is that the degradation

seems to accentuate as the stack becomes older. It could be

attributed to more degraded states for some components in the

stack. That kind of acceleration has to be taken into account

when constructing the aging model for prognostics.

C. Aging modeling

The operating conditions and load were kept constant, which

allows us to formulate the hypothesis that the aging observed

is time-effects. This imply that our prognostics model and all

its parameters have only to be time-dependent.

1) Power degradation: To follow the aging of a stack, it

is interesting to consider its power loss through time. The

power is given by: Power = Voltage x Load. In our case the

load is constant so modeling the voltage drop is the similar as

modeling the power drop. Only the model coefficients will

change. Consequently, to describe the aging of the stack,

three empirical models that can be adapted to both power and

voltage degradations are set.

The first one aims at describing the global power degradation



Fig. 3. v and Rec illustration

that can be observed between characterization phases. This

model is composed by a logarithmic part and a linear one.

x(t) = a1.ln(t)− v.t+ c1 (1)

where x(t) represents the power evolution through time, a1
and c1 coefficients to determine, and v a coefficient driving

the speed of degradation described after. The logarithmic part

is supposed to model the transient phase and the linear one

the steady decay period. This idea is based on observations

but also according to [12] in which the authors suggest the

presence of two functioning phases after a characterization.

2) Degradation’s accelerations: However, by comparing

the power drops between characterization phases, it can be

seen that the power decreases faster and faster as the stack is

aging and this should be taken into account. This is visible on

left-hand bottom of Figure 3 in which all the parts between

characterizations (normalized by their first value) are plotted

together to be compared. It clearly shows that the power drops

faster for the last parts. According to that, and assuming that

v evolves with time, a global trend for v evolution has to be

extracted. As v is the slope of the linear part of the model,

it can be obtained by calculating dx/dt for certain number of

point during the learning phase. This was done on different

data sets and it enabled extracting a global trend for v:

v(t) = −a2.exp(b2.t) + c2 (2)

where v(t) is the coefficient from the power degradation model

and a2, b2 and c2 coefficients to determine. Considering the

hypotheses of constant current demand and constant operating

conditions, even if the starting point is completely different,

this model for power aging shows a global trend close to

the one proposed in [13] where a semi-empirical voltage

degradation model for a stack used in a bus is set.

3) Recoveries: Then, the last thing to model is the power

recovery observed after characterizations. This recovery is

represented on Figure 3 by round dots. It is limited by the

increasing in the irreversible degradation. As it still is very

complicated to model irreversible degradations in a PEMFC,

once again a global trend is extracted from different data sets.

Consequently, the recovery follow this equation:

Rec(t) = a3.exp(b3.t) + c3.exp(d3.t) (3)

where Rec(t) is the recovery and a3, b3, c3 and d3 coefficients

to determine.

III. PROGNOSTICS MODELING

These three models, equations (1-3), combined together make

possible catching the behavior of the stack all along its

lifetime.

A hybrid approach of prognostics is chosen. Indeed, it allows

combining the data available with our empirical models.

Moreover, to help choosing which prognostics method can

be used, it can be noticed that the models built are non-

exact, non-stationary, nonlinear and no Gaussian noise is

introduced. These criteria are characteristics of a nonlinear

Bayesian tracking problem [14], [15]. Different methods are

available to solve that kind of problem, but only the particle

filter solution was retained as it fits to our problem and shows

good results in literature [16], [17], [18].

A. Particle filtering framework

A problem of tracking is defined by two equations [14], [15].

The first one, the state model, considers the evolution of a

system state. The state noted { xk, k∈N } is going to evolve

following

xk = f(xk−1, θk, λk) (4)

where f is the transition function from the state xk−1 to next

state xk, possibly nonlinear; θk is the vector of unknown

parameters in the model and λk an independent identically

distributed (i.i.d.) noise (if existing). The tracking recursively

estimates xk from measurements introduced by the second

equation, the observation model { zk, k∈N }

zk = h(xk, µk) (5)

where h is the observation function and µk an i.i.d. noise.

The aim of the tracking problem is to recursively estimate, not

directly the state of the system, but the probability distribution

of the state at time k by constructing the probability density

function (pdf) p(xk|z1:k). It is assumed that the initial pdf

p(x0|z0) ≡ p(x0) of the state is available. p(xk|z1:k) can be

obtained recursively in two stages:

• prediction:

p(xk|z1:k−1) =

∫
p(xk|xk−1)p(xk−1|zk−1)dxk−1 (6)

• update:

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k)

p(zk|z1:k−1)
(7)

This gives the optimal solution but in many cases it cannot be

solved analytically. An approximate solution can be encoun-

tered by using the particle filtering framework.

The principle of particle filter is reminded. Particle filter is

a Monte Carlo-based tool based on the Bayes’ theorem. At



the first stage (k = 1), the initial distribution p(x0) is split

into n samples, called particles. Then, the following steps are

repeated until the end of the process.

1) Prediction Particles are propagated from state k − 1 to

state k using the state model. A new pdf is obtained.

2) Update The coming of a new measurement zk allows to

calculate the likelihood p(zk|xk). This probability shows

the degree of matching between the prediction and the

measurement. Its calculation allows attributing weights

at each particle according to the likelihood. Particles

with higher weights represent the most probable states.

3) Re-sampling This stage appears to avoid a degeneracy

of the filter. Indeed after several iterations, the particle

with low weights become too numerous altering the

prediction step. Their are different kind of re-sampling

strategies but the principle remains the same. Particles

with the lower weights (compared to a chosen limit

weight) are eliminated whereas the ones with higher

weights are duplicated.

B. Architecture including perturbations

The operating conditions remaining constant, perturbations

are only induced by characterization. Their occurrence is

planned before the beginning of aging tests. Consequently, this

planning can be added to the prognostics structure (Table I).

As for any Bayesian tracking problem a state equation xk

and a measurement equation zk have to be defined. Before

doing, the architecture defined should be explained. Consid-

ering the problem and the number of unknown coefficients in

our models, a structure with three particle filters working in

parallel is defined. The first one estimates the power aging,

the second one the coefficient v and the last one estimates the

recovery Rec after characterization. With this structure each

filter estimates its attributed parameters but the three of them

are always synchronized on the same time step.

When the date of a characterization is detected, it means

that a power recovery is going to happen. To account for

that, the power particles (filter 1) values is updated with the

particles values coming from the filter dedicated to the recov-

ery estimation (filter 2). As a characterization also represents

the beginning of a faster power drop, the power model is

updated with the last values of v coming from the filter 2.

This architecture is drawn on Figure 4.

The use of three filters implies three state models built thanks

to equations (1-3). There are defined as:

xk = −a1.ln(1/k + 1) + vk.dt+ xk−1 (8)

vk = −a2.exp(b2.k).(1− exp(−b2)) + vk−1 (9)

Reck = a3.exp(b3.k.dt).(1− exp(−b3))

+ c3.exp(d3.k.dt).(1− exp(−d3)) +Reck−1 (10)

where dt is the time step between two measurements (here 1

hour). Regarding the measurement model, it simply contains

the measurements available during the learning phase.

Fig. 4. Architecture of the prognostics structure

C. Defining the thresholds

Failure thresholds for fuel cells are defined according to a per-

centage of power drop compared to the initial one. According

to the US Department of Energy [19], the degradation should

not exceed 10% of the initial power on a 2500 h life duration.

The stack technology available for experiments always fails

to meets these requirement. Also our global loss of power for

the stack is 16,24% on a 1750 h lifetime. Consequently, 16%

is chosen as a failure threshold for RUL predictions.

IV. EXPERIMENTS AND DISCUSSION

This section intends to show the performance of the previously

defined prognostics framework.

A. Model fitting and estimates

Regarding the number of unknown coefficients that can be

learned by the filters, the learning data set should contain at

least 4 characterization phases. Consequently, the earlier end

for the learning phase cannot be smaller than 500 hours. The

predictions are made for learning phases ranging from 500 to

1700 hours by increasing the length of the training set by 50

hours each time.

In order to estimate the remaining useful life, the power

degradation is estimated. One example of this estimation is

showed on Figure 5. It can be seen that before 1100 hours,

the framework catches pretty well the degradation of the

power although the logarithmic part of the model seems to

be ignored by the estimation. After 1100 hours, the recovery

function looks like being over-estimated and the error on the

recovery after the last four characterizations begins to increase.

However, the power drop driven by the coefficient v seems

to values close the reality. Once again the logarithmic part

influence, driven by coefficient a1, is absent. It could be

interesting to find if this coefficient follows a particular trend

during aging and model it. These comments show that some,

maybe all, models have to be improved.



TABLE I
CHARACTERIZATIONS SCHEDULING

Characterization number 1 2 3 4 5 6 7 8 9 10 11 12

Date (hours) 137 259 317 455 480 624 770 921 1091 1310 1453 1600

Fig. 5. Predicted degradation of the power through time illustrated with a
training of 800 h

B. Uncertainty estimation

Series of tests on power degradation estimates showed that

particles of the filters tend to converge to the same state value.

As a consequence, instead of obtaining a final distribution of

the RUL, only one value is given and the uncertainty coming

with this estimation remains unknown.

To avoid this problem, the uncertainty introduced by the

prognostics framework has to be evaluated. To do so the

prognostics framework is launched 100 times with exactly the

same initialization and the same duration of learning. This

process is illustrated on Figure 6 on which the distribution

of the results is presented for a 600 hours long training.

It can be seen that the results are normally dispersed and

that all the predictions are contained in a small interval.

This kind of experiment allows to state that the prognostics

framework gives estimates contained in a range of 20 hours.

By assuming that these estimates are normally distributed

(as in the example), we can say that our framework gives

prediction with an uncertainty of ±10 hours.

C. RUL estimates

Although, the degradation estimation remains imperfect, the

RUL estimates are quite convincing (Figure 7). All the pre-

dictions are located in a 99% interval around the actual RUL,

which represent ±17.48 hours of the actual RUL. If we add

the uncertainty estimated above, it means that our framework

can give results precise at ±27.48 hours.

D. Discussion

The results presented here are very promising. But the frame-

work still suffers from a few drawbacks. First, the threshold

chosen as the end of life criterion is almost the end of the

data set. But some trials with thresholds that are located

Fig. 6. Uncertainty associated to the RUL estimates at t=600 h

Fig. 7. RUL predictions

between 9.5% and 14.4% of the initial power did not show

so good results. One explanation has already be mentioned

earlier, namely the weakness of some parts of the models.

Further analysis on PEMFC degradation may help to refine

these models. Another explanation could be the initialization

of the prognostics framework, if the filters are not given the

right initial distributions they will not converge to the right

parameters values. However, the good power estimations until

1100 hours do not seem to confirm that hypothesis.

E. Comparison with the original framework

To compare the improvement with the orignal framework

presented in [4], a new serie of tests is performed on older data

set refered as “Fuel cell 2” in our previous paper. These data

also come from a 5-cell stack aging under a constant current

(of 70A this time) during approximately 1000 hours. Here,

as shown on Figure 8, we only compare the RUL estimates.

As we can see on the upper part of the figure, the accuracy

improvement on the RUL estimate itself is not so impressive,

even if the new predictions are a little closer the actual RUL

value. But it can be noticed that the new framework gives less

late predictions.



Fig. 8. Comparison of RUL estimates by taking into account or not
taking into account disturbances & Uncertainty associated with the original
framework

However, the major improvement can be seen in the uncer-

tainty coming with the predictions. As illustrated on the bot-

tom part of the figure, previous RUL estimates were given with

an accuracy of ±90 hours and with an associated uncertainty

ranging from 112 to 388 hours in the worst case. With the

modeling of recoveries and power drop acceleration but also

the improvement of the prognostics framework, the accuracy

is now of ±40 with an uncertainty of ±10 hours. From a

decision making point of view, these last results are far more

interesting. They also clearly show that the more phenomena

are modeled the more accurate are our results.

V. CONCLUSION

This paper presents a new framework for remaining useful life

predictions of a PEMFC stack. A previous work [4] showed

that characterization-induced perturbations cannot be ignored

to predict the future behavior of the stack. By combining

a global model for power degradation regularly, a model

that reflects the acceleration of the drop with time and a

last one that takes into account power recoveries, a more

effective prognostics framework is developed. Even if, the

behavior prediction is still not perfect, RUL estimates are quite

encouraging as the error going with the predictions is smaller

than 28 hours for a global lifetime of 1748 hours. A next step

to that work will be first the reinforcement of the models, to

be able then to start integrating variable operating conditions.
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