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ABSTRACT. A theorem of Tits - Vinberg allows to build an action of a Coxeter group Γ on a

properly convex open set Ω of the real projective space, thanks to the data P of a polytope
and reflection across its facets. We give sufficient conditions for such action to be of finite

covolume, convex-cocompact or geometrically finite. We describe a hypothesis that makes

those conditions necessary.
Under this hypothesis, we describe the Zariski closure of Γ, find the maximal Γ-invariant

convex set, when there is a unique Γ-invariant convex set, when the convex set Ω is strictly
convex, when we can find a Γ-invariant convex set Ω

′ which is strictly convex.
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INTRODUCTION

General Framework. The study of groups acting on Hilbert geometry or convex projective
structures on manifold starts with the pioneering work of Kuiper [Kui53] in the 50’s. Af-
ter came the works of Benzécri [Ben60], Vinberg [Vin63, Vin65, Vin71], Kac-Vinberg [KV67],
Koszul [Kos68] and Vey [Vey70] in the 60’s. Then the field took a deep breath, and came back
in the 90’s with Goldman [Gol90], followed by Suhyoung Choi, Labourie, Loftin, Inkang
Kim and a long series of articles by Benoist in the 2000’s. The recent works of Jaejeong Lee,
Misha Kapovich, Cooper, Long, Tillmann, Thistlethwaite, Ballas, Gye-Seon Lee, Suhyoung
Choi, Nie, Crampon and the author show a growing interest for this field.

We want to study the action of discrete groups Γ of SL±d+1(R) on a properly1 convex open
set Ω of the projective sphere Sd = S(Rd+1) = {Half-line of Rd+1}. Note that on every prop-
erly convex open set Ω of Sd there is a distance dΩ and a measure µΩ invariant by the group
Aut(Ω) = {γ ∈ SL±d+1(R) ∣γ(Ω) =Ω} of automorphisms of Ω.

1991 Mathematics Subject Classification. 22E40, 20F55, 20F67, 53C60.
1A bounded convex subset of an affine chart.
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At this moment, divisible convex sets, the convex sets Ω for which there exists a discrete
subgroup Γ of Aut(Ω) such that Ω/

Γ
is compact, have received almost all the attention.

The quasi-divisible convex sets, the one for which there exist a discrete subgroup Γ of Aut(Ω)
such that Ω/

Γ
is of finite volume, are starting to be studied, see [CLT11, Bal12, Bal14, CM12,

Mar11, Mar12].

There is at least four ways to say that the action of Γ on Ω is “cofinite”. The first two
ways are the following: the action of Γ on Ω is cocompact (resp. of cofinite volume) when the
quotient orbifold Ω/

Γ
is compact (resp. of finite volume for the measure induced by µΩ).

If we assume moreover that the action of Γ on Rd+1 is strongly irreducible1, Benoist shows
in [Ben00] that there exists a smallest closed Γ-invariant subset ΛΓ of the real projective space
P(Rd+1) = Pd(R) = Pd. We still denote ΛΓ the one of the two preimages of ΛΓ in Sd which is

included in ∂Ω. We denote by C(ΛΓ) the convex hull2 of ΛΓ in Ω. We remark that C(ΛΓ) is
a closed subset of Ω which has a non empty interior since the action of Γ on Rd+1 is strongly
irreducible.

We will say that the action of Γ on Ω is convex-cocompact (resp. geometrically finite) when

the quotient C(ΛΓ)/Γ is compact (resp. of finite volume for the measure induced by µΩ).

The definition of cocompact, finite volume or convex-cocompact action make no doubt,
but the definition of geometrical finiteness deserves a detailed comment that will be done in
Section 6.5.

The theory of Coxeter groups has two benefits for us. First, it gives a simple and explicit
recipe to build a lot of groups with different behaviours from the point of view of geometric
group theory. Second, the Theorem of Tits-Vinberg gives the hope to build a lot of interest-
ing actions of Coxeter groups on Hilbert geometry. So, we will focus on actions of Coxeter
groups W on convex subsets of the projective sphere Sd.

We point out, for the reader not familiar with Hilbert geometry, that Hilbert geometries
can also be very different. For example, if Ω is the round ball of an affine chart Rd of Sd then
(Ω, dΩ) is isometric to the real hyperbolic space of dimension d and if Ω is a triangle then
(Ω, dΩ) is bi-Lipschitz equivalent the euclidean plane. In particular, our discussion includes
the context of hyperbolic geometry.

Precise Framework. In order to make a Coxeter group acts on the projective sphere, one can
take a projective polytope P of Sd, and choose a projective reflection σs across each facet s

of P3. We want to consider the subgroup Γ = ΓP of SL±d+1(R) generated by the reflections
(σs)s∈S, where S is the set of facets of P. In order to get a discrete subgroup of SL±d+1(R),
we need some hypothesis on the set of reflections (σs)s∈S. Roughly speaking, the hypothesis
will be that if s and t are two facets of P such that s ∩ t is of codimension 2 then the product
σsσt is conjugate to a rotation of angle π

m , where m is an integer. We also authorize the case

1The action of any finite index subgroup of Γ on R
d+1 is irreducible.

2The smallest closed convex subset of Ω containing ΛΓ in its closure in S
d.

3Note that in projective geometry there are many reflections across a given hyperplane.
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m = ∞, and for this case a special condition is needed.

The precise definition is Definition 1.8. Such a polytope will be called a Coxeter polytope.
Given a Coxeter polytope P, we can consider the set C = CP = ⋃γ∈Γ γ(P). The Theorem of

Tits-Vinberg (Theorem 2.2) tells us that Γ is discrete and C is a convex subset of Sd. This
theorem provides a huge amount of examples with drastically different behaviours.

The goal of this article is to tackle the following questions: Let P be a Coxeter polytope
of Sd, let Γ be the discrete subgroup generated by the reflections (σs)s∈S and C = ⋃γ∈Γ γ(P).

In order to get nice irreducible examples, we assume that the action of Γ on Rd+1 is strongly
irreducible, so C has to be properly convex. Let Ω be the interior of C. When is the action of

Γ on Ω cocompact ?1of finite covolume ? convex cocompact ? geometrically finite ?

Our goal is also to answer questions about the Zariski closure of Γ, about the convex set
Ω and about the other possible convex set preserved by Γ. Precisely, we mean :

⋅ What are the possible Zariski closures for Γ ?
� Is the convex set Ω the largest properly convex open set preserved ?
△ When does the action of Γ on Sd preserve a unique properly convex open subset ?
◇ When is the convex set Ω the smallest properly convex open set preserved ?
☆ When is the convex set Ω strictly convex ? with C1 boundary ? both ?
C When does the action of Γ on Sd preserve a strictly convex open set ? a properly

convex open set with C1 boundary ? a strictly convex open set with C1 boundary ?

If we don’t make any hypothesis on the Coxeter polytope P, the behaviour of the action
Γ ↷ Ω can be very complicated. So, we will make a non-trivial hypothesis along this text. I
think this hypothesis is relevant and offers an access to a wide family of examples. For ex-
ample, this hypothesis is satisfied by every Coxeter polygon and every Coxeter polyhedron
whose dihedral angles are non-zero.

Now, we briefly explain the hypothesis that we will make most of the time along this text.
A nice way to get information about a polytope is to look around a vertex. The link of a
Coxeter polytope P at a vertex p is a Coxeter polytope Pp of one dimension less than P and
which is “P seen from p”. In the context of hyperbolic geometry, it is the intersection of P
with a small sphere centered at p.

Vinberg introduces the following terminology in [Vin71]: A Coxeter polytope P is perfect
when the action of Γ on Ω is cocompact. We will mainly assume that P is 2-perfect, which
means that the link of every vertex of P is perfect or equivalently that P ∩ ∂Ω is contained in
the set of vertices of P. See Proposition 3.1 for precisions.

Vinberg shows in [Vin71] that perfect Coxeter polytopes come from three different fami-

lies2:

● P is elliptic, i.e. Γ is finite.
● P is parabolic, i.e. Ω is an affine chart.
● Otherwise, Ω is properly convex. In that case, we say that P is loxodromic.

1Already answer by Vinberg, see Theorem 2 of [Vin71] or corollary 2.3.
2See definition 2.13.
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In particular, if P is 2-perfect, then the link at any vertex is either elliptic, parabolic or loxo-
dromic. We can now state our results.

Theorem A ((Theorems 6.2, 6.3 and 6.4)). Let P be a 2-perfect Coxeter polytope. Let Γ = ΓP be
the subgroup of SLd+1(R) generated by the reflections around the facets of P. Let Ω =ΩP be
the interior of the Γ-orbit of P. Suppose that the action of Γ on Rd+1 is strongly irreducible.
Then:

● The action Γ ↷Ω is geometrically finite.
● Moreover, the action Γ ↷ Ω is of finite covolume if and only if the link Pp of every

vertex p of P is elliptic or parabolic.
● Finally, the action Γ ↷Ω is convex cocompact if and only if the link Pp of every vertex

p of P is elliptic or loxodromic.

We keep the same notation and hypothesis for the following theorems.

Theorem B ((Theorem 7.11)). The Zariski closure of Γ is either conjugate to SO○d,1(R) or is
equal to SLd+1(R).

Theorem C ((Theorem 8.1)). Every properly convex open set preserved by Γ is included in Ω.

Theorem D ((Theorem 8.2)). The convex set Ω is the smallest properly convex open set pre-
served by Γ if and only if the action Γ ↷Ω is of finite covolume.

By using one of the results of [Ben04a, CLT11], we can also show:

Theorem E ((Theorem 8.7)). The following are equivalent:

⋅ The properly convex open set Ω is strictly convex.
� The boundary ∂Ω of Ω is of class C1.
∴ The action Γ ↷ Ω is of finite covolume and the group Γ is relatively hyperbolic rela-

tively to the links Pp for which Pp is parabolic.

In that case, the metric space (Ω, dΩ) is Gromov-hyperbolic.

Thanks to the moduli space computed in [Mar10], we will easily get the following theorem
as a corollary of Theorem E.

Theorem F. In dimension 3, there exists an indecomposable1 quasi-divisible properly convex
open set which is not divisible nor strictly convex.

We recall that one cannot find such an example in dimension 2, thanks to [Ben60, Mar11].
A construction in any dimension is an open question in the divisible or the quasi-divisible
context.

Theorem G ((Theorem 8.11)). If moreover all the loxodromic vertices are simple2, the follow-
ing are equivalent:

⋅ There exists a strictly convex open set Ω′ preserved by Γ.
� There exists a properly convex open set Ω′ with C1-boundary preserved by Γ.
∴ The group Γ is relatively hyperbolic relatively to the links Pp for which Pp is parabolic.

Along the way, we will study a nice procedure : truncation which allows to build a new
polytope from a starting one by cutting a simple vertex (See Subsection 4.5). This proce-
dure is present in a survey of Vinberg [Vin85] in the context of hyperbolic geometry, it has

1A convex set that is not the join of two convex sets of smaller dimension.
2A vertex is simple when its link is a simplex.
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also been used by the author in [Mar10], this time in the context of projective geometry.
The approach in this text will be less computational and more geometrical than in [Mar10].
We think this procedure is interesting in its own right. Moreover, the introduction of this
procedure gives nicer statements of the previously quoted theorems.

Others works around the subject. The starting point and main inspiration for this article, is the

article [Vin71] of Vinberg, which presents the notion of Coxeter polytope1 and studies the
first property. Cocompact actions are studied in Vinberg’s text but actions of cofinite vol-
ume, convex-cocompact or geometrically finite action are not. There are also lecture notes
by Benoist [Ben04b] which present a proof of the theorem of Tits-Vinberg. The examples of
the article [Ben06a, Ben06b] of Benoist are built thanks to the theorem of Tits-Vinberg.

One can also study the moduli space of a Coxeter polytope but we will not do it in this
text. Suhyoung Choi with Gye-Seon Lee, Craig Hodgson and the author have works on this
problem [Cho06, CHL10, CL12, Mar10]. We will devote several forthcoming articles with
Suhyoung Choi, Gye-Seon Lee and/or Ryan Greene to the problem of moduli space.

The study of geometrically finite actions was started in [CM12] of M. Crampon and the
author. We stress that in the last article the authors made the hypothesis that the convex
set Ω on which the group Γ acts is strictly convex with C1-boundary. The study of actions
of cofinite volume is the main purpose of the articles [CLT11] of Cooper, Long and Till-
mann, [Mar11] and [Mar12] of the author. We stress that the hypothesis of strict convexity
of Ω is central in [CM12, Mar12]. This hypothesis is absent from [Mar11] and is not always
present in [CLT11]. There is also a paper of Suhyoung Choi about geometrically finite ac-
tions [Cho10].

We point out that in this text, we did not make any assumption about the regularity of the
boundary of Ω. One of the goals is actually to build examples where Ω is not strictly convex
and the action is cocompact or of finite covolume.

Plan of the article. The first part of the article contains preliminaries about convexity, Hilbert
geometry, Coxeter groups and Coxeter polytopes. The second part is a recalling of the theo-
rem of Tits-Vinberg and of important results of Vinberg coming from the article [Vin71]. The
third part presents the definition of link of a polytope and makes precise the hypothesis : “P
is 2-perfect”.

The fourth part presents the lemmas for the study of the geometry around a vertex. The
fifth part is a classification of degenerate 2-perfect polytopes. The sixth part is devoted to
the proof of Theorem A. The seventh part studies the Zariski closure of Γ, and it contains the
proof of Theorem B. The eighth part contains the proof of Theorems C, D, E and G.

Acknowledgements. The author thanks Yves Benoist for a couple of dense discussion about

this text. We thanks Érnest Vinberg which is a major source of inspiration for this article.
Finally, we warmly thank Gye-Seon Lee who found a lot of errors in a previous version.

The author thanks the ANR facets of discrete groups and ANR Finsler geometry for their
supports.

1Note that Vinberg prefers to work with Γ than with P. Vinberg called such a Γ a linear Coxeter group.
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1. PRELIMINARIES

1.1. Convexity in the projective sphere.
Let V be a real vector space. A convex cone C is sharp when C does not contain any

affine line. Consider the projective sphere S(V) = {Half-lines of V} = V ∖ {0}/∼ where ∼ is the
equivalence relation induced by the action of R∗

+
by homothety on V. Of course, S(V) is the

2-fold cover of the real projective space P(V). The notion of convexity is nicer in S(V) than
in P(V). We will denote S ∶ V ∖ {0}→ S(V) the natural projection.

A subset C of S(V) is convex (resp. properly convex) when the set S−1(C) is a convex cone
(resp. sharp convex cone) of V. Given a hyperplane H of S(V), the two connected com-
ponents of S(V)∖ H are called affine charts. An open set Ω ≠ S(V) of S(V) is convex (resp.

properly convex) if and only if there exists an affine chart A such that Ω ⊂A (resp. Ω ⊂A)
and Ω is convex in the usual sense in A.

1.2. Hilbert geometry.
On every properly convex open set Ω of Sd there is a distance dΩ defined thanks to the

cross-ratio, in the following way: take any two points x ≠ y ∈ Ω and draw the line between
them. This line intersects the boundary ∂Ω of Ω in two points p and q. We assume that x is
between p and y. Then the following formula defines a distance (see Figure 1):

dΩ(x, y) =
1

2
ln([p ∶ x ∶ y ∶ q])

This distance gives to Ω the same topology than the one inherited from S(V). The metric
space (Ω, dΩ) is complete, the closed ball are compact, the group Aut(Ω) acts by isometries
on Ω, and therefore acts properly.

x
y

p

qv

p−

p+

Ω

FIGURE 1. Hilbert distance

This distance is called the Hilbert distance and has the good taste to came from a Finsler
metric on Ω defined by a very simple formula. Let x be a point of Ω and v a vector of the

tangent space TxΩ of Ω at x. The quantity d
dt ∣t=0 dΩ(x, x+ tv) defines a Finsler metric FΩ(x, v)

on Ω. Moreover, if we choose an affine chart A containing Ω and a euclidean norm ∣ ⋅ ∣ on
A, we get:

FΩ(x, v) = d

dt
∣
t=0

dΩ(x, x + tv) = ∣v∣
2

⎛
⎝

1

∣xp−∣ +
1

∣xp+∣
⎞
⎠
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Where p− and p+ are the intersection points of the half-line starting at p with direction −v
and v with ∂Ω and ∣ab∣ is the distance between points a, b of A for the euclidean norm ∣ ⋅ ∣
(see Figure 1). The regularity of this Finsler metric is the regularity of the boundary ∂Ω of
Ω, and the Finsler structure gives rise to an absolutely continuous measure µΩ with respect
to Lebesgue measure. We will not need any explicit formula for this measure; we will only
use the following proposition which is straightforward and explained in [Ver05]:

Proposition 1.1. Let Ω1 ⊂ Ω2 be two properly convex open sets; then for any Borel set A of Ω1, we
have µΩ2

(A) ⩽ µΩ1
(A).

1.3. Coxeter Group.
Coxeter group are going to be the main object of this paper, so we take the time to recall

some basic facts.

Definition 1.2. A Coxeter system is the data of a finite set S and a symmetric matrix M =(Mst)s,t∈S such that the diagonal coefficients Mss = 1 and the other coefficients Mst ∈ {2, 3, ..., n, ...,∞}.
The cardinality of S is called the rank of the Coxeter system (S, M). With a Coxeter system,
one can build a Coxeter group WS; it is a group defined by generators and relations. The
generators are the elements of S and we impose the relations (st)Mst = 1 for all s, t ∈ S such
that Mst ≠∞.

There are two basic objects associated to a Coxeter system or a Coxeter group: its Coxeter
diagram and its Gram matrix. We recall the definition of these two objects and the basic
consequences.

One can associate to W a labelled graph, also denoted by W, called the Coxeter diagram of
W. The vertices of W are the elements of S. Two vertices s, t ∈ S are linked by an edge if and
only if Mst ≠ 2. The label of an edge linking s to t in W is the number Mst > 2. A Coxeter
group is irreducible when its Coxeter graph is connected. Of course, any Coxeter group is the
direct product of the Coxeter groups associated to the connected components of its Coxeter
graph.

One also associate to W a symmetric matrix of size the cardinality of S, namely its Gram

matrix Cos(W), defined by the following formula: (Cos(W))st = −2 cos ( π
Mst
) for s, t ∈ S.

An irreducible Coxeter group W is a spherical Coxeter group (resp. affine Coxeter group)
if its Gram Matrix is positive definite (resp. positive but not definite). Vinberg and Mar-

gulis showed that an irreducible Coxeter group which is not spherical nor affine is large1 in
[MV00]. Therefore an irreducible Coxeter group is either spherical, affine or large.

More generally a Coxeter group is spherical (resp. affine resp. euclidean) when all its con-
nected components are irreducible spherical Coxeter group (resp. affine resp. affine or
spherical).

The irreducible spherical and affine Coxeter groups have been classified (by Coxeter in
[Cox34] for the spherical case). We reproduce the list of those Coxeter diagrams in Figures
2 and 3. We use the usual convention that an edge that should be labelled 3 has in fact no
label. We stress that among them the only ones which are not trees or have an edge labelled
∞ are the affine Coxeter diagram named Ãn for n ⩾ 1. As already remarked by Vinberg,
those Coxeter groups play a special role in this context.

1.4. The face of a properly convex closed (or open) set.

1admits a finite index subgroup which admits an onto morphism on a non-abelian free group.
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An

Bn
4

Dn

I2(p) p

H3
5

H4
5

F4
4

E6

E7

E8

FIGURE 2. Irreducible
spherical diagram

Ãn

B̃n
4

C̃n
4 4

D̃n

Ã1
∞

B̃2
4 4

G̃2
6

F̃4
4

Ẽ6

Ẽ7

Ẽ8

FIGURE 3. Irreducible
affine diagram

Let C be a properly convex closed subset of Sd. We introduce the following equivalence
relation on C; x ∼ y when the segment [x, y] can be extended beyond x and y. The equiva-
lence classes of ∼ are called the open faces of C, the closure of an open face is a face of C. The
support of a face or an open face is the smallest projective space containing it. The dimension
of a face is the dimension of its support. For properly convex open subsets, we just apply this

definition to their closure, so a face of Ω is a subset of Ω.
The interior of a face F in its support (i.e its relative interior) is equal to the unique open

face f such that f = F. Finally, one should remark that if f is an open face of C then f is
a properly convex open set in its support. The only face of dimension d is C. A face of
dimension d − 1 is called a facet, a face of dimension 0 a vertex, a face of dimension 1 an edge
and a face of dimension d − 2 a ridge.

1.5. Mirror polytope.
A projective polytope is a properly convex closed set P of S(V) with non-empty interior

such that there exists a finite number of linear form α1, ..., αr on V such that P = S({x ∈
V ∖ {0} ∣αi(x) ⩽ 0, i = 1...r}).
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A projective reflection is an element of SL±(V) of order 2 which is the identity on a hyper-
plane. Each projective reflection σ can be written as: σ = Id − α⊗ v where α is a linear form
and v a vector such that α(v) = 2. This notation means that σ(x) = x − α(x)v.

A projective rotation is an element of SL(V) which is the identity on a codimension 2 sub-

space H and conjugate to the 2×2 matrix (cos(θ) − sin(θ)
sin(θ) cos(θ) ) on a plan Π such that H⊕Π = V.

The two following lemmas are easy but essential.

Lemma 1.3 ((Vinberg, Proposition 6 of [Vin71])). Let σs = Id − αs ⊗ vs and σt = Id − αt ⊗ vt be
two reflections of R2. Let Γ be the group generated by σs and σt. Let C be the cone {x ∈ R2 ∣ αs(x) ⩽
0 and αt(x) ⩽ 0}. If the sets (γ(C))γ∈Γ have disjoint interiors, then:

(C)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1) αs(vt) ⩽ 0 and αt(vs) ⩽ 0

and
2) αs(vt) = 0⇔ αt(vs) = 0.

Lemma 1.4 ((Vinberg, Propositions 6 and 7 of [Vin71])). With the same notation, iIf the condition
(C) is satisfied then the group Γ preserves a symmetric bilinear form b on R2.

⋅ If αs(vt)αt(vs) < 4 then b is positive definite and the element σsσt is a rotation of angle 2θst

where αs(vt)αt(vs) = 4 cos2(θst). In particular, the group Γ is discrete if and only if the
number mst =

π
θst

is an integer.

� If αs(vt)αt(vs) > 4 then b is of signature (1, 1), the element σsσt is loxodromic1, the action on
P1 preserves a unique properly convex open Ω set, and the action on Ω is cocompact.

∴ Otherwise αs(vt)αt(vs) = 4, b is positive and degenerate, the element σsσt is unipotent2, the
action on P1 preserves a unique affine chart A1, and the action on A1 is cocompact.

These actions on R2 are described by Figure 4.

C

C

C

FIGURE 4.

The two previous lemmas motive the following definition:

1Here, this means that σ1σ2 is diagonalizable over R.
2Here, this means that (σsσt − Id)2 = 0.
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P

v1

v3

v2

v4

v5

FIGURE 5. Illustration of equation (C)

Definition 1.5. A mirror polytope is a convex projective polytope P with the data of a projec-
tive reflection σs across each facet s of P, such that for any two facets s and t of P such that
s∩ t is a ridge of P, the pair {σs, σt} satisfies the conditions (C). We say that the dihedral angle
between the facets s and t is θst when we have αs(vt)αt(vs) = 4 cos2(θst). Otherwise, we say that
the angle is 0. Two mirror polytopes are isomorphic if one can find an isomorphism of vector
spaces which sends the first polytope to the second, and sends the reflections of the first to
the reflections of the second. When P and Q are isomorphic, we will write P ≃ Q.

Notation 1.6. The following notation will be used along this text. Let P be a mirror polytope; the
symbol S will denote the set of facets of P. We can always write P = S({x ∈ V ∖ {0} ∣αs(x) ⩽ 0, s ∈
S}). For each facet s ∈ S, we denote by σs the reflection of P which fixes each point of s. We can write
it σs = Id − αs ⊗ vs with vs ∈ V and αs(vs) = 2. Be careful that the couple (αs, vs) is unique up to

a multiplicative positive constant,1 but nothing will depend on this choice. The point [vs] ∈ S(V),
which is unique, is called the polar of the facet s (or of σs) and the hyperplane {x ∈ Sd ∣αs(x) = 0}
is called the support of the facet s or of σs. We will denote by the symbol ΓP or simply Γ the group
generated by the reflections σs for s ∈ S.

Corollary 1.7. Let P be a mirror polytope. If the sets γ(P̊) are disjoint for γ ∈ ΓP, then the family(αs(vt))s,t∈S verifies the condition (C) and the following condition:

(D)
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1) αs(vt)αt(vs) = 4 cos2(θst),
and the number mst =

π
θst

is an integer greater or equal to 2,
or
2) αs(vt)αt(vs) ⩾ 4.

Definition 1.8. A mirror polytope P is a Coxeter polytope when all its dihedral angles are

sub-multiples2 of π.

1By the action λ ⋅ (αs, vs) = (λαs, λ−1vs).
2Precisely, θ = π

m with m an integer greater than or equal to 2 OR m =∞.
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If P is a Coxeter polytope, the Coxeter system associated to P is the Coxeter system (S, M),
where S is the set of facets of P and where for all s, t ∈ S, we have Mst = mst if the facets
s, t ∈ S are such that s ∩ t is a ridge of P and θst =

π
mst

, otherwise Mst =∞. We will denote by

the letter WP or simply W the Coxeter group associated to the system (S, M).
Remark 1.9. Figure 5 shows a pentagon P. Any mirror structure on this polygon verifies that
the polar [vi] of the facet are in the grey triangle given by the facet i. This is a consequence
of the inequalities (C). We will see that these inequalities have usefull implications.

1.6. The limit set of positively proximal subgroup of SLd+1(R). In this section, we just
state a theorem of existence of limit sets. We will give a more detailed discussion in para-
graph 7.4.

1.6.1. Strongly irreducible case.

Theorem 1.10 ((Benoist, Lemma 2.9 and 3.3 of [Ben00])). Let Γ be a strongly irreducible sub-
group of SLd+1(R) preserving a properly convex open set. There exists a smallest closed Γ-invariant
subset ΛΓ for the action of Γ on Pd. This closed subset is called the limit set of Γ.

Corollary 1.11. Let Γ be a strongly irreducible subgroup of SLd+1(R) preserving a properly convex
open set. There exists a smallest and a largest Γ-invariant convex open subset for the action of Γ on
Pd.

1.6.2. Irreducible case.

Lemma 1.12 ((Benoist, Lemma 2.9 and 3.3 of [Ben00])). Let Γ be an irreducible subgroup of
SLd+1(R) preserving a properly convex open set Ω. Let Γ0 be the Zariski connected component of Γ.
There exists a decomposition Rd+1 =⊕i=1,...,r Ei in strongly irreducible Γ0-sub-modules such that the
action of Γ0 on each factor preserves a properly convex open cone. The limit set of Γ is the union of
the limit set of Γ0 in P(Ei).

2. THE THEOREM OF TITS-VINBERG AND THE THEOREMS OF VINBERG

In this section, we recall the Theorem of Tits-Vinberg and the Theorems of Vinberg.

2.1. Tiling theorem.
To avoid any confusion, we recall a general definition of a tiling.

Definition 2.1. A family (Ei)i∈I of closed set tiles a topological set X when we have the
following three conditions: For all i ∈ I, the interior of Ei is dense in Ei, the union of the Ei is
X and for all i ≠ j in I, the intersection of the interiors of Ei and Ej is empty.

If (S, M) is a Coxeter system then for every subset S′ of S, one can consider the Coxeter
group WS′ associated to the Coxeter system (S′, M′), where M′ is the restriction of M to S′.
Theorem 2.2 shows that the natural morphism WS′ →WS is injective. Therefore, WS′ may be
identified with the subgroup of WS generated by the subset S′.

If P is a Coxeter polytope and f is a face (or an open face) of P, and f ≠ P, then we will
write S f = {s ∈ S ∣ f ⊂ s} and W f =WS f

.

Let (S, M) be a Coxeter system. A standard parabolic subgroup of the Coxeter group WS is
a subgroup generated by some elements of S. A parabolic subgroup of WS is conjugate of a
standard parabolic subgroup.
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Theorem 2.2 ((Tits, chapter V [Bou68] for the Tits’s simplex or Vinberg [Vin71])). Let P be a
Coxeter polytope of S(V), WP be the associated Coxeter group and ΓP the group generated by the
projective reflections (σs)s∈S. Then,

⋅ The morphism σ ∶WP → ΓP defined by σ(s) = σs is an isomorphism.
� The polytopes (γ(P))

γ∈ΓP
tile aconvex setCP of S(V).

△ The group ΓP acts properly on ΩP = C̊P, the interior of CP.
◇ The group ΓP is a discrete subgroup of SL±(V).
☆ An open face f of P lies in ΩP if and only if the Coxeter group W f is finite.
C For every parabolic subgroup U of WP, the union ⋃γ∈U γ(P) is convex.

Corollary 2.3. The convex setCP is open if and only if the action of ΓP on ΩP is cocompact if and
only if for every vertex p of P the Coxeter group Wp is finite. Following Vinberg, we will say that in

this case, P is perfect1.

The following theorem can give the impression to be a corollary, but in fact Vinberg uses
it to conclude the proof of his theorem (see Lemma 10 of [Vin71]).

Theorem 2.4 ((Coxeter [Cox34])). Theconvex setCP is the projective sphere S(V) if and only if the
group WP is finite if and only if the Coxeter group WP is spherical.

Remark 2.5. The sixth point of Theorem 2.2 is not explicit in Vinberg’s article but it is an easy
consequence of the techniques he develops.

2.2. The Cartan Matrix of a Coxeter polytope.

Definition 2.6. A matrix A of Mm(R) is a Cartan matrix when:

● ∀ i = 1...m, aii = 2.
● ∀ i, j = 1...m, aij = 0⇔ aji = 0.
● All non-diagonal coefficients of A are negative or null.

A matrix is reducible if after a simultaneaous permutation of the rows and the columns, one
as a non trivial diagonal bloc matrix. A matrix is irreducible if and only if it is not reducible.

The theorem of Perron-Frobenius shows that the spectral radius of an irreducible matrix with
positive or null coefficients is a simple eigenvalue. Hence, an irreducible Cartan matrix A has a
unique eigenvalue λA of minimal modulus. We will say that A is of positive type, zero type or
negative type when λA > 0, λA = 0 or λA < 0.

Given a Coxeter polytope P, one can define the matrix A where Aij = αi(vj). By definition
of a Coxeter polytope, A is a Cartan matrix; we will call it the Cartan matrix associated to the
Coxeter polytope P and denoted it AP.

Of course, the Coxeter group WP is irreducible if and only if the Cartan matrix AP is
irreducible. In that case, we say that P is of positive type (resp. zero type, resp. negative type)
according to the type of AP.

If the Coxeter group WP is not irreducible, then the Cartan matrix AP is the sum of its
irreducible components, we say that P is of positive type, (resp. zero type, resp. negative type)
if all the irreducible components are of positive type, (resp. zero type, resp. negative type). It is
easy to find a Coxeter polytope P, such that the components of AP do not have not the same
type.

1Definition 8 of [Vin71].
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2.3. Tits’s simplex.
To each Coxeter group W, we can associate a Coxeter polytope. The polytope will be a

simplex of dimension the rank of W minus 1. The construction1 is the following:
Suppose that W arises from the Coxeter system M = (Mst)s,t∈S. Consider the vector space

V = (RS)∗, and denote by (es)s∈S the canonical basis of RS. We consider the simplicial cone
C = {ϕ ∈ (RS)∗ ∣ ϕ(es) ⩽ 0, ∀s ∈ S}; the simplex we want is P = S(C). The reflection associated
to the element s ∈ S is the reflection across the facet S({ϕ ∣ ϕ(es) = 0}) ∩ P, and given by
the formula σs(ϕ) = ϕ − 2ϕ(es)BW(es, ⋅), where BW is the symmetric bilinear form given by

BW(es, et) = − cos ( π
Mst
).

The resulting Coxeter polytope will be called the Tits simplex associated to W and denoted
by ∆W . The polar of the facet s is the point [2BW(es, ⋅)] of S((RS)∗). We stress that the group
Γ∆W

preserves the symmetric bilinear form BW .

2.4. Proper convexity of ΩP.

Theorem 2.7 ((Vinberg, Lemma 15 and Proposition 25 [Vin71])). Let P be a Coxeter polytope of
Sd. The convex setΩP is properly convex if and only if the Cartan matrix AP of P is of negative type.

Remark 2.8. The terminology in [Vin71] and the terminology we use can be in opposition.
A cone C is strictly convex for [Vin71] when it is properly convex for us. Vinberg prefer to
speak about a reduced linear Coxeter group while we prefer to talk about a Coxeter poly-
tope.

2.5. Irreducible Coxeter polytope.
The following proposition gives the shape of ΩP via the type of AP.

Proposition 2.9 ((Vinberg, [Vin71])). Let P be an irreducible Coxeter polytope of Sd. Let W be the
Coxeter group associated to P. We are in exactly one the following five cases:

⋅ The Coxeter group W is spherical; in that case:
● AP is of positive type and of rank d + 1,
● ΩP = Sd,
● in fact, P ≃ ∆W .

� The Coxeter group W is affine but not of type Ãn; in that case:
● AP is of zero type and of rank d,
● ΩP is an affine chart,
● in fact, P ≃ ∆W ,
● the action of ΓP on ΩP is cocompact and preserves a euclidean metric.

∴ The Coxeter group W is affine of type Ãn, and AP is of zero type; in that case:
● AP is of rank d,
● ΩP is an affine chart,
● in fact, P ≃ ∆W ,
● the action of ΓP on ΩP is cocompact and preserves a euclidean metric.

 The Coxeter group W is affine of type Ãn, and AP is of negative type; in that case:
● AP is of rank d + 1,
● ΩP is a simplex; in particular ΩP is a properly convex open set,
● the action of ΓP on ΩP is cocompact.

� The Coxeter group W is large; in that case:

1In order to get a Coxeter polytope, one has to take the dual of the standard representation introduced by

Tits.
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0

Polar of f∞ = σ∞(0)

H∞

P

ΩP

P⊗ ⋅

ΩP⊗⋅

σ∞(P⊗ ⋅)

FIGURE 6. The Coxeter cone above a Coxeter polytope

● AP is of rank r ⩽ d + 1,
● ΩP is a properly convex open set (which is not a simplex).

Explanation of proof. The first point is given by the Proposition 22 of [Vin71], the second and
third points are given by Proposition 23 of [Vin71]. Theorem 2.7 shows that in the fourth
and fifth point the convex set ΩP is properly convex. Hence, the only thing left to explain is
that in the fourth point the convex set ΩP has to be a simplex. This is Lemma 8 in [MV00] of
Margulis and Vinberg. �

2.6. Product of Coxeter polytopes.

2.6.1. Spherical projective completion. If V is a vector space, then V is an affine chart of S(V ⊕
R). The space S(V) is a projective hyperplane of S(V ⊕R). Finally, S(V ⊕R)∖S(V) has two
connected components, each isomorphic to the affine space V. Hence, S(V) is the hyperplane
at infinity of V and S(V ⊕R) is the spherical projective completion of V.

2.6.2. The Coxeter cone above a Coxeter polytope.
Let P be a Coxeter polytope of Sd, then S−1(P) is a convex cone of Rd+1. The affine space

Rd+1 is an affine chart of its spherical projective completion Sd+1 = S(Rd+1 ⊕R). We denote
by H∞ the projective subspace Sd in Sd+1, i.e. the hyperplane at infinity of Rd+1.

The closure S−1(P) of S−1(P) in Sd+1 is a polytope, each facet of S−1(P) has a reflection

coming from P, except the facet H∞ ∩ S−1(P) to which we associate the reflection across H∞
with polar the origin of the affine chart defined by H∞ which does not contain S−1(P).

This Coxeter polytope associated to P will be called the Coxeter cone above P and denoted
by the symbol P⊗ ⋅, it is a Coxeter polytope. One should remark that the polytope P⊗ ⋅ has
one facet f∞ more than P, all the ridges included in the facet f∞ have dihedral angle π

2 , so
WP⊗⋅ = WP ×Z/2Z

where the factor Z/2Z
is given by the reflection σ∞ across H∞. Finally,

one should remark that (P⊗ ⋅)∩H∞ is the Coxeter polytope P, and that the convex set ΩP⊗⋅

is the convex hull of ΩP ⊂ H∞, 0 and σ∞(0). Figure 6 may help to understand the situation.
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In particular, the convex set ΩP⊗⋅ is never properly convex and if P is not elliptic, the
action of WP⊗⋅ on ΩP⊗⋅ is never cocompact.

2.6.3. The product of two convex sets.
A sharp convex cone C of a vector space V is decomposable if we can find a decomposition

V = V1 ⊕V2 of V such that this decomposition induces a decomposition of C (i.e. Ci = Vi ∩ C
and C = C1 × C2). A sharp convex cone is indecomposable if it is not decomposable.

We induce this definition to properly convex open set. A properly convex open set Ω is
indecomposable if the cone S−1(Ω) above Ω is indecomposable.

This definition suggests a definition of a product of two properly convex open sets which is
not the Cartesian product. Given two properly convex open sets Ω1 and Ω2 of the spherical
projective spaces S(V1) and S(V2), we define a new properly convex open set Ω1 ⊗Ω2 of the
spherical projective space S(V1 ×V2) by the following formula: if Ci is the cone S−1(Ωi) then
Ω1 ⊗Ω2 = S(C1 × C2).

It is important to note that if Ωi is of dimension di then Ω1⊗Ω2 is of dimension d1 + d2 +1.
Here is a more pragmatic way to see this product. Take two properly convex subsets ωi of
a spherical projective space S(V) with support in direct sum, the ωi are not open but we
assume that they are open in their supports; assume also that there exists an affine chart
containing both ωi. Then the convex hull in such an affine chart of ω1 ∪ω2 is ω1 ⊗ω2. Some
call ω1 ⊗ω2 the join of ω1 and ω2.

Just to be clear, we give the definition of a cone in the projective context. A properly
convex open set Ω is a cone when there exist two open faces ω1 and ω2 of Ω such that ω1 is
a singleton, ω2 is of dimension d− 1 and Ω = ω1 ⊗ω2. The face ω1 is called the summit of the
cone and ω2 is called the basis of the cone.

2.6.4. The product of two Coxeter polytopes.
Let P and Q be two Coxeter polytopes of Sd and Se. Then S−1(P) and S−1(Q) are convex

cones of Rd+1 and Re+1. We can take the Cartesian product of these two cones to get a convex
cone CP,Q of Rd+e+2 and then project this cone to Sd+e+1 to get a polytope P⊗Q of dimension
d + e + 1.

The facet of P⊗Q are in correspondence with the facets of P union the facets of Q. By
extending trivially each reflection from Rd+1 (or Re+1) to Rd+e+2, we get a Coxeter polytope
whose Coxeter group is WP ×WQ and we get ΩP⊗Q =ΩP ⊗ΩQ.

2.6.5. Return to the cone. One can remark that the sphere S0 of dimension 0 is just two points
and is tiled by the Coxeter group Z/2Z

via the Coxeter polytope of dimension 0 i.e. a point,
hence the Coxeter cone P ⊗ ⋅ above P is the product of P with the Coxeter polytope of di-
mension 0. This explains our notation.

2.6.6. Decomposability.

Definition 2.10. A Coxeter polytope P is decomposable if one can find two Coxeter polytopes
such that P = Q⊗R, otherwise P is indecomposable.

Remark 2.11. If a Coxeter polytope P is decomposable then the Coxeter group WP is re-
ducible. The converse is false, think of the right angled square, this Coxeter polygon is
indecomposable but the associated Coxeter group is reducible.
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2.6.7. Theorem of decomposability of Vinberg.

Theorem 2.12. (Corollary 4 of [Vin71]) Let P be a Coxeter polytope of Sd. We denote by W the
Coxeter group associated to P. Suppose that W is reducible. If rank(AP) = d + 1 or P is a simplex
then P is decomposable.

2.7. Elliptic, parabolic, loxodromic Coxeter polytopes.

Definition 2.13. A Coxeter polytope P of Sd is

⋅ elliptic when AP is of positive type,
� parabolic when AP is of zero type and of rank d,
∴ loxodromic when AP is of negative type and of rank d + 1.

Remark 2.14. Let P be a Coxeter polytope. If P is elliptic then the rank of AP is necessarily
d + 1. If AP is of zero type then the rank of AP cannot be d + 1, but it can be strictly less than
d. If AP is of negative type then the rank of AP can be strictly less than d + 1.

Remark 2.15. We recall that for Vinberg, a Coxeter polytope P is hyperbolic if P is loxodromic
and ΓP preserves an ellipsoid (i.e. ΓP is a subgroup of a conjugate of SO○d,1(R)).
2.8. About irreducibility.

2.8.1. Characterisation of the irreducibility of ΓP.

Theorem 2.16 ((Vinberg, Prop 18 and Corollary of prop 19 of [Vin71])). Let P be a Coxeter
polytope of Sd. Then the following assertions are equivalent:

⋅ The representation ρ ∶WP → SL±d+1(R) is irreducible.
� The Coxeter group WP is irreducible and the family (vs)s∈S generates Rd+1.
∴ The Coxeter group WP is irreducible and the Cartan Matrix AP of P is of rank d + 1.

In particular, if WP is infinite then ρ is irreducible if and only if the Coxeter polytope P is irreducible
and loxodromic.

Remark 2.17. Let P be a Coxeter polytope. From Theorem 1.10, we learn that we can define
a limit set for the group ΓP as soon as the group ΓP is irreducible. Hence, Theorem 2.16
shows that the limit set of ΓP is defined as soon as P is irreducible and loxodromic. We will
denote the limit set of ΓP by the symbol ΛP or ΛΓ. The limit set is a crucial object for us. Its
definition is easier to handle when the group ΓP is strongly irreducible. The next theorem
shows that if P is irreducible and loxodromic then ΓP is strongly irreducible except if WP is
affine.

2.8.2. From irreducible to strongly irreducible.

Theorem 2.18 ((Folklore)). Let P be a Coxeter polytope of Sd. Suppose that the representation
ρ ∶WP → SL±d+1(R) is irreducible. Then we have the following exclusive trichotomy:

⋅ The Coxeter group WP is spherical and ΩP = Sd.
� The Coxeter group WP is affine of type Ãn and ΩP is a simplex.
∴ The Coxeter group WP is large, ΩP is a properly convex open set and the linear group ΓP is

strongly irreducible.

We give a short explanation for this theorem since we did not find any proof of it in the
literature, although the result is surely known.

Proposition 2.19. Let Γ be an infinite group of SLd+1(R) acting properly on a convex set Ω of Sd.
If Γ is an irreducible subgroup of SLd+1(R), then Ω is a properly convex open set.
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Proof. The vector space generated by Ω ∩ −Ω is preserved by Γ, therefore either Ω = −Ω or

Ω ∩ −Ω = ∅. In the first case, Ω = Sd and Γ has to be finite since the action is proper. The
second condition means that Ω is properly convex. �

Proof of Theorem 2.18. From Theorem 2.16, we know that W = WP has to be an irreducible
Coxeter group, therefore we have three cases: W can be spherical, affine or large. If W is
spherical then Theorem 2.2 shows that Ω = ΩP = Sd. If W is not spherical then W is infinite
and Proposition 2.19 shows that Ω is properly convex. If W is affine then Proposition 2.9
shows that W is of type Ãn and Ω is a simplex. Of course, in that case, the linear group
Γ = ΓP is not strongly irreducible since the vertices of Ω have to be fixed by a finite-index
subgroup of Γ.

If W is large, it remains to show that Γ is a strongly irreducible subgroup of SLd+1(R). Sup-
pose the representation is not strongly irreducible, then consider Γ0 the Zariski connected
component of Γ. The subgroup Γ0 of Γ is of finite index. The vector space Rd+1 is the sum of
the strongly irreducible Γ0-submodules Rd+1 =⊕i∈I Ei. In particular, Γ0 splits as a non-trivial
direct product and this is absurd by Theorem 2.20 below. �

Theorem 2.20 ((Paris [Par07] or Prop 8 of de Cornulier and de la Harpe in [CH07])). No finite
index subgroup of a large irreducible Coxeter group splits as a non-trivial direct product.

3. THE SETTING

The study of the geometry around a vertex will be crucial in the sequel, so we introduce
some definitions.

3.1. Link of a Coxeter polytope. Let P be a Coxeter polytope of Sd and p be vertex of P. The
link Pp of P at p is the set of half-lines starting at p intersecting P. It is a Coxeter polytope

included in the projective space S(Rd+1/p2) = Sd−1
p where p2 is the line generated by the

half-line p.
To avoid confusion, we get Pp by the following procedure:

⋅ Forget all the facets of P not containing p, so that you get a convex cone whose sum-
mit is p;

� Forget at the same time all the reflections around facets of P not containing p, so that
you get a Coxeter convex cone whose summit is p;

∴ Consider the set Pp of half-line starting at p intersecting P, look at it in the projective

sphere Sd−1
p ; it is a convex subset, better it is a polytope.

 The reflections around the facets containing p fix p, so they pass to the quotient
Rd+1/p2 and acts as reflection around the facets of Pp.

Since Pp is a Coxeter polytope of Sd−1
p we can apply to it the Vinberg-Tits Theorem 2.2 to

get a convex subset Ωp ∶= ΩPp of Sd−1
p . We shall concentrate on a special class of Coxeter

polytope for which this procedure gives a lot of information.

3.2. Quasi-perfect, 2-perfect Coxeter polytopes.

Proposition 3.1. Let P be a Coxeter polytope. Then the following are equivalent:

⋅ The intersection P ∩ ∂ΩP is finite.
� The intersection P ∩ ∂ΩP is included in the set of vertices of P.
∴ For every edge e of P, the Coxeter group We is finite.
 For every vertex p of P, the Coxeter polytope Pp is perfect.
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In that case, we say that the Coxeter polytope P is 2-perfect.

Proof. Since the convex polytope P is included in the closed convex set ΩP, the relative inte-
rior of an edge of P intersects the boundary ∂ΩP if and only if it is included in the boundary,
so 1)⇔ 2). The implication 2)⇔ 3) is a direct consequence of the point 5) of Theorem 2.2.
For 3) ⇔ 4), there is a natural correspondence between the edges of P and the vertices of
the link (Pp)p∈V , where V is the set of vertices of P, by definition of Pp. The equivalence is
then a consequence of Corollary 2.3. �

Remark 3.2. Every Coxeter polygon is 2-perfect and a Coxeter polytope of dimension 3 is
2-perfect if and only if none of its dihedral angle is 0.

In [Vin71], Vinberg introduces the notion of quasi-perfect Coxeter polytope.

Definition 3.3. A Coxeter polytope P is quasi-perfect when P is 2-perfect and for every vertex
p of P, the Coxeter polytope Pp is either elliptic or parabolic.

Remark 3.4. Let (S, M) be a Coxeter system and W the corresponding Coxeter group. The
Tits simplex ∆W is perfect if and only if for every subsystem S′ such that Card(S∖S′) = 1 we
have WS′ finite. A large irreducible Coxeter group such that ∆W is perfect is usually called a
Lannér Coxeter group. These groups have been classified by Lannér in [Lan50].

The Tits simplex ∆W is quasi-perfect if and only if for every subsystem S′ such that Card(S∖
S′) = 1 we have WS′ finite or irreducible affine. A large irreducible Coxeter group such that
∆W is quasi-perfect is usually called a quasi-Lannér Coxeter group (sometimes Koszul Cox-
eter group). They have been classified by Koszul and Chein in [Kos67, Che69].

Finally, the Tits simplex ∆W is 2-perfect if and only if for every subsystem S′ such that
Card(S ∖ S′) = 2 we have WS′ finite. They are sometimes called Lorentzian Coxeter groups.
They have been classified by Maxwell in [Max82], the complete list have been published by
Chen and Labbé in [CL13].

3.3. A geometric quadrichotomy for quasi-perfect Coxeter polytope.
In [Vin71], Vinberg arranges quasi-perfect polytope into four families:

Theorem 3.5 ((Vinberg, Proposition 26 of [Vin71])). Let P be a quasi-perfect Coxeter polytope;
then P is in one of the following four exclusive cases:

⋅ elliptic,
� parabolic,
∴ loxodromic and irreductible or
 decomposable and not elliptic; in fact P is of the form: P = Q⊗ ⋅ where Q is parabolic.

Remark 3.6. We stress that in the last case of Theorem 3.5, the Coxeter polytope is not perfect.
Hence, if P is perfect and decomposable then P is elliptic.

Remark 3.7. If a Coxeter polytope P is parabolic then P is indecomposable even if WP is not
irreducible. Indeed, if P were decomposable then P = P1 ⊗⋯⊗ Pr where Pi is of dimension
d′i. Each ΓPi

is virtually isomorphic to Zdi with d′i ⩾ di since ΓPi
acts properly on ΩPi

. But, the

group ΓP acts cocompactly on an affine chart of Sd′1+...+d′r+r−1, so Zd1+⋯+dr acts cocompactly
hence r = 1 and d′

i
= di.

3.4. The final context.
In the case where P is a 2-perfect Coxeter polytope of Sd, all the link Pp are perfect so the

convex set Ωp is either the whole space Sd−1
p , an affine chart or a properly convex open set

from Theorem 3.5. We want to understand the geometry of the action of ΓP on ΩP by mean
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of the shape of the (Ωp)p∈V , where V is the set of vertices of P.

For a general Coxeter polytope, we will say that a vertex p is elliptic (resp. parabolic resp.
loxodromic) when the Coxeter polytope Pp is elliptic (resp. parabolic resp. loxodromic). For a
2-perfect Coxeter polytope, we have a nice trichotomy: every vertex p of P has to be elliptic or
parabolic or loxodromic.

Remark 3.8. We stress that the word spherical, affine, large, euclidean, irreducible refer to
properties of Coxeter groups and the word elliptic, parabolic, loxodromic, indecomposable
to properties of Coxeter polytope, and so of linear Coxeter groups.

4. THE LEMMAS

4.1. The shape of a convex set around a point of its boundary.
Let Ω be a properly convex open set and p be a point of ∂Ω. We say that p is C1 when the

hypersurface ∂Ω is differentiable at p (if and only if Ω admits a unique supporting hyper-
plane at p). We say that p is not strictly convex when there exists a non-trivial segment s ⊂ ∂Ω

such that p ∈ s. When p is of class C1 and strictly convex, we say that p is round. A properly
convex open set is round when every point of its boundary is round.

To study the boundary around a point, the following spaces are very useful. We denote

by Dp(Ω) (resp. Dp(Ω)) the space of half-lines starting at p and meeting Ω (resp. Ω). These

two spaces are convex subsets of Sd−1
p . We also a map between these spaces Sp ∶ ∂Ω ∖ {p} →

Dp(Ω) given by Sp(q) = [pq). The point p is C1 if and only if Dp(Ω) is an affine chart of

Sd−1
p . The point p is strictly convex if and only if Sp is injective. One should remark that Sp

is always onto.

Remark 4.1. Let P be a Coxeter polytope and p a vertex of P, then we have Dp(ΩP) = ΩPp =
Ωp.

4.2. Consequence of ellipticity.

Lemma 4.2. Let P be a Coxeter polytope of Sd. The action of ΓP on Sd has no global fixed point.

Proof. The only fixed point of a reflection σ are the points of the support of σ. But, the
intersection of the support of all the facets of P is empty. �

Remark 4.3. The last lemma is false in the context of Pd. The simplest example is the Coxeter
triangle with dihedral angle (π

2 , π
2 , π

m). The reason for this difference is that in Pd, a reflection
fixes the point of its support and its polar.

Proposition 4.4. Let P be an irreducible loxodromic Coxeter polytope and p a vertex of P. The vertex

p is elliptic if and only if p ∈ ΩP, and in that case p ∈ C(ΛP), the open convex hull1 of ΛP.

Proof. Theorem 2.2 shows that p ∈ ΩP if and only if Wp is finite and Theorem 2.4 shows that

Wp is finite if and only if Ωp = Sd−1
p if and only if Pp is elliptic. So, we only have to prove

that p ∈ C(ΛP). The point p is the unique fixed point of the finite group Wp acting on ΩP

since the action of Wp on Sd−1
p has no global fixed point from Lemma 4.2. Hence, the point p

belongs to C(ΛP) since the center of mass2 of any orbit of a finite group acting on a properly
convex open set is a fixed point. �

1The smallest convex open set that contains ΛP in its closure.
2For the existence of a center of mass for every bounded subset of a properly convex subset, we refer the

reader to [Mar13] lemma 4.2.
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FIGURE 7. Two ellipsoids of security

4.3. Consequence of parabolicity. We introduce formally the trick to show that a convex
projective manifold is of finite volume. This trick has been used in [Mar11, Mar12, CLT11,
CM12].

Definition 4.5. Let Ω be a properly convex open subset of Sd and p ∈ ∂Ω. We say that Ω

admits two ellipsoids of security at p when there exist two ellipsoids E int and E ext such thatE int ⊂Ω ⊂ E ext and ∂E int ∩ ∂Ω = ∂E ext ∩ ∂Ω = {p} (See Figure 7).

Proposition 4.6. Let Ω be a properly convex open set and p ∈ ∂Ω. Let K be a compact subset of
∂Ω ∖ {p} and denote by CK,p the convex hull of K ∪ {p} in Ω. Suppose that Ω admits two ellipsoids
of security at p. Then p is a round point of ∂ΩP and for a sufficiently small neighbourhood U of p in
Sd we have µΩ(CK,p ∩U) <∞.

Proof. The roundness is obvious. For the finiteness of the volume, the claim is true and
obvious when Ω is an ellipsoid since an ellipsoid endowed with its Hilbert metric is the
projective model of hyperbolic geometry. Therefore the existence of E int via Proposition 1.1
implies the proposition. �

The goal of this paragraph is to show the following proposition:

Proposition 4.7. Let P be an irreducible loxodromic Coxeter polytope and p be a vertex of P. If the
vertex p is parabolic then:

⋅ The point p is a round point of ∂ΩP.
� The convex set ΩP admits two ellipsoids of security at p, which are preserved by Γp.

∴ There exists a neighbourhood U of p in Sd such that µΩP
(P ∩U) <∞.

 p ∈ ΛP.

The following lemma is due to Vinberg:

Lemma 4.8 ((Vinberg, Proposition 23 of [Vin71])). Let P be a parabolic Coxeter polytope of Sd.
Then ΓP acts by euclidean transformation on the affine chart ΩP (i.e. there exists a positive definite
scalar product on ΩP preserved by ΓP).

An avatar of the following lemma can be find in [CLT11, Mar11, Mar12, CM12]. In fact in
[CLT11] and [CM12], the reader can find a proof without the second hypothesis. We give a
proof with this hypothesis for the convenience of the reader.
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Lemma 4.9. Let Γ be a discrete subgroup of SLd+1(R) preserving a properly convex open set Ω of
Sd. Let p be a point of ∂Ω and let Γp = {γ ∈ Γ ∣γ(p) = p}. Suppose that:

⋅ The subgroup Γp acts cocompactly on an affine chart Ad−1 of Sd−1
p and,

� The action of Γp on Ad−1 is by euclidean transformation.

then Ω admits two ellipsoids of security at p which are preserved by Γp.

It will be convenient for the proof to call the boundary of an ellipsoid an ellisphere.

Proof. The action of Γp on Ad−1 is by euclidean transformation, therefore the action of Γp on

Rd+1 preserves a quadratic form of signature (d, 1); in other words preserves an ellipsoid E
such that p ∈ ∂E . Also, there exists a convex compact fundamental domain D for the action
of Γp on the affine chart Ad−1. We denote by Cp the cone of vertex p and basis D (see Figure
8).

D Ad−1 = Dp(Ω)
Cp

Hp
p

E

FIGURE 8. The action of a parabolic subgroup

Since, Γp acts cocompactly on an affine chart Ad−1, we get that Dp(Ω) = Ad−1, hence Ω

has a unique supporting hyperplane Hp at p. The pencil F of ellisphere generated by ∂E and
Hp gives a one parameter family of ellipsoids preserved by Γp. Moreover the intersection of
any ellisphere of the pencil F with Cp is compact since Γp acts cocompactly on Dp(Ω).

Therefore to find an ellipsoid E int (resp. E ext) inside (resp. outside) Ω preserved by Γp, it
is sufficient to see that any ellisphere ∂E ′ of the pencil F which is sufficiently close (resp. far)
from p verifies: E ′ ∩ Cp ⊂ Ω (resp. Ω ∩ Cp ⊂ E ′).

Hence, Ω admits two ellipsoids of security at p which are preserved by Γp. Thanks to
Proposition 4.6, the point p is round. �

Proof of Proposition 4.7. The point p is parabolic, so the Coxeter polytope Pp is perfect, pre-

serves an affine chart of Sd−1
p and acts compactly by euclidean transformations on it by

Lemma 4.8. Hence, Lemma 4.9 shows the second point.
Proposition 4.6 shows that the second point implies the first and third one. The last point

is a trivial consequence of the fact that for any infinite order element γ of Γp and for all point

x ∈ΩP, we have γn(x)→ p. �

4.4. A lemma about negative type Coxeter polytope.

Lemma 4.10. Let P be Coxeter polyedron of Sd. If P is of negative type then there exists an affine
chart of Sd containing P and all its polars.
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FIGURE 9. Illustration of Truncability of p

Proof. We can assume that P is indecomposable. By Perron-Frobenius theorem and the def-
inition of being of negative type there exists a strictly positive vector µ ∈ (R+)S and a real
λ < 0 such that APµ = λµ. So, if we take α = ∑s∈S µsαs, then for each t ∈ S, we get that
α(vt) = λµt < 0. This implies that the affine chart A ∶= {x ∈ S ∣ α(x) < 0} contains all the polar
of P in its closure. Moreover, since P = {x ∈ P ∣ ∀s ∈ S, αs(x) ⩽ 0}, we get that P ⊂A. �

4.5. Truncability.

4.5.1. Definition of truncability.

Definition 4.11. Let p be a vertex of a Coxeter polytope P of Sd and Sp the set of facets of P
containing p. The vertex p of a Coxeter polytope is truncable when the projective subspace
Πp spanned by the [vs] for s ∈ Sp:

⋅ is a hyperplane,
� meets the interior of P,
∴ a ridge e of P verifies e ∩Πp ≠ ∅ if and only if p ∈ e and e ∩Πp have to be included in

the relative interior of e.

We will denote by Π+p (resp. Π−p) the connected component of Sd ∖Πp which does not
contain p (resp. containing p). We stress that Π+p and Π−p are affine charts. See Figure 9.

Remark 4.12 ((Consequence)). Suppose P is a Coxeter polytope and p is a truncable vertex.
We can define a new polytope P†p. The facets of P†p are the facets of P (we call them the old
facets) plus one extra facet defined by the hyperplane Πp (called the new facet). The polar of
the old facets are unchanged and the polar of the new facet is p. Therefore, it is easy to check
that the polytope P†p has the following property:

● The dihedral angles of the new ridges are π
2 .

● The vertices of the new facet are all elliptic if and only if Pp is perfect.
● The hyperplane Πp is preserved by the reflection across the facets containing p. The

intersection P ∩Πp is a Coxeter polytope of Πp isomorphic to Pp.

Remark 4.13. This construction was already known in the hyperbolic space. See for example
the survey [Vin85] of Vinberg, Proposition 4.4. This construction in the projective context
and in dimension 3 is the main ingredient of [Mar10].
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4.5.2. Simple perfect loxodromic vertex are truncable.

Proposition 4.14. Let P be a Coxeter polytope of Sd and p be a vertex of P. If the vertex p is simple
perfect and loxodromic then P is truncable at p except if P is isomorphic to Pp ⊗ ⋅.

Proof. Thanks to Lemma 4.10, we can think of everything inside an affine chart that contains
P and its polars. The simplicity (resp. loxodrominess) of p implies that the projective space
Πp is of dimension at most (resp. at least since the rank of Ap is d) d − 1.

We first look at the half-line [pvi), for i ∈ Sp. Lemma 4.10 applied to Pp gives the existence

of a hyperplane Hp of Sd that contains p and such that for each i ∈ Sp, the open segment ]pvi[
is included in the connected component H−p of Sd ∖Hp that contains the interior of P.

Next, we look at the repartition of this half-line around ΩP. Lemma 4.15 shows that Ωp

(and so Pp also) is included in the convex hull of the Sp(vi) for i ∈ Sp. Hence, the convex set
ΩP is included in the convex hull of this half-lines. Roughly speaking, the vi for i ∈ Sp are
”all around” P and ΩP.

Finally, we show that the vi, for i ∈ Sp cannot be too ”far” from p. Let F−t denote the

component of Sd ∖Ft that contains p, where Ft is the hyperplane generated by the facet t ∉ Sp.
Geometrically, the inequalities (C) mean that vi ∈ F−t except when the angle between the face
i and t is π

2 ; in that case, vi ∈ Ft. So we know that for each facet t ∉ Sp and for each i ∈ Sp the

point vi is on the segment [pvi)∩ F−t .
So Πp ∩ P ≠ ∅ and p ∉ Πp. For the sake of clarity, we need to distinguish two cases: a) P is

not a cone of summit p and b) is not. If we are in the case b), the inequalities (C) (using the
several facets of P not in Sp) show that any facet f of P which intersects Πp has to contain
p, and the intersection f ∩Πp is included in the relative interior of f . Now, if we are in case
a) then the inequalities (C) show that either Πp is the support of the face of P not in Sp, in
which case P is isomorphic to Pp ⊗ ⋅, or any facet f of P which intersects Πp has to contain p,
and the intersection f ∩Πp is included in the relative interior of f . �

Lemma 4.15 ((Nie, Lemma 3 of [Nie11])). Let P be a perfect loxodromic simplex. The convex set
ΩP is included in the convex hull of its polar.

Remark 4.16. A more careful analysis of the situation would show that if P is an indecom-
posable Coxeter polytope of Sd and p is a simple perfect vertex of P, then, p is elliptic if and
only if ΩP ∩Πp = ∅, p is parabolic if and only if ΩP ∩Πp = {p} and p is loxodromic if and
only if p is truncable.

4.5.3. Iteration of truncation.

Lemma 4.17. Let P be a loxodromic Coxeter polytope and p, q two vertices of P. Suppose that p and
q are perfect simple loxodromic vertices, denote by fp (resp. fq) the facets obtained by truncation of P
at p (resp. q), then the facets fp and fq do not meet.

Proof. Let πp (resp. πq) be the intersection of the projective space spanned by fp (resp. fq)

and ΩP. Since fp ⊂ πp and fq ⊂ πq, this lemma is a consequence of the fact that πp ∩ πq

is included in ∂ΩP. Since p is perfect, the fp is included in the relative interior of πp (by
Corollary 2.3).

Let us now prove this fact (Figure 10 can be useful). Choose an affine chart A containing

ΩP, denote by Cp (resp. Cq) the cone of summit p (resp. q) and basis πp (resp. πq) and by Ĉp

(resp. Ĉq) the cone of summit p generated by πp (resp. πq) in the affine chart A. We remark

that ΩP contains the cones Cp and Cq and is contained in Ĉp ∩ Ĉq. Since ΩP is convex, this is
possible only when πp ∩πq is included in ∂ΩP. �
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FIGURE 10. A possible situation and an impossible situation

P†p

P

σ∗(P)
p

ΩP†p

FIGURE 11. The starting of the tiling given here is obtained thanks to a square
with three right angles and one loxodromic vertex: p. The convex set ΩP is the
union of the convex set ΩP†p and the ΓP-orbits of the hatching zone. The limit
set is the boundary of ΩP†p minus the interior of the ΓP-orbits of the hatching
zone.

The last lemma shows that given a loxodromic Coxeter polytope, if we denote by Lsp the
set of simple perfect loxodromic vertices, then we can define a new Coxeter polytope P†

which is obtained from P by doing the truncation around every vertex p ∈ Lsp. We will call
it the truncated Coxeter polytope of P and we will use the notation P† to represent it. We will
call old (resp. new) the vertices, edges, facets, ridges of P† that were (resp. were not) in P.
Figure 11 illustrates the situation.

The following lemma gives the main properties of P†. To stay it, the notion of (Γ, Γ′)-
precisely invariant region is useful. If Γ acts on Ω and Γ′ is a subgroup of Γ then a subset
A of Ω is (Γ, Γ′)-precisely invariant when for every γ ∈ Γ ∖ Γ′, we have γ(A) ∩ A = ∅ and for
every γ ∈ Γ′, we have γ(A) = A.

Lemma 4.18. Let P be an irreducible 2-perfect loxodromic Coxeter polytope whose loxodromic ver-
tices are simple. Consider the truncated Coxeter polytope P† of P. For each loxodromic vertex p, we
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denote by Cp the cone of summit p and basis the intersection of ΩP with the hyperplane generated by
the polars of the facets containing p. We have the following:

⋅ P† ⊂ P and ΓP ⊂ ΓP† ,
� For every loxodromic vertex p of P, the cone Cp is (ΓP, Γp)-precisely invariant.

∴ P ∩C(ΛP) = P†,
 ΩP† ⊂ ΩP,
� The Coxeter polytope P† is a quasi-perfect Coxeter polytope.

Proof. The first statement is trivial. The second statement is a consequence of the fact that the
action of ΓP on the d-cell of the tiling of ΩP is free. The main interest of the second statement
is that we found a (ΓP, Γp)-precisely-invariant region Cp which is convex and such ΩP ∖Cp

is also convex. Hence the set Ω′ = ⋃γ∈ΓP
γ(P†) is convex and ΓP-invariant. Hence ΛP ⊂ ∂Ω′,

and so C(ΛP) ⊂ Ω′. Moreover, the limit set of Γp is included in the intersection πp of ΩP

with the hyperplane generated by the polars of the facets containing p. So P ∩C(ΛP) = P†.
By definition, ΩP† is the union of the orbits of P† under ΓP† . Let p be a loxodromic vertex

and let f be the new facet associated to the truncation of p. The set ΩP ∖πp has two con-

nected components, the cone Cp, and a convex set Ω+ which contains the interior of P† and
satisfies σf (Ω+) ⊂ Cp ⊂ ΩP. So we have ΩP† ⊂ΩP.

The last point is trivial, the truncation eliminates all the old loxodromic vertices. More-
over, since P is 2-perfect the truncation process creates only elliptic vertices, so the Coxeter
polytope P† has only elliptic and parabolic vertices. �

4.6. Consequence of loxodrominess for non-simple vertices. Before starting the proof, we
make an important remark.

Remark 4.19 ((Structure of the tiling)). The tiling given by Coxeter group has a special feature,
roughly speaking: ”face extend to subspace”. More precisely let P be a Coxeter polytope.
The union ⋃γ∈ΓP

γ(∂P) is contained in a union of hyperplanes, in other words, every facet
of the tiling extends to a hyperplane of the tiling. Even better, the k-skeleton of the tiling is a

union of k-subspaces of ΩP (i.e. intersections of k-planes with ΩP).

Proposition 4.20. Let P be an irreducible loxodromic Coxeter polytope of Sd and p a vertex of P. If
the vertex p is perfect loxodromic then p /∈ ΛP.

Proof. Suppose that p ∈ ΛP; then there exits a sequence of distinct elements γn ∈ ΓP ∖Γp such

that qn ∶= γn(p) → p. We choose an affine chart A containing ΩP = Ω. Let Kp be the cone
of summit p generated by P in A intersected with Ω. Define Kqn ∶= γn(Kp) and Qn = γn(P).
Since Σ = ⋃γ∈ΓP

γ(∂P ∩Ω) is contained ∂Kp, we must have p ∈ Kqn for n big enough. We
claim that p ∈ ∂Kqn for n big enough. Indeed, if not, then, Dp(Ω) = lim

n
Dqn(Ω) is an affine

chart contradicting the fact that p is loxodromic. By symmetry, we get that qn ∈ ∂Kp for n big
enough. Hence, qn is on the hyperplane generated by a facet of P for n big enough, this is in
contradiction with the fact that qn converges to p. �

Remark 4.21. Choi proves a similar statement for the action of a discrete group Γ on a prop-
erly convex open set Ω with the hypothesis that Γp is Gromov-hyperbolic and also a techni-
cal condition on the eigenvalue of Γp (See Theorem 6.4 of [Cho13]). Here we do not assume
Γp Gromov-hyperbolic but we assume we are in a ”Coxeter situation”.

The following definition is ad-hoc but it will be useful. A nicely embedded cone C in a
properly convex open set Ω is a properly convex open cone C such that C ⊂ Ω and ∂C ∩Ω is
the relative interior B of the basis of C. Hence, we have ∂C ∖B ⊂ ∂Ω.
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Remark 4.22. Let P be a Coxeter polytope and p a vertex of P. When p is truncable there is a
canonical properly embedded cone which is (ΓP, Γp)-precisely invariant : Cp =Π−p ∩ΩP.

Corollary 4.23. Let P be an irreducible loxodromic Coxeter polytope of Sd and p be a vertex of P.
If the vertex p is perfect loxodromic then there exists a properly embedded cone which is (ΓP, Γp)-
precisely invariant.

Proof. Since p /∈ ΛP, we get that p ∉ C(ΛP), so one can choose an hyperplane H such that H ∩

ΩP ≠ ∅ and one connected component Sd ∖H contains C(ΛP)while the other H− contains p.
The cone Cp = H− ∩ΩP does the job. �

Proposition 4.24. Let P be an irreducible loxodromic Coxeter polytope of Sd and L be set of perfect
loxodromic vertices of P. For each p ∈ L, we choose a nicely embedded cone Cp which is (ΓP, Γp)-
precisely invariant and let Ω′ = ΩP ∖⋃p∈L ΓP(Cp); then:

⋅ The open set Ω′ is a ΓP-invariant properly convex.
� C(ΛP) ⊂Ω′.
∴ For every p ∈ L, the point p ∈ ∂ΩP is neither strictly convex nor with C1 boundary.
 The point p is an extremal point of ∂ΩP.
� For every neighbourhood U of p in Sd we have µΩP

(U ∩ P) =∞.

Proof. The existence of such a Cp is a consequence of Propositions 4.14 and 4.20. The first,
third and fourth points are direct consequences of the (ΓP, Γp)-precise invariance of the
nicely embedded cone Cp. The second point is a consequence of the fact that ΛP is the

smallest closed subset of Pd that is ΓP-invariant. For the last point, since Dp(ΩP) is properly
convex, we can find a cone ωp of summit p that contains ΩP and such that ∂ΩP ∩ ∂ωp = {p}.
Proposition 1.1 shows that µωp(P) ⩽ µΩP

(P) and Lemma 4.25 below shows that µωp(P) =∞.
�

Lemma 4.25. Let Ω be a properly convex open set. Suppose that Ω is a cone. Let p be the summit of

Ω and P a convex subset of Ω such that P ∩ ∂Ω = {p}; then µΩ(P) =∞.

Proof of Lemma 4.25. Consider the affine chart A whose hyperplane at infinity is the hyper-
plane generated by the basis of Ω. The automorphism group of Ω contains the homothety h

of the affine chart A of ratio 1
2 fixing p and h(P) ⊂ P. Of course, as h is an automorphism of

Ω, we have µΩ(h(P)) = µΩ(P), it follows that µΩ(P) =∞. �

5. DEGENERATE 2-PERFECT COXETER POLYTOPES

The reader has probably noticed that the quadritomy of Theorem 3.5 is very useful. Hence,
we believe that the study of the similar question for 2-perfect Coxeter polytopes can be
useful even if we will not use it.

Proposition 5.1. Let P be a 2-perfect Coxeter polytope of Sd. Then one of the following assertions is
true:

⋅ P is elliptic.
� P is parabolic.
∴ P is loxodromic and irreducible.
 P is decomposable; in fact P = Q⊗ ⋅ where Q is parabolic or loxodromic perfect.

Remark 5.2. So, a loxodromic 2-perfect Coxeter polyhedron has to be irreducible.

Proof. Consider the Cartan matrix AP of P; we will distinguish four cases:
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⋅ Rank(AP) = d + 1 and WP is irreducible.
� Rank(AP) = d + 1 and WP is not irreducible.
∴ P has a loxodromic vertex.
 Rank(AP) < d + 1 and no loxodromic vertices.

Suppose we are in the first case; then AP is either of positive type or of negative type,
hence P is either elliptic or irreducible loxodromic. Suppose we are in the second case; since
Rank(AP) = d + 1, P is decomposable by Theorem 2.12 and Lemma 5.3 takes care of this
case.

Suppose we are in the third case. Let p be a loxodromic vertex of P. Consider the projec-
tive space πp spanned by the polar [vs] for s ∈ Sp. If Πp = Sd or p is not simple then we must
have Rank(AP) = d + 1 and we are back to the previous case. If not, then Πp is a hyperplane
and p is simple. A) If P is indecomposable then Proposition 4.14 shows that P is truncable
at p, hence there exists a polar of P not in Πp and so Rank(AP) = d + 1, and we are back to
the previous case again. B) If P is decomposable then Lemma 5.3 takes care of this case.

Suppose we are in the fourth case. Since P is 2-perfect, it has only elliptic or parabolic
vertices then Lemma 5.4 of Vinberg concludes. �

This lemma is a direct adaptation of Vinberg’s analogous lemma for the proof of Theorem
3.5.

Lemma 5.3. Let P be a 2-perfect Coxeter polytope of Sd. Suppose that P is the product P1 ⊗ P2 of
two Coxeter polytopes P1 and P2, then either:

⋅ Both are elliptic.
� One is parabolic and the other one is the point Coxeter polytope.
∴ One is loxodromic and the other one is the point Coxeter polytope.

Proof. Suppose P1 is not elliptic. A vertex p of P2 defines a vertex p̃ of P1 ⊗ P2 and the link Pp̃

of P = P1 ⊗ P2 at p̃ verifies Pp̃ = P1 ⊗ P2p. The Coxeter polytope Pp̃ = P1 ⊗ P2p is perfect hence
elliptic, parabolic or loxodromic (Theorem 3.5). The first case is impossible since P1 is not
elliptic.

So Pp̃ is perfect but not elliptic. Then by Theorem 3.5, Pp̃ is indecomposable, hence P2p = ∅,
which means that P2 is a point and P = P1 ⊗ ⋅. �

Lemma 5.4 ((Vinberg, proof of Proposition 26)).
Let P be a Coxeter polytope such that rank(AP) < d + 1.

⋅ If P has an elliptic vertex then P is either parabolic or decomposable.
� If P has a parabolic vertex then P is parabolic or P = Q⊗ ⋅ where Q is a parabolic.

6. GEOMETRY OF THE ACTION

In this part, we prove Theorem A.
6.1. Cocompact action. We rephrase Corollary 2.3 in our language to get used to it.

Theorem 6.1. (Vinberg) Let P be a Coxeter polytope. The action of ΓP on ΩP is cocompact if and
only if all the vertices of P are elliptic (i.e. P is perfect).

6.2. Geometrically finite action.

Theorem 6.2. Let P be a loxodromic 2-perfect Coxeter polytope. Then we always have:

µΩP
(C(ΛP)∩ P) <∞.

In other word, the action of ΓP on ΩP is always geometrically finite.
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Proof. LetL be the set of loxodromic vertices of P. Proposition 4.24 shows that for each vertex
p ∈ L, one can find a (ΓP, Γp)-precisely invariant nicely embedded cone Cp. One can suppose
these cones disjoint by taking them smaller. By removing the ΓP-orbits of all the Cp, for p ∈ L,
one obtains a ΓP-invariant properly convex open set Ω′ such that P∩ ∂Ω′ is exactly the set of
parabolic points of P. Now, Proposition 4.7 shows that there exists a neighbourhood Up of

p in Sd such that µΩP
(P ∩Up) < ∞. Since P has only a finite number of vertices, we get that

µΩP
(P ∩Ω′) < ∞. Since C(ΛP) ⊂ Ω′, we have µΩP

(C(ΛP)∩ P) < ∞. Hence, the action of ΓP

on ΩP is geometrically finite. �

6.3. Finite volume case.

Theorem 6.3. Let P be a loxodromic 2-perfect Coxeter polytope. The action of ΓP on ΩP is of finite
covolume if and only if all the vertices of P are elliptic or parabolic (i.e. P is quasi-perfect).

Proof. Suppose the action of ΓP on ΩP is of finite covolume. Assume one of the vertices p
of P is loxodromic. Then the fifth point of Proposition 4.24 shows that µΩP

(P) = ∞. This is
absurd, so every vertex of P is either elliptic or parabolic.

Suppose all the vertices of P are elliptic or parabolic. We know from Theorem 6.2 that the
action is geometrically finite, but since there is no loxodromic vertices, we have Ω′ = ΩP in
the proof of 6.2 and we get that µΩP

(P) <∞. �

6.4. Convex-cocompact action.

Theorem 6.4. Let P be a loxodromic 2-perfect Coxeter polytope. The action of ΓP on ΩP is convex-
cocompact if and only if all the vertices of P are elliptic or loxodromic.

The following corollary is immediate, thanks to Proposition 4.14.

Corollary 6.5. Let P be a loxodromic 2-perfect Coxeter polytope whose loxodromic vertices are sim-
ple. Then, the action of ΓP on ΩP is convex-cocompact if and only if the truncated Coxeter polytope
P† of P is perfect.

Proof of Theorem 6.4. Suppose the action of ΓP on ΩP is convex-cocompact. Let p be a vertex
of P. We claim that p ∉ ΛP. Indeed, first p ∈ ∂ΩP if and only if p is not elliptic; second if
p ∈ ∂ΩP, consider the ray of ΩP from any point x0 ∈ P to p. The projection r of this ray
leaves every compact of ΩP/ΓP

since P is a convex fundamental domain. In particular, the

ray r leaves the compact set C(ΛP)/ΓP
, thereby p is not in ΛP. So, p is not parabolic by

Proposition 4.7 point 4).
Suppose all the vertices of P are elliptic or loxodromic. We know from Theorem 6.2 that

the action is geometrically finite, but since there is no parabolic vertices, we get that P ∩Ω′

is bounded in (Ω, dΩ) in the proof of 6.2 and so the action of ΓP on ΩP is convex-cocompact.
�

6.5. Geometrical definition of geometrical finiteness vs the topological one. In this para-
graph, we motivated our definition of geometrical finiteness by comparing it to the defini-
tions in pinched negative curvature and explaining why the definition we choose implies
the other classical definitions.

It is classical that if X is a simply connected pinched negatively curved Riemannian mani-
fold (i.e. a Hadamard manifold), then for every irreducible discrete group Γ of isometries of
X, the thick part of the convex core is compact if and only if the volume of the convex core
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is finite and the group Γ is of finite type (thanks to [Bow95]).

When X is a properly convex open subset of Pd which is strictly convex with C1-boundary
then this equivalence remains true ([CM12]). We stress that Margulis’s lemma is valide is
any Hilbert Geometry ([CLT11] or [CM13]).

But there is also a topological version of geometrical finiteness. The action of Γ on X is ge-
ometrically finite if all the points of the limit set of Γ are conical limit points or bounded parabolic
fixed points. See [Bow95] for the definition. We only stress that these definitions are purely
topological.

When X is a Hadamard manifold and Γ an irreducible group of isometry of X then the
topological definition of geometrically finite action is equivalent to the geometrical defini-
tion by [Bow95]. But, when X is a properly convex open subset of Pd which is strictly convex
with C1-boundary, this is no longer true. We only have that the geometrical definition im-
plies the topological one, see [CM12] for the implication and a counterexample in dimension
4.

Maybe even worst, if X is a properly convex open subset of Pd, which is not supposed
strictly convex nor with C1-boundary then: if the volume of the convex core is finite and the
group Γ is of finite type then the thick part of the convex core is compact. But, I don’t know if the
converse is true. This implication is just a consequence of the fact that the volume of balls of
radius r > 0 in Hilbert geometry are bounded from below by a universal constant depending
only on the dimension d (thanks to Benzécri’s theorem, see [CM12] for the details).

7. ZARISKI CLOSURE OF ΓP

7.1. Notations. Let us introduce some notation for the sake of clarity. We will denote by
Transd the subgroup of SLd+1(R) which is the group of translations in the standard affine
chart. In term of matrices, it is the group:

Transd =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎝

1 0 u1

⋱ ⋮

0 1 ud

0 ⋯ 0 1

⎞⎟⎟⎟⎠

RRRRRRRRRRRRRRRRRR
(u1, ...ud) ∈ R

d

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
and by Diagd the subgroup of SLd+1(R) of diagonal matrices with positive entries:

Diagd =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎝

λ1 0
⋱

0 λd+1

⎞⎟⎠
RRRRRRRRRRRRRR
λ1, ..., λd+1 ∈ R

∗
+ such that λ1⋯λd+1 = 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

These two groups are isomorphic as abstract groups.

Notation 7.1. If P is a Coxeter polytope, we will denote by GP the connected component of
the Zariski closure of the discrete subgroup ΓP of SLd+1(R).
7.2. The perfect case. In the perfect case, all the arguments are in the literature, we just put
them together.
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7.2.1. The easy case.

Theorem 7.2. Let P be a perfect Coxeter polytope. Let GP be the connected component of the Zariski
closure of ΓP in SLd+1(R).

⋅ If P is elliptic, then GP = {1}.
� If P is parabolic, then GP is conjugate to the group Transd.
∴ If P is loxodromic and WP is affine, then ΩP is a simplex, the Coxeter group WP is affine

irreducible of type Ãn and the group GP is conjugate to Diagd.

Proof. In the first case, the group ΓP is finite so GP = {1}. In the second case, ΓP is a lattice
of a conjugate of Transd ⋊ SOd and the image of ΓP in SOd is finite, therefore GP is conjugate
to Transd. In the third case, by point 4) of Proposition 2.9, ΓP is a lattice of Aut(ΩP) =
Diagd ⋊Sd+1, the conclusion follows, where Sd+1 is the symmetric group on {1, ..., d + 1}
acting canonically on Rd+1. �

7.2.2. The interesting case.

Remark 7.3. From Theorem 3.5, we learn that if P is a perfect polytope then P is either elliptic,
parabolic, loxodromic with WP affine irreducible or loxodromic with WP large irreducible.

Theorem 7.4 ((Benoist + Folklore)). Let P be a perfect loxodromic Coxeter polytope with WP large
irreducible. Then we have the following alternative:

● ΩP is an ellipsoid and GP is conjugate to SO○d,1(R) or
● ΩP is not an ellipsoid and GP = SLd+1(R).

Proof. First, from Theorem 2.18, we know that ΓP is strongly irreducible and so ΩP is inde-

composable. We need to distinguish three cases: ΩP is an ellipsoid, ΩP is symmetric1 but
not an ellipsoid and ΩP is not symmetric.

If ΩP is an ellipsoid, then Aut(ΩP) is conjugate to SO○d,1(R) and ΓP is a cocompact lattice
of Aut(ΩP). The conclusion follows from Borel’s density Theorem 7.5.

Assume ΩP is symmetric but not an ellipsoid. Then Aut(ΩP) has property (T), from

Theorem 7.6 and Theorem 7.7 below. So, ΓP has property (T)2 too since it is a lattice of
Aut(ΩP) by Theorem 7.8. But an infinite Coxeter group does not have property (T) by
Theorem 7.9. So this case is absurd.

If ΩP is not symmetric, then GP = SLd+1(R) by Theorem 7.10. �

Theorem 7.5 ((Borel’s density theorem, [Bor60])). A lattice of a semi-simple lie group without
compact factor is Zariski-dense.

Theorem 7.6 ((Koecher, Vinberg, [Vin63], [FK94] or [Koe99])). Let Ω be an indecomposable
symmetric properly convex open subset of Pd. Then Ω is the symmetric space associated to SO○d,1(R)
or SLm(K) where K = R, C, H and m ⩾ 3 or to the exceptional group E6(−26). In particular,
the automorphism group of an indecomposable symmetric properly convex open set which is not an

ellipsoid is a quasi-simple3 Lie group of real rank4 at least two.

1 A properly convex open set is symmetric if for every point x ∈ Ω there exists an isometry γ of (Ω, dΩ)which

fixes x and whose differential at x is −Id.
2We don’t give the definition of property (T), since we don’t need the definition for our purpose. The reader

is referred to the book [BHV08] for a definition and all the proof of the theorem we will use in the sequel.
3A Lie group is quasi-simple when its Lie algebra is simple or equivalently when all its normal subgroups

are discrete.
4The real rank of a semi-simple Lie group is the common dimension of all the maximal splitted connected

abelian subgroups, e.g maximal splitted tori.
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Theorem 7.7 ((Kazhdan, Delaroche and Kirillov, Vasertein, Wang, Theorem 1.6.1 [BHV08])).
A quasi-simple Lie group of real rank at least two has property (T).

Theorem 7.8 ((Kazhdan, Theorem 1.7.1 of [BHV08])).
A lattice Γ of a locally compact group G has property (T) if and only if G has property (T).

Theorem 7.9 ((Bozejko, Januszkiewicz and Spatzier in [BJS88])). Let W be a Coxeter group. If
W has property (T) then, W is finite.

Theorem 7.10 ((Benoist [Ben03])). Let Γ be a discrete group of SLd+1(R) acting cocompactly on a
properly convex open set Ω. If the group Γ is strongly irreducible and Ω is not symmetric, then Γ is
Zariski-dense in SLd+1(R).
7.3. Non-degenerate 2-perfect case.

Theorem 7.11. Let P be a loxodromic 2-perfect Coxeter polytope of Sd which is not perfect. Then
either GP is conjugate to SO○d,1(R), or GP = SLd+1(R).

A nice corollary is the following:

Corollary 7.12. Let P be a loxodromic 2-perfect Coxeter polytope of Sd which is not perfect and
whose loxodromic vertices are truncable. Let P† be the truncated Coxeter polytope associated to P
then either ΩP† is an ellipsoid, or GP = SLd+1(R). In particular, in both cases, GP = GP† .

We will show the Theorem 7.11 and the Corollary 7.12 at paragraph 7.6.

7.4. Proximality, limit sets and Zariski closure. The following paragraph presents basic
facts about proximal action on the projective space. We have included the facts we will need
and some arguments to make the reading easier to the reader not familiar to the theory.
We have tried to give references when we though an argument would divert the reader’s
attention or be too long. This paragraph has nothing original, we borrow a lot from [AMS95,
GG96, Ben00].

7.4.1. Proximal elements and proximal subgroups. An element γ of SLd+1(R) is proximal when
the eigenvalue of maximal modulus is a simple eigenvalue. In that case, the eigenvalue of
maximal modulus has to be real, it has to be the spectral radius ρ or its opposite −ρ. The
corresponding eigenspace is a line, so a point x+γ of Pd. This point is called the attractive fixed
point of γ. Indeed, it is easy to see that outside a projective hyperplane H, for every point
x ∈ Pd ∖H, we have γn(x)→ x+γ when n → +∞.

A subgroup G of Pd is proximal when it contains a proximal element.

7.4.2. Proximal action. The action of a group G on Pd is proximal when for every two points
x, y ∈ Pd there exists a sequence (gk)k∈N in G such that the sequences (gk(x))k∈N and (gk(y))k∈N
converge to the same point.

The link between the notion of proximal group and proximal action is given by the fol-
lowing equivalence. If G is a subgroup of SLd+1(R) then “G is irreducible and the action
of G on Pd is proximal” if and only if “the group G is strongly irreducible and proximal”
(Theorem 2.9 of [GG96]).

7.4.3. Limit set. Suppose G is strongly irreducible and proximal. Then one can show that the

closure ΛG of all the attractive fixed points of all the proximal elements of G is the smallest1

closed G-invariant subset of Pd (see Theorem 2.3 of [GG96]). So in particular, the action of

G on ΛG is minimal2. This closed subset ΛG is called the limit set of G.

1Every closed G-invariant subset contains ΛG.
2Every orbit is dense.
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7.4.4. The case of an algebraic group. If we assume moreover that G is a Zariski closed sub-
group of SLd+1(R). Then ΛG is the unique closed orbit of the action of G on Pd. In fact, ΛG

is even Zariski closed. In particular, ΛG is a smooth algebraic sub-manifold of Pd. This is
due to the following fact:

The action of a Zariski closed subgroup G of SLd+1(R) on Pd is algebraic, so in particular
every orbit is locally closed for the Zariski topology, i.e. every orbit is Zariski-open in its
Zariski-closure. First, the limit set is closed for the Zariski topology. Indeed, take a point

x ∈ ΛG, the orbit G ⋅ x is open in its Zariski closure G ⋅ xZar, hence G ⋅ xZar ∖G ⋅ x is Zariski
closed, hence closed also in the usual sense. But ΛG is the smallest closed invariant set,
hence G ⋅ x = ΛG and is Zariski closed. The fact that the orbit of a point outside ΛG is not
closed is a consequence of the definition of ΛG. Finally, the limit set ΛG is a smooth algebraic
manifold since there exists a transitive action on it.

7.4.5. The point of view of semi-simple group’s representation theory. Even better, since G is a
Zariski closed subgroup of SLd+1(R), it is a Lie group. Let G0 be the connected component
of G. Since the action of G on Rd+1 is strongly irreducible, the action of G0 on Rd+1 is also
strongly irreducible (an algebraic variety can only have a finite number of connected com-
ponents, so the index of G0 in G is finite). Much better, the Lie group G0 is semi-simple since

the group G is proximal1.

Hence, the representation ρ0 ∶ G0 → SLd+1(R) is an irreducible representation of the semi-
simple group G0. Let KAN = G0 be an Iwasawa decomposition of G0 where K is a maximal
compact subgroup of G, A a maximal abelian connected and diagonalizable over R sub-
group and N a maximal unipotent subgroup.

A representation ρ of a connected semi-simple group with finite center G0 is proximal when
the subspace Fix(N) = {x ∈ Rd+1 ∣∀n ∈ N, n(x) = x} is a line. In [AMS95] Abels, Margulis
and Soifer show that: an irreducible representation ρ ∶ G0 → SLd+1(R) is proximal if and only if
the group ρ(G0) is proximal (Theorem 6.3). In particular, the representation ρ0 is proximal.

Since the subspace Fix(N) is a line, it is a point xN of Pd. The orbit of xN under the group
G0 is equal to the orbit of xN under the compact group K (since N is normal in AN), hence
it is closed, thereby it is the unique closed orbit of G on Pd, i.e. the limit set ΛG.

7.4.6. Zariski closure. This procedure is particularly interesting when one starts with a dis-
crete subgroup Γ of SLd+1(R). Then one can consider G0 the connected component of the
Zariski closure of Γ. The action of Γ on Rd+1 is strongly irreducible if and only if the action
of G0 on Rd+1 is irreducible. Moreover, in that case, the action of Γ on Pd is proximal if and
only if the action of G0 on Pd is proximal (Theorem 6.3 of [GM89]).

Hence, if one starts with a strongly irreducible and proximal subgroup Γ of SLd+1(R),
this procedure gives a connected semi-simple group with finite center G0, an irreducible
representation ρ ∶ G0 → SLd+1(R) and two closed subsets of Pd: ΛΓ ⊂ ΛG0

.

1The group G0 is a reductive group (i.e. its unipotent radical is trivial) because G0 is irreducible. So, to show

that G0 is semi-simple, one just has to show that the center of G0 is discrete. Now, any element of the center has
to preserve the eigenspaces of all elements of G0, in particular the proximal one, hence the center is composed

only of a homothety of determinant one. qed.
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7.5. Positive proximality and Zariski closure. In this article, we are interested in discrete
subgroups of SLd+1(R)which preserve a properly convex open subset of Pd. In this context,
the notion of positive proximality is interesting.

7.5.1. Positively proximal element and positively proximal group. A proximal element γ of SLd+1(R)
is positively proximal when its spectral radius ρ is an eigenvalue. A proximal subgroup G of
Pd is positively proximal when all its proximal elements are positively proximal.

A theorem of Benoist makes a bridge between being positive proximal and preserving a
properly convex open set. Suppose Γ is strongly irreducible. Then the group Γ preserves a prop-
erly convex open set if and only if the group Γ is positively proximal (Proposition 1.1 of [Ben00]).
In particular, the group Γ is proximal, and the construction explained in the previous para-
graph applied.

7.5.2. A key lemma of Benoist.

Lemma 7.13 ((Benoist [Ben00])). Let Γ be a strongly irreducible subgroup of SLd+1(R) preserving
a properly convex open subset. The connected component G of the Zariski closure of Γ is a semi-simple
Lie group and the action of G on Pd is proximal. Moreover, we can be more precise in two extremal
cases:

⋅ if the limit set ΛG of G is the boundary of a properly convex open subset of Pd, then ΛG is an
ellisphere and G is conjugate to SO○d,1(R).

� if ΛG = Pd then G = SLd+1(R).
The following lemma is an easy consequence of Lemma 7.13. We state it to clarify our

strategy to find the Zariski closure of ΓP.

Lemma 7.14. Let Γ be a strongly irreducible subgroup of SLd+1(R) preserving a properly convex
open set. Let G be the connected component of the Zariski closure of Γ. Suppose there exists a point
x ∈ ΛG and a Zariski closed subgroup H of G such that the orbit H ⋅ x is a sub-manifold of Pd of
dimension d − 1. Then G is conjugate to SO○d,1(R) or G = SLd+1(R).
7.5.3. A useful remark. The following remark gives a description of the maximal properly
convex open set preserved by a strongly irreducible positively proximal discrete subgroup
Γ of SLd+1(R).

An element γ ∈ SLd+1(R) is bi-proximal if γ and γ−1 are proximal. We introduce the
following notation. If γ is a bi-proximal element of SLd+1(R), then γ+ is the eigenvalue
corresponding to the spectral radius, Hγ is the projective subspace spanned by all the eigen-
vectors except the one corresponding to the smallest (in modulus) eigenvalue and H+γ is the

affine chart Pd ∖Hγ. Hence, γ+ is the unique attractive fixed point of γ ↷ Pd and Hγ is the
unique attractive fixed point of γ ↷ Pd∗, where Pd∗ is the dual of Pd.

Remark 7.15. The smallest properly convex open set Ωmin preserved by Γ is the convex hull
of the limit set ΛΓ. The largest Ωmax is the dual of the convex hull Ωmin,∗ of the limit set ΛΓ,∗

of the dual action of Γ on Pd∗.
Let AFP(Γ) (resp. AFP(Γ∗)) be the set of attractive fixed points of proximal elements of Γ

(resp. Γ∗). We know that AFP(Γ) is dense in ΛΓ, so we get Ωmin is the convex hull of AFP(Γ).
Now, since Ωmax is the dual of Ωmin,∗ = C(AFP(Γ∗)), we get Ωmax = ⋂γ∈Γprox H+γ , where Γprox

is the set of bi-proximal elements of Γ.

7.6. The proof of Theorem 7.11.
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7.6.1. The action of Ud−1 on Pd. We define a subgroup of SLd+1(R):

Ud−1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎝

1 u1 ⋯ ud−1
1
2(u2

1 +⋯+ u2
d−1
)

1 0 u1

⋱ ⋮

0 1 ud−1

0 ⋯ 0 1

⎞⎟⎟⎟⎟⎟⎟⎠

RRRRRRRRRRRRRRRRRRRRRRRR
(u1, ...ud−1) ∈ R

d−1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

The group Ud−1 preserves an ellipsoid E , fixes a point p ∈ ∂E and fixes every horosphere
of E centered at p. In other words, Ud−1 is included in the stabilizer of a horosphere in the
hyperbolic space (E , dE). More precisely, Ud−1 is the subgroup composed of the non-screw
parabolic elements fixing p of the hyperbolic space (E , dE). In particular, Ud−1 is isomorphic
to Rd−1. Moreover, if x is not in the tangent space to ∂E at p then the space Ud−1 ⋅ x∪ {p} is an
ellisphere.

p

Ud−1 ⋅ x

E

FIGURE 12. The orbits of the action of Ud−1 on Pd

The following lemma is then a direct corollary of Proposition 4.7:

Lemma 7.16. Let P be an irreducible loxodromic Coxeter polytope of Sd and let p be a parabolic
vertex of P. Then the connected component Gp of the Zariski closure of Γp is conjugate to Ud−1.

7.6.2. The action of SO○d−1,1(R) on Pd. The action of SO○d−1,1(R) on Pd has 7 types of orbits.

To see this, one should think of Pd as the projective space P(Rd ⊕R) i.e. the projective com-
pletion of Rd. The action SO○d−1,1(R) on Pd preserves the hyperplane at infinity H∞ of the

affine chart Rd of Pd = P(Rd ⊕R). The action of SO○d−1,1(R) on H∞ = Pd−1 has three orbits,
the limit set for the proximal action on H∞ which is an ellisphere of dimension d− 2 and the
two connected components of H∞ ∖ E , one of them being a ball.

For the action on the affine chart Pd ∖ H∞, the origin is fixed, there is a cone Clight which
gives two orbits. Finally, the orbit of an element inside the cone is one sheet of a hyperboloid
with two sheets and the orbit of an element outside the cone is a hyperboloid with one sheet.
The space Pd ∖ (H∞ ∪ Clight) has three connected components, two of them are balls, these
are the inside of the cone, the remaining one is the outside.



COXETER GROUP IN HILBERT GEOMETRY 35

7.6.3. Action of Diagd−1 on Pd. We define the following group:

Diagd−1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎝

λ1 0
⋱

λd

0 1

⎞⎟⎟⎟⎠

RRRRRRRRRRRRRRRRRR
λ1, ..., λd ∈ R

∗
+ such that λ1⋯λd = 1

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.

The action of Diagd−1 on Pd has exactly d + 1 fixed points which are in generic position.
This action preserves d+1 hyperplanes (Hi)i=1,...,d+1 each of them generated by d fixed points.
The orbit of any point x ∈ Pd which is not in one of the (Hi)i=1,...,d+1 is a convex hypersurface
of Pd i.e. an open subset of the boundary of a properly convex open subset.

7.6.4. Conclusion.

Lemma 7.17. Let P be an irreducible loxodromic Coxeter polytope of Sd. If P has a perfect non-elliptic
vertex then GP is conjugate to SO○d,1(R) or equal to SLd+1(R).
Proof. To simplify notation, we denote GP by G. Since P is irreducible and loxodromic, we
know from Theorem 7.13 and Proposition 2.9 that G is a semi-simple proximal Lie subgroup
of SLd+1(R). Hence the limit set ΛG of G is the unique closed orbit of the action of G on Pd

and a smooth Zariski closed sub-manifold of Pd.
If P admits a parabolic vertex p, then the Zariski closure of Γp is conjugate to Ud−1 (Lemma

7.16). Apart from the points on a unique hyperplane Hp containing p, for every x ∉ Hp, the
space Ud−1 ⋅ x ∪ {p} is an ellisphere Ex. Since G is irreducible, we can find a point x ∈ ΛG but
not in Hp. Thus, the limit set ΛG must contain an ellisphere, and so ΛG is an ellisphere or

the all Pd. Lemma 7.14 concludes.
If P admits a loxodromic vertex p such that Wp is not affine, then the connected component

of the Zariski closure Gp of Γp is conjugate to SLd(R) or SO○d−1,1(R), thanks to Theorem 7.4.
If P admits a loxodromic vertex p such that Wp is affine, then the connected component of
the Zariski closure Gp of Γp is conjugate to Diagd−1 thanks to Theorem 7.2. We again apply
the idea of Lemma 7.14. In all these three cases, since the action of G is irreducible, we can
find a point x ∈ ΛG such that the orbit of x under Gp is of dimension d − 1. Hence, Lemma
7.14 concludes. �

Proof of Theorem 7.11. We assume P is not perfect, so P admits a perfect non-elliptic vertex
and Lemma 7.17 concludes. �

Proof of Corollary 7.12. Thanks to Theorems 7.4 and 7.11 which can be applied to P or P† and
the fact that ΓP ⊂ ΓP† , we just have to prove that if GP = SO○d,1(R) then ΓP† ⊂ SO○d,1(R). In that

case, ΓP preserves a unique ellipsoid E , any loxodromic vertex p is outside E . Let Πp be the
hyperplane spanned by the polar [vs] for s facets of P containing p. The hyperplane Πp is
the hyperplane p� for the quadratic form defined by E . Hence, the group ΓP† ⊂ SO○d,1(R). �

7.7. Degenerate 2-perfect case. We just give the statement for the degenerate 2-perfect case
without proof since the proof are similar and easier. The subgroups Transd−1, SO○d−1,1(R)
and SLd(R) of SLd(R) can be embedded in SLd+1(R) in the upper-left corner. We make the
abuse of notation of identifying these subgroups of SLd(R) with their images in SLd+1(R).
Proposition 7.18. Let P be a 2-perfect Coxeter polytope of Sd which is not perfect. If P is decompos-
able then GP is conjugate to Transd−1, SO○d−1,1(R) or SLd(R).

8. ABOUT THE CONVEX SET

In this section, we prove Theorems C, D, E and G.
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8.1. The convex set ΩP is the largest convex open subset of Pd preserved by ΓP. We start
with Theorem C.

Theorem 8.1. Let P be a loxodromic 2-perfect Coxeter polytope. Then ΩP is the largest convex open
subset preserved by ΓP.

Proof. Remark 7.15 shows that Ωmax = ⋂γ∈Γprox H+γ. Proposition 4.24 shows that ΩP ∖Ωmin

modulo Γ is a finite union of sets each containing a (ΓP, Γp)-precisely invariant nicely em-
bedded cone Cp, for p running over the set of loxodromic vertices of P and Dp(Cp) =Ωp.

The closure of the set F
prox
p of attractive bi-proximal fixed points of Γp is the limit set Λp

(by Benoist [Ben00]), and Vey shows that since the action of Γp on Ωp is cocompact, we also

have C(Fprox
p ) =Ωp ([Vey70]). We stress that p ∈ Hγ for every γ ∈ Γ

prox
p .

Hence, the convex set Ωmax = ⋂γ∈Γprox H+γ contains in its boundary any loxodromic vertex

p of P, and we have Dp(Ωmax) = Ωp. Let A be an affine chart containing Ωmax. The convex
set Ω′p = ⋂γ∈Γ

prox
p

H+γ ∩A is a cone of summit p such that Dp(Ω′p) =Ωp, so Ωmax ⊂ΩP. �

8.2. When is ΩP the smallest convex open subset of Pd preserved by ΓP ? We are ready to
prove Theorem D.

Theorem 8.2. Let P be a loxodromic 2-perfect Coxeter polytope. The convex set ΩP is the smallest
convex open subset of Pd preserved by ΓP if and only if the action of ΓP on ΩP is of finite covolume.
In that case, the convex set ΩP is the unique properly convex open set preserved by ΓP.

Proof. Thanks to Theorem 6.3, we only have to show that the convex set ΩP is the smallest
convex open subset of Pd preserved by ΓP if and only if every vertex of P is elliptic or
parabolic. Suppose one vertex p of P is loxodromic, Proposition 4.24 builds a convex set Ω′

preserved by ΓP which is strictly included in ΩP.
Suppose every vertex of P is elliptic or parabolic. The parabolic vertices of P are in ΛP by

Proposition 4.7 and the elliptic vertices are in C(ΛP) by Proposition 4.4. Thereby, the vertices

of P are in C(ΛP), so P ∩ΩP ⊂ C(ΛP). This implies ΩP ⊂ C(ΛP) by definition of ΩP and so
ΩP = C(ΛP). Hence, ΩP is the smallest properly convex open set preserved by ΓP. �

8.3. Strict convexity of ΩP.
Here we show Theorem E. The word parabolic can cover different things in geometry. We

need to recall some definitions to be precise.

8.3.1. Parabolic automorphism.
An automorphism γ of a properly convex open set Ω is parabolic when the quantity

infx∈Ω dΩ(x, γ ⋅ x) = 0 and the infimum is not achieved. One can show that such an ele-
ment has spectral radius 1 and fixes every point of a unique face of Ω (see [CLT11]).

An isometry γ of a Gromov-hyperbolic space X is parabolic when the quantity infx∈Ω dΩ(x, γ ⋅
x) = 0 and the infimum is not achieved. Such an isometry has a unique fixed point in the
boundary ∂X of X. Every point fixed by a parabolic element of a group Γ acting on ∂X is a
parabolic fixed point.

8.3.2. Projective structure and holonomy.
A convex projective manifold M is a quotient Ω/

Γ
of a properly convex open set Ω by a

torsion-free discrete subgroup Γ of Aut(Ω). The holonomy of an element γ ∈ π1(M) is the
corresponding element in Γ. We say that an element γ ∈ π1(M) has parabolic holonomy when
the corresponding element in Γ is parabolic. Every point of ∂Ω fixed by a parabolic element
is called a parabolic fixed point.
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8.3.3. The notion of relative hyperbolicity.

Definition 8.3. Let Γ be a discrete group and (Pi)i∈I a finite family of subgroups of Γ. The
group Γ is relatively hyperbolic relatively to the family (Pi)i∈I if and only if there exists a proper

Gromov-hyperbolic space X and a geometrically finite action1 of Γ on X such that the stabi-
lizer of any parabolic fixed point is conjugate to one of the (Pi)i∈I .
8.3.4. The statement.

Theorem 8.4 ((compact case by Benoist [Ben04a], Cooper, Long and Tillmann [CLT11])). Let
Γ be a torsion free discrete subgroup of SLd+1(R) acting on a properly convex open set Ω. Suppose the
action is of finite covolume, the manifold Ω/

Γ
is the interior of a compact manifold N with boundary

and the holonomy of every component of ∂N is parabolic. Then the following are equivalent:

⋅ The metric space (Ω, dΩ) is Gromov-hyperbolic.
� The properly convex open set Ω is strictly convex.
∴ The boundary ∂Ω of Ω is C1.
 The group Γ is relatively hyperbolic relatively to the stabilizer of its parabolic fixed points.

Remark 8.5. Without any action of a group, one can show that a properly convex open set
Ω such that (Ω, dΩ) is Gromov-hyperbolic has to be strictly convex (Benoist [Ben04a]) and
with C1-boundary (Karlsson and Noskov [KN02]).

Remark 8.6. One can find avatars of this theorem in the literature, one by Choi in [Cho10]
and the implication 1)⇒ 4) by M. Crampon and the author in [CM12] in the context of geo-
metrically finite actions. For the next theorem we will need the version quoted previously.

Let P be a Coxeter polytope. If p is a parabolic vertex of P we say the subgroup Γp is a
geometric parabolic subgroup of ΓP.

Theorem 8.7. Let P be a loxodromic Coxeter polytope. The following are equivalent:

⋅ The properly convex open set ΩP is strictly convex.
� The Coxeter polytope P is 2-perfect and the boundary ∂ΩP of ΩP is C1.
∴ The Coxeter polytope P is quasi-perfect and the group ΓP is relatively hyperbolic relatively to

its geometrical parabolic subgroups.

In that case, the metric space (ΩP, dΩP
) is Gromov-hyperbolic and the action is of finite covolume.

Proof. Suppose we have 3) and let show 1) and 2). Theorem 6.3 shows that the action of ΓP

on ΩP is of finite covolume. Since ΓP is of finite type by Selberg’s lemma we can find a finite
index subgroup Γ′ of ΓP which is torsion free. The quotient manifold ΩP/Γ′ is of finite vol-
ume, it is the interior of a compact manifold N and the holonomy of each component of ∂N
is parabolic since P is quasi-perfect. Hence, Theorem 8.4 shows that (ΩP, dΩP

) is Gromov-
hyperbolic, therefore strictly convex with C1-boundary by Remark 8.5.

We first show that P has to be 2-perfect if we assume 1). If P is not 2-perfect then it exists
an edge e of P such that the group We is infinite (Proposition 3.1). This implies e ⊂ ∂ΩP by
point 5) of Theorem 2.2. In particular, ΩP is not strictly convex.

Suppose we have 1) or 2) and P is 2-perfect. First remark that no vertex can be loxodromic
from part 3) of Proposition 4.24. Thereby, every vertex of P is either elliptic or parabolic,
hence P is quasi-perfect, so Theorem 6.3 shows that µΩP

(P) <∞, and we have the first part

1See paragraph 6.5 for a definition.
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FIGURE 13. An indecomposable quasi-divisible prism which gives a non-
strictly convex set

of the assertion. For the same reason than in the first paragraph of this proof we can use
Theorem 8.4 which shows that ΓP is relatively hyperbolic relatively to the stabiliser of its
parabolic fixed points (i.e. its geometrical parabolic subgroups). �

The following statement is a straightforward corollary of Theorem 8.7 which does not use
Theorem 8.4.

Corollary 8.8. Let W be a Coxeter group. The Tits convex set Ω∆W
is strictly convex if and only if

W is quasi-Lannér. In particular, in that case, Ω∆W
is an ellipsoid.

Proof. If W is quasi-Lannér, then Ω∆W
is an ellipsoid and the action of W on Ω∆W

is of finite
covolume. Now, suppose Ω∆W

is strictly convex. Then Theorem 8.7 shows that ∆W is quasi-

perfect1. This means by Remark 3.4 that W is quasi-Lannér. �

Proof of Theorem F. Consider the prism G given by Figure 13. The main result of [Mar10]
shows that the space of finite covolume Coxeter prisms P such that the dihedral angle of P
are the one given by the label of the edges of G is homeomorphic to R∗, so in particular not
empty. The group ΓP is not relatively hyperbolic relatively to the unique parabolic vertex
(intersection of the faces 1-3-5) because the subgroup generated by σ1, σ2, σ3 is virtually Z2.
Theorem 2.18 shows that ΓP is strongly irreducible, hence ΩP is indecomposable. Theorem
6.3 shows that µΩP

(P) <∞. Theorem 8.7 concludes that ΩP is not strictly convex. �

8.4. Existence of a strictly convex open set preserved. We now show Theorem G.

8.4.1. The statement. Two standard Coxeter subsystems T and U of (S, M) are orthogonal
when for every t ∈ T, u ∈ U, mtu = 2. We denote by T⊥ the maximal subsystem orthogonal to
T.

Theorem 8.9 ((Moussong [Mou88] hyperbolic case, Caprace [Cap09, CapErr])). For every
Coxeter system (S, M), and every collection P of standard parabolic subgroups of WS, the group WS

is relatively hyperbolic relatively to the WT for T ∈ P if and only if the following three conditions are
satisfied:

⋅ Each affine sub-system of rank at least 3 of (S, M) is included in one T ∈ P . For each pair
S1, S2 of irreducible infinite subsystem which are orthogonal, there exists a T ∈ P such that
S1 ∪ S2 ⊂ T.

� For all T ≠ T′ ∈ P , T ∩ T′ is a spherical Coxeter system.

1We don’t need to know that W is relatively hyperbolic since every quasi-Lannér Coxeter group is relatively

hyperbolic.
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∴ For each T ∈ P , for each irreducible infinite subsystem U of T, we have U⊥ ⊂ T

We are going to make the abuse of taking together parabolic vertices and the associated
Coxeter parabolic subgroup.

Proposition 8.10. Let P be a loxodromic 2-perfect Coxeter polytope and P the set of parabolic vertices
of P. Then the pair (WP,P) satisfies the 2nd and the 3rd points of Theorem 8.9.

Proof. We begin by the second point. Given two vertices p, q of P, the segment [p, q] is
included in a unique face f of P of minimal dimension and Wp ∩Wq =W f , which is spherical
since dim( f ) ⩾ 1 and P is 2-perfect.

For the third point, for each p ∈ P , the Coxeter group Wp is affine, hence a direct product
of irreducible affine Coxeter group Wa1

, ..., War . Let a be the union of some ai and b the union
of the others, so that Wa ×Wb =Wp.

Suppose there exists a facet f of P in a⊥ ∖ b. If s is a facet of P, then Fs denotes its support
and As the affine chart Sd ∖ Fs not containing p . Let l be the intersection l = ⋂s∈a Fs (if r = 1
then l = {p,−p}).

The polar v f of f belongs to l. Moreover, α f (v f ) = 2 and α f (p) < 0 (since f ∉ a ∪ b), hence
v f ∈ A f ∩ l (if r = 1 then we get v f = −p). So, there cannot exist an affine chart containing P
and its polars, contradicting Lemma 4.10. �

When P is a 2-perfect Coxeter polytope and p a loxodromic vertex, we will call Γp a geo-
metrical loxodromic subgroup of ΓP.

Corollary 8.11. Let P be a loxodromic 2-perfect Coxeter polytope whose loxodromic vertices are
simple. The following are equivalent:

⋅ The convex set ΩP† is strictly convex.
� The boundary of ΩP† is C1.
∴ There exists a strictly convex open set Ω′ preserved by ΓP,
 There exists a properly convex open set Ω′ with C1-boundary preserved by ΓP,
� The group ΓP is relatively hyperbolic relatively to its geometric parabolic subgroups.
C The group ΓP† is relatively hyperbolic relatively to its geometric parabolic subgroups.

In this case, the metric space (ΩP† , dΩ
P†
) is Gromov-hyperbolic, hence ΩP† is strictly convex with

C1-boundary.

Remark 8.12. If the group ΓP is relatively hyperbolic relatively to its geometric parabolic
subgroups then its loxodromic subgroups are Gromov-hyperbolic since for every ridge r the
group Γr is finite.

8.4.2. A lemma about just-infinite subsystems.

Definition 8.13. Let W be a Coxeter group given by the Coxeter system (S, M). A subsystem
U of S is just infinite when the Coxeter group WU is infinite and for every element u ∈ U, the
Coxeter group WU∖{u} is finite.

An infinite Coxeter group W always contains a just infinite subsystem. A Coxeter group
W is just infinite if and only if W is irreducible affine or Lannér.

Definition 8.14. Let P be a Coxeter polytope. Let U be a set of facets of P. We say U bounds
a right angle facet when there exists a facet f of P such that every ridge of f is also a ridge of
a facet of U, and all the ridges of f are right angle.

If U bounds a right angle facet f then the projective subspace ΠU spanned by the polar of
the facets of U is included in the support of f .
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Definition 8.15. Let P be a Coxeter polytope. Let U be a set of facets of P of cardinal r. The
projective subspace ΠU meets nicely P when:

⋅ ΠU is of dimension r − 1.
� ΠU ∩ P ≠ ∅.
∴ U bounds a right angle facet, or
∴′ the only facets of P met by ΠU are the facets of U, and the ridges of P met by ΠU are

met in their relative interior.

Remark 8.16. Let P be a Coxeter polytope. Let U be a subsystem of facets of P such that
the projective space ΠU meets nicely P. Then P ∩ΠU is a polytope and its facets are in
correspondence with U, hence P induces a Coxeter structure on P∩ΠU , and P∩ΠU is tiling
the convex set ΩP ∩ΠU . Roughly speaking, we find a sub-Coxeter-polytope of P.

Remark 8.17. Let P be an irreducible loxodromic Coxeter polytope. Let p be a vertex of P,
and Sp be the set of facets containing p. We saw at Proposition 4.14 that the projective space
ΠSp meets nicely P if p is loxodromic, perfect and simple.

Remark 8.18. Let P be an irreducible loxodromic Coxeter polytope. Let U be the union of
two facets which do not intersect. Then the projective space l = ΠU is a line that intersects
P nicely thanks to the inequalities (C). Hence, P ∩ l is a Coxeter segment which is tiling the
segment ΩP ∩ l.

Lemma 8.19. Let P be an irreducible loxodromic Coxeter polytope. Let U be a just-infinite set of
facets of P such that U /⊂ Sp for every parabolic or loxodromic vertex p of P. Then the projective
space ΠU meets nicely P, the Coxeter polytope ∆ = ΠU ∩ P is a simplex, and verifies A∆ = AU and
W∆ =WU .

In particular, the group ΓU acts cocompactly on ΠU ∩ΩP. In particular, ΓU contains a bi-proximal
element.

Proof. First, we show that ΠU is of dimension the rank r of U minus 1. If WU is a Lannér
Coxeter group then AU is the Cartan matrix of a perfect loxodromic simplex so of strictly
negative determinant hence of full rank qed. If WU is irreducible affine then either AU is
the Cartan matrix of a perfect loxodromic simplex (and WU = Ãr−1) and we conclude by the
same argument. Otherwise, AU is the Cartan matrix of a parabolic simplex and Lemma 8.20
shows that there exists a vertex p of P such that U = Sp. We assume that this is not the case.

We denote by S the set of facets of P and by T the complement S ∖U of U. If t ∈ T, let
Ft be the hyperplane spanned by t. We denote by At the connected component of Sd ∖ Ft

that contains the interior of P. Finally, let CT = ⋂t∈T At. The convex set CT is not necessarily
properly convex. The inequalities (C) show that for every u ∈ U, the polar vu ∈ CT

Let U′ be any proper subset of U. Since U is just-infinite, U′ is spherical and Lemma 8.20
shows that the intersection fU′ = ⋂u∈U ′ u is a face of P. The intersection fU = ⋂u∈U u is not a
face of P because otherwise we would have U ⊂ Sp for some vertex p of P. So there exists a
set V of d − r + 2 facets of P not in U such that the polytope Q obtained from P by keeping
only the facets in U ∪V is a polytope of dimension d with d + 2 facets. The combinatorics of
such a polytope is well-known, they are product of two simplices, or cone over a polytope
of dimension d − 1 with (d − 1)+ 2 facets.

The polytope Q is not a cone, since the intersection of any two facets of U is a ridge of Q,
thanks to Lemma 8.20 that can be applied because U is just-infinite. So Q is the product of
two simplices. Finally, any proper subset of facets of U intersect to give a face of Q, so Q is
the product of a (r − 1)-simplex by a (d − r + 1)-simplex.
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Let CV = ⋂t∈V At. We have P∩ΠU ⊂ CV , thanks to the inequalities (C). Now since Q is the
product of a (r − 1)-simplex by a (d − r + 1)-simplex, we get that P ∩ΠU ≠ ∅.

If U bound a right angle facet. Then ΠU meets nicely P by definition. Suppose U does not
bound a right angle facet. Then P ∩ΠU is included in the interior of CT and so a facet f of P
such that f ∩ΠU ≠ ∅ is a facet of U and the ridges of P met by ΠU are met on their interior.
The polytope P ∩ΠU is a simplex since Lemma 8.20 shows that any proper set of facets of
P ∩ΠU meets. �

Lemma 8.20 ((Vinberg, Theorem 7)). Let P be a Coxeter polytope. Let (S, M) be the Coxeter
system associated to P and W the corresponding Coxeter group. Let S′ be a subsystem.

● If WS′ is finite, then there exists a face f of P such that S′ = S f = {s ∈ S ∣ s ⊃ f}.
● If AS′ is the Cartan matrix of a parabolic simplex then there exists a vertex p of P such that

S′ = Sp.

8.4.3. The proof of Theorem 8.11.

Proof of Theorem 8.11. We begin by 6) ⇔ 1) ⇔ 2). Since P† is quasi-perfect, the conclusion
follows from Theorem 8.7. The implication 1)⇒ 3) and 2)⇒ 4) are obvious since the convex
set ΩP† is preserved by ΓP and ΓP ⊂ ΓP† . Theorem 8.9 shows 5)⇔ 6).

Not 5) ⇒ Not 3)and Not 4). Let Ω′ be a properly convex open set preserved by ΓP. By
Theorem 8.9 and Proposition 8.10, we only have to distinguish the cases, A) there exists a
loxodromic vertex p such that Wp is not Gromov-hyperbolic, B) there exists an affine sub-
system U of rank at least 3 which is not included in a geometric parabolic or loxodromic
subgroup of ΓP and C) there exist two infinite sub-systems U1 and U2 which are orthogonal
and U1 ∪U2 is not included in a geometric parabolic or loxodromic subgroup of ΓP.

Suppose we are in case A). We have to show that Ω′ is not strictly convex nor with C1-
boundary. Consider the projective space Πp = ΠSp where Sp is the set of facets containing
p. Since p is simple loxodromic, the projective space spanned by the limit set Λp of Γp is
Πp, and we know from Proposition 4.14 that Πp is of dimension d − 1. So the convex set
Πp ∩Ω′ is of dimension d − 1 and the action of ΓP on it is cocompact since P is 2-perfect,
hence by Theorem 8.4 (cocompact case) the convex set Ω′ ∩Πp is not strictly convex nor

with C1-boundary since Γp =Wp is not Gromov-hyperbolic. Hence, the same is true for Ω′.

Suppose we are in case B) or C). we claim that in this case, the group ΓP contains a sub-
group isomorphic to Z2 generated by two bi-proximal elements hence Lemma 8.21 below
shows that ΩP cannot be strictly convex nor with C1-boundary.

Suppose we are in case B). We can assume U is just-infinite. Since U /⊂ Sp for any loxo-
dromic or parabolic vertex p of P, by Lemma 8.19, the projective space ΠU meets nicely P,
hence ΓU acts cocompactly on ΩP ∩ΠU . Since, WU is an irreducible affine Coxeter group,
we know that WU has to be of type Ãn with n ⩾ 2 and by Proposition 2.9 ΩP ∩ΠU is a sim-
plex. Hence, ΓU contains two bi-proximal elements which generate a Z2 and Lemma 8.21
concludes.

Suppose we are in case C). We can assume U1 and U2 are just-infinite sub-systems. We
need to distinguish two cases before concluding. a) U1 ⊂ Sp for some vertex p of P. In that
case, U1 /⊂ (Sp)q for any parabolic or loxodromic vertex q of Pp since Pp is perfect. Hence,
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Lemma 8.19 applied to Pp shows ΓU1
contains a bi-proximal element for its action on Sd−1

p .
But the eigenvalue at p for any element of Γp is one, hence ΓU1

as a subgroup of SLd+1(R),
has a bi-proximal element. b) U1 /⊂ Sp, for any vertex p of P. Then Lemma 8.19 applied to P
shows ΓU1

contains a bi-proximal element.

So in any situation, the groups ΓU1
and ΓU2

contain a bi-proximal element. Since these two
groups commute, we get that ΓP contains two elements which are bi-proximal and generate
a Z2. Lemma 8.21 concludes. �

Lemma 8.21. Let Ω be a properly convex open set. Suppose Aut(Ω) contains two bi-proximal
elements γ, δ which generate a Z2. Then Ω is not strictly convex nor with C1-boundary.

Proof. Let p+γ, p−γ, p+δ , p−δ be the attractive and repulsive fixed points of γ and δ. Let Γ be the
group generated by γ and δ. We claim that the set F = {p+γ, p−γ, p+δ , p−δ } is of cardinality 3.
Indeed, if F is of cardinality 2 then the group Γ acts properly on the segment joining the two
points of F include in Ω, hence Γ is cyclic. If F is of cardinality 4, then a ping-pong argument
shows Γ contains a free subgroup of rank 2.

We call p0 the point p+δ or p−δ different from p+γ, p−γ. Hence, the plane Π generated by

p0, p+δ , p−δ is preserved by γ and we are in a dimension 2 situation. It is then easy to see that

the segments [p0, p+δ ] and [p0, p−δ ] are included in ∂Ω ∩Π. Thereby, Ω is not strictly convex

nor with C1-boundary. See [Mar11] for more details. �

Remark 8.22. If we do not assume that the loxodromic vertices are simple then the statements
1) , 2) and 6) of Theorem 8.11 do not make sense any more. But, we still have 3) or 4)⇒ 5).
But, I don’t know how to build a strictly convex invariant open set (or with C1 boundary)
assuming 5).
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[Kos68] Jean-Louis Koszul. Déformations de connexions localement plates. Ann. Inst. Fourier (Grenoble),
18:103–114, 1968. 1

[Kui53] Nicolaas Kuiper. On convex locally-projective spaces. In Convegno Internazionale di Geometria Dif-

ferenziale. 1953. 1

[KV67] Victor Kac and Érnest Vinberg. Quasi-homogeneous cones. Mat. Zametki, 1:347–354, 1967. 1
[Lan50] Folke Lannér. On complexes with transitive groups of automorphisms. Comm. Sém., Math. Univ.

Lund [Medd. Lunds Univ. Mat. Sem.], 11:71, 1950. 18
[Mar10] Ludovic Marquis. Espace des modules de certains polyèdres projectifs miroirs. Geom. Dedicata,

147:47–86, 2010. 4, 5, 22, 38

[Mar11] Ludovic Marquis. Surface projective convexe de volume fini. Annales de l’Institut Fourier, Vol. 62
no. 1 (2012), p. 325-392. 2, 4, 5, 20, 42



COXETER GROUP IN HILBERT GEOMETRY 44

[Mar12] Ludovic Marquis. Exemples de variétés projectives strictement convexes de volume fini en dimen-
sion quelconque. L’enseignement mathématique, Tome 58 (2012). 2, 5, 20
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1963. 1, 30
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