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[1] A number of global land surface models simulate photosynthesis, respiration, and
disturbance, important flows in the carbon cycle that are widely tested against flux towers
and CO2 concentration gradients. The resulting forest biomass is examined in this
paper for its resemblance to realistic stands, which are characterized using allometric
theory. The simulated biomass pools largely do not conform to widely observed allometry,
particularly for young stands. The best performing models had an explicit treatment of
stand‐thinning processes, which brought the slope of the allometry of these models closer
to observations. Additionally, models that had relatively shorter wood turnover times
performed were generally closer to observed allometries. The discrepancy between the
pool distribution between models and data suggests estimates of NEE have biases when
integrated over the long term, as compared to observed biomass data, and could therefore
compromise long‐term predictions of land carbon sources and sinks. We think that
this presents a practical obstacle for improving models by informing them better with data.
The approach taken in this paper, examining biomass pools allometrically, offers a simple
approach to improving the characteristic behaviors of global models with the relatively
sparse data that is available globally by forest inventory.

Citation: Wolf, A., P. Ciais, V. Bellassen, N. Delbart, C. B. Field, and J. A. Berry (2011), Forest biomass allometry in global
land surface models, Global Biogeochem. Cycles, 25, GB3015, doi:10.1029/2010GB003917.

1. Introduction

[2] This paper compares the distribution of different pools
of forest biomass in land surface models with biomass
observed in forest inventory. This study is contextualized
in part by the gap in our understanding of the nature of the
large land sink of CO2. Since 1850, land sinks have nearly
counterbalanced land use change sources, by taking up
∼160 Pg C [Canadell et al., 2007]. Roughly 70% of the
current land sink has been attributed to biomass increase,
with the remainder accumulating as soil C. This 110 Pg C of
extra biomass is substantial compared to the standing bio-
mass stock of 150 Pg C in the northern hemisphere, and
200 Pg C in the tropics [Dixon et al., 1994, Table 2]. The
∼25% additional biomass embodied in the land sink is an
important research object, but not well addressed by ter-
restrial carbon cycle models whose biomass accumulation is
relatively unvalidated. It would be hopeless task to directly
measure all the biomass on Earth to address this knowledge
gap, so improvements to our understanding of the state and

changes in global biomass will come from a mix of both
improved data sources and improved model representation
of the terrestrial carbon cycle.
[3] Currently, major research programs evaluating land

surface model (LSM) performance rely almost exclusively on
net ecosystem exchange (NEE) as a quality metric [Hoffmann
et al., 2007], because modeled CO2 fluxes per unit land area
are readily compared against the global networks of eddy
covariance flux measurement sites [Baldocchi et al., 2001],
the seasonal cycle of CO2 [Randerson et al., 1997], and,
through atmospheric transport models, to atmospheric CO2

concentration gradients [Masarie and Tans, 1995] (Figure 1).
It is insufficient, however, to validate the instantaneous
performance of LSMs, when the important performance
benchmark from the perspective of the carbon cycle‐climate
feedbacks is their long‐term integral, namely the pool of
carbon that is sequestered from the atmosphere as biomass.
Even high‐quality observations and careful model simula-
tions can show substantial differences in representing
interannual variability, suggesting that basic controls of the
land carbon sink are not well constrained [Desai et al., 2010],
in part because of the historical legacy of these models and
measurements have emphasized characterizing short‐term
(i.e., diurnal to seasonal) controls of the carbon cycle. Flux
tower observations of NEE aggregate many component
fluxes that are difficult to partition and they generally
have large short‐term and long‐term measurement error
[Richardson et al., 2006; Wolf et al., 2008] and can only
loosely distinguish the performance of different flux models
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[Stöckli and Vidale, 2005]. Empirical measurements of bio-
mass, particularly viewed through the allometric lens used in
this study, offer an opportunity to falsify model performance
across the time span of ecosystem development relevant for
monitoring the state and future of terrestrial carbon sinks on
Earth.
[4] Biomass has a particular relevance for evaluating

carbon cycle models for their suitability in data assimilation,
because simulations of biomass accumulate biases in the
integration of the component carbon fluxes of photosyn-
thesis, growth, allocation, mortality and respiration. Obvi-
ously, most of these fluxes are difficult if not impossible to
directly observe on the relevant spatial and temporal scales
[Schulze, 2006], so direct data assimilation of most these
fluxes is essentially out of the question. However, we do
have some perspective on how these fluxes should add up,
because it is impossible to simulate biomass correctly if the
component underlying fluxes are incorrect. Because data
assimilation offers the prospect of improving estimates of
key underlying process fluxes in a model (such as respira-
tion) by revising an estimate of key observable state vari-
ables (such as biomass) [Williams et al., 2009], it is critical
that the relationship between biomass and the component
fluxes it integrates be realistic.
[5] There are several impediments that have limited the

ability of the land surface modeling community to validate
simulations of biomass in this latter sense. Even the most
careful model validation studies are still strongly hampered
by the availability of biomass data for direct model‐data
comparison [Randerson et al., 2009]. Forest inventory pro-
grams that estimate biomass by direct measurement are
important regionally [Caspersen et al., 2000; Ciais et al.,
2008; Lewis et al., 2009; Phillips et al., 2008], but their
limited spatial and temporal coverage inhibits their use for
continuous monitoring of the global biosphere from the
perspective of the carbon cycle (Figure 1). Another major
impediment to validating models against measured biomass
is the need to consider the many idiosyncrasies of each
forest stand at each site where a model can be tested. These
idiosyncrasies could include the mix of species, the above-
ground climate, water or nutrient limitations, the timing of

past disturbances and management. Validating a model
against a measured survey of site biomass is also problem-
atic because it does not necessarily predict good future
performance if the allocation and bulk turnover of the
component pools are not also validated.
[6] To overcome these obstacles to evaluating terrestrial

carbon cycle model biomass, we employ a scaling analysis
of each model’s biomass pools using the concept of
allometry. Allometry is a widely used technique for sum-
marizing biomass variation collected in forest inventories
[Jenkins et al., 2004], and we explore it here as a link to
compare land surface model simulations and forest inven-
tory data (Figure 1). Allometric scaling relates the size of
one part of an organism to that of a different part of the
organism across a range of sizes, and thus captures the
biophysical and evolutionary constraints to the ontology of
form. Carbon cycle models simulate the biomass in different
biomass pools that together constitute a forest, but do these
trees look like forest stands we observe in nature? Despite
the abundance of idiosyncrasies that make each forest stand
unique, allometry suggests there are evolutionary forces and
biophysical constraints that greatly constrains the covaria-
tion of different components of biomass in a forest that are
empirically observed [cf. Wolf et al., 2010]. This variation
extends from young stands with many small trees with
proportionately large foliage biomass, to old stand with few
large trees with proportionately large stem biomass.
[7] The allometric scaling analyses in this paper involve

the regression of one component of biomass, say foliage
biomass, against another component of biomass, say stem
biomass, for individuals across a range of tree sizes [Niklas
et al., 2003; Price et al., 2007]. Biomass components of
individual trees are calculated for the mean tree in a stand by
taking stand biomass and dividing by the number of
mature trees (defined as larger than a minimum stem size, say
2.54 cm). This process discards all information about the
distribution of stem sizes within a stand, but the remaining
information is remarkably effective at summarizing quanti-
tative differences between stands, because stem size dis-
tributions themselves have very regular features that progress

Figure 1. CO2 flux measurements from towers and flask sampling networks have been closely tied to
validating land surface models and used in inverse studies (solid arrow on left), but direct inventories of
forest biomass are not readily linked to carbon flux measurements at comparable temporal and spatial
scales (dotted arrow on left). Conversely, many remote sensing observations are sensitive to individual
level attributes of forests such as crown size and height and biomass, which are routinely collected in
inventories (solid arrow on right), but land surface models do not typically simulate such individual‐based
metrics (dotted arrow on right). A synthesis of bottom‐up and top‐down approaches will depend on rec-
onciling individual‐based and area‐based representations of forests. This study uses allometry as an
approach to compare differences in the two approaches.
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in predictable ways with stand development [Mohler et al.,
1978; West et al., 2009].
[8] Ultimately, allometric models and carbon cycle

models should be complementary, because they are trying
explain the same thing: the variation in plant biomass
observed in nature. Interestingly, the considerations of
branching morphology and biophysical vascular constrains
that are used formulate allometric scaling theory [Enquist
and Niklas, 2001; Enquist et al., 1998; West et al., 1999]
are almost wholly different from the biochemical and ther-
modynamic concepts used to develop land surface models
[e.g., Bonan, 2008; Monteith and Unsworth, 2008]. A
synthesis between these two fields is slowly starting to
emerge [Enquist et al., 2007], but in the meantime we can
evaluate how well the ecosystem models commonly used in
carbon cycle science reproduce theoretical predictions and
empirical relations emerging from allometric scaling theory.
[9] We hope that the synthesis between these two largely

independent efforts offers a path forward to improved rep-
resentation of ecosystem processes, by emphasizing the
need for ecosystem models to accommodate the broad array
of measurements, such as forest inventory, that come from
direct observation of individual plants (Figure 1). In par-
ticular, this study is motivated by the desire to link land
surface models to satellite data, which together could help
constrain our understanding of the state of the world’s for-
ests. Next generation remote sensing observations will be
sensitive to individual level attributes such as crown diam-
eter, tree height, and stand density [Hurtt et al., 2010; Wolf
et al., 2010], but there is no clear way to use such data to
inform land surface models unless these models have a
representation of individual‐level state variables (Figure 1).
Allometry can be the conceptual link that bridges current
land surface models with remote sensing to improve con-
straints on the state of the carbon cycle.
[10] Our objective in this paper will be to calculate allo-

metric scaling parameters for different biomass components
in land surface models, compare these parameters with those
obtained from empirical studies of forest component bio-
mass, and discuss the implications for any discrepancies.

2. Methods

[11] In this paper, the output of several models designed
for global applications and future projections of the coupled

carbon‐climate system is compared from an allometric
perspective to several data sets of forest biomass that include
separate component measurements of biomass: foliage,
branch and trunk (stem), and coarse roots. The land surface
models (LSMs) and the forest biomass databases are
described in more detail under their respective section
headings below. The LSMs depict biomass as stored in
foliage, wood, and fine root pools, which are important to
distinguish in a carbon cycle because they have different
turnover times. These pools are for the most part directly
comparable to the biomass components reported in the
databases, with some subtle differences that require atten-
tion: the wood pool in LSMs is not always separated into
aboveground stem and belowground coarse wood, and the
root biomass in forest databases do not generally distinguish
fine roots. Refer to Table 1 for a summary of the different
biomass pools used in both the forest databases and LSMs
and how they are related. In addition to resolving the defi-
nitions of the different pools between databases and LSMs,
the component biomass information in the databases is
summarized using allometric equations, which requires
reframing the pools in LSMs on a per individual basis for
comparison. These methodological issues are considered in
the following paragraphs.
[12] The estimation of allometric scaling coefficients for

empirical data and LSMs uses biomass pools calculated on a
mean individual basis. For the inventory data, the number of
individuals per area (N) is reported in the literature com-
prising the database, so biomass per individual (M) is
readily calculated as biomass per area (M * N) divided by N.
The biomass per individual is able to be directly calculated
in ED and Orchidee‐FM, which directly simulate population
in different diameter size classes. Orchidee‐STD maintains a
diagnostic population density variable, based on the qua-
dratic mean diameter, that can be used to compute the size
of the average individual. With the remaining LSMs, we
estimate the number of individuals per area implicit in the
simulated biomass per area by using the widely observed
“self‐thinning” behavior of forest stands, in which young
stands composed of many small trees develop into older
stands with few large trees. The self‐thinning “law” [Mohler
et al., 1978; Yoda et al., 1963] is formulated as:

M ¼ �N� ð1Þ

where M is the mass of an individual tree (kg) and N is the
number density of trees (ha−1). (See Table 1 for a summary
of variables referred to in this study.) The scaling exponent
b generally takes values of −3/2 [Yoda et al., 1963] or −4/3
[Enquist et al., 1998], but regardless of the appropriate
theoretical value, the parameters can be empirically esti-
mated from data by linear regression after taking the loga-
rithm of each side:

log Mð Þ ¼ �′þ �* log Nð Þ ð2Þ

where a′ = log(a). This relationship is calculated indirectly
from stand level forest inventory data [e.g., Cannell, 1982]
on N and biomass per area M * N (kg ha−1), which has been
divided by N to estimate a mean M [Enquist and Niklas,
2002]. This is in essence the same transfer function neces-
sary to estimate N from the area‐based biomass M * N that

Table 1. Variable Definitions Used in This Studya

Variable Definition Units

N Tree population density Trees/ha
Mfol Foliage mass per tree kg/tree
Mstem Stem (trunk + branch) mass per tree kg/tree
Mcroot Coarse root mass per tree kg/tree
Mfroot Fine root mass per tree kg/tree
Mroot Mcroot + Mfroot kg/tree
Mwood Mstem + Mcroot kg/tree
Mactive Mfol + Mfroot kg/tree
M Mfol + Mstem + Mcroot + Mfroot kg/tree
Mcwd Coarse woody debris mass per tree kg/tree
H Mean tree height M
D Tree diameter Cm

aAll masses express total dry matter. A log prefix in the text (e.g., logM)
refers to log‐10 transformation.
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is simulated by carbon cycle models, which is necessary
to calculate individual biomass M. Multiplying the antilog
of each side of (2) by N gives the scaling relation between
M * N with N:

log M*Nð Þ ¼ �′þ � þ 1ð Þ* log Nð Þ ð3Þ

Rearrangement of (3) to bring N to the left hand side permits
the diagnosis of N from M * N as simulated by carbon cycle
models:

log Nð Þ ¼ ��′= � þ 1ð Þ þ 1= � þ 1ð Þ* log M*Nð Þ ð4Þ

[13] The scaling parameters to equation (1) were esti-
mated separately for angiosperms and gymnosperms from
the Cannell database using Type II (reduced major axis or
RMA) regression to estimate the scaling parameters [Sokal
and Rohlf, 1995, section 14.13]. RMA regression was
used in part by convention, and in part because the solved
parameters are symmetric with respect to X and Y in RMA
regression, such that if Y / Xb, then X / Y1/b, which is not
true in Type I regression [Niklas, 1994]. The parameters
were checked for significant differences between tropical,
temperate, and boreal sites, as well as monoculture and
multispecies stands. The tree population density N for each
forested grid cell in each model was then diagnosed using
the a and b calibrated using the Cannell database. The
biomass pools in each LSM were then divided by N to
estimate component biomass pools per individual for each
grid cell.
[14] Most models did not distinguish aboveground and

belowground woody biomass (the exception is Orchidee).
The separation of woody biomass (Mwood) into stem
(Mstem) and coarse roots (Mcroot), and subsequent aggre-
gation of root biomass (Mroot) from fine root (Mfroot) and
Mcroot was made on the basis of allometric scaling between
Mcroot:Mwood using the Luyssaert database [Luyssaert
et al., 2007]. The allometric relationship between Mcroot:
Mwood from the Luyssaert database was estimated as
Mcroot = 0.2357 * Mwood0.978 (r = 0.972, n = 40). This
relationship was nearly isometric (b = 1), indicating that
Mcroot was a fixed fraction of Mwood (Figure S1 in
Text S1).1 Given that Mfroot was a small fraction of total

belowground biomass, this allometry was consistent with
the isometric scaling by Enquist and Niklas [2002]. The
proportionality constant was not significantly different from
0.25, which is the proportionality used in CASA, so for ease
of interpretation, the ratio between Mstem:Mcroot was also
fixed at 75:25 for IBIS, Triffid, JSBACH, ED, and MEL.
For JSBACH, the “active pool” of biomass includes both
Mfol and Mfroot, which had to be separated in this study.
The JSBACH pools high turnover biomass together, and so
a similar approach was employed to separate Mfol and
Mfroot from Mactive, using data from the Luyssaert data-
base. The fitted regression using the Luyssaert database was
log(Mfroot) = −0.3552 + 1.04 * log(Mactive). This relation
was nearly identical to (and not significantly different from)
Mfroot = 0.5 * Mactive (Figure S2 in Text S1), which we
adopted in this study for ease of interpretation.

2.1. Land Surface Models

[15] The LSMs considered in this study include IBIS
[Foley et al., 1996], Triffid [Cox, 2001], CASA [Potter
et al., 1993], Orchidee [Krinner et al., 2005], and JSBACH
[Knorr, 2000; Raddatz et al., 2007], which constitute all of
the models used in the coupled climate‐carbon cycle model
intercomparison project (C4MIP) [Friedlingstein et al.,
2006], as well as less widely used LSMs, Orchidee‐FM
[Bellassen et al., 2010], ED [Moorcroft et al., 2001], and
MEL [Rastetter and Shaver, 1992]. The LSMs are described
in detail in Text S2, but the salient features of each model
representing the types of biomass pools simulated and the
rules for biomass allocation are summarized in Table 2. In
particular, the characteristic lifetimes of the foliage, wood
and roots are listed, along a gradient from fairly high tissue
turnover rates (ED) to fairly slow tissue turnover rates
(JSBACH and Triffid).
[16] The LSM simulation results come from a variety

of sources. The model results for CASA, IBIS, Triffid,
Orchidee and JSBACH come from a single year in distrib-
uted global simulations, run to equilibrium with current
CO2, in which biomass from every forested pixel has been
used to calculate scaling parameters. ED model results come
from the final time period of a distributed regional run
reported by Moorcroft et al. [2001]. These results can be
seen as cross‐sectional data, similar to the forest inventory
databases themselves. Each model has a variety of biome
types representing broadleaves and conifers from different
biomes; all gymnosperm and angiosperm biomes in the
LSMs were aggregated for this study for the estimation of

Table 2. Land Surface Models Used in This Studya

Model Allocation Scheme tfol twood tfroot N Mcwd Citation

MEL fixed allometric 1–4 15–40 2 √ Rastetter and Shaver [1992]
ED fixed allometric 0.5–3ss 15–75ss 0.5–3ss √ √ Moorcroft et al. [2001]
Orchidee‐FM water, light, nitrogen, age 0.5a–2.5g 40* 0.5a–2.5g √ √ Bellassen et al. [2010]
Orchidee‐STD water, light, nitrogen 0.5a–2.5g 40 0.5a–2.5g Krinner et al. [2005]
IBIS fixed proportion 1a–2g 50 3 √ Foley et al. [1996]
CASA fixed proportion 1a–3.8g 50a–75g 1a–3.8g √ Potter et al. [1993]
JSBACH fixed proportion 1 100 1 Raddatz et al. [2007]
Triffid fixed allometric 4** 100 4 Cox [2001]

aN and Mcwd columns indicate whether these models include representations for the tree population density and the coarse woody debris biomass pool,
respectively. tfol, twood and tfroot represent the characteristic lifetimes of foliage, wood, and fine roots, respectively. Studies are ordered from fastest
turnover to slowest turnover: ss, varying with successional status; a, angiosperm; g, gymnosperm; *, maximum value with additional losses imposed
by stand thinning; **, maximum value, with additional losses imposed by climate.

1Auxiliary materials are available with the HTML. doi:10.1029/
2010GB003917.
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population density and for comparison to forest inventory
data. The exception to this scheme is CASA, which does not
have a separate parameterization for gymnosperm and
angiosperms; the calculation of trees per area comes from
scaling parameters for grouped angiosperm and gymno-
sperm data. Biomass scaling parameters derived from MEL
come from a single run parameterized for the H.J. Andrews
experimental forest in Oregon, dominated by the Douglas
Fir (Pseudotsuga menziesii), and therefore population den-
sity was calculated using the equation for gymnosperms and
compared to gymnosperm inventory data.

2.2. Databases

[17] The biomass distribution in the different LSMs was
evaluated against several databases of forest biomass,
including the Cannell world forest biomass and production
database [Cannell, 1982], which is a benchmark database
used in several high‐profile papers developing allometric
scaling theory [Enquist and Niklas, 2001, 2002; Enquist
et al., 1998; Niklas and Enquist, 2001, 2002], supplemented
by a more extensive Russian forest inventory database
translated by the authors [Usoltsev, 2001] and a smaller, but
more contemporary and methodologically vetted database
compiled from Fluxnet sites [Luyssaert et al., 2007]. All
databases include data on tree population density, leaf, stem,
and root biomass collected from a large number of diverse
published sources.
[18] The Cannell database [Cannell, 1982] (hereafter “the

Cannell database”) reports the number of trees per area,
average plant height, and plant biomass per area separated
when possible into leaves, branches, bark, stem, reproduc-
tive structures, and roots. Mass of each pool per individual
was computed by dividing mass per area by trees per area to
yield mass per individual. All results henceforth will refer to
mass (kg dry matter) per individual unless otherwise noted.
[19] The Usoltsev database [Usoltsev, 2001] (hereafter

“the Usoltsev database”) is a previously unpublished (in
English) database of destructive forest harvests from boreal
Eurasia. Approximately half of the studies cited in the
Usoltsev database have been used in IIASA studies of
Eurasian biomass [Lapenis et al., 2005; Shvidenko and
Nilsson, 2002, 2003; Shvidenko et al., 2007], but Usoltsev
database includes both more studies, and additional statistics
from each study. The Usoltsev database includes 3874
records of destructively harvested forest plots spanning
boreal Eurasia, approximately evenly split between four
genera of gymnosperms (n = 1764) and 7 genera of
angiosperms (n = 2110). By far the genus most represented
is Pinus, which is largely composed of Pinus sylvestris L.

from western Russia and Scandinavia. Each record in the
database cites an author and publication year, the location of
the plot (to county level, and generally with coarse coordi-
nates), and general attributes such as the dominant species,
the yield potential class [Shvidenko et al., 2007], and the
species composition. For each plot, the age, the tree density,
diameter, height, volume of trunk, and mass of trunk, bark,
branches, foliage, roots, and understory are reported. Not all
records include all data, particularly bark, roots and under-
story biomass. The areal mass reported in the Usoltsev
database was converted to an individual basis by dividing by
the population density, as was done by Enquist and Niklas
[2002] for analyzing allometry within the Cannell data-
base. This database is used to broaden coverage of boreal
forests, which are relatively underrepresented in the Cannell
database, and provide an independent check on biomass
allometry between Mfol, Mstem and Mroot. Additionally,
the Usoltsev database has a large number of Mcwd mea-
surements that are used to test the allometry of Mcwd:M.
[20] The Luyssaert database [Luyssaert et al., 2007]

(hereafter “the Luyssaert database”) is collected from a
comparatively small number of sites (n = 111 total, n = 41
angiospermae, n = 65 gymnospermae, n = 5 mixed) but that
have been more intensively studied as part of the Fluxnet
program. This data set was previously used to examine net
ecosystem exchange in old growth forests [Luyssaert et al.,
2008], but has not otherwise been used to test allometric
relationships. Like the Cannell and Usoltsev databases, the
Luyssaert database includes stand age, diameter, height,
density, and basal area, and separate biomass measurements
for foliage, branch, stem, coarse and fine root pools. In
general, the Luyssaert database is more comprehensive for
NPP measurements than for biomass measurements, with
the exception of its treatment of fine root biomass. Therefore
this database is used mainly to estimate scaling exponents
for separating Mwood into Mstem and Mcroot and in one
case for separating “active biomass” into Mfol and Mfroot
components. The Luyssaert database was also used to test
the allometry of Mfroot:M.
[21] Although the goal of this study was to compare the

biomass allometry implicit in land surface models with the
allometry estimated empirically using the forest inventories
above, the self‐thinning relationship (equation (1)) from the
Cannell database was used in some cases to estimate the
population density of forests from stand‐level biomass for
both angiosperm and gymnosperm taxa. Because these two
equations were imposed on all of the Earth’s angiosperm
and gymnosperm biomes, as conceptualized in the land
surface models considered here, care was taken to ensure
that the data was relevant to diverse, natural forest stands, a
major portion of which are located in the tropics, which are
generally undermeasured relative to temperate regions. The
Cannell database does have the greatest representation from
temperate sites, but nearly 20 percent of all sites (198 of
1047) are from tropical regions. And while one might expect
most sites to be monospecific, managed sites, nearly 2/3 of
the sites (670) have more that 1 species (Table 3). Signifi-
cant differences in the parameter values between different
subsets of the data (tropical versus temperate and boreal;
monoculture versus polyculture) were examined and are be
presented in the results.

Table 3. Distribution of Plots in Cannell Forest Database Among
Various Taxa, Climate Zone, and Species Diversity

Boreal Temperate Tropical Total

Angiosperm 14 346 160 521
Gymnosperm 25 463 38 526

Monoculture 17 249 110 377
Polyculture 22 560 88 670
Total 39 809 198 1047
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[22] The main theoretical work on allometry referenced in
this paper is Enquist and Niklas [2002], in which Mfol /
Mstem3/4, Mfol / Mroot3/4, and Mstem / Mroot1. It is not
the goal of this paper to argue that these scaling exponents
are necessarily correct, but rather that they offer guidance in
the types of relationships one would expect, and clarify the
relationships observed in the empirical data.
[23] As a diagnostic to interpret discrepancies between

modeled and observed allometries, aboveground coarse
woody debris (CWD) is treated in this paper as a biomass
pool that obeys allometric scaling. In other words, we posit
that the mass of CWD divided by N (Mcwd) scales with
aboveground woody biomass (Mstem) with some scaling
exponent, as an outcome of self‐thinning of stands and self‐
pruning of individual trees. Although this is an atypical
consideration of CWD [cf. Harmon et al., 2000, 1986], the
collection of CWD data in forest inventories [Krankina

et al., 2002; Waddell, 2002] make it amenable to scaling
analysis and comparison with model simulations.

3. Results

[24] This study exploited the “self‐thinning” relation that
scales M to N. The global Cannell database was used to fit
the parameters relating M to N, and the results checked
against the Usoltsev data, because the boreal biomes were
relatively underrepresented in the Cannell database (Table 3).
Figure 2a shows the M:N regression fitted to the Cannell
database, and Figure 2b shows the resulting inverse rela-
tionship relating N from Mtot, again superimposed to the
Cannell forest plots. Figure 2c shows the Cannell M:N
regression superimposed on the Usoltsev boreal plots, and
similarly, Figure 2d shows the inverse relation predicting N
from Mtot fitted to the Cannell plots superimposed on the

Figure 2. Estimations of M:N allometry (a) fitted to the Cannell data and (b) used to estimate N from
Mtot. This same relationship is (c) superimposed on the Usoltsev M:N data, as well as (d) evaluated
against the fitting of N from Mtot in Usoltsev.
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Usoltsev plots. Interestingly, the line predicting N from
Mtot (Figures 2b and 2d) lies intermediate between the Type I
(least squares) and Type II (reduced major axis) regression
fits if they were directly applied to regress N on Mtot.
However, it is important to note that M:N scaling parameters
estimated from regressions fit to N:Mtot were wholly
inconsistent with the range of parameters presented else-
where for the self‐thinning relationship. Therefore, while the
amount of variation in N explained by Mtot may appear to
be low for both the Cannell and Usoltsev databases, this
relationship captured both the theoretical understanding of
M:N scaling in forests and had coefficient values that are
intermediate relative to direct regression of N on Mtot.
[25] The M‐N scaling relationship adopted from the

Cannell database and imposed on IBIS, Triffid, CASA,
JSBACH and MEL was log(M) = 6.22 − 1.320 * log(N) for
angiosperms and log(M) = 6.619 * −1.453 * log(N) for
gymnosperms (Table 4). Within each taxonomic class
(angiosperms and gymnosperms), the M:N regression was
calculated separately for sites in temperate and boreal versus
tropical zones, and plots composed of monoculture versus
polyculture (Table 4). While the different regressions did
have different coefficients (Figure S3 in Text S1), the
treatments with the largest departures, such as tropical
gymnosperms, had relatively lower sample size, and did not
have allometric scaling coefficients that were significantly
different than those derived from all plots within each taxon.
[26] The self‐thinning exponents relating M to N for

Orchidee‐STD, Orchidee‐FM and ED are presented in
Table 5 and shown in Figure S4 in Text S1. CASA, IBIS,
Triffid, JSBACH and MEL all are represented by the same
equation, which is identical to the M‐N regression from the
Cannell database used to estimate the number of individuals
per area in these models. Both Orchidee models reasonably
approximated the observed self‐thinning in the Cannell and
Usoltsev databases, but ED had a self‐thinning line that is
considerably steeper than the observed M‐N line (Figure S4a
in Text S1). It should be noted that N and Mtot for ED
were calculated as integrals over all size cohorts in a patch,
analogous to the empirical forest inventory data. Although
the modeled patches largely fall near the regression for the
Cannell and Usoltsev data, the patches are high‐N low‐M
patches that are largely outside the plots observed in the
databases, despite the majority of the cohorts being >50 years
old.
[27] The allometry between Mfol:Mstem, Mfol:Mroot and

Mstem:Mroot is likewise presented in Table 5. Few models
are within the 95% confidence intervals for the slope term of

Mfol:Mstem allometry. The main bias evident in the models
was an Mfol:Mstem relationship that is too steep, with an
intercept that is too low, meaning an inability to reproduce
biomass distributions in younger stands (Figure 3). The
worst performing models in this regard were CASA and
IBIS, which only passed through the data at fairly high
levels of Mstem. The best models, Orchidee‐FM and ED
had Mfol:Mstem exponents that were not significantly dif-
ferent from observed and perform well across the range of
Mstem, although Orchidee‐FM was systematically low for
both angiosperms and gymnosperms. This underprediction
is particularly true for gymnosperms, in which nearly all
of the models save Orchidee‐STD passed below the lower
envelope of gymnosperm data. By contrast, Orchidee‐STD
showed exceptionally high Mfol for conifers.
[28] In general, the models performed better for both

Mfol:Mroot and Mstem:Mroot (Figure 3), although because
Mfroot is a relatively small component of Mroot, the tight
convergence in models in Mstem:Mroot is partly an out-
come of imposing the allometry from the Luyssaert database
which sets the ratio between Mstem:Mcroot (Figure S1 in
Text S1). MEL was the only outlier in the Mstem:Mroot
allometry, largely because it had the largest Mfroot com-
ponent (Figure 4). All the models diverged greatly from
each other and from the data in Mfroot:M (Figure 4), and it
is interesting to note the strong differences between allo-
cation to Mfroot in both angiosperms and gymnosperms. ED
and MEL and CASA best approximated the Luyssaert
database, but both IBIS and TRIFFID had 1–2 orders of
magnitude too small of Mfroot than observed.
[29] The allometry of Mcwd:Mstem likewise showed

large dispersion among models, and large differences
between the models and data (Figure 4). The allometry of
Mcwd:Mstem was isometric (b ∼ 1). Orchidee‐FM and
CASA most closely approximated the upper envelope of
Mcwd, MEL and ED approximated the lower envelope of
Mcwd, but IBIS has approx 1 order of magnitude too
much Mcwd and Orchidee‐STD has 2 orders of magnitude
too little Mcwd. Note that neither Triffid nor JSBACH had a
pool representing litter or coarse woody debris.
[30] Errors in self‐thinning and biomass allocation partly

compensate for one another in some LSMs to yield
approximately correct distributions of biomass in leaf, stem,
and root over a range of stand biomass for several models
(Figure 5). In particular, Orchidee‐STD, Orchidee‐FM and
ED all represent the growth trajectory of biomass distribu-
tions stands fairly well, particularly the sharp decline in the
proportion of foliage biomass and the slow decline in root:

Table 4. Mass‐Density Scaling in the Cannell Database for Different Subsets, Using the Power Law Relationship log10(M) =
a + b * log10(N), Where M is Individual Biomass (kg DM) and N is Stand Density (ha−1)a

Angiosperms Gymnosperms

All

Climate Zone Diversity Climate Zone Diversity

All Temp Trop Mono Poly All Temp Trop Mono Poly

Y, X, n 521 360 161 432 94 526 488 38 238 283 1047
M, N, a 6.22 6.50 5.47 6.03 6.24 6.62 6.30 7.52 6.33 7.09 6.39
M, N, b −1.32 −1.41 −1.09 −1.32 −1.28 −1.45 −1.35 −1.72 −1.36 −1.60 −1.38
M, N, 2s 0.09 0.06 0.34 0.13 0.13 0.07 0.13 0.35 0.12 0.32

aTemp refers to temperate and boreal zones, and trop refers to tropical zones. Mono refers to monoculture plots with only one reported species, and poly
refers to plots with more than one species. n is sample size.
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Figure 3. Component biomass allometry derived from land surface models superimposed on plots from
the Cannell database. (top) Mfol:Mstem. Middle Panels: Mfol:Mroot. (bottom) Mstem:Mroot. (left)
Angiosperms. (right) Gymnosperms.
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shoot ratio. LSMs that were provided with the self‐thinning
relation from the Cannell database are at odds with the
empirical data, particularly being too “stemmy” in younger
stands. The greatest contrasts among models and between
models and data are in the younger (low biomass) stands; all
models and data converge on approximately the same result
in the oldest (high biomass) stands.

4. Discussion

[31] This paper is intended to diagnose shortcomings in
model representation of biomass, using a new allometric
approach. Particularly relevant to a world where human and
nonhuman disturbance is fundamentally altering the age
structure of forests, it is important to check whether the
distribution of biomass in fast (foliage and fine root) and
slow (stem, coarse root, CWD) pools is represented equally
well by models in all stages of forest succession. It may be
less obvious that this paper is also intended to enhance the

possibility for informing models with global data. That is, if
we were to provide LSMs with better information on dis-
turbance, forest structure, or even biomass directly, could
the models accommodate this information and put it to
sound use?
[32] As we have alluded to earlier, examining the allom-

etry implicit in land surface models is difficult to approach
directly, because most models have skipped lightly over the
process of scaling up from individual trees (the object of
analysis in allometry) to whole stands. To be sure some
models, particularly ED and Orchidee‐FM, have directly
addressed the scaling of individuals to stands and each
parameterizes the competition among plants for horizontal
space that results in the loss of individual trees as each
grows larger over the course of stand development. The
remaining models have essentially ignored this issue, and
treated woody biomass as a large aggregated pool, which we
term the “big wood” approximation, by analogy to the “big
leaf” models that scale up leaf‐level photosynthesis to the

Figure 4. Component biomass allometry derived from land surface models superimposed on plots from
the Cannell database. (top) Mfroot:M. (bottom) Mcwd:Mstem. (left) Angiosperms. (right) Gymnosperms.
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canopy by explicitly treating interactions between leaves
[Ehleringer and Field, 1993]. The big wood approximation
in essence considers forest biomass as obeying first‐order
chemical kinetics dM/dt = −kM + NPP, where all factors
that contribute to forest biomass loss, such as growth res-
piration, maintenance respiration, branch mortality and
whole‐tree mortality, are embodied in a single rate param-
eter k. Big wood models were an important step in the
creation of global‐scale carbon cycle simulations, both
because their simplified set of equations eased the burden of
computation [Running and Coughlan, 1988], and because
these area‐based models were readily linked to global
gridded canopy reflectance measured by satellites [Running
and Nemani, 1988; Sellers et al., 1997], which is informa-
tive of the photosynthetic activity of ecosystems [Sellers
et al., 1992].

[33] Although there are clear benefits to modeling bio-
mass using the big wood approximation, above all sim-
plicity and speed, there are consequences that are worth
considering, particularly in light of the large disagreement of
the size of the future carbon sink among different LSMs.
The behavior of the LSMs allometrically is by and large
inconsistent with the data. First, it should be pointed out that
only Orchidee has information on plant population density
and distinguishes between aboveground and belowground
biomass for direct comparison to empirical data. CASA did
distinguish between aboveground and belowground bio-
mass, but had no concept of plant density, and ED had a
concept of plant density but no distinction between above-
ground and belowground biomass. All other models
required a post hoc recalculation of data to compare with
forest inventory, which serves to emphasize that these are

Figure 5. Fraction of leaf (red) stem (green) and root (blue) biomass per area for stands of varying areal
biomass (kg DM/ha).
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not models readily amenable to validation against conven-
tional observed biomass data.
[34] Given that the population density in the models could

be calculated either using the internal model representation
for plant density or with the allometry imposed from
empirically measured scaling constants, the models largely
performed poorly with respect to the scaling of different
organs. Of the different plant organ allometries, only
Orchidee‐FM (for angiosperms only) has the correct
allometry between Mfol:Mstem. Surprisingly, no model had
a reasonably high amount of foliage in conifers except
Orchidee‐FM, which had nearly an order of magnitude too
much Mfol for a given Mstem. Most models had a reason-
able Mstem:Mroot allometry, but this is largely attributable
to the Mstem:Mcroot scaling imposed from the data.
[35] The Mfol:Mstem allometry calculated from the

models generally follows the gradient of characteristic tissue
lifetimes (Table 2). The models with the greatest foliage for
a given stem biomass also had the fastest stem biomass
turnover rates, led by ED, whose ratio of wood lifetime to
leaf lifetimes is fairly low (25–30). JSBACH, which has the
largest ratio of lifetimes (100), also has the allometry that
most favors Mstem over Mfol. Orchidee‐STD, which has
the greatest bias toward Mfol among gymnosperms, also has
the shortest ratio of lifetimes (16). Another feature evident
from the Mfol:Mstem allometry is that the models that
include some treatment of stand thinning (ED, Orchidee)
have generally flatter Mfol:Mstem allometries than the
remaining models, suggesting that the inclusion of a
mechanism for increasing Mstem loss as the stand biomass
increases is central to reproducing the slope of this allom-
etry. Among the remaining models, the ordering from left to
right of Triffid‐CASA‐IBIS‐JSBACH in their Mfol:Mstem
allometries for angiosperms follows the ordering of the
ratios of their stem:leaf tissue lifetimes of 25–50–80–100.
[36] The worst model performance is for Mfroot and

Mcwd scaling, in which most models had errors of 1 order
of magnitude and larger in the intercept term. Fine roots are
a small component of biomass but their turnover is a major
fraction of CO2 efflux from ecosystems [Jackson et al.,
1997], and this analysis suggests that this pool may be
greatly underestimated by the models, particularly IBIS and
Triffid, which suggests excessively large turnover rate.
Similarly, CWD has important implications on the carbon
balance of ecosystems because of its large mean residence
time [Harmon et al., 1990; Ramankutty et al., 2007], but this
analysis showed that all models have either an order of
magnitude or more excess Mcwd (IBIS, Orchidee‐FM,
CASA) or an order of magnitude or more too little Mcwd
(MEL, Orchidee‐STD). Neither Triffid nor JSBACH have a
representation of Mcwd, and it is reasonable to interpret the
extremely small Mcwd simulated by Orchidee‐STD as a
misrepresentation of structural litter (dead straw or leaves)
as CWD. Because Mcwd, as a slow turnover pool, provides
inertia to the carbon balance of ecosystems, it is logical to
attribute the high feedback of Triffid in the C4MIP com-
parison [Friedlingstein et al., 2006] to a structural failure in
the model, namely an essential reservoir for carbon that is
completely absent and which would dampen model feed-
back to climate perturbation.
[37] The combination of too little Mfroot, too much

Mstem and Mcwd suggest that the rate of respiration in

LSMs is underestimated. It would be impossible from the
data presented to determine whether the problem lies with
parameters governing allocation (the flux of C into these
pools) or turnover (the flux of C out of these pools), but the
overall picture is one in which the velocity of C through the
ecosystem is too slow. It is interesting that the Orchidee‐FM
model showed substantial improvements over Orchidee‐
STD in both Mstem and Mcwd, possibly attributable to
explicit treatment of branch biomass and mortality in
Orchidee‐FM. This suggests that the bulk parameterization
of stem wood in Orchidee‐STD as inclusive of branches led
to an overestimation in the residence time of carbon in
woody pools by neglecting fine wood with higher rates of
turnover caused by self‐pruning. To the extent that Mfroot
and Mfol are strongly correlated with Mstem (on a per
individual basis), and these pools are important paths of C
into the atmosphere due to high turnover, observations of
Mstem can give improve constraints on the magnitude of
these fluxes by constraining the size of these pools.
[38] Generally, the accumulation of biomass over the

course of stand development in LSMs does not closely
resemble the empirical data. To illustrate this, the compo-
nent allometries of foliage (Mfol:M), stem (Mstem:M), and
root (Mroot:M) per individual were integrated to an areal
basis using their individual M:N allometry to illustrate the
practical implications for errors in allometry implicit in
LSMs (Table S1). The self‐thinning allometries in the models
that have a representation of individuals (Orchidee‐STD,
Orchidee‐FM and ED) create stands that are at odds with the
empirical allometry relating individual biomass against
stand biomass (Figure S5 in Text S1). Although the esti-
mated scaling exponents of these models were approxi-
mately correct, the departure of the scaling lines from the
data was greatest for young stands (high number/low bio-
mass). The steepness of the self‐thinning curves in these
models implied that for a given total biomass, the stand is
composed of more, and smaller individual trees than is
observed in nature. The median values of stand biomass are
154 and 178 t DM/ha for the Cannell and Usoltsev data-
bases, respectively, with stands of 500 t/ha falling above the
90th and 95th percentile of all stands in the Cannell and
Usoltsev databases, respectively. The median tree biomass
for these databases is 80 and 115 kg/tree in the Cannell and
Usoltsev databases, respectively. At these values of stand
biomass, the LSMs produce individuals that are approxi-
mately 100th the size found in the databases.
[39] Allometric theory [Enquist and Niklas, 2002] sug-

gests that the biomass distribution in different pools has a
strong dependence on organism size, such that the discrep-
ancy in organism size between the models and data leads to
major differences in the biomass pools for organisms of a
different sizes (Figure S6 in Text S1). The Mstem:Mroot
distribution in the models is fairly consistent with the data
(a notable exception is IBIS), but the fraction of biomass
in foliage is in general less than observed, particularly for
gymnosperms. Most models do not simulate the nitrogen
cycle, and some like Orchidee, substitute a nitrogen limi-
tation to foliage growth with an imposed limit to leaf area
index, which could explain this pattern. CASA, by contrast,
has much too much leaf biomass compared to the data
(Figure S6 in Text S1). Because the turnover times of
foliage [Williams et al., 1989; Wright and Westoby, 2002],
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fine roots [Jackson et al., 1997; Matamala et al., 2003],
wood [Makinen, 1999], and coarse woody debris [Delaney
et al., 1998; Harmon et al., 2000] are orders of magnitude
different from one another, and have different construction
and maintenance costs [Amthor, 2000; Merino et al., 1984;
Penning de Vries et al., 1974], the total ecosystem respira-
tory losses due to leaf growth and senescence, wood mor-
tality and fine root turnover are closely linked to the
distribution of biomass in these different pools.
[40] Given the choice, would we want models to perform

better during early growth or at the mature equilibrium?
Models are generally spun up to reach equilibrium biomass
in order to match the estimated global biomass of 600 Gt C
[Olson et al., 1983]. However, evidence from a number of
biomes worldwide suggests that forests in many regions are
far from equilibrium, and in many cases different forces now
lead to forests becoming demographically younger due to
harvest [Houghton, 2005], increased fire frequency [Soja
et al., 2006], climate or herbivore enhanced mortality [Ayres
and Lombardero, 2000; van Mantgem et al., 2009] and
woody encroachment [Asner et al., 2003; Mast et al., 1997],
so estimating the current and future carbon cycle arguably
requires greater fidelity during early growth. The analysis
above suggests that none of the LSMs can accommodate
satellite or forest inventory information about forest struc-
ture (i.e., tree number or crown size), stand age, or total
stand biomass because of structural errors in the models
themselves that create logical inconsistencies between these
forest stand attributes at variance with that observed in
nature.
[41] To understand the implications of these dis-

crepancies, consider the goal of enhancing the ability of
linking LSMs to global satellite data. A previous study
found that optical remote sensing data, particularly the
underused off‐nadir and multiangle observations, are
strongly affected by the size, shape and spatial arrangement
of trees in the scene [Wolf et al., 2010], which is an
extension of the traditional use of optical remote sensing for
estimation of leaf area index using nadir‐observed NDVI.
The implications for this finding are that global land surface
models can be informed by the sizes of trees, as well as the
large number of attributes associated with size, particularly
biomass. The potential to properly initialize land surface
models with appropriate biomass has important con-
sequences for accurately predicting the strength of the car-
bon source or sink for land ecosystems [Friend et al., 2007;
Williams et al., 2009]. There is, however, a major obstacle
preventing the direct link between land surface models and
satellite reflectance, because with few exceptions land sur-
face models do not simulate any state variables related to the
size or number of individual trees.
[42] The present study does not take up the issue of

linking land surface models to satellite reflectance by esti-
mating the number and size of individual trees. Instead, it
considers the issue: if individual level biomass were pro-
vided to a land surface model, are there structural biases that
would inhibit the appropriate use of such data? It is useful in
this context to consider the data assimilation equation for the
Kalman Filter:

X̂ kjk ¼ X̂ kjk�1 þ PH HPHT þ R½ ��1� Yk � f X̂ kjk�1

� �� � ð5Þ

where X̂k∣k refers to the estimated state of the system (for
instance forest biomass) at time k, subject to all information
available by time k. The estimate of X is based on a
weighted average of the previous estimate of X at time k − 1
(Xk∣k−1), plus some new data Yk, which has been remapped
in terms of X, using the Hessian matrix of partial derivatives
H, where Hi, j = dYi/dXj. The final term is called the
observation error, and represents the discrepancy between
the observation Y and the modeled prediction of what
should be observed based on the prior estimate of the state,
f(X). The weighting of the prior state estimate and the new
data are cast in terms of the inverse of their uncertainty,
where P and R are the variance covariance matrices of the
state vector and the data, respectively. The Kalman filter is a
particular form of this weighted average, in which the new
state estimate is framed as a linear combination of the old
state estimate and an observation error, multiplied by the
“Kalman gain,” PH(HPHT + R)−1.
[43] We would like to draw attention to the fact that the

new information is assimilated via a matrix of partial deri-
vatives H, which is acting on small errors on the prior state
estimate (Y − f(X)), which implies that the important
benchmark for model accuracy is not only whether the cor-
respondence between a model and reality is approximately
right in magnitude, but that in fact its functional form of the
model trajectory is also correct. To make this more concrete,
consider the following scenario: say we model biomass M
for some plot of land, and estimate it as 210 Mg/ha. Later
we come to learn that a separate survey estimates the bio-
mass M as 231 Mg/ha. It appears we have to correct our
prior estimate of biomass, but how? Logically we would
reduce the biomass in all individual pools (Mfol, Mstem,
Mcroot, Mfroot) that comprise the total biomass, and we
would use some vector of partial derivatives of each state
variable to each observation to allocate M among the dif-
ferent pools, which in this case yields H = [dMfol/dM,
dMstem/dM, dMcroot/dM, dMfroot/dM]. Across some small
perturbation of biomass, the H matrix can be thought of as
linear, but for larger observation errors, we know from
analyses of allometric scaling [Enquist and Niklas, 2002]
that the relationships between the different components of
biomass are nonlinear, and vary greatly over the span from
young forests with many small trees to large forests with few
large trees. It follows from this that the important benchmark
of model accuracy for assimilating biomass is the allometric
relations embodied within the land surface models.

5. Conclusion

[44] The stand biomass simulated by a number of land
surface models (LSMs) that are widely used in carbon cycle
research was examined to determine whether the inter-
relationships between component parts, particularly between
foliage, woody stem, coarse and fine roots, were consistent
with observations in several forest biomass databases and
with theoretical predictions. The interrelationships between
biomass of different plant parts are collectively known as
allometry. The allometric approach to diagnosing whether
models realistically simulate biomass distributions was
particularly powerful in identifying strong departures from
empirically measured stands, and whether the errors
occurred equally in stands with low biomass and high bio-
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mass. For the most part, models have a disproportionate
amount of stem, with the largest discrepancy for young
stands (low biomass, high population), which are much
more widespread globally than old growth stands. The slope
of the Mfol:Mstem allometry was different between stands
that represented self‐thinning (flatter slopes, consistent with
data) and those that did not (steeper slopes, not consistent
with data). The intercept of the Mfol:Mstem allometry was
linked to the relative turnover time of the tissues, with those
models having a smaller ratio of wood:leaf turnover having
a higher intercept (consistent with the data). The best
performing models generally had the shortest wood turnover
time. All models perform particularly badly when compared
to coarse woody debris data, with some models dramatically
overestimating CWD and some models underestimating
CWD. Those that underestimated CWD did not conceptu-
ally define this pool as woody debris, but as fine litter. The
discrepancy between the pool distribution between models
and data suggests estimates of NEE may have biases when
integrated over the long term, as compared to observed
biomass data, and could therefore compromise long‐term
predictions of land carbon sources and sinks. The pattern of
excess stem and CWD and too little fine roots and foliage
suggests that the flux of carbon through most ecosystem
models is too low, leading to underestimations in respiration
associated with mortality and turnover. We think that this
presents a practical obstacle for improving models by
informing them better with data. The approach taken in this
paper, examining biomass pools allometrically, offers a
simple approach to improving the characteristic behaviors of
global models with the relatively sparse data that is available
globally by forest inventory.
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