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S U M M A R Y
The development of dense networks of broad-band seismographs makes teleseismic data
amenable to full-waveform inversion (FWI) methods for high-resolution lithospheric imaging.
Compared to scattered-field migration, FWI seeks to involve the full seismic wavefield in
the inversion. We present a parametric analysis of 2-D frequency-domain FWI in the frame-
work of lithospheric imaging from teleseismic data to identify the main factors that impact
on the quality of the reconstructed compressional (P)-wave and shear (S)-wave speed mod-
els. Compared to controlled-source seismology, the main adaptation of FWI to teleseismic
configuration consists of the implementation with a scattered-filed formulation of plane-wave
sources that impinge on the base of the lithospheric target located below the receiver network
at an arbitrary incidence angle. Seismic modelling is performed with a hp-adaptive discontin-
uous Galerkin method on unstructured triangular mesh. A quasi-Newton inversion algorithm
provides an approximate accounting for the Hessian operator, which contributes to reduce the
footprint of the coarse acquisition geometry in the imaging. A versatile algorithm to compute
the gradient of the misfit function with the adjoint-state method allows for abstraction between
the forward-problem operators and the meshes that are during seismic modelling and inver-
sion, respectively. An approximate correction for obliquity is derived for future application
to real teleseismic data under the two-dimension approximation. Comparisons between the
characteristic scales involved in exploration geophysics and in teleseismic seismology suggest
that the resolution gain provided by full waveform technologies should be of the same order of
magnitude for both applications. We first show the importance of the surface-reflected wave-
field to dramatically improve the resolving power of FWI by combining tomography-like and
migration-like imaging through the incorporation of the forward-scattered and the backscat-
tered wavefields in the inversion. The resolution of FWI is assessed through checkerboard
tests and confirms a resolution of the order of the wavelength for both the P and S speeds,
when the full wavefield is incorporated in the inversion. Secondly, we show that computa-
tionally efficient strategies, which consist of decimating the number of frequency components
involved in the inversion, do not apply to teleseismic acquisitions, because the scattering-angle
bandwidth sampled by plane-wave sources can be narrow and coarsely sampled, compared
to that provided by dense profiles of point sources in exploration seismology. The waveform
inversion is less sensitive to the band of incidence angles spanned by the plane-wave sources
and to the sampling of this band. However, the deficit of vertically propagating plane waves
hampers the vertical resolution of planar layers. Aliasing artefacts created by coarse arrays
of receivers are illustrated. We show how taking into account the Hessian in the inversion
and the suitable management of frequencies in the inversion help to mitigate these artefacts.
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Acceptable reconstructions are shown for both the P- and S-wave speeds for a receiver spacing
of up to 20 km in the 0.1–0.4 Hz frequency range. Building a reliable initial model for FWI is a
highly non-linear problem in exploration seismology. We show how the low-frequency content
of the teleseismic sources allow us to build accurate P- and S-wave speed models starting
from simple vertical-gradient velocity models. All of these results are derived using a 2-D
realistic synthetic experiment that was performed with noise-free data. Most of conclusions of
this parametric study should apply in three dimensions. The impact of noise and the footprint
of other experimental parameters such as the estimation of the temporal plane-wave signature
and the estimation of the incidence angle of the impinging plane waves, need however to be
assessed in the future.

Key words: Inverse theory; Body waves; Seismic tomography; Computational seismology;
Wave scattering and diffraction; Wave propagation.

1 I N T RO D U C T I O N

With the massive deployment of dense multicomponent broad-band
seismological networks in North America, Australia, Japan and
Europe, and with the increase in the computational power pro-
vided by high-performance computing, there is growing interest in
the development of multichannel high-resolution tomographic ap-
proaches in earthquake seismology at the regional, continental and
global scales. The most popular imaging approaches in earthquake
seismology rely on receiver function analysis (Langston 1979;
Ammon et al. 1990; Ammon 1991) and ray-theoretical traveltime
tomography (Dziewonski 1984; Nolet 1987; Fukao et al. 2001). The
receiver function method attempts to localize discontinuities in the
lithosphere beneath the receiver arrays from P–S-mode conversions.
These approaches share some similarities with migration methods in
exploration seismology, in the sense that they provide a geometrical
picture of the structural discontinuities but do not provide quantita-
tive inferences of the physical properties of the subsurface. In con-
trast, ray-theoretical traveltime tomography provides low-resolution
perturbation models around a starting model. When the sensitivity
kernels of the tomography are rays, judicious ad hoc smoothing reg-
ularization and/or adaptive model parametrization should be found
to image the subsurface with a spatial resolution that is as consis-
tent as possible with the theoretical sensitivity of the traveltimes.
Moreover, the regularization or the parametrization should ideally
be locally adapted to the uneven ray coverage of the subsurface
(Wang 1993). These difficulties prompted Dahlen et al. (2000) to
develop finite-frequency traveltime tomography to more rigorously
account for the sensitivity of the traveltimes to the Fresnel volume
centred on the ray. Finite-frequency delay times are extracted by
cross-correlation of recorded and modelled waveforms of selected
phases, and these delay times are linearly related to the model per-
turbations through the single-scattering Born approximation. In the
earlier developments of finite-frequency tomography, computation-
ally efficient approaches were implemented by computing absolute
and differential traveltimes by dynamic ray tracing using the parax-
ial approximation (Dahlen et al. 2000). With the advances in high-
performance computing, Chen et al. (2007a) and Tromp et al. (2005)
proposed to compute the full seismic wavefields with numerical ap-
proaches, such as finite difference or finite element methods, to
build the kernel of the tomography. Although the inversion remains
limited to phases of selected energetic wave packets, the modelling
of the full seismic wavefield allows the non-linear relationship be-
tween the data and the subsurface parameters to be accounted for,
hence making the tomography amenable to non-linear iterative in-
version where the subsurface model is updated at each iteration.

This frequency-band tomographic approach based on full wavefield
modelling with a robust extraction of frequency-dependent phases
as data to be fitted can be implemented with the scattering-integral
or adjoint-state methods (Tromp et al. 2005; Chen et al. 2007a).
The main difference between these two approaches relies on the
explicit building of the sensitivity or Fréchet derivative matrix in
the scattering-integral approach, while the adjoint-state method di-
rectly builds the gradient of the misfit function through reverse-
time propagation of the residual wavefields. Applications of both
the scattering-integral and adjoint-state methods were presented at
the regional scale by Chen et al. (2007b) and Tape et al. (2009).
Woodhouse & Dziewonski (1984) developed full-waveform inver-
sion (FWI) of the upper mantle using normal modes summation
at the global scale, while partial derivatives for fitting phases and
amplitudes are based on the great circle approximation in relation to
ray theory. Alternatively, Lekić & Romanowicz (2011) developed a
hybrid approach to build global models of the upper–mantle struc-
ture by full waveform tomography. Love and Rayleigh waves and
long-period body waves are obtained by a spectral element method
for the upper mantle, while partial derivatives of the data can be
approximately computed with improved ray-based methods (Lui &
Romanowicz 1995). Weights are applied to these different synthetic
amplitudes in the misfit function estimation. In an attempt to evolve
towards the exploitation of the full wavefield, Fichtner et al. (2009)
and Bozdag et al. (2011) proposed new misfit functions where both
the phase and the amplitude attributes, such as the envelope, are
taken into account in the misfit function.

Another path was followed for high-resolution lithospheric imag-
ing from teleseismic events by Bostock et al. (2001), Shragge et al.
(2001), and Rondenay et al. (2001). They proposed to adapt least-
squares elastic ray+Born migration/inversion to scattered teleseis-
mic body waves, which was originally developed for controlled-
source seismic reflection seismology (Jin et al. 1992). In litho-
spheric imaging from teleseismic data, the sources are external
plane waves, which originate from the distant earthquake and which
impinge the base of the lithospheric target located beneath the re-
ceiver array with a given incidence angle. Ray+Born migration
is a local optimization problem, which minimizes the misfit be-
tween the recorded and the modelled single-scattered wavefield.
The single-scattered wavefield is computed by means of lineariza-
tion of the forward problem around a smooth background model
with the Born approximation. The Green functions in the sensi-
tivity kernel of the linearized forward problem are computed with
ray theory. The outputs of the imaging can be perturbation mod-
els (i.e. a bandpass filtered version of the subsurface model) of
P- and S-wave speeds, density, and attenuation, which allow the
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prediction of the recorded scattered wavefield (Forgues & Lambaré
1997; Thierry et al. 1999; Ribodetti et al. 2000). A key difference
between the finite-frequency tomographic approaches previously in-
troduced and the ray+Born inversion is that the full single-scattered
wavefield contained in the coda of the primary wavefields are in-
corporated within the ray+Born inversion, which makes this kind of
method amenable to high-resolution imaging. The potential limits
of these approaches are related to the linearization of the forward
problem, which prevents all of the wave phenomena from being
taken into account during seismic modelling and inversion: the in-
cident wavefield is not involved in the inversion, and must be sepa-
rated from the scattered wavefield during a pre-processing step, and
multiscattering is not taken into account during the linearized mod-
elling. Moreover, the accuracy of the scattered wavefield computed
for large scattering angles can be questioned in the framework of the
ray+Born approximation (Lambaré 1991, p. 167). This might be an
issue in teleseismic geometries, where forward scattering might be
the dominant scattering regime. As in any migration techniques, the
imaging relies on a scale uncoupling between the large wavelengths
contained in the background model, which remain constant over the
linear iterations, and the short-wavelength model perturbations that
are reconstructed by the migration process. This scale uncoupling
requires the background model to match the phase spectrum of the
scattered waves within the full frequency band with an error that
does not exceed half the period. If this condition is not satisfied, the
scattered waves recorded at receiver positions will be backprojected
onto the wrong isochrone (i.e. equiphase) surfaces, leading to poor
focusing and incorrect positioning. An application of ray+Born mi-
gration/inversion to teleseismic data from the Cascadia subduction
zone was presented by Rondenay et al. (2001) and Rondenay et al.
(2005). They showed that the key factor for building high-resolution
perturbation models of the P-wave and S-wave speeds is the explicit
incorporation of the reflections from the free surface in the ray+Born
modelling. This allows them to invert the backscattered wavefield
reflected from the lithospheric structures after a first reflection from
the free surface. These specific double-scattered events allow a re-
flection survey to be mimicked and fine-scale discontinuities to be
imaged through a backscattering migration process.

In this study, we address some issues related to the feasibility of
frequency-domain elastic FWI of teleseismic data for lithospheric
imaging. Here, FWI refers to the waveform inversion of the phase
and amplitude of all of the arrivals (Tarantola 1984; Pratt et al. 1998;
Virieux & Operto 2009). In this context, seismic modelling aims
to compute the full solution of the wave equation. The approach
developed in the present study differs from the above-mentioned
finite-frequency tomographic approaches in its ability to invert the
full waveform of all of the arrivals without the need to identify
a specific phase. On the other hand, it differs from the ray-based
migration method developed by Bostock et al. (2001) in the sense
that we honour the non-linear relationship between the data and the
model parameter. In this framework, the misfit between the recorded
and modelled data is minimized iteratively in a non-linear sense and
the starting model of each iteration is updated with the final model
of the previous iteration. As the full wavefield is involved in the
inversion, no separation between the direct wavefield and the scat-
tered wavefield is performed. The gradients of the misfit function
in non-linear and linear inversions have the same expression and
rely on the single-scattering Born approximation: in both cases, the
partial derivative of the wavefield with respect to one model pa-
rameter represents the wavefield scattered by this model parameter
(Pratt et al. 1998). However, double scattering is taken into account
in the non-linear inversion formula through the second-order term

of the Hessian operator (Pratt et al. 1998; Fichtner & Trampert
2011a). In non-linear FWI of teleseismic data, the joint inversion
of the incident primary wavefield and the wavefield reflected from
the free surface implies that tomography-like and migration-like
reconstructions are combined, which is amenable to a broad-band
reconstruction of the lithospheric target.

We perform 2-D elastic FWI in the frequency domain, which
provides a natural framework to design multiscale imaging by suc-
cessive inversions of increasing frequencies (Pratt 1990). The P-
and S-wave speeds are jointly updated from vertical and radial
geophones. Frequency-domain FWI was originally developed for
cross-hole geometries, which allow the recording of waves scattered
with wide scattering angles (Pratt 1999). This provides a suitable
framework to reconstruct the large to intermediate wavelengths of
the subsurface, a difficult non-linear issue in reflection seismology.
Later on, the potential of using frequency-domain FWI to build
high-resolution velocity model from long-offset wide-aperture sur-
face data was demonstrated with realistic synthetic and real data
case studies, by for example, Ravaut et al. (2004) and Plessix et al.
(2012) at the oil exploration scale, by for example, Operto et al.
(2006), Bleibinhaus et al. (2007) at the deep crustal scale and by for
example, Brenders & Pratt (2007b) at the lithospheric scale. When
the acquisition design allows the recording of scattered waves over
a broad range of scattering angles, the temporal frequencies and
the scattering angle have redundant control on the wavenumber
coverage in the model space. This prompted Pratt & Worthington
(1990), Pratt (1999), Sirgue & Pratt (2004) and Brenders & Pratt
(2007a) to design computationally efficient frequency-domain FWI
algorithms by limiting the inversion to a few discrete frequencies,
such that the redundancy of the wavenumber coverage was reduced.
When a limited number of discrete frequencies need to be modelled
for a large number of sources, frequency-domain seismic modelling,
which reduces to the resolution of a large and sparse system of lin-
ear equations per frequency with multiple right-hand sides (each
right-hand side being a source), can be performed efficiently with
Gauss elimination techniques at least for 2-D problems because
the expensive part related to the lower-upper decomposition of the
impedance matrix is independent of the source, and hence is per-
formed only once per frequency (Marfurt 1984; Stekl & Pratt 1998;
Brossier et al. 2008).

Teleseismic acquisition leads to a quite different scattering-angle
illumination than controlled-source seismology, because sources
are a sparse set of up-going compressional plane waves, which
impinge the base of the lithospheric target located below the array
of receivers, instead of a dense line of point sources located near
the surface. This raises the following issues that we would like to
address hereinafter through a realistic synthetic case study:

(i) What is the resolving power of teleseismic frequency-domain
FWI according to the limited scattering-angle illumination provided
by a coarse set of incident plane waves? In relation to this, which part
of the scattered wavefield carries the most resolving information?
Can this information be extracted?

(ii) Can the P- and S-wave speeds be reliably reconstructed from
incident compressional plane waves and multicomponent data?

(iii) Does efficient frequency-domain FWI based on hierarchi-
cal inversions of a few discrete frequencies apply to teleseismic
configurations?

(iv) Which receiver spacing allows spatial aliasing to be pre-
vented for the teleseismic bandwidth according to the resolving
power of the FWI?
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(v) According to the low-frequency content of teleseismic plane-
wave sources and the acquisition geometry, which state of informa-
tion do we need in the initial model to converge towards the global
minimum of the misfit function?

Our parametric analysis is limited to 2-D geometries. Although
the 2-D assumption puts limitations for applications on real tele-
seismic data because of the obliquity of the incident plane waves,
we believe that our exhaustive parametric analysis can yet provide
useful guidelines for future applications of 3-D FWI on teleseismic
data. Although FWI of teleseismic data should clearly evolve to-
wards 3-D geometries to take advantage of a significant number of
useful events, we describe in Appendix A an approximate correc-
tion of the obliquity that should allow to apply 2-D elastic FWI of
teleseismic data, when a sufficient number of incoming plane waves
illuminate the lithospheric target with a moderate obliquity.

In the first part of the present study, we review the key fea-
tures of the elastic FWI algorithm that we use. In Appendix B,
we indicate how the seismic modelling engine implemented with
a first-order discontinuous Galerkin frequency-domain method is
interfaced with the inversion to compute the gradient of the misfit
function with the adjoint-state method. Secondly, we review the key
differences between controlled-source and teleseismic acquisitions,
and discuss their potential influence on FWI. In the third section, we
present a parametric analysis of elastic FWI of teleseismic data with
a synthetic case study, for which a complex sedimentary model, that
was originally designed to assess seismic imaging methods in ex-
ploration seismology, has been scaled to lithospheric dimensions.
This parametric analysis aims to address all of the above-mentioned
issues. We conclude this study with a discussion of the main results
and with a review of some potential difficulties associated with the
application of FWI to real teleseismic data.

2 M E T H O D

2.1 Frequency-domain elastic plane-wave seismic
modelling

2.1.1 Discretization of the elastodynamic equations

In this study, seismic modelling is performed by solving the 2-D
isotropic P–SV velocity–stress equation using a hp-adaptive fre-
quency domain discontinuous Galerkin method (Brossier et al.
2008, 2010a; Brossier 2011). The 2-D P–SV velocity–stress equa-
tion in isotropic media is given by

− iωρvx = ∂σxx

∂x
+ ∂σxz

∂z
+ fx

−iωρvz = ∂σxz

∂x
+ ∂σzz

∂z
+ fz

−iωσxx = (
λ + 2μ

)∂vx

∂x
+ λ

∂vz

∂z

−iωσzz = λ
∂vx

∂x
+ (

λ + 2μ
)∂vz

∂z

−iωσxz = μ
{∂vx

∂z
+ ∂vz

∂x

}
, (1)

where [vx(ω, x), vz(ω, x)] and [σ xx(ω, x), σ zz(ω, x), σ xz(ω, x)] denote
the particle velocities and stresses, respectively. A pure complex
imaginary number is denoted by i. The coefficients λ(x) and μ(x) are
the Lamé parameters, ρ(x) is the density, ω is the angular frequency,
and fx(x) and fz(x) are the horizontal and vertical components of

external point forces. This equation can be written in matrix form
as

A[ω, m(x)]u(ω, x) = s(ω, x), (2)

where u denotes the velocity–stress wavefield, s is the source, and A
is the so-called impedance matrix resulting from the discretization
of the eq. (1). In this study, we solve the system 2 with the massively
parallel sparse direct solver MUMPS (MUMPS-team 2011).

The lithospheric model can be discretized on a unstructured tri-
angular mesh, which implies that the size of the element can be
locally adapted to the medium properties (the so-called h adaptiv-
ity). Furthermore, the interpolation order of the shape functions
can vary from one element to the next one, this property being re-
ferred to as the p adaptivity. The 3-D extension of the discontinuous
Galerkin method in the time domain was developed on unstructured
tetrahedral meshes by Etienne et al. (2010). In the framework of
lithospheric imaging, triangular or tetrahedral unstructured meshes
are useful to accurately represent complex topographies and the
Earth’s curvature, which is of the order of 4 km for a 450-long
profile. We use a nodal formulation of the discontinuous Galerkin
method, based on Lagrange polynomials of order 0, 1 or 2 (referred
to as P0, P1 and P2, respectively) and centred fluxes (Hesthaven &
Warburton 2008). The medium properties are piecewise constant
per element in our current implementation. The number of nodes
per element is 1, 3 and 6 for the P0, P1 and P2 interpolations, re-
spectively. The P0 interpolation, which turns out to be equivalent to
the finite-volume method, requires to use regular equilateral mesh
for accurate simulations with elements of size 1/10 of the minimum
wavelength (Brossier et al. 2008). Alternatively, P2 interpolation re-
quires elements of size 1/4 of the local wavelength (Brossier 2011).
The P1 interpolation can be used on unstructured meshes with ele-
ments of size 1/10 of the local wavelength, but does not generally
provide distinct advantages relatively to the P0 or P2 interpolations.
The P1 interpolation order can, however be combined with the P0
interpolation in specific environments such as shallow-water envi-
ronments for accurate representation of the sea bottom and accurate
positioning of sources and receivers in the near surface (Prieux et al.
2011). Optimal meshing strategies for frequency-domain disconti-
nous Galerkin seismic modelling are discussed in Brossier et al.
(2010a) and Brossier (2011).

Absorbing boundary conditions at the base of the lithospheric
model and along its vertical edges are perfectly matched layers
(Berenger 1994), while a free-surface boundary condition is used
on the top of the model.

2.1.2 Implementation of plane-wave sources

In the teleseismic configuration, there is no source excitation within
the lithospheric target, and hence the right-hand side in eq. (2)
is zero. The source is a plane wave generated by a distant earth-
quake, which impinges on the base of the target with an arbitrary
propagation direction. We implement the plane-wave source with
a scattered-field formulation (Taflove & Hagness 2000, p. 220),
which has already been used for teleseismic modelling by Pageot
et al. (2009) and Roecker et al. (2010). This study is limited to 2-
D modelling for plane-wave incidence. Two-and-a-half modelling
was proposed by Takenaka & Kennett (1996) and Roecker et al.
(2010) to account for the obliquity of the incident plane waves with
respect to the vertical plane defined by the receiver network. Their
method, which relies on the second-order wave equation for particle
velocities, would be too computationally intensive in the frequency-
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Figure 1. Plane-wave source modelling with the scattered-field formula-
tion. The four main steps of the approach are illustrated for a homogeneous
acoustic background model with an inclusion. (a) Analytical monochromatic
plane-wave solution in the homogeneous background model. (b) Monochro-
matic scattering source. (c) Monochromatic scattered wavefield. (d) Total
monochromatic wavefield obtained by summing the wavefields shown in (a)
and (c).

domain when applied to first-order velocity–stress wave equation,
because it would require to compute nine velocity–stress wavefields
instead of two (when the second-order wave equation is considered,
three particle-velocity wavefields in the 2.5-D approximation are
computed instead of two in the 2-D approximation). Instead, we
propose to approximately account for the obliquity of the plane
waves through a local correction of the wave speed and propagation
direction. This approximate correction is described in Appendix A.

The linearity of the wave equation allows us to assume that the
total wavefield u can be written as the sum of an incident wavefield
ub computed in a background model mb and a scattered wavefield
us. The incident wavefield satisfies the equation

Abub = 0, (3)

where Ab(mb, ω) is the impedance matrix computed in the back-
ground model mb. Substituting u by ub + us and zeroing s in eq.
(2), and taking the difference with eq. (3), gives the equation that is
satisfied by the scattered wavefield

Aus = − (A − Ab) ub. (4)

By analogy with eq. (2), the scattered wavefield us is computed in
the model m using internal source excitation, which is non-zero at
the positions where m differs from mb. Once the scattered wavefield
has been computed, the total wavefield is simply computed by the
summation of us and ub. Notice that this method is exact, that is, it
does not rely on linearization, as the forward-problem operator A
on the left-hand side of eq. (4) is built from the true model and not
from the background model. This approach is illustrated in Fig. 1,
where the monochromatic full wavefield (Fig. 1d) is computed in
a homogeneous background model containing a circular inclusion.
The scattering source, the spatial support of which is limited to the
inclusion, is shown in Fig. 1(b), and this generates the scattered
wavefield shown in Fig. 1(c).

Figure 2. Validation of the scattered-field method against the reflectivity
method. Direct comparison between seismograms computed with the re-
flectivity method (black line) and the scattered-field formulation (red line)
in the three-layer model (Table 1) for the radial (a) and vertical (b) compo-
nents.

Any background model can be used, provided that the incident
wavefield can be computed efficiently. In this study, we use a ho-
mogeneous half-space with a flat free surface, for which analytical
solutions are known. Semi-analytical methods, such as the reflectiv-
ity method (Kennett 1983), or the discrete-wavenumber boundary-
integral methods (Gaffet & Bouchon 1989; Gaffet 1995) can also
be methods of choice if layers, topography (including at the free
surface) and the Earth’s curvature need to be introduced into the
background model.

The implementation of the scattered-wavefield formulation in the
discontinuous Galerkin method, eq. (4), is validated against the re-
flectivity method in Fig. 2, for a three-layer medium with a free
surface on top of the model and for different propagation directions
(Table 1). The frequency bandwidth ranges between 0 and 0.5 Hz.
The source signature is a Ricker wavelet of mean frequency 0.15
Hz. Seismic modelling is performed on an unstructured P2 mesh
with elements of size 1/4 of the local wavelength. We show a good
agreement between the two simulations for incidence angles rang-
ing between 0◦ and 60◦, although some differences for incidence
angles greater than 45◦ result from artificial reflections at the per-
fectly matched layer-medium interfaces (mesh refinement does not
lead to match improvement, that supports that the above-mentioned
mismatch is not related to numerical dispersion). These artefacts
should not significantly hamper realistic teleseismic applications,
for which the propagation direction of the incident plane waves
generally ranges between 20◦ and 40◦ at 150 km in depth.

Table 1. Physical parameters of the three-layer velocity model used to
compute seismograms with the reflectivity method and the scattered-field
formulation developed in this study.

Three-layered model

Layer Thickness (km) Vp (m s−1) Vs (m s−1) ρ (kg m−3)

1 5 3000 1800 2000
2 35 6000 3500 2800
3 40 8000 4600 3000
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Figure 3. (a) Illustration of a teleseismic experiment, and the corresponding
scattering modes. (b) P–P and P–SV reflection coefficients at the free surface
versus the incidence angle of an up-going P wave. The curves are plotted
for three Poisson ratios, as indicated.

In the present study, we consider only incident P waves, which
generates P–P and P–SV reflections at the free surface. Note that
no surface waves are generated in a homogeneous half-space for an
incident compressional plane wave. The P–P and P–SV reflections
from the free surface can be viewed in the framework of FWI as
secondary monodirectional P- and S-wave sources, which contin-
uously sample the surface of the model. These sources generate
wavefields that propagate downwards in the lithospheric model be-
fore being reflected by the subsurface discontinuities and recorded
at the surface by the receiver arrays (Fig. 3a). The free-surface P–P
and P–SV reflection coefficients, which control the strength of these
secondary sources, are shown in Fig. 3(b) for three different Poisson
ratio representative of realistic subsurface geological media (Aki &
Richards 2002). For incidence angles between 20◦ and 40◦, the P–P
and P–SV reflection coefficients in terms of displacement amplitude
ratios are significant, and vary between 0.3 and 0.9 and between 0.7
and 1.1, respectively.

2.2 Frequency-domain elastic FWI

We review here the main features of our FWI algorithm (Brossier
2011) in terms of optimization and regularization that can have a
significant impact on the results as we shall show in the parametric
analysis. We also present in the Appendix B a versatile approach
to compute the gradient of the misfit function with the adjoint-
state method from self-adjoint operators, whatever the modelling

engine that is used for seismic modelling. FWI is recast as a local
optimization where a norm of the data residual vector is minimized
iteratively around an initial model (Tarantola 1984; Pratt 1999;
Virieux & Operto 2009). We use the least-squares norm of the data
misfit augmented with a regularization term that aims to penalize
the roughness of the difference between the model m and a prior
model mprior through the weighting operator Wmi

C(m) = 1

2
�d†Wd�d

+1

2

Np∑
i=1

λi

(
mi − mpriori

)†
Wmi

(
mi − mpriori

)
, (5)

where �d = Rv(m) − dobs denotes the complex-valued monochro-
matic data residual vector, the difference between the modelled
particle-velocity wavefield sampled at the receiver positions through
the sampling or detection operator R and the recorded data dobs. The
symbol † denotes the transpose conjugate of a matrix. The multipa-
rameter subsurface model is denoted by m = (

m1, ..., mNp

)
, where

Np denotes the number of parameter classes to be updated during
FWI. In this study, the parameter classes are the P- and S-wave
speeds. Therefore, Np = 2. Data preconditioning can be applied
through the weighting matrix Wd, which weights each component
of the data misfit vector. For surface controlled-source acquisi-
tion, an amplitude gain with source–receiver offset can be used to
strengthen the contribution of long-offset data in the misfit function
(Operto et al. 2006). This data weighting does not apply to the tele-
seismic configuration we consider, and we will use the identity for
Wd. The scalar hyperparameters λi control the respective weights of
the data-space and model-spaced misfit functions in eq. (5). Their
value can be adapted to each parameter class.

The local minimization of the misfit function at iteration k in the
vicinity of the model mk gives the Newton descent direction pk as

pk = −
[

∂2C(mk)

∂m2

]−1
∂C(mk)

∂m
. (6)

The second and first derivatives of the misfit function in the right-
hand side term of eq. (6) are referred to as the Hessian and the
gradient of the misfit function, respectively. The updated model
mk + 1 is related to the initial model mk and the descent direction pk

by the expression

mk+1 = mk + �mk = mk + γkpk, (7)

where the step length γ k defines the amount of descent in the di-
rection pk and �mk is the model perturbation. The estimation of
γ k, which is required by the local quadratic approximation of the
non-linear misfit function underlying eq. (6), is performed by line-
search through parabolic fitting of the misfit function (e.g. Ravaut
et al. 2004).

The expression of the Newton descent direction as a function of
the sensitivity or Fréchet derivative matrix J is given by

pk = �
[

Ŵ
−1
m J†

kWd Jk + Ŵ
−1
m

(
∂JT

k

∂mT

) (
�d∗

k ...�d∗
k

) + 	

]−1

�
[
Ŵ

−1
m JT

k Wd�d∗
k + 	

(
mk − mprior

)]
, (8)

where 	 is a block diagonal damping matrix, given as

	 =

⎛⎜⎜⎝
λ1IM ... 0

... ... ...

0 ... λNp IM

⎞⎟⎟⎠ , (9)
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Figure 4. Scattering pattern of VP (black line) and VS (grey line) diffractors for the four scattering modes P–P (a), P–SV (b), SV–P (c) and SV–SV (d). The
scattering patterns are plotted as a function of the scattering angle θ (Fig. 5a). Note that the VP diffractor generates scattering only for the P–P mode. The
scattering patterns were derived analytically in the framework of the ray+Born approximation (Forgues & Lambaré 1997).

and IM is the identity matrix of dimension M, where M denotes
the number of nodes in the computational mesh. The transpose of
a matrix, the conjugate of a complex number, and the real part of
a complex number are denoted by T, ∗ and �, respectively. The
matrix Ŵm is a Np × Np block diagonal matrix, where each block
is formed by the Wmi matrices. The descent direction is written for
one frequency in eq. (8). The simultaneous inversion of multiple
frequencies is implemented by summing the contributions of each
of the frequencies.

2.2.1 Sensitivity of multicomponent data to VP and VS

The coefficients of the sensitivity matrix J in eq. (8) correspond
to the values of the so-called partial derivative wavefields at the
geophone positions. These partial derivative wavefields are zero-
lag correlated with the data residuals to form the gradient of the
misfit function. These partial derivative wavefields satisfy the wave
equation for virtual sources fj (Pratt et al. 1998, their eqs 15 and
16):

B

(
∂v

∂m j

)
k

= f j = − ∂B

∂m j
vk, (10)

where v denote the particle-velocity wavefields and B the second-
order forward modelling operator for particle velocities (Appendix
B). These partial derivative wavefields represent the wavefields scat-
tered by the missing heterogeneities in the initial model. The sparse
matrix ∂B

∂m j
represents the scattering (or radiation) pattern of the

virtual secondary source located at position mj, which generates
the partial derivative wavefield ∂v

∂m j
. As the radiation patterns of

the virtual source controls the amplitude of the partial derivative
wavefields, they give clear insights into the influence of the selected

parameter on the data as a function of the scattering angle, and the
trade-off between parameters when multiple classes of parameters
are jointly updated. The influence of the parameter on the data as a
function of the scattering angle gives, in turn, some insight into the
resolution with which the parameter can be imaged: the scattered
wavefield associated with large and small scattering angles are sen-
sitive to long and short wavelengths of the subsurface, respectively.

The radiation patterns of the P and S velocities (denoted by
VP and VS, respectively) were computed analytically for the P–
P, P–SV, SV–P and SV–SV modes in the framework of the high-
frequency ray+Born approximation by Forgues & Lambaré (1997,
Fig. 4). A first conclusion is that only the P–P mode is sensitive to
the VP perturbation. For this mode, the radiation pattern of VP is
isotropic, and hence a broadband reconstruction of VP is expected
(Fig. 4a, black line). The other modes are not impacted by the VP

perturbations (Figs 4b–d). The influence of the VS parameter on
the P–P mode is of smaller amplitude and spans a narrower range
of intermediate scattering angles (Fig. 4a, grey line). The union of
the radiation patterns of the VS parameter for the P–SV, SV–P and
SV–SV modes spans the full range of scattering angles (Figs 4b–d,
grey lines). Therefore, a broadband reconstruction of VS is expected
provided that the inversion manages to exploit all of the scattering
modes. A limited trade-off between VP and VS is expected during
their reconstruction, because the two classes of parameter have a
dominant influence in the data for different scattering modes. Of
note, the density is not involved during the inversion in this study.

2.2.2 Computing the gradient of the misfit function with
the adjoint-state method

Instead of explicitely forming the sensitivity matrix J in eq. (8),
we compute the gradient of the misfit function with the
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adjoint-state method (Lions 1968; Chavent 1974; Tarantola 1984;
Plessix 2006; Chavent 2009). We use a second-order forward-
modelling operator B for particle velocities to derive the gradient
of the misfit-function, although seismic modelling is performed
from the first-order velocity–stress wave equation. This allows us
to manipulate self-adjoint operator and save memory during the
gradient computation. Our approach is described in Appendix B in
the framework of the scattered-field formulation.

2.2.3 Hessian approximation

The inverse of the full Hessian in eq. (8) contains three terms.
The first aims to correct the gradient for linear effects, such as the
limited bandwidth of the source, the limited spread of the acquisition
geometry, and the geometrical spreading of the data. The second
term of the Hessian accounts for double-scattering effects in non-
linear inverse problems (Pratt et al. 1998). The third regularization
term damps the deconvolution action of the first two terms of the
Hessian, to improve the conditioning of the Hessian matrix.

We use the quasi-Newton limited-memory Broyden–Flechter–
Goldfarb–Shanno (L-BFGS) optimization algorithm to solve eq. (8)
(Nocedal 1980; Nocedal & Wright 1999). The L-BFGS algorithm
recursively computes an approximation of the product of the inverse
of the Hessian with the gradient, from a few gradients and a few
solution vectors from the previous iterations. In what follows in the
present study, we will highlight the improvements of the teleseismic
FWI results that are achieved through the estimation of the Hessian
performed using the L-BFGS optimization. As an initial guess of
the inverse of the Hessian, we use a diagonal approximation of the
approximate Hessian (the linear term) damped by the 	 matrix,

H0 = diag
(

Ŵ
−1
m diag

{
J(k)†Wd J(k)

}
+ 	

)−1
. (11)

In the matrix 	, we use the same value of the damping factors λi

for VP and VS, eq. (5). This value is defined as a fixed percentage
(1 per cent) of the maximum coefficient of the diagonal Hessian.

2.2.4 Regularization

In the present study, we use mprior = mk , which allows us to cancel
out the regularization term in the gradient of the misfit function in eq.

(8). The operator Ŵ
−1
m is a smoothing operator that is implemented

with a 2-D Gaussian function, the vertical and horizontal correlation
lengths are defined as fractions of the P and S wavelengths. The
same value of the fraction is used for VP and VS. eq. (8) shows that
the Tikhonov regularization reduces to a smoothing of the Hessian
and of the gradient when mprior = mk . This form of regularization
can be viewed as preconditioning of the descent direction in an
attempt to steer the inversion towards smooth solutions (Sirgue &
Pratt 2004; Guitton et al. 2012).

3 S A M P L I N G , R E S O LU T I O N
A N D N O N - L I N E A R I T Y I S S U E S
I N T E L E S E I S M I C F W I

Before showing the application of FWI to synthetic teleseismic
data, it is worth reviewing some key differences between controlled-
source and teleseismic acquisitions.

Resolving power of FWI and related strategies in exploration
seismics
Crustal-scale and lithospheric-scale FWI was originally developed
for wide-aperture controlled-source seismic exploration, where

dense arrays of point sources are generally deployed near the sur-
face (e.g. Pratt et al. 1996; Brenders & Pratt 2007a,b). The broad
radiation pattern of the point sources allows incident waves to be
generated with a broad range of incidence angles. These waves are
scattered by the subsurface heterogeneities, with a wide range of
scattering angles leading to a wide variety of arrivals in the wave-
fields, such as pre- and post-critical reflections, diving waves, head
waves and diffractions. Long-offset multifold surface acquisition
geometries are required to record all of these waves, and hence to
really exploit the resolving power of FWI (Operto et al. 2006).

In the framework of diffraction tomography, Wu & Toksöz (1987)
showed that the gradient of the misfit function with respect to a
model parameter located at the position x can be viewed as a trun-
cated inverse Fourier summation where the arguments of the basis
functions are the wavenumber components injected into the subsur-
face model at the position x (see also Sirgue & Pratt (2004, their eq.
11) for a discussion in the framework of FWI). The truncation of
the Fourier series, which limits the resolving power of the imaging,
is controlled by the source bandwidth, the scattering-angle band-
width sampled by the source–receiver acquisition geometry, and
the scattering pattern of the model parameters. In the more general
framework of asymptotic inverse-scattering theory (Miller et al.
1987; Wu & Toksöz 1987; Lambaré et al. 2003), these wavenum-
ber vectors are formed by the sum of the two slowness vectors ps

and pr associated with the rays connecting the source and the re-
ceiver to the diffractor point x: k = (kx, kz) = k (cos φ, sin φ) =
ω(ps + pr) (Fig. 5a). These wavenumbers are related to the local
wave speed c0, the angular frequency ω, the scattering angle θ and
the local direction of propagation of the incident wave φS by the
expressions

k = 2ω

c0
cos (θ/2) , (12)

and

φ = φS + θ

2
. (13)

The expression of the modulus of the wavenumber vector, eq. (12),
shows that there is double control of the frequency and the scatter-
ing angle on the wavenumber coverage. This wavenumber coverage
can be strongly redundant in the directions φ, for which the ac-
quisition geometry continuously samples a broadband of scattering
angles. In other words, two close frequencies contribute to image
two bands of wavenumbers that significantly overlap. In reflection
seismics, this typically occurs for vertical wavenumbers (Sirgue &
Pratt 2004). This prompted Pratt & Worthington (1990) and Pratt
(1999) to reduce this vertical wavenumber redundancy by limit-
ing the inversion to a few discrete frequencies, and hence design
computationally efficient algorithms. Sirgue & Pratt (2004) defined
a frequency interval in homogeneous media that eliminates this
vertical wavenumber redundancy: the highest vertical wavenumber
mapped by one frequency should be equal to the smallest vertical
wavenumber constrained by the next frequency (Fig. 5b, Sirgue &
Pratt 2004). This condition leads to an increasing frequency interval
as the frequency increases.

The second conclusion that can be drawn from eq. (12), is that
the wide scattering angles associated with diving waves and wide-
spread reflections and low frequencies control the reconstruction of
the long wavelengths of the subsurface, while the short scattering
angles associated with short-spread reflections and high frequencies
control the reconstruction of the short wavelengths. This prompted
Pratt & Worthington (1990) and Pratt (1999) to design multiscale
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Figure 5. Sampling issues in sparse diffraction tomography. (a) Relationship between local wavenumber vector k at diffractor point x and angular frequency
ω, scattering angle θ and local incidence angle φ. The slowness vectors associated with the rays connecting the source s and the receiver r to the diffractor x are
denoted by ps and pr, respectively. (b, c) Vertical wavenumber coverage versus frequency for a reflection from a horizontal interface [adapted from Sirgue &
Pratt (2004)]. The solid black lines represent the minimum and maximum vertical wavenumbers spanned by one frequency. (b) Case of a narrow illumination of
incidence angles. This scenario corresponds to a set of earthquakes with similar back-azimuth. A small frequency interval is required to guarantee continuous
sampling of the wavenumber spectrum. (c) The case of a wide but coarse illumination of incidence angles. This scenario corresponds to the wide-spread
distribution of a few earthquakes with distinct backazimuths. The circles represent wavenumbers, which are coarsely sampled within the wavenumber band
spanned by one frequency. Simultaneous inversions of close multiple frequencies should help to prevent undersampling of the wavenumber band (red circles).

FWI that proceeds hierarchically from the low frequencies to the
higher frequencies, to reduce the non-linearity of the FWI. A second
nested level of data preconditioning can be viewed by injecting
progressively shorter scattering angles into the inversion, through
time windowing or time damping, which can be combined with
offset windowing (Shipp & Singh 2002; Brossier et al. 2009a; Wang
& Rao 2009).

All these manipulations of the data are designed to mitigate the
non-linearity of the inverse problem, to have a better chance of
converging on the global minimum.

Sampling issues in teleseismic FWI
Teleseismic acquisitions lead to relatively different subsurface illu-
mination: the sources are a limited number of up-going plane waves
instead of a dense line of point sources on the surface. This can
strongly impact on the resolving power of FWI and lead to spatial
aliasing.

As the gradient of the misfit function is discretized in the fre-
quency domain, spatial heterogeneities are periodized in the spatial
domain with a period of 1/�k, where �k denotes the local sam-
pling interval of the wavenumber in a given spatial direction φ.
The sampling interval �k should be sufficiently small to prevent
periodization of the subsurface heterogeneities within the litho-
spheric domain of interest. Some examples of such periodization
artefacts were shown in frequency-domain pre-stack-depth migra-
tion by Mulder & Plessix (2004), and for lithospheric-scale FWI by
Pageot et al. (2010, their fig. 3). As it is not possible to control the
distribution of sources in teleseismic imaging, it is likely that the
frequency sampling that is used during teleseismic FWI will be a
key issue to prevent spatial aliasing. On this basis, and according to
eq. (12), it is worth remembering that wavenumbers that are mapped
in the subsurface model are linearly related to frequency.

A first possible teleseismic configuration corresponds to a few
earthquakes, that arrive at the base of the lithospheric target with
similar incidence angles. This will provide a narrow scattering-
angle illumination, which will require the refining of the frequency
sampling in FWI, to prevent gaps in the wavenumber spectrum
each time the FWI proceeds with the next frequency, and to satisfy
the criterion of Sirgue & Pratt (2004, Fig. 5b). This refining of

the frequency sampling has a strong impact on the computational
efficiency of frequency-domain modelling, which scales linearly
with the number of frequencies.

A second possible scenario corresponds to a few widely spread
teleseismic events that arrive at the base of the lithospheric target
with distinct incidence angles. This will provide wide, but coarsely-
sampled, scattering-angle illumination (Fig. 5c). In this case, the
wavenumber band reconstructed by single-frequency inversion can
be under-sampled, because of the limited number of sources. One
strategy to refine the wavenumber sampling and to prevent these
aliasing effects might be to simultaneously invert a subset of close
frequencies, rather than a single frequency, during one step of the
multiscale inversion.

In both cases, it is likely that the teleseismic configuration re-
quires finer sampling of frequencies than in controlled-source seis-
mology to perform reliable FWI.

Improving the resolving power of lithospheric FWI with second-
order scattering
The incident plane-wave sources impinge upon the target from be-
neath and are recorded on the surface, leading to low-resolution
tomography-like reconstruction associated with large scattering an-
gles (Pratt et al. 1996). To overcome this resolution limitation,
Bostock et al. (2001) proposed to use the surface reflections as sec-
ondary P and SV plane-wave sources. These secondary plane-wave
sources can be viewed as a continuous line of monodirectional
sources at the surface. They generate downgoing waves, which
reflect from the lithospheric discontinuities for all of the scatter-
ing modes (P–P, P–SV, SV–P, SV–SV), before being recorded at the
surface (Fig. 3a). Migration-like inversion of reflection arrivals in-
creases the resolution of the imaging of both the P and S velocity
structures, because shorter scattering angles are considered, com-
pared to tomography-like reconstruction. In this context, the maxi-
mum resolution of the FWI achievable at a scattering point is half
a wavelength, according to eq. (12), and it is reached only for a
scattering angle of zero.

What receiver spacing do we need to prevent spatial aliasing?
The receiver sampling in teleseismic acquisitions is generally
sparser than for controlled-source experiments, and hence it needs
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to be assessed according to the frequency content of the source, to
prevent spatial aliasing in all of the spatial directions.

A first condition for the receiver spacing can be derived from the
radius of the Fresnel zone for a reflection of an incident downgoing
plane wave source from a reflector at a depth z: R = √

λ z (Sheriff
& Geldart 1995, p. 155). One receiver will contribute to image a
segment of the reflector, the length of which is the diameter of the
Fresnel zone. A continuous image of the reflector will be obtained
if the segments imaged by two close receivers overlap. This gives
the condition

�xr < 2
√

λ z. (14)

As an illustrative example, for a shear-wave velocity of 3 km s−1, a
frequency of 0.5 Hz and a depth of 20 km, the minimum receiver
interval should be of the order of 20 km. If this condition is not
satisfied, acquisition footprints hamper the shallow part of the FWI
model. Acquisition footprint in the framework of exploration geo-
physics are shown in Ben Hadj Ali et al. (2008) and Sirgue et al.
(2010).

Horizontal aliasing will occur if the sampling interval of the
horizontal wavenumbers resulting from the receiver spacing does
not satisfy the Nyquist-Shannon sampling criterion.

If we assume a theoretical resolution of half a wavelength (this
resolution would be achieved for the reflection of a horizontally
propagating plane wave from a vertical reflector), the sampling
theorem requires that

λ

2
< 1/ (2 �kx ) . (15)

According to eqs (12) and (13), we have

kx = ω

c
[sin(φS) + sin(φr )] . (16)

For a downgoing plane wave source in a homogeneous medium, we
can easily infer the variation of kx that would result from perturbation
of the position of the receiver by differentiation of kx with respect
to φr and from the relationship tan (φr) = xr/z,

�kx = 2π

λz
cos3(φr )�xr , (17)

where z denotes the depth of the scatterer, and xr the horizontal
offset between the scatterer and the receiver (Fig. 5a). The sampling
theorem, eq. (15), is satisfied if

λ

2
<

λ z

2 cos3(φr )�xr
, (18)

which leads to,

�xr <
z

cos3(φr )
. (19)

The condition to be satisfied by the receiver sampling is close to that
derived by Rondenay et al. (2005), who concluded from an analysis
of the migration operator that aliasing becomes significant at depths
smaller than twice the receiver spacing. For completeness, Ronde-
nay et al. (2005) and Brenders & Pratt (2007a) also proposed that
the incoming wavefield should be properly sampled by the receiver
array at the surface to avoid spatial aliasing. This leads to the con-
dition that the receiver spacing for teleseismic experiment should
be smaller than half the apparent wavelength of the incoming wave-
field, while only the minimum of the source and receiver spacings
should satisfy this condition for a controlled-source experiment.

Which initial model do we need?
Two other key differences between teleseismic and controlled-
source experiments are the frequency content of the sources and

the dimension of the target. In the Born approximation, the initial
model should allow the prediction of the traveltimes of the scat-
tered wavefields with an error lower than half the period of the
monochromatic signal. If this condition is not satisfied, cycle skip-
ping artefacts will arise (e.g. Virieux & Operto 2009, their fig. 7).
To prevent cycle-skipping artefacts, the accuracy of the starting
model must be improved or the number of propagated wavelengths
must be reduced, because the relative traveltime error is inversely
proportional to the number of propagated wavelengths (Pratt 2008;
Virieux & Operto 2009),

�t

T
≥ 1

2Nλ

. (20)

The most obvious remedy to reduce the number of propagated
wavelengths is the introduction of low frequencies in the inver-
sion. As an illustrative example, a recent application of FWI to
low-frequency land data has shown that a simple vertical-velocity
gradient model at the oil-exploration scale provides a sufficiently
accurate initial model to perform FWI when the starting frequency
is as low as 1 Hz (Plessix et al. 2012). Therefore, a key issue of
the present study is the assessment of the kind of initial model
needed by FWI to prevent cycle skipping artefacts according to
the low frequency content of teleseismic sources and the size of
the lithospheric target. In particular, we want to determine whether
the available starting velocity models as 1-D velocity models ex-
tracted from global 1-D Earth models like the Preliminary Reference
Earth Model (Dziewonski & Anderson 1981), AKI135 or IASP91
are sufficiently accurate to perform reliable FWI in the teleseismic
bandwidth.

Low frequencies of teleseismic earthquakes are useful to relax the
condition of accurate initial model. Another benefit of the teleseis-
mic geometry compared to surface controlled-source geometries is
to allow for the recording of transmitted waves, which travel from
the bottom of the target to the surface where receivers are deployed.
This setting is similar to cross-hole geometries, except that the
source and receiver arrays are horizontal rather than vertical. This
geometry together with the low frequencies of the sources provide a
suitable framework to continuously sample the wavenumber of the
lithospheric target as the FWI workflow evolves from the forward-
scattered waves and the low frequencies to the backscattered waves
and the high frequencies. This full scattering-angle illumination
provided by teleseismic geometry contrasts with the narrower illu-
mination provided by surface short-spread reflection experiments
for which the intermediate wavelengths belongs to the null space of
the FWI (Jannane et al. 1989).

As in controlled-source experiments, multiscale strategies can
be viewed to hierarchically invert subdata sets with an increasing
resolving power.

4 PA R A M E T R I C A NA LY S I S
O F T E L E S E I S M I C F W I

In this section, we attempt to answer the issues raised in the previous
section with a realistic synthetic example.

4.1 The lithospheric SEG/EAGE overthrust model

To perform our parametric analysis, we chose a vertical sec-
tion of the 3-D complex onshore Society of Exploration Geo-
physics (SEG)/European Association of Geoscientists and Engi-
neers (EAGE) velocity model (Aminzadeh et al. 1997), which was
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Figure 6. Lithospheric SEG/EAGE overthrust model (a) True and (b) start-
ing P-wave velocity models. The S-wave velocity model is derived from the
P-wave velocity model using a constant Poisson ratio of 0.25.

originally designed to assess seismic imaging methods in explo-
ration seismology (Fig. 6a). The dimensions of the original model
are 20 km in distance and 4.5 km in depth. The main features of the
overthrust model are a weathered layer in the near surface, several
buried palaeochannels, and two main thrust faults, which cross-cut
the sedimentary cover. This sedimentary cover overlays a decolle-
ment level at 4 km in depth. An S-wave velocity model is built from
the P-wave velocity model, assuming a constant Poisson ratio of
0.25. This velocity model was imaged by elastic FWI of surface
wide-aperture data by Brossier et al. (2009a). The imaging was
performed with and without free-surface effects in the data (i.e.
surface waves). Accurate reconstructions of the P and S velocities
were obtained from body waves. The inversion of surface waves
in addition to body waves significantly increases the non-linearity
of the inversion, which requires two levels of data precondition-
ing to be considered, by frequency selection and time damping.
Since surface waves should not have a strong impact on teleseismic
FWI of incident body waves, we will use the results of the elas-
tic FWI of body waves of Brossier et al. (2009a, their fig. 9) as
a reference to assess the results of the imaging at the lithospheric
scale.

Table 2 outlines the characteristic scales involved in seismic ex-
ploration and teleseismic seismology for the overthrust case study.
The model dimensions have been scaled by a factor of around 24.
The P-wave velocities range from 2.36 to 6 km s−1 in the original
overthrust model, compared to 4.7–8.1 km s−1 in the lithospheric
model. The frequency bandwidth, which was used during FWI by

Brossier et al. (2009a), is [1.7–7] Hz, against [0.05–0.4] Hz in the
present study. Considering the mean wave speeds and the lowest
frequency, in the lithospheric model, the P and S wavelengths are
of the order of 12.8 and 7.4 km, respectively, and in the original
model, of the order of 0.6 and 0.34 km, respectively. These wave-
lengths give rough estimates of the spatial resolution that should
be achieved by reflection FWI. The ratio between the characteristic
wavelengths propagated in the original and lithospheric models are
of the same order of magnitude as the ratio between the character-
istic dimensions of the two models, which prompts us to conclude
than the resolution gain provided by FWI relative to conventional
approaches like traveltime tomography should be equivalent at the
seismic exploration and teleseismic scales.

It is also worth estimating the minimum number of propagated
wavelengths in both models, to determine the potential risk of cycle
skipping in FWI. This number of propagated wavelengths is com-
puted by considering the lowest frequency, the mean wave speeds,
and a propagation distance that corresponds to wide-angle reflec-
tions with an offset of 20 and 200 km for the original and litho-
spheric models, respectively. In the lithospheric case, we augment
the surface-to-surface reflection path with a one-way path from
the bottom of the model to the surface, to account for the reflec-
tion from the free surface. We use a propagation distance for the
wide-angle reflection of 22 and 445 km for the sedimentary and the
lithospheric cases, respectively. In this case, the number of prop-
agated wavelengths is almost three times lower in the lithospheric
case than in the seismic exploration case. Therefore, the low fre-
quency content of the teleseismic sources should help to relax the
requirement of an accurate model for FWI. Notice that this ratio
of three was estimated by considering a sedimentary model as a
seismic exploration target. Other scales involves the deep crustal
scale and wide-angle surveys (Operto et al. 2006; Bleibinhaus
et al. 2007, 2009; Kamei et al. 2012) and the near surface scale
(Romdhane et al. 2011; Bleibinhaus & Hilberg 2012). At the deep
crustal scale, the target size is of the order of one-to-two hundred
kilometers in length and few tens of kilometres in depth and the
frequency bandwidth typically ranges from 3 to 15 Hz. In this case,
the number of propagated wavelengths will be significantly higher
than at the teleseismic scale and, hence represent a challenging ex-
perimental setup to perform reliable FWI. In contrast, the number of
propagated wavelengths at the near-surface scale can be smaller by
one order of magnitude compared to the teleseismic scale, because
of the limited dimensions of the target. Therefore, the challenging
issues of the near surface scale are more related to the extreme
heterogeneity of the near surface and the exploitation of the high-
frequency content of the source.

Table 2. Characteristic scales involved in exploration seismology (e.g. Brossier et al. 2009a)
and in teleseismic imaging. Lx, Lz (km): horizontal and vertical dimensions of the target.
Vpmin , Vpmax (km s−1): minimum and maximum P-wave speeds. Vsmin Vsmax (km s−1): min-
imum and maximum S-wave speeds. fmin, fmax (Hz): frequency bandwidth. λPmin , λPmax

(km): minimum and maximum compressional wavelengths. λSmin , λSmax (km): minimum
and maximum shear wavelengths. NλPmin

, NλSmin
: number of propagated compressional and

shear wavelengths for the starting frequency fmin.

Exploration scale Lithospheric scale

Lx Lz (km) 20.0, 4.65 473, 110
Vpmin Vpmax (km s−1) 2.36–6 4.7–8.1
Vsmin Vsmax (km s−1) 1.36–3.45 2.71–4.68

fmin fmax (Hz) 1.7–7.0 0.05–0.5
λPmin = VPmean /ωmin λPmax = VPmean / fmax (km) 0.6–2.46 12.8–128
λSmin = VSmean /ωmin λSmax = VSmean / fmax (km) 0.34–1.41 7.39–73.9

NλPmin
= Lz/λPmax NλSmin

= Lz/λSmax 9–16 3.5–6
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Figure 7. (a–b) Seismograms computed in the true VP and VS models: the
radial component. The incidence angle of the up-going plane wave is –40◦.
A free-surface boundary condition (a) and an absorbing boundary condition
(b) are used on top of the model. RT: Doubly reflected phases from the
free surface and from the thrusts. RP: Doubly reflected phases from the free
surface and from the horizontal layers in the right part of the model. PMLA:
parasite reflections from the perfectly matched layer-medium interfaces. SW:
a P–S diffraction in the near surface towards 250 km of distance. (c) As for
(a), for seismograms computed in the initial model (Fig. 6b). (d) Residuals
between seismograms shown in (a) and (c). (e) Same as (a) for seismograms
computed in the FWI model of Figs 14(g) and (h). (f) Residuals between the
seismograms shown in (a) and (e).

4.2 Transmission versus reflection FWI of teleseismic data

Bostock et al. (2001) showed the need to consider all of the reflec-
tions and conversions from the lithospheric reflectors after a first
reflection from the free surface. Seismograms computed in the true
velocity models when free surface and absorbing boundary con-
ditions are implemented on top of the model can be compared in
Figs 7(a, b) and 8(a, b), for the radial and vertical geophones, re-
spectively. The incidence angle of the plane-wave source is –40◦. In
seismograms computed with the free surface boundary condition,
we show the doubly reflected phases from the free surface and the
thrusts (Figs 7a, b and 8a, b, phase Rt). The traveltimes of these
reflections decrease from the left-hand side to the right-hand side of
Figs 7(a) and 8(a), as the thrust plane becomes closer to the surface.
On the right-hand side of Figs 7(a) and 8(a), we show the doubly
reflected phases from the free surface and the horizontal layers of
the model (Figs 7a and 8a, phase Rl). We also interpret a phase
on the horizontal component that originates at 250 km in distance
and that propagates with a slower apparent velocity than the first-
arrival as a P–S diffracted waves (Fig. 7a, SW). We apply FWI to
the data sets computed without and with the free surface boundary
condition on top of the model. The initial models are obtained by
smoothing the true model with 2-D Gaussian functions of horizontal
and vertical correlation lengths of 10 km (Fig. 6b). This resolution

Figure 8. As for Fig. 7, for the vertical component.

should mimic the resolution of first-arrival traveltime tomography,
which is of the order of the first Fresnel zone width (Williamson
1991). The data set consists of 17 plane-wave sources with inci-
dence angles ranging from −40◦ to 40◦ with a sampling rate of 5◦

(Table 3). The resulting phases are recorded by a dense network of
399 vertical and radial geophones deployed on the surface with a
spacing of 1.2 km. Thirty-seven frequencies between 0.1 and 0.4 Hz
were inverted sequentially, using the final model of one frequency
inversion as the initial model for the next frequency inversion. We
discretize the overthrust model with a regular equilateral mesh of
size 1/10 of the minimum S wavelength and we perform seismic
modelling with P0 interpolation. Unlike the simulation performed
for the three-layer model (Fig. 2), we perform seismic modelling
with a regular P0 mesh instead of a unstructured P2 mesh, because
the building of the P0 impedance matrix is two-time faster than the
P2 one, while the LU factorization and the resolution steps take a
similar amount of time for the two meshes. This probably results
because the mesher has more difficulties to exploit the h adaptivity
when the subsurface models contain a large numbers of thin lay-
ers, as opposed to blocky models composed of few homogeneous
layers (Brossier et al. 2010a). The same mesh was used for each hi-
erarchical frequency inversions, although a mesh refinement could
have been performed as the inversion was evolving towards higher
frequencies. Computations were performed on 12 quadri-core pro-
cessors with 8-Gygabytes of memory each. A LU factorization of
the P0 impedance matrix typically takes 20 s and the substitution
step to get the solution 8 s. Fifteen non-linear iterations were per-
formed per frequency with L-BFGS optimization. The comparison
between the final FWI VP and VS models inferred from the two data
sets shows the dramatic resolution improvement that is achieved
when free-surface reflections are involved in the inversion (Fig. 9).
Figs 10(a–d) and 11(a–d) show a more detailed view of this reso-
lution improvement along two vertical profiles extracted from the
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Table 3. FWI experimental set-up. Nomenclature: Fig: figure number. f0 (Hz), fmax (Hz): initial and final
frequencies used in FWI. Nf: number of frequencies used in FWI. DeltaR(km): receiver spacing. Ns: number of
plane-wave sources. Angles (◦): range of incidence angles spanned by the plane-wave sources. Op: Optimization
algorithm [L-BFGS (L) versus conjugate gradient (C)]. BC: Boundary condition on top of the model (A:
absorbing; FS: free surface). FG: single-frequency (S) versus multi-frequency (M) hierarchical inversions. By
multi-frequency inversion is meant successive inversions of overlapping frequency groups. EP, ES: error in
percentage in the VP and VS FWI models.

Fig f0 fmax Nf �R Ns Angles Op BC G EP (%) ES (%)

9(a, b) 0.1 0.4 37 1.2 17 −40,+40 L A S 4.40 4.30
9(c, d) 0.1 0.4 37 1.2 17 −40,+40 L FS S 2.78 2.43

12(a, b) 0.1 0.4 37 1.2 17 −40,+40 C FS S 2.92 2.62

14(a, b) 0.1 0.4 7 1.2 17 −40,+40 L FS S 3.00 3.02
14(c, d) 0.1 0.4 19 1.2 17 −40,+40 L FS S 2.80 2.37
14(e, f) 0.1 0.4 19 1.2 17 −40,+40 L FS M 2.80 2.32
14(g, h) 0.1 0.4 37 1.2 17 −40,+40 L FS M 2.58 2.16

17(a, b) 0.1 0.4 19 1.2 5 −40,+40 L FS S 3.00 2.58
17(c, d) 0.1 0.4 37 1.2 9 −40,+40 L FS S 2.87 2.56
17(e, f) 0.1 0.4 37 1.2 17 −40,+40 L FS S 2.78 2.43
17(g, h) 0.1 0.4 37 1.2 8 −40,−20;+20,+40 L FS S 2.98 2.43
17 (i, j) 0.1 0.4 37 1.2 4 +20,+40 L FS S 3.42 3.30
17(k, l) 0.1 0.4 37 1.2 4 −40,−20 L FS S 3.41 3.21

18(a, b) 0.1 0.4 37 2.4 17 −40,+40 L FS S 2.80 2.43
18(c, d) 0.1 0.4 37 4.8 17 −40,+40 L FS S 2.82 2.51
18(e, f) 0.1 0.4 37 9.6 17 −40,+40 L FS S 2.85 2.57
18(g, h) 0.1 0.4 37 19.2 17 −40,+40 L FS S 3.29 3.06
18(i, j) 0.1 0.4 37 19.2 17 −40,+40 L FS S 2.73 2.46
18(k, l) 0.1 0.4 37 19.2 17 −40,+40 L FS S 3.61 3.81

19(a, b) 0.1 0.4 37 1.2 17 −40,+40 L FS S 2.86 3.61
19(c, d) 0.05 0.4 37 1.2 17 −40,+40 L FS S 2.75 3.61
19(e, f) 0.05 0.4 37 1.2 17 −40,+40 L FS S 10.0 10.1
19(g, h) 0.015 0.4 37 1.2 17 −40,+40 L FS S 8.03 5.56

Figure 9. Importance of the free surface in teleseismic FWI. VP (a) and VS (b) FWI velocity models when an absorbing boundary condition on top of the model
(infinite model) is used to compute the seismic wavefield in the true model and in the reconstructed models. (c, d) As for (a, b), but a free-surface boundary
condition is implemented on top of the models. See Table 3 for the FWI set-up.

true models, the initial models and the final FWI models at 125 km
(Figs 10a–d) and 325 km (Figs 11a–d) in distance.

4.3 Conjugate-gradient versus L-BFGS quasi-Newton
optimization

The conjugate-gradient method is one of the most popular optimiza-
tion algorithm to perform FWI (Mora 1987). Another optimization
algorithm that is suitable for FWI is the BFGS algorithm, recast

in a limited memory storage version by Nocedal (1980): L-BFGS.
Brossier et al. (2009b) have shown how the L-BFGS optimization
improves the reconstruction of the elastic overthrust model from
land surface seismic data compared to the conjugate gradient algo-
rithm. Comparison between the lithospheric FWI models inferred
from the conjugate gradient (Figs 12a and b) and the L-BFGS
(Figs 12c and d) algorithms confirms the improvements that are
achieved when the action of the Hessian on the gradient is taken
into account. The inversion set-up is the same as that used in the
previous section with a free-surface boundary condition on top of
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Figure 10. Vertical VP (top panel) and VS (bottom panel) profiles extracted at 125 km in distance from the true (black lines), the FWI (solid grey line) and
the starting (dashed grey lines) models. (a, b), (c, d), (e, f), (g, h), (i, j), (k, l) VP and VS profiles extracted from the FWI models of Figs 9(a, b), 9(c, d), 12(a,
b), 14(g, h), 14(a, b) and 17(a, b), respectively. The dashed ellipses in (c–g) delineate the shallow velocities, where the use of frequency groups provides a
more reliable reconstruction compared to single-frequency inversion. The dashed ellipses in (d–f) delineate part of the velocity profile where the L-BFGS
optimization provides more reliable focusing than the conjugate gradient algorithm.

Figure 11. As for Fig. 10 for the vertical profiles located at 325 km in distance. The dashed ellipses in (d–j) delineate the shallow parts of the model, where
the S-wave speed is not reconstructed correctly from a coarse subset of frequencies.
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Figure 12. Optimization algorithm in FWI. (a, b) VP (a) and VS (b) FWI velocity models computed with a conjugate gradient algorithm. (c, d) As for (a, b)
for the L-BFGS algorithm. Note the improved reconstruction of the thrusts and the shallow channels in the VS model (dashed rectangles). See Table 3 for the
FWI set-up.

Figure 13. Optimization algorithm in FWI. Normalized misfit function
versus iteration number for frequencies of 0.1, 0.25 and 0.4 Hz. The misfit
function obtained with the conjugate gradient and L-BFGS are plotted in
grey and black, respectively.

the model (Table 3). Fifteen non-linear iterations are performed with
both the conjugate gradient and the L-BFGS optimization. Of note,
the descent direction provided by the conjugate-gradient algorithm
has been preconditioned by the diagonal terms of the approximate
Hessian, eq. (13). The better focusing of the VP model obtained
with L-BFGS suggests an improved convergence rate, which is fur-
ther confirmed by the misfit function plotted against the iteration
number for three frequencies (Fig. 13). Moreover, the VS model
obtained with L-BFGS shows an improved signal-to-noise ratio in
the thrust area and in the shallow part of the model, where hori-
zontal aliasing effects have been efficiently reduced. The improved
convergence rate achieved with L-BFGS is confirmed by vertical
profiles extracted from the FWI models obtained with L-BFGS and
the conjugate gradient algorithms: amplitudes of the velocity pertur-
bations are reconstructed much better with the L-BFGS algorithm
(Figs 10c–f and 11c–f).

In what follows for the present study, all of the results were
obtained with L-BFGS, except when explicitly stated to the
contrary.

4.4 Influence of frequency sampling

Designing a suitable subset of frequencies to prevent aliasing arte-
facts in FWI of teleseismic data is a key issue, according to the
sparse and/or narrow illumination of scattering angles provided by

a limited number of plane wave sources (Fig. 5). The results of
FWI applied sequentially to an increasing number of discrete fre-
quencies are shown in Figs 14(a–f). Seventeen plane-wave sources
with incidence angles ranging from −40◦ to 40◦ with a sampling
rate of 5◦ are considered for FWI, and lead to a broadband sam-
pling of the incidence angles (Table 3). The VP and VS models
obtained with 19 and 37 frequencies are of similar quality. A sig-
nificant degradation of the results, which is more obvious in the VS

model because of shorter-propagated wavelengths, is shown when
only seven frequencies are used. This suggests that a notch in the
wavenumber spectrum is created each time the inversion progresses
to the next frequency (Fig. 5b). Comparison with vertical profiles
extracted from FWI models suggests that large errors can occur in
the near surface when the frequency interval is too coarse (Figs 11d
and j, dashed ellipse). We also gather the 37 frequencies into three
overlapping frequency groups, [0.1–0.2] Hz, [0.2–0.3] Hz and [0.3–
0.4] Hz, and apply successive inversions to these three frequency
groups. The resulting VS model (Fig. 14h) shows a slightly improved
signal-to-noise ratio in the deep part of the model compared to that
inferred from sequential inversion of single frequencies (Fig. 14f),
while the VP models inferred from the two inversions does not
show significant differences (Figs 14e and g). This improvement
is highlighted in vertical profiles extracted from the FWI VS mod-
els obtained without and with frequency groups in Figs 10(d) and
(h), dashed ellipse. We will see later that the benefit provided by
frequency groups is more obvious when the receiver interval is
increased.

We conclude that even if the plane-wave sources span over a
broad range of incidence angles, the frequency interval used in
teleseismic FWI should be significantly refined compared to those
commonly used in efficient FWI of controlled-source data. As a
comparative example, Brenders & Pratt (2007a) concluded that
only four frequencies between 0.8 and 7 Hz are needed to build
a lithospheric model of the P-wave speed from a dense surface
acquisition.

We compute time-domain synthetic seismograms in the initial
model and in the final FWI models inferred from the frequency-
group inversion (Fig. 14g, h) to determine which part of the wave-
field was matched during FWI (Figs 7c–f and 8c–f). These seis-
mograms can be qualitatively compared with those computed in
the true model (Figs 7a, b and 8a, b), while direct comparisons
between the seismograms computed in the true model and in the
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Figure 14. Impact of frequency sampling on teleseismic FWI. (a–f) Final VP and VS FWI models obtained by sequential inversions of single frequencies: 7(a,
b), 19(c, d), 37(e, f) frequencies are inverted. (g, h) Successive inversions of three overlapping frequency groups, for the total of 37 frequencies involved in the
inversion. Note the improved signal-to-noise ratio in the VS model in (h) relatively to (f). See Table 3 for the FWI set-up.

initial and final FWI models are shown in Figs 15 and 16 for the
horizontal and vertical geophones, respectively. We show that most
of the residuals associated with the high-amplitude primary wave-
field were cancelled out by FWI. Significant residuals associated
with the low-amplitude doubly scattered wavefield remain. How-
ever, direct comparisons between the seismograms computed in the
true model and in the final FWI models show that the phase of
almost all of the arrivals are matched (Figs 15b and 16b), which
suggests that most of the remaining residuals result from under-
estimated wavefield amplitudes due to an insufficient number of
iterations.

4.5 Influence of incidence-angle sampling and bandwidth

We now determine the impact of the sampling of the incidence
angles of the plane-wave sources (see Table 3 for the FWI set-
up). Thirty-seven frequencies were inverted sequentially with the
L-BFGS algorithm. The receiver spacing was 1.2 km. The inci-
dence angles were uniformly sampled between −40◦ and +40◦. We
show progressive degradation of the FWI models when the num-
ber of plane-wave sources decreases from 17 to five (Figs 17a–
f, 10k, l and 11k, l). However, the FWI is clearly less sensi-
tive to the incidence-angle sampling relative to the frequency
sampling. This is consistent with the relationship between the
wavenumber, the frequency and the scattering angle, eq. (12): the
wavenumber is linearly related to the frequency, while it is re-
lated to a more slowly varying cosine function of the scattering
angle.

We now consider a more realistic setting in terms of plane-wave
coverage. First, we still consider a symmetric illumination from the
right and from the left of the target, but we remove plane waves
that propagate nearly vertically, as these arrivals would correspond
to earthquakes located on the other side of the earth. The FWI VP

and VS models obtained with 10 plane-wave sources, the incidence
angles of which range between −40◦ and −20◦ and between +20◦

and +40◦, are shown in Figs 17(g) and (h), and they can be com-
pared with those of Figs 17(e) and (f), for which 17 plane waves with
incidence angles that continuously range between −40◦ and +40◦

are considered. We show overall degradation of the vertical res-
olution associated with a lack of vertical-wavenumber coverage.
For example, the shallow channels on the right-hand side of the
VS models are not visible anymore, as well as some thrusts in the
left-hand part of the model (Fig. 17h, dashed rectangle). The VP

model is affected to a lesser extent than the VS counterpart, be-
cause the compressional wavelengths are higher than the shear
counterparts. However, the degradation in resolution of the hori-
zontal layers is clear on the right-hand side of the model, where
the vertically propagating plane waves contribute efficiently to in-
ject short vertical wavenumbers in the model (compare Figs 17e
and g).

Secondly, we consider an even less favourable setting, where the
plane waves are not symmetrically distributed any more: five plane
waves arrive either from the left (Figs 17i and j) or the right (Figs 17k
and l) of the lithospheric target, and cover a range of incidence angles
between −40◦ and −20◦ and between 20◦ and 40◦, respectively. As
expected, the imaging of the thrusts is more significantly impacted
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Figure 15. Radial component. (a) Direct comparison between seismograms
computed in the true model (black) and in the initial model (red). (b) As for
(a), but the red seismograms are computed in the FWI models of Figs 14(g)
and (h). The seismograms are plotted with an automatic gain control to assess
more easily the match of the phase of the secondary scattered wavefield.

Figure 16. Vertical component. As for Fig. 15 for the vertical component.

when the plane waves come from the right, because the limited
extent of the receiver array prevents the recording of reflections
from the dipping thrusts propagating from right to left (compare
Figs 17i–j and 17k–l). To a lesser extent, plane waves coming from
the left are less favourable than those coming from the right to image
the deep part of the horizontal layers on the right of the model. This
might be related to the decreasing amplitudes of the wavefields as
the number of propagated wavelengths increases, which makes the
inversion less sensitive to these arrivals. It is worth noting that the
shallow part of the model on the right-hand side appears to be less
affected by aliasing artefacts and shows better reconstruction of
a channel when the plane waves come from the left. This might
arise because a P–S wave scattered near the middle of the model
(Fig. 5a, SW) could have contributed to filling the gap in terms of
wavenumber coverage, to improve the imaging of the first 10 km of
the target.

4.6 Impact of receiver sampling

Even if modern dense networks of broadband stations allow data sets
to be recorded that are potentially amenable to multichannel high-
resolution seismic imaging methods such as FWI, receiver spacing
remains a critical issue to prevent spatial aliasing according to the
theoretical resolution of FWI. We applied FWI to several data sets
computed with increasing receiver spacing, ranging from 2.4 km to
19.2 km (Fig. 18). Thirty-seven frequencies were inverted sequen-
tially, and 17 plane-wave sources with incidence angles that ranged
between −40◦ and +40◦ were involved in the inversion (Table 3).
Horizontal artefacts started appearing in the shallow part for a re-
ceiver spacing of 9.6 km (Figs 18e and f), and became significant for
a receiver spacing of 19.2 km in the full model (Figs 18g and h). Re-
placing the sequential inversion of single frequencies by the sequen-
tial inversion of overlapping frequency groups efficiently reduced
the aliasing artefacts in the deep part of the model, without signifi-
cant extra computational cost (Figs 18i and j). This supports the idea
that these aliasing effects mainly results from the coarse sampling of
the horizontal-wavenumber band that is injected into the subsurface
model during each single-frequency inversion, and that the simulta-
neous inversion of several close frequencies can contribute to fill in
this wavenumber band (Fig. 5c). Shallow artefacts with a periodic
horizontal pattern of around 20 km however remains down to 20-km
in depth in the VS model of Fig. 18(j). These artefacts can be related
to the radius of the Fresnel zone and are consistent with the condi-
tion of eq. (15) for a wave speed of 3 km s−1, a frequency of 0.5 Hz
and a depth of 20 km, that gives a radius of the Fresnel zone of 10
km and �xr < 20 km. For completeness, in Figs 18(k) and (l), we
also show the results of FWI for a receiver spacing of 19.2 km when
the frequencies are inverted sequentially and when the conjugate
gradient optimization is used. The VS model is significantly noisier
than the VS model obtained when L-BFGS optimization is combined
with suitable management of frequencies during waveform inver-
sion. This highlights on the one hand the importance of the Hessian
in FWI, as a deconvolution operator, and on the other hand the
importance of frequency management in multiscale FWI of coarse
teleseismic data.

4.7 Which initial model and starting frequency
do we need?

Building a reliable starting model for FWI is one of the most topical
issue in exploration geophysics at present (Virieux & Operto 2009),
even if the current trend is to design new acquisition devices that al-
low for the emission of low frequencies to satisfy the cycle-skipping
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Figure 17. Impact of incidence-angle sampling and coverage. (a, b) VP (a) and VS (b) FWI models obtained for five plane-wave sources. Incidence angles
range between −40◦ to +40◦ with an interval of 20◦. (c, d) As for (a, b), for nine plane-wave sources (angle interval: 10◦). (e, f) As for (a, b), for 17 plane-wave
sources (angle interval: 5◦). (g, h) As for (a, b), for 10 plane-wave sources, with incidence angles ranging between −40◦ and –20◦ and between +20◦ and +40◦.
(g, h) As for (a, b), for five plane-wave sources, with incidence angles ranging between −40◦ and −20◦. (k, l) As for (a, b), for five plane-wave sources, with
incidence angles ranging between +20◦ and +40◦. See Table 3 for the complete FWI set-up.

criterion, eq. (20) (Soubaras & Whiting 2011; Plessix et al. 2012). In
the teleseismic configuration, low frequencies are naturally provided
by large-magnitude earthquakes. Therefore, it is worth investigating
which kind of initial model guarantees reliable lithospheric imag-
ing from teleseismic data by FWI. For this purpose, we consider
now as the initial model a laterally homogeneous velocity gradient
model, instead of the smooth background model of Fig. 6(b). We
performed the sequential inversions of 37 and 46 frequencies as-
sociated with starting frequencies of 0.1 Hz (Figs 19a and b) and
0.05 Hz (Figs 19c and d), respectively (Table 3). We show a lack
of small wavenumbers in the thrust area of the VS model inferred
from the velocity-gradient starting model and the initial frequency
of 0.1 Hz: these small wavenumbers lacks in the velocity-gradient
starting model and belong to the null-space when the initial fre-

quency is 0.1 Hz. These small wavenumbers are injected in the FWI
models when the starting frequency is decreased to 0.05 Hz. For this
starting frequency of 0.05 Hz, the FWI VP and VS models inferred
from the starting velocity-gradient model do not show significant
differences with the FWI models inferred from the smooth back-
ground models and a starting frequency of 0.1 Hz (Figs 9c and d).
This highlights the trade-off between the need for an accurate initial
model and the need for low frequencies. Of note, the FWI models
inferred from the smooth background model with starting frequen-
cies of 0.05 Hz and 0.1 Hz do not show significant differences (not
shown here). We conclude that reliable FWI of teleseismic data
should be possible starting from a crude vertical-velocity gradient
model. We also apply FWI for homogeneous starting models of
P-wave and S-wave speeds of 6 km s−1 and 3.4 km s−1, respectively
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Figure 18. Impact of receiver spacing. VP (left-hand panel) and VS (right-hand panel) FWI velocity models obtained with a receiver interval of 2.4 km (a, b),
4.8 km (c, d), 9.6 km (e, f) and 19.2 km (g, h). Sequential inversions of 37 frequencies are performed (Table 3). (i, j) As for (g, h), but sequential inversions of
three overlapping frequency groups are performed instead of sequential inversions of single frequencies. Note the significant reduction in the spatial aliasing.
(k, l) As for (g, h), but the conjugate gradient algorithm is used instead of the L-BFGS.

(Figs 19e–h). In this case, the inversion fails to converge towards the
correct solution, even for a starting frequency as low as 0.015 Hz
(Figs 19g and h). The reason for this might be related to inaccurate
amplitude modelling at the free surface, rather than to kinematic
inaccuracies.

4.8 Resolution analysis by checkerboard tests

We conclude the present study by resolution analysis of FWI per-
formed through checkerboard tests: the true lithospheric model to be
reconstructed is formed by the initial background model (Fig. 6b),
on which we superimpose a checkerboard perturbation model. Other
possible approaches for resolution analysis of FWI consists of com-
puting point-spread functions through an approximate estimation of

the Hessian (Fichtner & Trampert 2011b). We seek to reconstruct
the checkerboard, starting from the smooth background model, and
following the same hierarchical inversion procedure as for the over-
thrust model imaging. We seek to highlight the intrinsic resolving
power of FWI for the teleseismic frequency bandwidth. Therefore,
we consider an ideal acquisition device with a receiver spacing
of 1.2 km and a broad range of incident-angle illumination be-
tween −40◦ and +40◦.

The final FWI VP and VS models obtained for elements of di-
mension 19.2 km, 9.6 km and 4.8 km are shown in Fig. 20. Thirty-
seven frequencies gathered in three overlapping frequency groups
and 17 plane-wave sources were involved in the inversion. The in-
version succeeds in reconstructing the 19.2 km elements for both
the VP and VS models (Figs 20a and b), which is consistent be-
cause the size of the elements is greater than the minimum P and
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Figure 19. Impact of the initial model. (a, b) VP (a) and VS (b) FWI models inferred from vertical velocity-gradient starting models. The starting frequency
was 0.1 Hz. Note the deficit of small wavenumbers in the thrust area (dashed rectangle). (c, d) As for (a, b), for a starting frequency of 0.05 Hz. Note how
the gap of low wavenumbers is filled in. (e, f) The starting models are homogeneous with VP = 6 km s−1 and VS = 3.4 km s−1. The starting frequency was
0.05 Hz. (g, h) As for (e, f), for a starting frequency of 0.015 Hz. In the last two cases, the inversion fails to converge towards the global minimum. See Table 3
for the FWI set-up.

S wavelengths (12.8 km and 7.4 km, respectively), as outlined in
Table 2. The 9.6 km elements were reconstructed with underes-
timated amplitudes in the deep part of the VP model (Fig. 20c).
The S-wave velocity model reconstruction shows overall more con-
sistent amplitudes (Fig. 20d). However, the shape of the elements
is poorly reconstructed in several parts of the model, where the
background model shows significant lateral variations (i.e. in the
thrust area). This might result from the more limited S-wave illumi-
nation compared to the P-wave counterpart, which arises because
the incident wavefield is compressional. The FWI fails to recon-
struct the 4.8 km elements in the VP model, except in the first 5
km of the subsurface (Fig. 20e). This is consistent, because the
size of the elements is below half the minimum P-wavelength.
The elements are successfully reconstructed in the VS model down
to 60 km in depth, although the footprint of the initial model is
visible near the left-hand side of the model (Fig. 20f). The suc-
cessful reconstruction of the 4.8 km elements down to 60 km in
depth is consistent with the minimum shear wavelength, the dimen-
sion of which is of the same order of magnitude as the size of the
elements.

For completeness, we show the results of the checkerboard tests
for the 4.8 km elements when the conjugate gradient algorithm
was used instead of L-BFGS (Figs 20g–j). The frequency groups
are inverted in Figs 20(g) and (h), while single frequencies are
inverted in Figs 20(i) and (j). Comparisons between the FWI re-
sults shown in Figs 20(e, f) and 20(g, j) highlight again the impor-

tance of the Hessian and of the frequency management in FWI of
coarse data.

4.9 Full waveform inversion and migration

FWI and depth migration rely on similar imaging principles: the
perturbation model or the migrated image are built by zero-lag cor-
relation of the incident wavefield and the adjoint wavefield, which is
backpropagated from the receiver positions. Therefore, a depth mi-
grated image is provided by the gradient of the FWI misfit function
at the first iteration, this gradient being stacked over the full seismic
bandwidth (Lailly 1983, 1984). These depth migrations based on
the full wave equation are referred to as reverse time migration and
can be performed in the frequency domain (Mulder & Plessix 2004;
Kim et al. 2011; Prieux et al. 2011). The data residuals, which are
backpropagated from the receiver positions in FWI, are replaced
by the recorded wavefield in migration. Typically, this recorded
wavefield corresponds to the reflection wavefield in surface seismic
exploration. A key difference between migration and FWI is that the
former relies on scale uncoupling between the background model
and the migrated image as the background model is only used for
wave propagation from the source and from the receivers to perform
the zero-lag correlation of the incident and adjoint wavefields. For
FWI, aside the correlation, the data residuals, which are the source
of the adjoint equation, depend also on the velocity model leading
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Figure 20. Resolution analysis by checkerboard tests. VP (left-hand panel) and VS (right-hand panel) FWI perturbation models for elements of dimension (a,
b) 19.2 km, (c, d) 9.6 km and (e, f) 4.8 km. In (a–f), the inversions were applied to three overlapping frequency groups using the L-BFGS optimization. (g, h)
As for (e, f), except that the conjugate gradient algorithm is used instead of L-BFGS. (i, j) As for (g, h), except that single frequencies were inverted rather than
frequency groups.

to a non-linear iterative process during which the model is updated
by model perturbations at each iteration.

We illustrate the relationship between FWI and migration in
Fig. 21. A theoretical migrated image can be generated by applying
a depth-to-time conversion of the true perturbation model (i.e. the
difference between the true model and the initial model), bandpass
filter each time profile of the resulting model, and apply the recip-
rocal time-to-depth conversion to the bandpass filtered model (e.g.
Thierry et al. 1999). The low-pass frequency of the bandpass filter
corresponds to the maximum frequency of the source. The high-pass
frequency of the bandpass filter would correspond to the small-
est frequency of the source for zero-offset recordings. However,
non-zero scattering angles push the imaging towards wavenumbers
that are smaller than the one associated with the lowest temporal
frequency in virtue of eq. (12). The theoretical migrated image
is shown in Fig. 21(a) for the VS model and for a filter band-
width [0.05 Hz; 4.5 Hz], which was chosen slightly broader than
the source bandwidth [0.1 Hz−0.4 Hz]. The same bandpass filter-
ing procedure is applied when the final FWI VS model (Fig. 14h) is
used instead of the true model (Fig. 21b). The resulting perturbation
model closely matches the true migrated image, that highlights that

FWI embeds a migration task if the inversion can be pushed towards
sufficiently-high frequencies. The migrated image for VS perturba-
tions obtained by frequency-domain elastic reverse time migration
is shown in Fig. 21(c). We show a poor-quality migrated section
with a significant deficit of small-wavenumber content (compare
the wavenumber content of the migrated images of Fig. 21).

Although the high wavenumbers of the migrated image of
the Fig. 21(c) are positioned at the correct depths (suggesting a
sufficiently-accurate background model for migration of the reflec-
tion wavefield), the small-to-intermediate wavenumbers of the VS

lithospheric model are lacking in the migrated image. This might
result because the incident source is compressional and the migra-
tion background model is smooth. Therefore, no P–S conversion
occur during the propagation from the bottom of the target to the
surface, until the reflection from the free surface. Without forward-
scattered PS waves, the long-to-intermediate wavelengths of the VS

models cannot be reconstructed: only the short wavelengths of VS

are imaged from the back-scattered PS waves generated by the free
surface and the lithospheric reflectors.

One may wonder why FWI succeeds in reconstructing these long-
to-intermediate wavelengths of the VS model (Fig. 21b), unlike
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Figure 21. Relationship between FWI and migration. (a) True migrated
image, which corresponds to the difference between the true model and the
starting model after bandpass filtering in the time domain (see text for more
details). (b) Same as (a) but the final FWI VS model replaces the true model.
(c) Reverse time migrated image computed in the frequency domain using
the starting model.

migration (Fig. 21c). The reason might be that, as the FWI hierarchi-
cally progresses towards high frequencies, shorter wavelengths are
injected in the lithospheric model during each non-linear iteration of
the FWI. The discontinuities that are progressively injected at each
non-linear iteration of the FWI lead to forward-scattered PS waves
which are amenable to the building of the long-to-intermediate
wavelengths of VS during the late stages of FWI. Notice that, it
this statement is correct, the imaging process follows a different
path than the conventional multiscale approach which reconstructs
first the long wavelengths before the short wavelengths. This results
from the particular geometry and the source type of teleseismic ac-
quisition. The reconstruction of short wavelengths before the long
wavelengths is made possible by the redundant control of frequen-
cies and scattering angles on the wavenumber coverage.

These results highlight the fundamental difference between the
linear imaging process underlying migration and the non-linear one
underlying FWI and the improved imaging that is expected from
FWI by progressively updating the background model in which
seismic modelling is performed.

5 D I S C U S S I O N A N D C O N C LU S I O N

In the present study, we have discussed the feasibility of efficient
frequency-domain FWI for lithospheric imaging from teleseismic
data through a synthetic case study. We focused our analysis on the
sensitivity of the FWI to several factors.

First, we have shown that the surface-reflected wavefields carry
the most resolving information on the lithospheric structure for

both the P-wave and S-wave wave velocities. In this context, the
free surface can be seen as a source on the surface, which prop-
agates downgoing P and S plane waves that are amenable to re-
flection from the main discontinuities before their recording on the
surface. The incident primary wavefields and the reflection wave-
fields can be combined in a joint tomography-like and migration-
like waveform inversion to broaden the range of the scattering
angles involved in the inversion, and hence, to improve the res-
olution of the lithospheric models. This double illumination pro-
vides a distinct advantage over conventional surface acquisitions in
exploration geophysics, for which building the large wavelengths
of the subsurface is challenging. The ability of FWI to account
for forward scattering and backward scattering through full wave
modelling is a distinct advantage over conventional ray-theoretical
teleseismic tomographic approaches that lack resolving power. Our
numerical experiments show that a theoretical resolution of the or-
der of one wavelength is achievable for both the P and S velocity
models if the full P and P–S converted wavefields can be taken
into account.

Considering the low-frequency content of teleseismic sources
and the sampling of wide scattering angles during the up-going
propagation of the primary wavefield, we can conclude that tele-
seismic acquisitions should provide a suitable framework to reduce
the risk of cycle skipping, and to build the large wavelengths of the
structure. We have shown that a velocity-gradient model provides
a suitable initial model to perform FWI for a starting frequency of
0.05 Hz. If the starting frequency is increased to 0.1 Hz, imaging of
deep dipping structures starts to be hampered by a deficit of small
wavenumbers.

In the general framework of diffraction tomography, the tempo-
ral frequency and the scattering angle have double control on the
resolving power of the waveform inversion. Efficient frequency-
domain FWI of wide-aperture data in exploration geophysics (e.g.
cross-hole data, long-offset refraction experiments) is convention-
ally applied to a few discrete frequencies to design computationally
efficient algorithms when seismic modelling is performed in the
frequency domain. This frequency decimation is possible because
point sources have a broad directivity pattern, and hence allow a
broad range of scattering angles to be finely sampled. We have
shown that such aggressive frequency decimation is generally not
permitted in teleseismic FWI, because the limited number of inci-
dent plane-wave sources leads to a coarser and narrower sampling
of the scattering angles. In this context, refining the frequency in-
terval is required to prevent notches in the wavenumber spectra
each time a new frequency component is inverted. When a few
plane-wave sources sample a broad band of incidence angles, the
wavenumber spectrum of the subsurface that is constrained during
a single-frequency inversion can be under-sampled, which leads to
spatial aliasing. To prevent these artefacts, it is worth performing
simultaneous inversion of multiple frequencies rather than inversion
of single frequencies. This does not add prohibitive extra computa-
tional cost if the frequency bandwidths of two consecutive groups
do not significantly overlap.

Even if the advent of modern seismic instrumentation allows for
the deployment of denser and denser station networks, the maximum
receiver spacing that allows reliable FWI to be performed should
be estimated according to the high resolving power of this imaging.
First, we have shown the importance of the L-BFGS optimization
algorithm to improve the focusing of the imaging, and to reduce
the footprint of the aliasing artefacts through accounting for the
Hessian operator. We have shown that horizontal aliasing starts
appearing in the shallow part of the shear-wave velocity models
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for a receiver spacing of the order of 10 km. This receiver spacing
is of the order of the shear wavelength in the shallow part of the
lithospheric model. Reliable P-wave and S-wave velocity models
are obtained when the receiver spacing is up to 20 km, as long
as L-BFGS optimization and frequency groups are used during
the inversion.

Although we perform FWI in the frequency domain, the conclu-
sions of this study also apply to time-domain FWI. As the frequency
interval is reduced in frequency-domain inversion, frequency-
domain and time-domain inversions become equivalent, as a sim-
ilar amount of data is injected in both inversions. We have shown
that teleseismic geometries require inversion of a large number of
frequencies for a limited number of sources. From a numerical
viewpoint, this result questions the relevance of frequency-domain
approaches based on Gauss-elimination techniques, as a new LU
decomposition of the impedance matrix needs to be performed for
each frequency. Therefore, it is likely that time-domain inversion
will be the approach of choice to perform 3-D FWI of teleseismic
data. Alternatively, frequency-domain inversion based on iterative
solvers can compete with the time-domain approach if efficient pre-
conditioner allows for the iteration number to be independent of
frequency (Plessix 2009).

Our parametric analysis was limited to the 2-D assumption. One
may wonder whether the conclusions inferred from this study can be
generalized in three dimensions. Some of the factors that were anal-
ysed in the present study should have similar influence in two and
three dimensions. First, accounting for free surface effects will be a
key to improve the spatial resolution of 3-D FWI of teleseismic data,
as it is in 2-D. We have shown that a fine frequency interval is re-
quired to prevent spatial aliasing to overcome the narrow and coarse
scattering angle illumination provided by a sparse set of plane-wave
sources. This requirement will likely remain in 3-D because, even if
the number of available teleseisms will dramatically increase in 3-D
experiments relatively to 2-D ones, the range of incidence angles of
the plane wave sources will remain bounded by the useful range of
epicentral distances (30–60◦), and the scattering-angle illumination
will remain impacted on by the uneven teleseismic coverage. The
conditions that must be satisfied by the receiver interval to prevent
shallow artefacts in relation with the radius of the Fresnel zone will
apply equally well in 3-D. Such artefacts referred to as acquisition
footprint were already noticed in 3-D FWI results obtained with
coarse land or seabottom data sets (e.g. Ben Hadj Ali et al. 2008;
Sirgue et al. 2010).

Indeed, this study does not pretend to cover all of the factors
that can impact on FWI of teleseismic data. We have used the same
modelling engine to compute the data in the true model and in
the FWI models (the so-called inverse crime), and noise-free data
to illustrate the footprint of selected factors and to quantify the
intrinsic resolving power of FWI.

One difficulty with real data application will probably be related
to noise in the data. The footprint of this noise will be difficult
to remove during imaging because the data redundancy provided
by teleseismic acquisition is not as high as in controlled-source
seismology. This is a significant issue in the sense that noise will
dominantly hamper the inversion of the low-amplitude secondary
scattered waves, which have the most resolving power. Evolving to-
wards 3-D FWI seems necessary to strengthen the data redundancy
and exploit these low-amplitude back-scattered waves. We have
not investigated some data-preconditioning strategies in the present
study that might help to strengthen the contribution of the secondary
scattered wavefield in FWI. One possible strategy would consist of
proceeding sequentially from the early arrivals to the later-arriving

phases in the data space, to reconstruct the long wavelengths of the
lithospheric model before the shorter wavelengths. This multiscale
approach can be easily implemented with time damping applied
from the first arrival, which can be easily picked on teleseismic data
(Brossier et al. 2009b). With this hierarchical approach, the misfit
reduction of the secondary scattered wavefield should be facilitated
during the late stages of the FWI, once the misfit of the primary
wavefields has been efficiently reduced during the early stage of
the FWI. Moreover, these multiscale approaches should also help
to start the FWI from crude initial models without cycle skipping
artefacts, as a limited number of propagated wavelengths will be
propagated during the early stages of the FWI, where only the early
arrivals are involved in the inversion.

FWI requires the estimation of the source signature (here, by
source signature is meant a temporal wavelet representative of the
incident plane wave). The source estimation is generally nested with
the estimation of the subsurface parameters in frequency-domain
FWI (Pratt 1999). The source estimation can also be used for qual-
ity control of FWI models (Brenders & Pratt 2007b; Malinowski
et al. 2011; Prieux et al. 2011). In the teleseismic configuration,
there might be a significant trade-off between the timing of the
source wavelet, the velocity models, and the incidence angle of the
incoming plane-wave source, to match the first-arrival traveltimes.
Moreover, the teleseismic source signature can be much more com-
plex than that of controlled sources. For example, the P and S ghost
reflections on the free surface (the so-called pP and sP arrivals)
and the footprint of the crustal heterogeneities from the source side
can interfere with useful signals in the time window considered for
FWI, and prevent the implementation of multiscale approaches by
application of time-windowing to the data set.

Finally, the reliability of the amplitude information can be ques-
tioned in teleseismic FWI. The influence of the amplitudes in FWI
can be reduced by using the L1 norm of data residuals instead of the
L2 norm, to compute the data misfit function. In frequency-domain
FWI, this amounts to back-propagation of the residuals normal-
ized by their modulus, instead of the residuals themselves (Brossier
et al. 2010b). Alternatively, the influence of the amplitudes can be
reduced (although not removed) by only inverting the phase spec-
trum, which can be easily implemented with a logarithmic norm of
the data residuals (Shin & Min 2006; Bednar et al. 2007; Shin et al.
2007). Empirical data preconditioning were also proposed to reduce
the influence of the amplitudes on the inversion such as trace nor-
malization by spectral whitening (Operto et al. 2004; Malinowski &
Operto 2008; Malinowski et al. 2011; Bleibinhaus & Hilberg 2012)
or amplitude-versus-offset scaling (Brenders & Pratt 2007b).

Application of elastic frequency-domain FWI to real teleseismic
data will be the aim of future studies to assess the feasibility of this
technology for seismological applications.
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D., 2000. Asymptotic viscoacoustic diffraction tomography of ultrasonic
laboratory data: a tool for rock properties analysis, Geophys. J. Int., 140,
324–340.

Roecker, S., Baker, B. & McLaughlin, J., 2010. A finite-difference algorithm
for full waveform teleseismic tomography, Geophys. J. Int., 181, 1017–
1040.

Romdhane, A., Grandjean, G., Brossier, R., Réjiba, F., Operto, S. & Virieux,
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A P P E N D I X A : C O R R E C T I O N F O R
O B L I Q U I T Y

In this appendix, we propose an approximate correction for obliquity
to perform 2-D FWI of teleseseismic data. The method relies on
the assumption of a horizontally stratified medium, for which the
horizontal component of the slowness vector does not vary.

Let us denote by (x, z) the Cartesian coordinate system defined
by the receiver line and depth.

Let us consider a plane wave that propagates with a wave speed
c in the direction of the axis x̃ with an obliquity angle φ relative
to the axis y (Fig. A1), and an incidence angle ξ . Since the source
and the medium are invariant along ỹ, the wavefield satisfies a 2-D
wave equation in the coordinate system (x̃, z).

Figure A1. Correction for obliquity. The plane-wave source propagates in
a horizontal direction with an angle φ with respect the axis perpendicular
to the receiver line. The incidence angle is denoted by the symbol ξ in the
vertical plane.

Under these assumptions, the solution of the 2-D wave equation
for particle velocities in the coordinate system (x̃, z) is of the form

Vx̃ = A sin φ exp
[−iω

( x̃ sin φ

c + z cos φ

c − t
)]

,

Vz = A cos φ exp
[−iω

( x̃ sin φ

c + z cos φ

c − t
)]

,
(A1)

where φ is the incidence angle and sin φ/c is the apparent horizontal
slowness in the vertical plane defined by the receiver line.

If we substitute x̃ by its expression as a function of x and y,
x̃ = x cos θ + y sin θ , we get

Vx̃ = A sin φ exp
[−iω

( x sin φ cos θ

c + y sin φ sin θ

c + z cos φ

c − t
)]

,

Vz = A cos φ exp
[−iω

( x sin φ cos θ

c + y sin φ sin θ

c + z cos φ

c − t
)]

.

(A2)

In the vertical plane of the receivers (defined by y = 0), the expres-
sion reduces to the expressions

Vx = A sin φ cos θ exp
[−iω

( x sin φ cos θ

c + z cos φ

c − t
)]

,

Vz = A cos φ exp
[−iω

( x sin φ cos θ

c + z cos φ

c − t
)]

.
(A3)

We seek a plane wave defined by an apparent wave speed ca and an
apparent incidence angle φa, which is equivalent to the plane wave
of eq. (A3). This leads to the following system of two equations for
two unknowns, as

sin φa
ca

= sin φa cos θ

ca
,

cos φa
ca

= cos φa
ca

.
(A4)

This gives for φa and ca the relationships

tan φa = tan φ cos θ, (A5)

and

ca(x) = c(x)
1√

1 − sin2 θ sin2 φ(x)
= c

1√
1 − p2 c2(x) sin2 θ

= ξ (x)c(x), (A6)

where the slowness is denoted by p.
The wave speed ca is the apparent velocity of the plane wave in the

vertical plane defined by the receiver line, and angle φa is the angle
between the z-axis and the line of intersection between the plane
wave and the (x, z)-plane. The explicit dependency of the apparent
wave speed ca on the spatial coordinates x is explicitly written to
note that the correction factor ξ is local, and hence that it should
be applied at each subsurface position. This correction is exact as
long as the medium is horizontally stratified. The approximation
should be acceptable for moderate obliquity when the geological
structures are reasonably cylindrical (such as subduction zones)
and the receiver line is oriented perpendicular to the dips.

These corrections can be implemented in the scattered-field for-
mulation of the seismic modelling. The apparent incident angles
are taken into account during the computation of the background
wavefield ub. Since we choose a homogeneous half space for mb,
the analytical solution for ub is computed by replacing the incidence
angle of the plane wave at the base of the lithospheric target by the
apparent incidence angle, eq. (A5). The impedance matrices B and
Bb are built for the apparent velocity models given by eq. (A6). Of
note, an apparent impedance matrix needs to be computed for each
incidence angle, as the correction ξ depends on this angle. This
is a clear drawback when a frequency-domain modelling approach
based on Gauss elimination is used, as the LU decomposition needs
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to be performed for each teleseism (i.e. source), while this decom-
position is independent of source in conventional applications.

During the inversion, the gradient of the misfit function is com-
puted with respect to the apparent wave speed for each teleseism,
as these wave speeds are implemented in the forward-problem wave
equation. Then, the gradients of the misfit function with respect to
the true wave speeds are inferred from the gradients computed from
the apparent wave speeds using the chain rule, before being stacked
and smoothed with the 2-D Gaussian smoothing operator

∇Cc = ∇Cca ξ. (A7)

A P P E N D I X B : C O M P U T I N G T H E
G R A D I E N T W I T H T H E A D J O I N T - S TAT E
M E T H O D

In this appendix, we derive the gradient of the misfit function with
the adjoint-state method (Lions 1968; Chavent 1974; Tarantola
1984; Plessix 2006; Chavent 2009) using the second-order wave
equation for particle velocities as the state equation, while seis-
mic modelling is performed with a first-order velocity–stress wave
equation, eq. (1). This allows us to manipulate self-adjoint operator
and save memory during the gradient computation.

The second-order wave equation for particle velocities can be
inferred from the velocity–stress system, eq. (1), by eliminating the
stress wavefields which gives us the system

ω2ρvx = ∂

∂x
(λ + 2μ)

∂vx

∂x
+ ∂

∂z
λ

∂vz

∂z
− iω fx ,

ω2ρvz = ∂

∂x
λ

∂vw

∂x
+ ∂

∂z
(λ + 2μ)

∂vz

∂z
− iω fz . (B1)

After spatial discretization, the second-order order wave equation,
eq. (B1), can be recast in matrix form as

Bv = sv. (B2)

where B denotes the impedance matrices associated with the second-
order system. To build the matrix B, we first discretize the velocity–
stress system with a simple finite volume scheme, which is equiv-
alent to the P0 discontinuous Galerkin scheme, and eliminate the
auxiliary stress wavefields following the parsimonious approach
developed by Brossier et al. (2008). However, we do not use the
second-order wave equation for seismic modelling because im-
plementation of the higher-order P1–P2 discontinuous Galerkin
method in the second-order wave equation is quite complex. We
rely on velocities of the first-order formulation for computing syn-
thetics used in the misfit function evaluation taking advantage of the
hp-adaptivity to perform accurate wavefield modelling. The matrix
B is symmetric, and hence it defines self-adjoint operator, unlike
the velocity–stress forward-problem operator, eq. (1). The veloc-
ity wavefields are denoted by v(x, ω) = [vx(x, ω), vz(x, ω)]. The
right-hand side sv(x, ω) = (−iωfx, −iωfz) is the sources. The first-
order and the second-order wave equations, eqs (2) and (B2), give
the same solutions for the particle velocities, apart from numerical
errors that result from the discretization. This occurs as long as
the source coefficients of the second-order wave equation are the
time derivatives of those of the first-order wave equation (check the
expression of sv and su).

The scattered-field formulation, eq. (4), indifferently applies to
the second-order wave equation with the equation

Bvs = − (B − Bb) vb. (B3)

In the following, we shall assume that vs = PRvus and vb = PRvub.
The restriction operator Rv extracts the particle velocity compo-
nents from the velocity–stress vector computed with the discontin-
uous Galerkin method, and the interpolation operator P projects the
particle-velocity wavefield solutions computed at the nodes of the
P0, P1, P2 elements with the discontinuous Galerkin method onto
the barycenter of these elements, for consistency with the piece-
wise constant discretization of the finite-volume forward-problem
operator B (Brossier 2011).

When mprior = mk and Wd = I in eq. (8), the adjoint-state method
gives the following expression of the gradient of the misfit function
with respect to the model parameter mj Pratt et al. (1998, their eq.
25):

∇Cm j = �
{

vT

(
∂B

∂m j

)T

λ∗
}

, (B4)

where the state variable v and the adjoint-state variable λ satisfy

v = vb − B−1 (B − Bb) vb, (B5)

and

Bλ∗ = RT (Rv − dobs)
∗ , (B6)

respectively. The adjoint-state variable corresponds to the back-
propagated wavefield using the assemblage of the residuals as a
composite source. In eq. (B6), we exploit the symmetry of the matrix
B to remove the transpose operator. This has limited implications
in frequency-domain modelling where a matrix or its transpose
can indifferently be applied to a vector. However, the symmetry
of B can greatly simplify the implementation of the adjoint-state
method in the time domain because the same discrete forward
modelling operator is used to compute the incident and adjoint
wavefields.

As the second-order modelling operator B is difficult to dis-
cretize with the discontinuous Galerkin method, we compute
the state and the adjoint variables from the first-order velocity–
stress forward modelling operator, eqs (4), using the following
sequences:

For the state variable,

Aus = − (A − Ab) ub,

v = PRv (ub + us) , (B7)

and, for the adjoint-state variable,

Aβ∗ = −1

ιω
RT

v RT (Rv − dobs)
∗ ,

λ = PRvβ. (B8)

Combination of the first-order and second-order forward problem
operators A and B allows us, on the one hand to perform seismic
modelling with P0, P1, and P2 discontinuous Galerkin method on
unstructured triangular meshes, and on the other hand to derive
the expression of the gradient of the misfit function from the P0
second-order forward-problem operator B. As B is self-adjoint, the
same forward-modelling operator is used to compute the state and
adjoint-state wavefields. Moreover, only the storage of the particle-
velocity wavefields is required during the gradient computation,
which allows significant memory saving considering 3-D FWI
applications.
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