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A cylindrical vesicle under tension can undergo a pearling instability, characterized
by the growth of a sinusoidal perturbation which evolves towards a collection of
quasi-spherical bulbs connected by thin tethers, like pearls on a necklace. This
is reminiscent of the well-known Rayleigh–Plateau instability, where surface tension
drives the amplification of sinusoidal perturbations of a cylinder of fluid. We calculate
the growth rate of perturbations for a cylindrical vesicle under tension, considering
the effect of both inner and outer fluids, with different viscosities. We show that this
situation differs strongly from the classical Rayleigh–Plateau case in the sense that,
first, the tension must be above a critical value for the instability to develop and,
second, even in the strong tension limit, the surface preservation constraint imposed
by the presence of the membrane leads to a different asymptotic behaviour. The
results differ from previous studies on pearling due to the consideration of variations
of tension, which are shown to enhance the pearling instability growth rate, and lower
the wavenumber of the fastest growing mode.

Key words: interfacial flows (free surface), low-Reynolds-number flows, membranes

1. Introduction

Thin liquid threads are ubiquitous: from engineering processes such as
electrospinning, ink-jet printers, fibre coating, to everyday phenomena such as the jet
formed by impact on a liquid sheet or water dripping from a faucet. They are observed
in a large range of scales: from micrometric jets in microfluidic chips to large-scale
jets in astrophysics (for a recent review on physics of liquid jets, see e.g. Eggers
& Villermaux 2008). Despite the wide range of Reynolds number covered by these
examples, all jets show striking similarities in the sense that the straight cylindrical
shape is unstable and leads ultimately to drop formation and fragmentation of the jet.
The driving mechanism of this instability is the surface tension: perturbations of the
jet radius decreasing its area will grow. Any perturbation whose wavelength is larger
than the perimeter of the jet decreases its surface energy (Plateau 1873), and is thus
unstable. This energetic argument does not give any information about the growth rate
of the perturbations. However, dynamics and stability of liquid threads are of primary
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importance since some applications require a stable (or long-lived) jet (e.g. fibre
formation by electrospinning), while others aim towards the rapid fragmentation of
the jet in drops (e.g. atomization of a spray). Numerous studies have thus been
devoted to the understanding of the dynamics of liquid columns, considering various
properties of the liquid and of its surrounding environment.

The first case studied was that of a column of Newtonian fluid with constant
surface tension: the pioneering work of Rayleigh tackles both the inertia dominated
jet (Rayleigh 1878) and the viscosity dominated jet (Rayleigh 1892b). The effect of
the external media was only considered for inviscid fluids in the limit case where
inertia of surrounding fluid is greater than that of the jet Rayleigh (1892a). This
analysis was later refined by Tomotika (1935), in the viscosity-dominated regime,
by taking into account an external fluid of arbitrary viscosity. While the Rayleigh
analysis for the viscous case (Rayleigh 1892b) predicts that the fastest growing
wavenumber kmax is equal to zero (homogeneous perturbation), Tomotika (1935)
showed that taking into account the external media leads to a finite value for the
most unstable wavelength (kmax 6= 0), since the external viscosity damps large-scale
flow associated with infinite wavelength perturbations.

Even slight deviations from this Newtonian case with constant surface tension can
change radically the picture: taking into account the influence of surfactants at the
interface leads to strong modification of the dispersion relation, in particular in the
viscosity-dominated regime (Palierne & Lequeux 1991; Hansen, Peters & Meijer 1999;
Timmermans & Lister 2002). For example, Timmermans & Lister (2002) showed that
strong surfactant effects can suppress capillary instability in the long-wavelength limit
even without surrounding fluid, thus leading to a kmax 6= 0. The effect of surfactant was
found to be less important as the importance of inertia grows, with negligible effect
for Re → ∞ as already noted by Whitaker (1976).

Considering the possible viscoelastic effects in the bulk of the fluid leads to
complex effects. First, the breakup of the liquid thread can be significantly delayed
(Amarouchene et al. 2001) by the addition of polymers in the liquid. Moreover,
columns of viscoelastic liquids display a characteristic pattern of ‘beads on a string’
(e.g. Oliveira & McKinley 2005; Clasen et al. 2006; Ardekani, Sharma & McKinley
2010; Bhat et al. 2010).

Finally, another situation of interest is the case where the interface between the
two liquids is covered by a material different from the surrounding fluids, such as
a phospholipidic bilayer. This situation is typical of biologically inspired systems
such as vesicles, which are essentially drops enclosed by a membrane. This closed
membrane is formed by self-assembly of phospholipids into a bilayer structure, which
is the main component of cell membranes, and gives them resistance to bending as
well as surface incompressibility. As such, a vesicle is a model system which is widely
studied to gain insight into cell behaviour under stress, in particular to understand
red blood cells dynamics in blood flow. However, even if vesicles membrane and red
blood cells membrane are very similar (both are surface incompressible and resist
bending), red blood cells are more complex objects (Vlahovska, Podgorski & Misbah
2009) since their inner fluid is non-Newtonian and the membrane also resist shearing
due to the spectrin network. Vesicles are also an interesting system from the fluid
mechanics point of view, since the presence of the membrane leads to very different
dynamics when compared with surface-tension-driven dynamics, highlighting the
crucial role of the interface. In particular, the formation of a pattern very similar to
the ‘beads on string’ has been observed on cylindrical vesicles enclosing Newtonian
fluids. This pearling instability can be triggered either by application of a laser tweezer
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(Bar-Ziv & Moses 1994; Bar-Ziv et al. 1997, 1998, 1999), by application of an
extensional flow (Kantsler et al. 2008), by modification of the spontaneous curvature
(Chaïeb & Rica 1998; Tsafrir et al. 2001; Campelo & Hernández-Machado 2007), by
application of a magnetic field on ferromagnetic vesicles (Ménager et al. 2002) or by
osmotic pressure (Yanagisawa et al. 2008; Sanborn et al. 2013). Theoretical analysis
of the laser-induced instability has been done assuming that the laser induced a
constant tension (Nelson et al. 1995; Goldstein et al. 1996; Gurin, Lebedev &
Muratov 1996; Powers 2010), or either a time-dependent tension (Granek & Olami
1995) or tension gradients (Olmsted & MacIntosh 1997). The details of the analysis
published in Nelson et al. (1995) were reported in Goldstein et al. (1996), and
corrected later in Powers (2010). Note that the result reported in Powers (2010)
(neglecting the membrane viscosity contribution) is the same as the result reported in
Gurin et al. (1996) (for fluids of equal viscosities). The constant tension analysis of
Nelson et al. (1995) and Goldstein et al. (1996) was then used to predict the front
velocity of the pearling instability (Bar-Ziv et al. 1997; Powers & Goldstein 1997).
On the other hand, Goveas, Milner & Russel (1997) considered the evolution of the
system when pearls are formed and drift towards the laser trap.

Despite the difference between surfactant-covered threads and cylindrical vesicles,
their behaviour should share a common limit: surfactant-covered threads with strong
surfactant effects, leading to an effective surface incompressibility constraint should
behave as cylindrical vesicles without bending resistance, corresponding to the strong
tension limit. However, none of the previous work on vesicles (Nelson et al. 1995;
Goldstein et al. 1996; Gurin et al. 1996; Powers 2010) recovers the incompressible
interface limit of surfactant covered threads analysis (Palierne & Lequeux 1991;
Timmermans & Lister 2002). Driven by this discrepancy, we calculate in this paper the
growth rate of the pearling instability assuming a constant tension of the membrane
in the base state. This leads to a different expression for the growth rate compared
with Nelson et al. (1995), Goldstein et al. (1996), Gurin et al. (1996) and Powers
(2010), but as we discuss in § 4, our analysis recovers the aforementioned results
if tangential equilibrium is neglected. Furthermore, the complete result presented
here matches the incompressible interface limit of surfactant-covered threads analysis
(Palierne & Lequeux 1991; Timmermans & Lister 2002).

The paper is organized as follows. In § 2, we introduce the system considered,
and write the equations describing the problem. The linear stability analysis is then
detailed in § 3. Finally, results obtained are discussed in § 4, with particular attention
paid to the limit case of an incompressible interface.

2. System

2.1. Vesicle under flow

We consider a cylindrical column of fluid immersed in another fluid (see figure 1),
with a phospholipidic membrane located at the interface between the two fluids. This
is a model for situations commonly encountered for vesicles: cylindrical vesicles can
be formed with a proper experimental protocol (Bar-Ziv et al. 1998; Kantsler et al.

2008), and cylindrical tethers on quasi-spherical vesicles can be easily formed by the
application of a point-like force (Evans et al. 1996; Fygenson, Marko & Libchaber
1997) or by the application of hydrodynamic stresses (Boedec et al. 2013; Zhao &
Shaqfeh 2013).

The hydrodynamical description of the complete system requires us to describe
both the hydrodynamical fields in the inner and outer fluid, as well as the coupling
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FIGURE 1. Scheme of the system considered here: the evolution of the perturbations on a
cylindrical interface separating two fluids is investigated taking into account the presence
of a phospholipidic membrane at the interface.

conditions between these fields at the interface, which are related to the membrane
properties. Due to the typical length scale R0 ∼ 10 µm, the evolution of a vesicle into
an otherwise quiescent fluid is correctly described within the Stokes approximation
for the inner and the outer fluid:

η1v − ∇p = 0

∇ · v = 0

}

(2.1)

where (v, p) are the velocity and pressure fields, and η is the dynamic viscosity.
At the interface, the velocities are continuous:

v
in(x) = v

out(x) (2.2)

where the superscripts in and out denote the inner and outer fields, and x is the
position of the interface. Since the membrane is impermeable, there is no flow through
it, and the position of the interface evolves as

∂x

∂t
= v

in(x) = v
out(x). (2.3)

Finally, the hydrodynamical description is closed by writing the mechanical equilibrium
of the membrane:

Jσ K · n + f m = 0, (2.4)

where n is the outward normal to the interface, Jσ K = [σ out − σ in] is the jump in the
Newtonian stress tensor σ = −pI + 2ηD, with D = 1/2

(

∇v + ∇
T
v

)

the strain rate
tensor. In the above equation, f m stands for the surface density of force related to the
membrane mechanics.

For a vesicle, two membrane properties are crucial when considering the interface
response to deformation by hydrodynamical stresses. First, the interface is composed
of a different material from the bulk fluids (namely, phospholipids). Since there
is no exchange of phospholipids between the interface and the fluids, and since
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the coefficient of compressibility of the phospholipid bilayer is very high, a usual
assumption in vesicle dynamics studies is that the surface density of phospholipids is
conserved. The direct consequence is that the velocity field must be surface divergence
free:

∇s · v
in = ∇s · v

out = 0, (2.5)

where ∇s is the surface gradient.
Second, there is a cost to deform the membrane, which is usually modelled with

the Helfrich free energy:

F =
∫

S

[κ

2
(2h)2 + γ

]

dS, (2.6)

where κ ∼ 20 kBT (Dimova et al. 2006) is the bending modulus of the interface, h

is the mean curvature and γ is a surface Lagrange multiplier which enforces the
constraint of surface incompressibility (2.5). Here γ has the dimension of a surface
tension, but is not a material parameter: it is a supplementary unknown of the problem
which must be determined. Physically, γ is the equivalent of the pressure in the bulk
for incompressible fluids: it represents the non-deviatoric part of the membrane stress
tensor Σ , namely γ = (Σθθ + Σzz)/2.

Surface density of force f m is thus given by the first variation of Helfrich energy:

f m = −
δF

δx
= ∇sγ + {2γ h − κ[21sh + 4h(h2 − kG)]}n, (2.7)

where 1s is the Laplace–Beltrami operator, kG is the Gaussian curvature and we use
the convention such that h = −1/r < 0 for a straight cylinder.

2.2. Base state and physical mechanism of the pearling instability

Assume a cylindrical vesicle of radius r0 and infinite length, under tension γ . Thus,
the mechanical equilibrium of the membrane can be written

pin − pout =
γ

r0
−

κ

2r3
0

. (2.8)

Thus, a solution satisfying the set of (2.1)–(2.5) is

v
in = v

out = 0
pout = 0

pin =
κ

r2
0

1

r0

[

r2
0

κ
γ −

1

2

]















. (2.9)

In (2.9), it is clear that for γ = κ/2r2
0, the inner pressure is zero as well. This is the

classical relationship between tension and radius of the cylinder for equilibrium tethers
pulled out of vesicles by point-like forces (Evans et al. 1996; Fygenson et al. 1997)
or hydrodynamical stresses (Boedec et al. 2013; Zhao & Shaqfeh 2013).

We consider here the stability of this configuration when the radius is perturbed.
The exact linear stability analysis of the full system described in § 2.1 is postponed
to § 3, while here and in the following § 2.3 we will make some strong simplifications
to highlight the driving mechanism of the instability. We thus neglect the effect of the
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outer fluid, and focus on the evolution of pin as written in (2.9). Inserting the ansatz
r = r0(1 + δ̃r) in (2.9), one finds

δpin ≈ δ̃r

(

3κ

2r3
0

−
γ

r0

)

. (2.10)

There is thus a pressure gradient between the ‘necks’ (δ̃r < 0) and the ‘pearls’ (δ̃r > 0),
whose sign depends on the value of the tension: if γ < 3κ/2r2

0, the pressure gradient
will lead to a flow from the pearls to the necks, and perturbations will be damped. If
γ > 3κ/2r2

0, perturbations will be amplified by the flow. This prompts us to choose as
a control parameter of the instability the value of the tension in the base state, which
we will denote hereafter as γ 0. In this simple analysis, we have neglected variations
of tension, which we will discuss in the following section.

2.3. Effect of gradients of tension

To discuss the effect of the variation of the tension in the case of a vesicle, one
needs to first estimate this variation. In contrast to a surfactant-covered thread,
the tension is not given by an equation of state, but is the Lagrange multiplier
associated with the constraint of incompressibility. Thus, if there is no flow, the
tension is constant. The previous ‘static’ analysis is then not applicable directly.
However, it is possible to discuss whether the tension gradients enhance or dampen
the instability by considering the dominant terms of the flow. Assuming a thin
cylinder slightly deformed, and neglecting the outer fluid, one can write the inner
flow in the lubrication approximation:

u(r, z) = −
r

2

∂v0(z)

∂z
−

r3

16η

∂2p

∂z2
+ · · ·

v(r, z) = v0(z) +
r2

4η

∂p

∂z
+ · · ·















(2.11)

where u, v are the radial and axial component of the velocity, and v0 is the
axial component of the velocity at the centre of the cylinder (r = 0). The surface
incompressibility constraint imposes ∂u/∂r = 0, which gives

v0 = −
3r2

0

8η

∂p

∂z
⇒ v(r, z) =

1

4η

∂p

∂z

(

r2 − 3
2 r2

0

)

. (2.12)

As stated previously, the tension of a vesicle membrane acts exactly as the pressure
in the bulk. To determine its variation, one can use the mechanical equilibrium in the
tangent direction, which gives

∇sγ = −(Id − n ⊗ n) · [[σ ]] · n (2.13)

where (Id − n ⊗ n) is the projector onto the tangent plane. Using the flow field (2.11)
with (2.12), this equation can be written as

∂γ

∂z
=

r

2

∂p

∂z
. (2.14)

Using the previous analysis to determine the sign of the pressure gradient, it is clear
that the tension is higher when the cylinder is pinched (‘necks’) and lower when
the cylinder is expanded (‘pearls’); see figure 2. As a result, the capillary pressure
δ̃r(γ /r0) is further increased in ‘necks’ and decreased in ‘pearls’, which strengthens
the instability. Thus, the consideration of variations of tension leads to an enhancement
of the instability. This counterintuitive result will be discussed further in § 4.
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r0

r

z

FIGURE 2. (Colour online) Effects of gradients of tension: the pressure gradient due to
the capillary pressure leads to a Poiseuille flow, which generates viscous stresses on the
interface. To ensure tangent mechanical equilibrium, gradients of tension develops, leading
to a tension in the neck (γn) higher than in the pearls (γp). This increases the capillary
pressure gradient, and thus increases the growth rate.

2.4. Characteristic scales

All dimensionless variables are designed with a capital letter. The radius of the
cylindrical vesicle is chosen as the reference length scale r = r0R, z = r0Z. The
tension is made dimensionless by the imposed tension γ 0, expressed in units of the
equilibrium tension

γ = γ 0Γ = κ/(r2
0)Γ

0Γ .

Velocities are made dimensionless by V0 = γ 0/ηin = Γ 0κ/(ηinr2
0), pressure is made

dimensionless by p0 = ηinV0/r0 and we choose as time scale τ = ηinr3
0/(κΓ 0). With

these variables, the dimensionless system of equations to solve is

1Vin − ∇Pin = 0,
1

λ
1Vout − ∇Pout = 0

∇ · Vin = 0, ∇ · Vout = 0







(2.15)

where derivatives are taken with respect to dimensionless variables (R, Z) and where
we have introduced the viscosity contrast λ= ηin/ηout. These equations are completed
with the coupling conditions at the interface:

[

−Pout
I +

1

λ

(

∇Vout + ∇
TVout

)

+ Pin
I −
(

∇Vin + ∇
TVin

)

]

· n + Fm = 0

∇s · Vin = 0, ∇s · Vout = 0
∂X

∂T
= Vin = Vout























(2.16)

where Fm = ∇sΓ +
{

2Γ H − 1/Γ 0
[

21sH + 4H(H2 − K)
]}

n is the dimensionless
surface force density, X = x/r0 is the dimensionless position of the interface and
T = t/τ is the dimensionless time.

3. Linear stability analysis

In this section, we address the stability of the base state described in § 2.2: starting
with a cylindrical vesicle of dimensionless radius 1 under tension Γ 0, we perturbate
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the radius as
R(Z) = 1 + δR(Z) = 1 +

∑

k

δRke
ikZ + c.c. (3.1)

with ‖δR‖ ≪ 1, and where c.c. is the complex conjugate of the sum. We then expand
all quantities as follows:

P = P0 + PδR + O(‖δR‖2)

V = V0 + VδR + O(‖δR‖2)

Γ = Γ 0 + Γ δR + O(‖δR‖2)







(3.2)

where f 0 denotes the variable f in the base state, and f δR is the variation at linear
order of the variable f due to a change of radius δR. In the following, we compute
the linear variation of all relevant quantities, and drop the superscript δR for clarity.

From a general point of view, the constraints of constant volume and constant
membrane area are fulfilled as their variations are of the order of O(‖δR‖2).

3.1. Hydrodynamics

We begin the analysis with the computation of the velocity and pressure fields inside
and outside a cylindrical tether. Taking the divergence of the Stokes equation, one
finds that the pressure field is harmonic:

1

R

∂

∂R

(

R
∂P

∂R

)

+
∂2P

∂Z2
= 0. (3.3)

Looking for solution of the Laplace equation in cylindrical coordinates by the
method of separation of variables, one finds

P(R, Z) =
∑

k

[pkI0(kR) + p∗
kK0(kR)]eikZ + c.c. (3.4)

where c.c. stands for complex conjugate of the sum, pk,p∗
k are the complex coefficients

of the amplitudes of modes k and In, Kn are modified Bessel functions of the first and
second kind of order n, which satisfy the modified Bessel differential equation

x2 d2y

dx2
+ x

dy

dx
− (x2 + n2)y = 0. (3.5)

Inserting the expression of the pressure field in the right-hand side of the Stokes
equation with V = Uer + Vez, one obtains

∂

∂R

(

1

R

∂(RU)

∂R

)

+
∂2U

∂Z2
= α

∑

k

k[pkI1(kR) − p∗
kK1(kR)]eikZ + c.c.

1

R

∂

∂R

(

R
∂V

∂R

)

+
∂2V

∂Z2
= α

∑

k

ik[pkI0(kR) + p∗
kK0(kR)]eikZ + c.c.



















(3.6)

with α = 1 for the inner fluid and α = λ for the outer fluid. Solutions to this system
of equations are computed as the superposition of the solution to the homogeneous
equation and a particular solution having the same axial dependance, that is

U(R, Z) = Uhom(R, Z) + α
∑

k

fk(R)eikZ + c.c.

V(R, Z) = Vhom(R, Z) + α
∑

k

gk(R)eikZ + c.c.















. (3.7)
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The solutions to the homogeneous equation are easily solved as

Uhom(R, Z) =
∑

k

[ukI1(kR) + u∗
kK1(kR)]eikZ + c.c.

Vhom(R, Z) =
∑

k

[vkI0(kR) + v∗
k K0(kR)]eikZ + c.c.















(3.8)

while the functions fk, gk are found to be

fk(R) =
pk

2
RI0(kR) +

p∗
k

2
RK0(kR)

gk(R) =
ipk

2
RI1(kR) −

ip∗
k

2
RK1(kR)











. (3.9)

Imposing that the inner hydrodynamical fields are finite at R = 0 gives u∗
k = v∗

k = p∗
k

for the inner solution, while imposing that outer hydrodynamical fields are finite when
R → ∞ gives uk = vk = pk for the outer solution.

Thus, the inner solution reads

Uin(R, Z) =
∑

k

[

ukI1(kR) +
pk

2
RI0(kR)

]

eikZ + c.c.

V in(R, Z) =
∑

k

[

vkI0(kR) +
ipk

2
RI1(kR)

]

eikZ + c.c.

Pin(R, Z) =
∑

k

pkI0(kR)eikZ + c.c.



































(3.10)

while the outer solution reads

Uout(R, Z) =
∑

k

[

u∗
kK1(kR) + λ

p∗
k

2
RK0(kR)

]

eikZ + c.c.

Vout(R, Z) =
∑

k

[

v∗
k K0(kR) − λ

ip∗
k

2
RK1(kR)

]

eikZ + c.c.

Pout(R, Z) =
∑

k

p∗
kK0(kR)eikZ + c.c.







































. (3.11)

The incompressibility condition (2.15) imposes

pk + ukk + ivkk = 0
λp∗

k − u∗
kk + iv∗

k k = 0

}

. (3.12)

3.2. Interfacial conditions

We now turn to the coupling conditions, which can be formally written for any
physical quantity g as

g(1 + δR(Z), Z) = 0 for all Z.

Expanding g in powers of δR leads to

gδR(1, Z) + δR
∂g0

∂R
(1, Z) + O(‖δR‖2) = 0 for all Z.
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Since there is no spatial variation in the base state, the coupling conditions simply
write gδR(1, Z) = 0 at leading order.

First, the coefficients of the external flow field are expressed as a function of
the coefficients of the internal flow field by writing the continuity condition at the
interface (2.2):

{

Uin(1, Z) = Uout(1, Z)

V in(1, Z) = Vout(1, Z)
⇔











ukI1(k) +
pk

2
I0(k) = u∗

kK1(k) + λ
p∗

k

2
K0(k)

vkI0(k) +
ipk

2
I1(k) = v∗

k K0(k) − λ
ip∗

k

2
K1(k).

(3.13)

For a velocity field satisfying the incompressibility condition (∇ · v = 0), the surface
incompressibility constraint (∇s · v = 0) can be rewritten as

n · D · n|R=1 = 0

where D = 1/2(∇v + ∇
T
v) is the rate of deformation tensor. To leading order, the

normal to the surface is given by n = er, thus surface incompressibility constraint can
be written as

∂U

∂R |R=1
= 0 ⇒

∑

k

[

uk(I0(k)k − I1(k)) +
pk

2
(I0(k) + kI1(k))

]

eikZ + c.c. = 0.

Thus, the surface incompressibility constraint relates uk to pk, as well as u∗
k and p∗

k :

uk =
pk

2

[

kI1(k) + I0(k)

I1(k) − kI0(k)

]

u∗
k = −λ

p∗
k

2

[

kK1(k) − K0(k)

K1(k) + kK0(k)

]















. (3.14)

Using these relationships together with the continuity of the radial velocity allows one
to express the outer pressure coefficients p∗

k as a function of pk:

p∗
k =

pk

λ

[2I0(k)I1(k) + k(I2
1(k) − I2

0(k))][K1(k) + kK0(k)]
[2K0(k)K1(k) − k(K2

1(k) − K2
0(k))][I1(k) − kI0(k)]

. (3.15)

To leading order, the mechanical equilibrium in the tangential direction reads

dΓ

dZ
−
[

∂V in

∂R
−

1

λ

∂Vout

∂R
+
(

∂Uin

∂Z
−

1

λ

∂Uout

∂Z

)]

R=1

= 0. (3.16)

Integration of the previous equation with respect to Z allows us to determine the
tension:

Γ (Z)=Γ0 +
∑

k 6=0

eikZ

[(

ukI1(k) −
u∗

k

λ
K1(k) − ivkI1(k) − i

v∗
k

λ
K1(k)

)

+ pkI0(k) − p∗
kK0(k)

]

.

(3.17)
Using the incompressibility equation to eliminate vk, v∗

k and then the continuity of the
radial velocity leads to

Γ (Z) = Γ0 +
∑

k 6=0

eikZ

[

pkI1(k) + p∗
kK1(k)

k
+
(

1 −
1

λ

)

(2ukI1(k) + pkI0(k))

]

. (3.18)
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To leading order, the mechanical equilibrium in the normal direction reads

Pin − Pout +
[

2

λ

∂Uout

∂R
− 2

∂Uin

∂R

]

R=1

+ 2Γ H −
1

Γ 0
[21sH + 4H(H2 − K)] = 0. (3.19)

Using the surface incompressibility constraint (∂U/∂R|R=1 = 0) provides one of the
key equations:

∑

k

(pkI0(k) − p∗
kK0(k))e

ikZ =
∑

k

[

δRk

(

k4

Γ 0
− k2

(

1

2Γ 0
− 1

)

+
(

3

2Γ 0
− 1

))

+ Γk

]

eikZ

(3.20)
where the right-hand side corresponds to the first-order expansion of membrane forces
(see appendix A). Injecting the expression of Γk determined by (3.18) leads to

pk =
(

k

[

δRk

(

k4

Γ 0
− k2

(

1

2Γ 0
− 1

)

+
(

3

2Γ 0
− 1

))]

(kI0 − I1)

[

2K1K0 − k(K2
1 − K2

0)

]

)

×
(

(1 + k2)

[

I2
1(2K0K1 − k(K2

1 − K2
0)) +

1

λ
K2

1(2I0I1 + k(I2
1 − I2

0))

])−1

(3.21)

where, for clarity, we have omitted the argument of the Bessel functions and thus note
I0 = I0(k), I1 = I1(k), . . . . This notation will be kept in the following.

Finally, the growth rate is determined by the evaluation of the radial velocity:

∂δRk

∂t
= ukI1 +

pk

2
I0 (3.22)

which leads to

σk = −
(

k

(

k4

Γ 0
− k2

(

1

2Γ 0
− 1

)

+
(

3

2Γ 0
− 1

)))

×
(

2(1 + k2)

[

I2
1

[

2I1I0 − k(I2
0 − I2

1)
] +

K2
1

λ
[

2K1K0 − k(K2
1 − K2

0)
]

])−1

(3.23)

which is the main result of this paper. To ease the comparison with previous
results (Nelson et al. 1995; Goldstein et al. 1996; Gurin et al. 1996; Powers
2010), we also write the growth rate (3.23) for λ = 1 (no viscosity contrast) using
(I0K1 + I1K0)= 1/k (wronskian of {I0, K0}, see e.g. Abramowitz & Stegun 1972) which
leads to

σk = −
((

k4

Γ 0
− k2

(

1

2Γ 0
− 1

)

+
(

3

2Γ 0
− 1

))

(k(I2
0 − I2

1) − 2I0I1)(k(K
2
0 − K2

1) + 2K0K1)

)

×
(

2[2K1I1 + k(I1K0 − I0K1)]
(1 + k2)

k2

)−1

. (3.24)

4. Discussion

4.1. Comparison with previous works

The expression found previously for the growth rate differs markedly from the results
reported by Nelson et al. (1995), Goldstein et al. (1996), Gurin et al. (1996) and
Powers (2010). However, if we do not include variations of tension and set Γk = 0,
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FIGURE 3. (Colour online) (a) Comparison of the growth rate derived in the present
paper (3.24) with previous results neglecting gradients of tension (Gurin et al. 1996;
Powers 2010), see (4.2), in the limit of infinite tension. (b) Evolution of the most unstable
wavenumber kmax with the viscosity contrast λ for several values of the dimensionless
tension Γ 0.

we find a growth rate given by

ωk =
(

k4

Γ 0
− k2

(

1

2Γ 0
− 1

)

+
(

3

2Γ 0
− 1

))

×
(

2

[

I0(I1 − kI0)
[

2I1I0 − k(I2
0 − I2

1)
] −

K0(K1 + kK0)

λ
[

2K1K0 − k(K2
1 − K2

0)
]

])−1

(4.1)

which is exactly (3.8) of Gurin et al. (1996). To compare with Powers (2010), we set
λ= 1 in (4.1) and use once more (I0K1 + I1K0) = 1/k to find

ωk = −
((

k4

Γ 0
− k2

(

1

2Γ 0
− 1

)

+
(

3

2Γ 0
− 1

)

)

(k(I2
0 − I2

1) − 2I0I1)(k(K2
0 − K2

1) + 2K0K1)

)

×(2[I1K1 + I0K0 + k(I0K1 − I1K0)])−1 (4.2)

which is the result reported by Powers (2010) if the membrane viscosity contribution
is neglected. Comparison of (4.1) with (3.23) and (4.2) with (3.24) allows us
to conclude that the contribution of tension gradients determined by mechanical
equilibrium of the membrane in the tangent direction leads to a strong modification
of the denominator of the growth rate. Note that the change is not simply a different
combination of Bessel functions but comes also from a multiplicative term k2/(1 + k2).
To highlight the quantitative difference, the dispersion relations (3.24) derived in this
paper and (4.2) proposed by Gurin et al. (1996) and Powers (2010) are drawn in
figure 3(a) in the case without viscosity contrast, λ = 1. The most unstable mode
has roughly a 25 % higher growth rate for infinite tension. Note that this result is
consistent with the analysis of the effect of variations of tension proposed in § 2.3:
the difference between the growth rate computed here and previous results is entirely
due to the inclusion of the gradients of tension, whose effect is to strengthen the
instability. Physically, those gradients are necessary to ensure that both mechanical
equilibrium in the tangent direction and surface incompressibility constraint are
fulfilled.
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Inclusion of the viscosity contrast, which was considered by Gurin et al. (1996),
but not by Nelson et al. (1995), Goldstein et al. (1996) and Powers (2010), reveals a
quantitative difference with our results as already mentioned but also a qualitative one.
Indeed, our results show that the most unstable wavenumber kmax saturates in the limits
of low and high viscosity contrast λ while it decreases strongly (see figure 3b) as λ
tends to zero in Gurin et al. (1996). See § 4.3 for a discussion of the wavenumber.

4.2. Incompressible interface limit

Before discussing the properties of the pearling instability, it is worth noting that
taking the limit of infinite tension of (3.23):

lim
Γ 0→∞

σ(k, Γ 0, λ) = (k[1 − k2])
(

2(1 + k2)

[

I2
1

[2I1I0 − k(I2
0 − I2

1)]
+

K2
1

λ
[

2K1K0 − k(K2
1 − K2

0)
]

])−1

(4.3)

one recovers the result of Palierne and Lequeux in the limit of Newtonian fluids and
incompressible interface (Palierne & Lequeux 1991, equation (70)) and the result of
Timmermans and Lister in the limit of very viscous thread and strong surfactants
effects (Timmermans & Lister 2002, equation (3.13)), with, using their notation, ℜ →
0, β →∞), which is a special case for λ→∞. The parameter β used by Timmermans
& Lister (2002) is defined as the ratio between Gibbs elasticity and the homogeneous
value of the surface tension. In the limit β → ∞, as discussed in Timmermans &
Lister (2002), surfactants tend to oppose any change of their surface densities: any
such variation would lead to strong gradients of tension, which would in turn drive
strong flows tending to restore homogenous state. Thus, the equation of conservation
of surfactants reduces to (Hansen et al. 1999; Timmermans & Lister 2002)

[

∂V

∂Z
+

U

R

]

|R=1

= 0 + O(β−1) (4.4)

which is exactly the surface divergence free constraint (2.5). It is interesting to
note that this constraint is sufficient to prevent the growth of infinite wavelength
perturbations, even in the case of a viscous thread in an inviscid environment (for
which the Rayleigh analysis Rayleigh (1892b) gives kmax = 0).

The agreement between the analysis of the infinite tension behaviour (4.3) of the
instability (3.23) and the incompressible interface limit provides an important element
of validation of the calculation presented here. This limit is also physically important
because relevant quantities as the most unstable wavenumber quickly saturate as a
function of Γ 0: for (Γ 0/(3/2) − 1) > 10, variations of kmax are less than 5 %. In
particular, as shown in figure 3(b), the value of the most unstable wavenumber was
overestimated by previous analyses (Nelson et al. 1995; Goldstein et al. 1996; Gurin
et al. 1996; Powers 2010). However, experimentally (Bar-Ziv & Moses 1994; Bar-Ziv
et al. 1997, 1998), the dimensionless distance to threshold (2Γ 0/3 − 1) varies between
0 and 15, which gives a range of variation for Γ 0 between 3/2 and 24. In this range,
both the most unstable wavenumber and the growth rate varies notably, which justifies
to keep the bending rigidity in the analysis of the pearling instability.

4.3. Pearling instability

We now turn to the analysis of the pearling instability, with particular attention paid
to the corrections our analysis brings to the previously reported results (Nelson et al.

1995; Goldstein et al. 1996; Gurin et al. 1996; Powers 2010).
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FIGURE 4. (Colour online) Dimensionless growth rate as a function of the dimensionless
wave number for: (a) different values of the dimensionless tension Γ 0 and a unit viscosity
contrast (λ= 1) and (b) different values of the viscosity contrast in the limit of an infinite
tension (Γ 0 → ∞). The classical Rayleigh–Plateau instability is also plotted for λ= 1 and
λ→ ∞ using the result of Tomotika (1935). (Inset) For λ→ ∞, the Rayleigh–Plateau
instability is maximal for k = 0, with σ(0) = 1/6 ≈ 0.1667, well above the maximal value
of σk for a cylindrical vesicle.

The denominator of (3.23) is always positive, thus the sign of the growth rate is
entirely determined by the numerator: for Γ 0 < 3/2, all wave numbers are damped,
while for Γ 0 > 3/2, there is a band of unstable wavenumbers between [0, k0], with k0

given by

k0 =
(

1

4
−

Γ 0

2
+

1

4

√

4(Γ 0)2 + 12Γ 0 − 23

)1/2

(4.5)

which tends towards 1 as Γ 0 → ∞. While the threshold Γ 0 = 3/2 (or γ 0 = 3κ/2r2
0)

has already been determined by Goldstein et al. (1996) and Gurin et al. (1996), the
marginal mode k0 was not derived. This dimensionless wavenumber depends only on
the membrane dimensionless tension, since it represents the separation between stable
and unstable wavenumbers: for small tension, bending rigidity tends to stabilize
wavenumbers higher than k0, while for high tension, one recovers the result of
Plateau (1873), that is, unstable wavelengths are those higher than the perimeter of
the cylinder. As a consequence, it does not depend on the viscosity contrast.

In this band of unstable wavenumbers, the growth rate is positive and exhibits a
maximum for kmax (see figure 4). The position of the maximum depends both on
viscosity contrast and tension, as shown in figure 5: it increases in a monotonic way
with both the tension and the viscosity contrast. This maximum saturates around a
value of kmax ≈ 0.613 for λ= 1 and kmax ≈ 0.636 for λ→ ∞. This shows the notable
influence of the membrane on the dynamics of the instability, even in the large tension
regime: for the classical Rayleigh–Plateau instability in the viscous case, Tomotika
(1935) gives kmax = 0.563 for λ= 1 and kmax = 0 for λ→ ∞. As shown in figure 3(b),
these values are lower than the kmax ≈ 0.68 for λ= 1 reported by Nelson et al. (1995)
and Goldstein et al. (1996), and than the value kmax ≈0.651 computed from the growth
rate given in Gurin et al. (1996) and Powers (2010).

While the limits of low and high viscosity contrast are more formal than physically
relevant, it is interesting to note that there is a noticeable variation (see figure 3b) of
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FIGURE 5. (Colour online) (a) Evolution of the most unstable wavenumber kmax with
the dimensionless tension Γ 0 and the viscosity contrast λ. (b) Evolution of the maximal
growth rate as a function of viscosity contrast and dimensionless tension.

the most unstable wavenumber for viscosity contrast in the experimentally accessible
range of λ∈ [0.01, 10]: for λ= 0.1, kmax = 0.56, for λ= 1, kmax = 0.61, while for λ= 10,
kmax = 0.63. This leads to roughly 10 % variation of the dimensionless wavenumber
associated with the most unstable mode.

5. Conclusion

The linear stability analysis of a viscous cylindrical thread immersed into a viscous
fluid with a phospholipidic membrane under tension γ 0 has been performed, assuming
small deviations from the cylindrical reference shape. The thread is found to be stable
for all wavenumbers when the tension is below a critical value of 3κ/(2r2

0), with κ

the bending modulus of the membrane, and r0 the radius of the unperturbed cylinder.
If the tension exceeds this critical value, the thread is unstable with respect to
perturbations of its radius with a wavenumber in the band [0, k0], where k0 is given
by (4.5), and depends on the tension γ 0, but not on the viscosity contrast λ. In the
limit of infinite tension, k0 → 1. The growth rate of perturbations is given by (3.23),
which shows that even in the limit of infinite tension, the presence of the membrane
at the interface leads to strong deviation from the standard Rayleigh–Plateau case with
viscous fluids (Tomotika 1935). In particular, in this limit, the system behaves as an
interface covered with strong surfactants, preventing the growth of small wavenumbers
disturbances (Palierne & Lequeux 1991; Timmermans & Lister 2002). This is because
strong surfactants effects oppose any variation of the surfactant density, leading to
an effectively surface incompressible interface. The wavenumber with the maximal
growth rate depends both on the applied tension and on the viscosity contrast. For a
cylindrical vesicle with matched viscosity fluids (λ= 1), the most unstable wavelength
is lmax = (2π/kmax)r0 with r0 the radius of the unperturbed cylinder. A perturbation
of wavelength lmax is amplified with a growth rate σ = σmaxγ

0/(ηr0) with γ 0 the
imposed tension and η the viscosity of the fluids. Using typical experimental value
of r0 ≈ 0.5 µm, γ 0 ≈ 5 × 10−6 J m−2 leads to lmax ≈ 5.4 µm, in qualitative agreement
with experimental results (Bar-Ziv & Moses 1994; Bar-Ziv et al. 1997, 1998) and a
growth rate of σmax ≈ 2 × 101 s−1. Quantitative comparisons with experimental results
are more difficult since thermal fluctuations of the membrane prevent measurements
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of the linear stage of the instability (Bar-Ziv et al. 1997). The values of the
dimensionless selected wavenumber in experiments (Bar-Ziv & Moses 1994; Bar-Ziv
et al. 1997, 1998) varies from k = 0.47 close to threshold (Γ 0 ≈ 2) to roughly k = 1
for a dimensionless tension Γ 0 ≈ 23. In this range of tension, the dimensionless
most unstable wavenumber computed with (3.23) varies from 0.37 to 0.60, while the
dimensionless marginal wavenumber computed with (4.5) varies from 0.54 to 0.96.
To quantitatively compare with experiments, an extension of the present linear theory
to the next order would be necessary to describe nonlinear effects. Inclusion in the
theory of the membrane viscosity could also be necessary to describe more accurately
the vesicle membrane.
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Appendix. Differential geometry in cylindrical coordinates

In this section, we derive geometrical quantities (metric, curvature, forces, . . . )
useful for the linear stability analysis (§ 3). We consider the shape of the tube to be
described in cylindrical coordinates by

x(θ, z) = R(Z)er + Zez = R(Z)[cos θex + sin θey] + Zez. (A 1)

Tangent to the shape are given by derivatives with respect to parametrization:

tZ =
∂x

∂Z
= R′(Z)er + ez

tθ =
∂x

∂θ
= R(Z)

[

− sin θex + cos θey

]











. (A 2)

Thus, metric coefficients follows easily:

gZZ = tZ · tZ = 1 + R′(Z)2

gθθ = tθ · tθ = R(Z)2

gθZ = gZθ = 0







(A 3)

as well as the outward normal

n =
tθ ∧ tZ√

g
=

1
(

1 + R′2
)1/2 [er − R′ez]. (A 4)

Curvature tensor coefficients are computed as bαβ = n · ∂tα/∂β, leading to

2H =
R′′

(1 + R′2)3/2
−

1

R(1 + R′2)1/2

K =
−R′′

R(1 + R′2)2















, (A 5)
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where H is the mean curvature and K is the Gaussian curvature. Finally, it is useful
to define surface operators as follows:

∇sf =
∂f

∂Z
t Z

∇s · v =
U

R
+
(

∂U

∂Z

∂R

∂Z
+

∂V

∂Z

)

gzz

1sf =
1

√
g

∂

∂z

(

√
ggzz ∂f

∂z

)































. (A 6)

We then specialize these relations to the case of R(Z) = 1 + δR(Z) where δR(Z)

is the dimensionless deviation of the shape from the cylinder. For a linear stability
analysis, it is sufficient to compute geometrical quantities up to O(‖δR‖2). We have

tZ = δR′er + ez, tZ = δR′er + ez + O(‖δR‖2), n = er − δR′ez + O(‖δR‖2)

H = δR′′ − (1 − δR) + O(‖δR‖2), K = −δR′′ + O(‖δR‖2)

∆sH = δR′′′′ + δR′′ + O(‖δR‖2), ∇sΓ = Γ ′ez







. (A 7)
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