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Blow-up conditions for gravity water-waves

Thibault de Poyferré∗

Abstract

We exhibit blow-up conditions for the gravity water-waves equations in any dimension

and in domains with arbitrary bottoms. We follow the method by Alazard, Burq and Zuily

of using a paradifferential reduction of the equations and derive precise a priori Sobolev

estimates. Those estimates are then used to prove three different blow-up conditions

where neither the boundedness of the curvature of the surface nor the boundedness in

time of the Lipschitz norm of the velocity are needed.

1 Introduction

In this paper, we derive a blow-up criterion for the water-waves system, without surface tension
and with arbitrary bottom. The water-waves problem is the study of the motion under the
influence of gravity of a homogeneous, inviscid fluid, typically water, inside a laterally infinite
container, and separated from the atmosphere by a free interface.

We will assume the presence of a constant gravity field acting along the ey axis, distinguishing
it from the horizontal plane. This horizontal plane will be of dimension d ≥ 1, with in
applications d = 1 or 2. Positions will be expressed in coordinates (x, y) ∈ R

d × R. We
write ∇ = ∇x = (∂x1 , . . . , ∂xd

) and ∇x,y = (∇x, ∂y).

At each time t ∈ R
+, the fluid will occupy a domain Ω(t). We suppose that the free surface,

which will be denoted Σ(t) is the graph of a continuous function y = η(t, x) representing the
variation of the water surface from its rest level. In order to account for a wide variety of
bottoms, we will consider a simply connected open subset O of Rd+1, such that

Ω(t) =
{
(x, y) ∈ R

d ×R; (x, y) ∈ O, y < η(t, x)
}
.

We suppose that there exists h > 0 such that, for all times, the domain Ω(t) contains a
horizontal strip of width h,

(1.1) Ωh(t) :=
{
(x, y) ∈ R

d ×R; η(t, x)− h < y < η(t, x)
}
⊂ Ω(t).

This means that the bottom, denoted by Γ, is nowhere emerging (which precludes islands and
beaches).
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The velocity v(t, x, y) ∈ R
d+1 of the fluid occupying Ω(t) follows the incompressible Euler

equations

(1.2)

{
∂tv + (v · ∇x,y) v +∇x,yP = −gey,

divx,y v = 0,

where g is the acceleration of gravity, supposed constant and positive, and where P (t, x, y) ∈ R

is the pressure of the fluid. It is customary in oceanography to impose in addition for the fluid
to be curl-free, so that rotx,y v = 0 in Ω(t).

In addition, we need to impose boundary conditions on Σ(t) and Γ. First there are the
kinematic conditions that the fluid does not cross or leaves those boundaries, so that

v · n = 0 on Γ,(1.3)

∂tη =

√
1 + |∇η|2 v · ν on Σ,(1.4)

where n and ν(t) are the the exterior unit normals respectively to Γ and Σ(t). At last there is
a dynamic boundary condition on the pressure. We suppose that there is no surface tension at
the surface, which implies that there is no pressure jump between the fluid and the atmosphere.
We assume this atmospheric pressure to be constant, and we can change the definition of P
by an additive constant to take Patm = 0. Then

P |y=η = 0.

Remark. • By imposing for the surface Σ(t) to be a graph, we implicitly assumed that
our solutions will blow up when this ceases to be the case. It has been proved by
Castro, Córdoba, Fefferman, Gancedo and Gómez-Serrano [8] (see also Coutand-Shkoller
[12]) that some cases of a non-graph smooth surface can evolve to a self-intersecting
surface, the so-called splash singularities, where this physical model does not make sense
anymore. This shows that any study of blow-up without the graph hypothesis should
involve some geometric quantities.

• The curl-free hypothesis is a good approximation for most deep-ocean applications,
however it ceases to apply near a cost or when we take the Coriolis effect into account.
See Castro and Lannes ([9]) for a formulation and some results with vorticity.

• Since Γ is not always smooth, its normal may not be defined. We will later give a
variational meaning to this condition, coinciding with the strong sense when the normal
exists.

For more on those hypotheses and on this model see the book by Lannes [19].

Now from the simple connectedness of O, and therefore of Ω(t), and because divx,y v = 0
and rotx,y v = 0, we see that there exists a scalar function φ defined on the fluid domain such
that

∇x,yφ = v in Ω,

∆x,yφ = 0 in Ω.
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Now the Euler equation (1.2) and the boundary conditions (1.3) and (1.4) can be recast
for this velocity potential, becoming —up to a harmless change of the definition of φ by a
time-dependent constant— the Bernoulli formulation

(1.5)





∂tφ+
1

2
|∇x,yφ|2 + gy = −P in Ω(t),

∂tη = ∂yφ−∇η · ∇φ on Σ(t),

∂nφ = 0 on Γ,

P = 0 on Σ(t).

The Cauchy problem for this system has been widely studied, starting from the works of
Nalimov ([21]), Shinbrot ([22]), Yosihara ([27]) and Craig ([13]). The first results for Sobolev
spaces and without smallness assumptions are due to Wu ([25, 26]). A recent extension with
rougher data, essentially Hölder with exponent 3/2 has been proposed by Alazard, Burq
and Zuily in [4], with another extension using Strichartz estimates in [5]. More Recently,
Kinsley and Wu have obtained in [17] a priori estimates covering the case with angled crests.
The next natural objective is to find a blow-up criterion for the system. Christodoulou and
Lindblad ([11]) proved such a criterion involving geometric quantities for the case without
bottom. They showed that the solutions can be extended as long as the curvature of the surface
and the derivative of the velocity remain bounded. More recently, Wang and Zhang ([24]) used
some of the methods of [4] to prove that as long as

sup
0≤t<T

‖κ(t)‖L2∩Lp +

∫ T

0
‖(∇V,∇B)‖6W 1,∞ dt

is bounded, the solution can be extended after the time T . Here κ is the curvature of Σ, V
and B are respectively the horizontal and vertical traces of the velocity v at Σ and p > 2d.
We will prove three blow-up criterions which extend this result. The results proved in this
paper involve less regular norms of the free surface and are valid for the case with rough
bottom. More importantly, we will prove two results which involve only L1 norms in time
of the highest-order norms. Notice that one of the results below (see Theorem 1.4) is used
in [5](see Section 5.4) to deduce an existence result from a priori Sobolev and Strichartz
estimates. Since Strichartz estimates involve L2 norms in time (in dimension d ≥ 2), it is
crucial to have a blow-up result which involves only Lp norms for p ≤ 2. In this direction, we
will obtain sharp results involving only L1 norms (see Theorem 1.3 and Theorem 1.4). In the
case of 2D water-waves (d = 1), Hunter, Ifrim and Tataru have obtained in [16] a blow-up
criterion in holomorphic coordinates, corresponding to ours but sharpened to BMO norms
instead of Hölder norms in space.

An important quantity appears in the analysis of the system (1.5), the so-called Rayleigh-
Taylor coefficient

a := −∂yP |y=η.

In order to solve the Cauchy problem, we need to make a positivity hypothesis on a. One
of the important contributions of Wu’s articles [25, 26] is that this condition is always true
when the depth is infinite, which corresponds to the case Γ = ∅. Lannes then proved the same
result for a small regular perturbation of a flat bottom ([18]).
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Inspired by Craig [13] and Lannes [18], we will use the eulerian formulation of the equations
in connection with elliptic estimates and microlocal or harmonic analysis. In particular, we
use the Craig-Sulem-Zakharov formulation of the equations ([14, 28]). Notice that since the
potential φ is harmonic, it is entirely determined by its value at the surface. We define

ψ(t, x) = φ(t, x, η(x)).

The equation can then be recast in terms of η and ψ, which are functions defined on R
d.

In order to simplify the presentation, Craig and Sulem introduced the use of the Dirichlet-
Neumann operator in [14]. This operator is defined as associating to a function defined on Σ
the exterior normal of its harmonic extension to Ω(t). Here for convenience we re-normalize
it to get

G(η)ψ =

√
1 + |∇η|2∂nφ|z=η.

With this operator, we get a closed system of equations, known as the Craig-Sulem-Zakharov
System

(1.6)





∂tη −G(η)ψ = 0,

∂tψ + gη +
1

2
|∇ψ|2 − 1

2

(∇η · ∇ψ +G(η)ψ)2

1 + |∇η|2
= 0.

Remark. • Under this formulation, the system is Hamiltonian. This is what motivated
the original idea of Zakharov. The Hamiltonian is

(1.7)
1

2

∫

R
d
ψG(η)ψ dx+

1

2

∫

R
d
gη2 dx,

and is conserved by the evolution (see e.g. [19]).

• The formal equivalence of this system to the original one is clear and we refer to [3] for
a rigorous proof.

This work is based upon the paper [4] by Alazard, Burq and Zuily. To recall their main result,
we introduce the vertical and horizontal parts of the velocity at the surface,

B := (∂yφ)|y=η, V = (∇xφ)|y=η.

Those quantities can be computed from knowing only η and ψ. Then

Theorem 1.1 (Theorem 2.1 of [4]). Let d ≥ 1, s > 1 + d/2 and consider (η0, ψ0) such that

1. η0 ∈ Hs+ 1
2 (Rd), ψ0 ∈ Hs+ 1

2 (Rd), V0 ∈ Hs(Rd), B0 ∈ Hs(Rd),

2. there is h > 0 such that condition (1.1) holds for t = 0,

3. there is a positive constant c such that, for any x ∈ R
d, a0(x) ≥ c.

Then there exists T > 0 such that the Cauchy problem for (1.6) with initial data (η0, ψ0) has

a unique solution (η, ψ) in C0
(
[0, T ];Hs+ 1

2 (Rd)×Hs+ 1
2 (Rd)

)
, such that
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1. we have (V,B) ∈ C0
(
[0, T ];Hs(Rd)×Hs(Rd)

)
,

2. the condition (1.1) holds for 0 ≤ t ≤ T , with h replaced by h/2,

3. for any 0 ≤ t ≤ T and any x ∈ R
d, a(t, x) ≥ c/2.

The proof of this theorem relies on paradifferential calculus to reduce the equations to a quasi-
linear system, and then use classical energy methods for hyperbolic symmetrizable quasi-linear
systems. Some notions about paradifferential calculus are recalled in appendix A. It has
the advantage of yielding tame estimates of the various nonlinearities, meaning that those
estimates are linear with respect to the higher order norm. This will enable us to derive new
a priori energy estimates for the paradifferential reduction of the system, from which we will
derive a blow-up criterion complementing Theorem 1.1.

Our main result will be derived in three different flavors, which we believe are all equally
interesting. The first one controls the dynamic using only Hölder norms of the quantities.

Theorem 1.2. Let d ≥ 1, s > 1+d/2, ε > 0 and consider (η0, ψ0) satisfying the assumptions
of Theorem 1.1. If T is the maximum existence time of the solution given by this theorem,
then either T = +∞ or one of the following quantities is infinite

• sup0≤t<T
1

h(t) ,

• sup0≤t<T
1

c(t) ,

• sup0≤t<T ‖η(t)‖W 1+ε,∞(Rd) ,

• sup0≤t<T ‖(V,B)(t)‖W ε,∞(Rd) ,

• sup0≤t<T ‖a(t)‖W ε,∞(Rd) ,

•
∫ T
0 ‖(∂ta+ V · ∇a)(t)‖L∞(Rd) dt,

•
∫ T
0 ‖a(t)‖

W
1
2 ,∞(Rd)

dt,

•
∫ T
0 ‖∇η(t)‖3

W
1
2 ,∞(Rd)

dt,

•
∫ T
0 ‖(V,B)(t)‖3W 1+ε,∞(Rd) dt.

Here h(t) is the largest h satisfying condition (1.3) at time t and c(t) the largest c such
that a(t, x) ≥ c for all x ∈ R

d.

Before introducing the second criterion, we observe that in the case where the domain is
infinitely deep (that is Γ = ∅), the equation enjoys a scaling invariance. The critical space
corresponds to the index s = d/2+ 1/2. We expect to find a better criterion by authorizing a
control of a Sobolev norm of a fixed reference index s0 close to the scaling. This corresponds
to our second result
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Theorem 1.3. Let d ≥ 1, s > 1 + d/2, s > s0 > 1/2 + d/2 and s0 − 1/2− d/2 > ε > 0, and
consider (η0, ψ0) satisfying the assumptions of Theorem 1.1. If T is the maximum existence
time of the solution given by this theorem, then either T = +∞ or one of the following
quantities is infinite

• sup0≤t<T
1

h(t) ,

• sup0≤t<T
1

c(t) ,

• sup0≤t<T ‖(η, ψ, V,B)(t)‖
Hs0+

1
2 (Rd)×Hs0+

1
2 (Rd)×Hs0 (Rd)×Hs0 (Rd)

,

• sup0≤t<T ‖a(t)‖W ε,∞(Rd) ,

•
∫ T
0 ‖(∂ta+ V · ∇a)(t)‖L∞(Rd) dt,

•
∫ T
0 ‖a(t)‖

W
1
2 ,∞(Rd)

dt,

•
∫ T
0 ‖∇η(t)‖

W
1
2 ,∞(Rd)

dt,

•
∫ T
0 ‖(V,B)(t)‖W 1+ε,∞(Rd) dt.

Here h(t) is the largest h satisfying condition (1.3) at time t and c(t) the largest c such
that a(t, x) ≥ c for all x ∈ R

d.

Here the main improvement to the preceding theorem is that we only need to control the
L1-norm in time of the higher order quantities, rather than L3 norms. The proofs of those
two theorems will be parallel, however one can not be deduced from the other.

The last criterion is a simplification of the preceding one, and is the most compact of the
three. It trades a higher reference Sobolev index s0 > 3/4 + d/2 against control of the Taylor
coefficient.

Theorem 1.4. Let d ≥ 1, s > 1 + d/2, s > s0 > 3/4 + d/2 and 1/4 > ε > 0, and consider
(η0, ψ0) satisfying the assumptions of Theorem 1.1. If T is the maximum existence time of
the solution given by this theorem, then either T = +∞ or one of the following quantities is
infinite

• sup0≤t<T
1

h(t) ,

• sup0≤t<T
1

c(t) ,

• sup0≤t<T ‖(η, ψ, V,B)(t)‖
Hs0+

1
2 (Rd)×Hs0+

1
2 (Rd)×Hs0 (Rd)×Hs0 (Rd)

,

•
∫ T
0 ‖∇η(t)‖

W
1
2 ,∞(Rd)

dt,

•
∫ T
0 ‖(V,B)(t)‖W 1+ε,∞(Rd) dt.
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Here h(t) is the largest h satisfying condition (1.3) at time t and c(t) the largest c such
that a(t, x) ≥ c for all x ∈ R

d.

Let us explain why the index 3/4+ d/2 enters into the analysis. As already mentioned, in the
recent paper [5], Alazard, Burq and Zuily used Strichartz estimates to deduce existence for
data with regularity associated to s = 11/12 + d/2. The theoretical limit of this method is
at s > 3/4 + d/2 for d = 2 (since Strichartz estimate gains only 1/4 derivative), and even for
such solutions we expect the quantities in this last theorem to be finite on the existence time
interval. This would not be the case of the quantities sup0≤t<T ‖η(t)‖W 2,∞(Rd), corresponding

to the curvature of the surface, or
∫ T
0 ‖(V,B)(t)‖3W 1+ε,∞(Rd) dt, since solutions can be found

for which those quantities would be infinite.

Section 2 will start with a rigorous definition of the harmonic extension φ and of the Dirichlet-
Neumann, adapted to the case with rough bottom. It also contains in subsection 2.2 a maxi-
mum principle adapted to this framework, that we believe is of independent interest and ends
with results on the elliptic regularity of this problem and their uses to control the Dirichlet-
Neumann. In section 3 we will perform the reduction of the system to a symmetric quasilinear
hyperbolic equation. This imposes to change the variables we work with; in section 4 we will
construct a parametrix to control the new variables with the originals. Section 5 contains
the a priori energy estimates of the new system, and section 6 completes the proofs of the
theorems. Appendix A recalls some notions on paradifferential calculus, the main technical
tool of this analysis.

2 Elliptic Regularity

Following the general strategy of [4], the first step of the proof is to estimate solutions of
the Laplace equation near the free surface. The method is essentially the same, but we look
for tame estimates whose constants depend on the Hölder norm of the surface rather than
on its Sobolev norm. This requires some new techniques, and in particular we shall prove a
maximum principle adapted to this setting. This analysis being valid at fixed time, we will
drop the dependence in t for this whole section.

2.1 Variational solution

We have to give a suitable sense to quantities defined in Ω, from data defined only on the free
surface. Here, we recall this construction.
Those quantities need to be, in a suitable sense, solutions of

(2.1) ∆x,yv = 0, v|Σ = f, ∂nv|Γ = 0.

This definition will come from variational theory.

Notation 2.1. Let D be the space of functions u ∈ C∞(Ω) such that ∇x,yu ∈ L2(Ω).
Let then D0 be the subspace of D whose elements are equal to 0 near the top boundary Σ.
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Proposition 2.2. ([2, Proposition 2.2]) There exists a positive weight g ∈ L∞
loc
(Ω), equal to

1 near the top boundary of Ω, and a constant C > 0 such that for all u ∈ D0,
∫

Ω
g(x, y)|u(x, y)|2 dx dy ≤ C

∫

Ω
|∇x,yu(x, y)|2 dx dy.

Definition 2.3. Let H1,0 be the space of functions u on Ω such that there exists a se-
quence (un)n∈N, with un ∈ D0, satisfying

∇x,yun → ∇x,yu in L2(Ω, dx dy), un → u in L2(Ω, g(x, y) dx dy).

We see from Proposition 2.2 that H1,0 can be equipped with the norm

‖u‖H1,0 = ‖∇x,yu‖L2(Ω) .

As seen in [2], it is a Hilbert space. By regularizing the function η, we can construct η∗ ∈
C∞
b (Rd) such that η − h/20 > η∗ and

{
(x, y) ∈ R

d ×R; η∗(x) < y < η(x)
}
⊂ Ω.

Recall that O denotes the fixed container in which the fluid is located.

Definition 2.4. We denote by H1(O) the space of functions ũ on O such that there exists a
sequence (un) ∈ C∞(O) such that

∇x,yun → ∇x,yũ in L2(O, dx dy), un → ũ in L2(O, ĝ(x, y) dx dy),

where ĝ is the extension of g by 1 to O.

Lemma 2.5. Let w be measurable on Ω. Then w ∈ H1,0(Ω) if and only if the zero extension
of w to O is in H1(O).

Proof. We follow the proof for the classical Sobolev setting, found for example in [1]. It is

routine to show that ∇̃x,yw = ∇x,yw̃, from which the direct part is immediate.

For the indirect part, suppose w̃ ∈ H1(O). Now we can cover Ω with V0 which does not
intersect Σ and V1 which does not intersect Γ. Then using a partition of unity, we can split
w between w0 supported in V0, which by definition is already in H1,0(Ω), and w1 supported
in V1. Then we consider w̃1(x, y + t), which is in H1,0(Ω) and converge to w1 as t goes to 0+,
since the translation in L2 is continuous. This proves that w2, and then w is in H1,0(Ω).

Let f ∈ H1/2(Rd). We define ψ an H1 lifting of f in Ω. Let χ0(z) ∈ C∞(R) be such that
χ0(z) = 1 if z ≥ −1/2 and χ0(z) = 0 if z ≤ −1. Set

ψ1(x, z) := χ0(z)e
z|Dx|f(x), x ∈ R

d, z ≤ 0.

Then set

ψ(x, y) := ψ1

(
x,
y − η(x)

h

)
, (x, y) ∈ Ω,
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which is well defined and vanishes near the bottom Γ.

>From the usual properties of the Poisson kernel, we have

‖ψ‖H1(Ω) ≤ F
(
‖η‖W 1,∞(Rd)

)
‖f‖H1/2(Rd) ,

and

‖ψ‖L∞(Ω) ≤ ‖f‖L∞(Rd) .

We can now use this framework to define u ∈ H1,0 as a variational solution of the problem

−∆x,yu = ∆x,yψ, u|Σ = 0, ∂nu|Γ = 0.

We then define

(2.2) v := u+ ψ.

We see from lemma 3.5 of [4] that this is independent of the lifting function ψ vanishing near
the bottom and we freely get the estimate

∫

Ω
|∇x,yv|2 dx dy ≤ F

(
‖η‖W 1,∞(Rd)

)
‖f‖2H1/2(Rd) .

2.2 Maximum principle

In studying equation (2.1) we will need a weak maximum principle adapted to our variational
formulation. Adapting the proof from [23], we get the following comparison principle.

Proposition 2.6. If φ is a weakly differentiable function such that:

1. φ+ = max(φ, 0) ∈ H1,0;

2.
∫
Ω∇x,yφ · ∇x,yσ dx dy ≤ 0 for all σ ≥ 0 in H1,0;

then φ ≤ 0 in Ω.

Remark. Condition 1 is the adapted way to say that φ|Σ ≤ 0 for the variational space H1,0.

Proof. Since φ+ ≥ 0, and φ+ ∈ H1,0, we have from condition 2, taking σ = φ+

∥∥φ+
∥∥2
H1,0 =

∫

Ω
∇x,yφ

+ · ∇x,yφ
+ dx dy ≤ 0

so that φ+ = 0, which is the desired conclusion.

We can now extend this comparison principle to get the following maximum principle.
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Proposition 2.7. Let η ∈W 1,∞(Rd), f ∈ H1/2(Rd). If v is the solution of Laplace equation
defined in (2.2), and if f is bounded, then

‖v‖L∞(Ω) ≤ ‖f‖L∞(Rd) .

Proof. Keeping in mind the preceding theorem, the only thing we need to prove is that (v −
(1 + ε) ‖f‖L∞(Rd))

+ ∈ H1,0. Replacing v with −v and letting ε go to 0+ will then complete
the proof.

To prove this claim, we will use Lemma 2.5. Since v ∈ H1,0(Ω), the zero extension ṽ is
in H1(O). As in subsection 2.1, we can extend f to O using the Poisson kernel eεz〈Dx〉. This

extension f̃ is bounded by (1+ ε) ‖f‖L∞ (see Lemma 2.9), so that
(
ṽ + f̃ − (1 + ε) ‖f‖L∞

)+

is in H1(O) by elementary properties of this space, is zero on O \ Γ, and so by Lemma 2.5(
ṽ + f̃ − (1 + ε) ‖f‖L∞

)+
∈ H1,0(Ω).

We will mainly use the following classical consequence of the maximum principle:

Proposition 2.8. If 0 < h′ < h, and Ωh′ = {(x, y) ∈ R
d ×R, η(x) − h′ < y < η(x)}, there

exists a constant Ch′ > 0 such that if f ∈ C1+ε(Rd)∩H 1
2 (Rd) and v is a variational solution

of (2.1),
‖v‖C1+ε(Ωh′ )

≤ Ch′ ‖f‖C1+ε(Rd) .

Proof. Noticing that v is an H1 variational solution of ∆x,yv = 0 in Ωh, Corollary 8.36 of [15]
gives this on compact sub-domains of Ωh′ , and the constant being uniform, we can deduce the
result on the full Ωh′ .

2.3 Straightening the boundary

In order to study further regularity of those solutions, it is convenient to straighten the domain,
transforming an equation with constant coefficients on a variable domain to an equation with
variable coefficients on a fixed domain. As seen in [4], there exists a function η∗ such that

(2.3)





η∗ +
h

4
∈ H∞(Rd),

η(x)− η∗(x) =
h

4
+ g, ‖g‖L∞(Rd) ≤

h

5
,

Γ ⊂ {(x, y) ∈ O : y < η∗(x)}.

We can take for example

η∗(x) = −h
4
+ e−ν〈Dx〉η(x),

where ν > 0 is such that ν ‖η‖W 1,∞(Rd) ≤ h
5 .

This gives

‖g‖L∞(Rd) =
∥∥∥e−ν〈Dx〉η − η

∥∥∥
L∞(Rd)

≤ ν ‖η‖W 1,∞(Rd) ≤
h

5
,

thanks to the following classical lemma.
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Lemma 2.9. Let f ∈W 1,∞(Rd), c > 0, and t > 0. Then e−bt〈Dx〉f ∈ L∞(Rd) and
∥∥∥e−bt〈Dx〉f − f

∥∥∥
L∞(Rd)

≤ C × bt ‖f‖W 1,∞(Rd) ,

with C > 0 a constant.

Now define 



Ω1 := {(x, y : x ∈ R
d, η∗(x) < y < η(x)},

Ω2 := {(x, y) ∈ O : y ≤ η∗(x)},
Ω := Ω1 ∪ Ω2,

and 



Ω̃1 := {(x, z) : x ∈ R
d, z ∈ I}, I = (−1, 0),

Ω̃2 := {(x, z) ∈ R
d × (−∞,−1] : (x, z + 1 + η∗(x)) ∈ Ω2},

Ω̃ := Ω̃1 ∪ Ω̃2.

Following Lannes ([18]), we consider the map ρ from Ω̃ to R
d defined as

(2.4)

{
ρ(x, z) :=(1 + z)eδz〈Dx〉η(x)− zη∗(x) if (x, z) ∈ Ω̃1,

ρ(x, z) :=z + 1 + η∗(x) if (x, z) ∈ Ω̃2,

with δ = δ(‖η‖W 1,∞(Rd)) > 0 small.

Using lemma 2.9, we have
∥∥∥∥∂zρ−

h

4

∥∥∥∥
L∞(Ω̃1)

≤ δC ‖η‖W 1,∞(Rd) +
h

5
,

which, taking δ small enough, gives




∂zρ(x, z) ≥ min

(
1,
h

5

)
, ∀(x, z) ∈ Ω̃,

‖∇x,zρ‖L∞(Ω̃)
≤ F

(
‖η‖W 1,∞(Rd)

)
.

This proves that the map (x, z) 7→ (x, ρ(x, z)) is a C1-diffeomorphism from Ω̃ to Ω.

Lemma 2.10. Let I = [−1, 0]. We have in Sobolev-type spaces, for any σ > 1/2 + d/2,

(2.5)

∥∥∥∥∂zρ−
h

4

∥∥∥∥
Xσ−

1
2 (I)

+ ‖∇xρ‖
Xσ−

1
2 (I)

≤ F
(
‖η‖W 1,∞(Rd)

)
‖η‖

Hσ+1
2 (Rd)

,

∥∥∥∥∂zρ−
h

4

∥∥∥∥
L1(I;Hσ−

1
2 (Rd))

+ ‖∇xρ‖
L1(I;Hσ−

1
2 (Rd))

≤ C ‖η‖
Hσ+1

2 (Rd)
.

With 0 ≤ r ≤ 1/2, we have in Hölder-type spaces

(2.6)

∥∥∥∥∂zρ−
h

4

∥∥∥∥
C0(I;Cr

∗
(Rd))

+ ‖∇xρ‖C0(I;Cr
∗
(Rd)) ≤ F

(
‖η‖W 1,∞(Rd)

)
‖η‖C1+r

∗ (Rd) ,

∥∥∥∥∂zρ−
h

4

∥∥∥∥
L̃2(I;C

1
2+r
∗ (Rd))

+ ‖∇xρ‖
L̃2(I;C

1
2+r
∗ (Rd))

≤ C[‖η‖L2(Rd) + ‖η‖C1+r
∗ (Rd)],

∥∥∇2
x,zρ

∥∥
L̃2(I;C

−
1
2+r

∗ (Rd))
≤ C[‖η‖L2(Rd) + ‖η‖C1+r

∗ (Rd)].
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Proof. (2.5) is proved in [4], and the first part of (2.6) is a straightforward consequence
of Lemma 2.9. The second part of (2.6) will be proved with Littlewood-Paley decomposi-
tion, following [24]. We have ‖∇xρ‖

L̃2(I;C
1
2+r
∗ (Rd))

. ‖〈Dx〉ρ‖
L̃2(I;C

1
2+r
∗ (Rd))

, so that we only

need to control this last norm. We can split 〈Dx〉ρ in two parts, (1 + z)eδz〈Dx〉〈Dx〉η and
−ze−ν〈Dx〉〈Dx〉η, whose norms will be respectively A and B. For the first part, we have

A ≤ sup
j>0

2j(
1
2
+r)
∥∥∥∆je

δz〈Dx〉〈Dx〉η
∥∥∥
L2(I;L∞(Rd))

+
∥∥∥∆0e

δz〈Dx〉〈Dx〉η
∥∥∥
L1(I;L∞(Rd))

≤ C sup
j>0

2j(
3
2
+r)
∥∥∥ecδz2j

∥∥∥
L2(I)

‖∆jη‖L∞(Rd) +
∥∥∥eδz〈Dx〉∆0η

∥∥∥
L2(I×R

d)

≤ C sup
j≥0

2j(1+r) ‖∆jη‖L∞(Rd) + ‖∆0η‖L2(Rd) ,

where we have used extensively Bernstein estimates (A.15) and the smoothing effect (A.16).
The same method applies for B, taking z = −1 and bounding e−cν2j by 1/2j . This gives the
expected result, and computations for ∂zρ−h/4 and the second-order terms are identical.

Now for a function v defined on Ω, put

ṽ(x, z) := v(x, ρ(x, z)).

We then have

(2.7)





(∂yv)(x, ρ(x, z)) = Λ1ṽ(x, z), (∇xv)(x, ρ(x, z)) = Λ2ṽ(x, z),

Λ1 :=
1

∂zρ
∂z, Λ2 := ∇x −

∇xρ

∂zρ
∂z.

If v is a solution of ∆x,yv = F0 in Ω then ṽ satisfies

(Λ2
1 + Λ2

2)ṽ = F̃0 in Ω̃.

This equation can be expanded to

(2.8)





(∂2z + α∆x + β · ∇x∂z − γ∂z)ṽ = F̃0,

ṽ(z = 0) = f,

α :=
(∂zρ)

2

1 + |∇xρ|2
, β := −2

∂zρ∇xρ

1 + |∇xρ|2
, γ :=

1

∂zρ
(∂2zρ+ α∆xρ+ β · ∇x∂zρ).

We also remark that
(Λ2

1 + Λ2
2)ρ = 0 in Ω̃,

and that
[Λ1,Λ2] = 0.

We now derive some estimates on the new coefficients.

12



Lemma 2.11. Let I = [−1, 0]. We have for σ > 1/2 + d/2

∥∥∥∥α− h2

16

∥∥∥∥
Xσ−

1
2 (I)

≤ F
(
‖η‖W 1,∞(Rd)

)
‖η‖

Hσ+1
2 (Rd)

,(2.9)

‖β‖
Xσ−

1
2 (I)

≤ F
(
‖η‖W 1,∞(Rd)

)
‖η‖

Hσ+1
2 (Rd)

,(2.10)

‖γ‖
Xσ−

3
2 (I)

≤ F
(
‖η‖W 1,∞(Rd)

) [
1 + ‖η‖

Hσ+1
2 (Rd)

]
,(2.11)

and for any 0 ≤ r ≤ 1/2, we have

∥∥∥∥α− h2

16

∥∥∥∥
C0(I;Cr

∗
(Rd))

≤ F
(
‖η‖W 1,∞(Rd)

)
‖η‖C1+r

∗ (Rd) ,(2.12)

‖β‖C0(I;Cr
∗
(Rd)) ≤ F

(
‖η‖W 1,∞(Rd)

)
‖η‖C1+r

∗ (Rd) .(2.13)

Proof. We see from (2.5) that we can write

(∂zρ)
2 =

h2

16
+G with ‖G‖

Xσ−
1
2 (I)

≤ F(‖η‖W 1,∞(Rd)) ‖η‖Hσ+1
2 (Rd)

.

We can now decompose

α− h2

16
= −h

2

16
× |∇xρ|2

1 + |∇xρ|2
+G−G

|∇xρ|2
1 + |∇xρ|2

,

and we use the tame estimates of (A.8) to conclude. The other inequalities are all proved with
the same method, using the other estimates of (2.5) and (2.6).

2.4 Elliptic regularity in the new domain

We now study the new equation (2.8), following the method from [4], with tame estimates at
every step. Recall from (A.11) the definition of the spaces

Xµ(I) = L∞
z (I;Hµ(Rd)) ∩ L2

z(I;H
µ+ 1

2 (Rd)),

Y µ(I) = L1
z(I;H

µ(Rd)) + L2
z(I;H

µ− 1
2 (Rd)).

We suppose ṽ to be a solution of (2.8) in I ×R
d, I = [−1, 0] with the additional assumption

(2.14) ‖ṽ‖
X−

1
2 ([−1,0])

<∞.

We know from [4] that this estimation holds for our variational solutions of (2.1), with

‖ṽ‖
X−

1
2 ([−1,0])

≤ F
(
‖η‖W 1,∞(Rd)

)
‖f‖

H
1
2 (Rd)

.

The main result of the section will be stated in two versions, corresponding to our two main
theorems.
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Proposition 2.12. Let ǫ > 0, s0 > 1/2 + d/2, and s > 1 + d/2. Let

−1

2
≤ σ ≤ s− 1

2
.

Consider f ∈ Hσ+1(Rd), F̃ ∈ Y σ(I) and ṽ satisfying the hypothesis (2.14), solution to (2.8).
Then for any z0 ∈ (−1, 0),

(2.15) ‖∇x,z ṽ‖Xσ([z0,0])
≤ F

(
‖η‖(C1+ε

∗ ∩L2)(Rd)

)[
‖∇xf‖Hσ(Rd) +

∥∥∥F̃0

∥∥∥
Y σ(I)

+ ‖η‖
Hs+1

2 (Rd)
‖∇x,z ṽ‖L∞(I×R

d) + ‖∇x,z ṽ‖
X−

1
2 ([−1,0])

]
,

and
(2.16)

‖∇x,z ṽ‖Xσ([z0,0])
≤ F

(
‖η‖

Hs0+
1
2 (Rd)

)[
‖∇xf‖Hσ(Rd) +

∥∥∥F̃0

∥∥∥
Y σ(I)

+ ‖∇x,z ṽ‖
X−

1
2 ([−1,0])

]
.

Remark. The proof will show that the function F depends on z0 and on σ. On every applica-
tion, those parameters will be fixed, and independent of time.

As in [4], this will be proved by induction on the regularity σ. The property that inequalities
(2.15) and (2.16) hold for σ, for all admissible z0, will be denoted by Hσ. In this notation,
hypothesis (2.14) means that H−1/2 is satisfied.

Proposition 2.12 is then a consequence of

Proposition 2.13. For any δ such that

0 < δ ≤ inf

(
ε, s0 −

1

2
− d

2

)
≤ 1

2
,

if Hσ is satisfied for some −1/2 ≤ σ ≤ s− 1/2− δ, then Hσ+δ is satisfied.

To prove this, we first estimate the lower order term.

Lemma 2.14. For all J ⊂ I,
(2.17)∥∥∥F̃1

∥∥∥
Y σ+δ(J)

≤ F (‖η‖W 1,∞∩L2)
(
1 + ‖η‖C1+δ

∗

) [
‖η‖

Hs+1
2
‖∂z ṽ‖L∞(Rd×J) + ‖∂z ṽ‖Xσ(J)

]
,

and

(2.18)
∥∥∥F̃1

∥∥∥
Y σ+δ(J)

≤ F
(
‖η‖

Hs0+
1
2

)
‖∂z ṽ‖Xσ(J) ,

with F̃1 = γ∂z ṽ.

Proof. For the first inequality, we decompose F̃1 as

F̃1 = ∂2zρ
1

∂zρ
∂z ṽ +∆xρ

α

∂zρ
∂z ṽ +∇x∂zρ ·

β

∂zρ
∂z ṽ := A+B + C.
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We then use the paraproduct estimates (A.1), (A.4), and (A.5) to get

‖A‖Y σ+δ ≤ ‖A‖
L2(J ;Hs+δ− 1

2 )

≤
∥∥∂2zρ

∥∥
L̃2

(
J ;Cδ− 1

2

)
∥∥∥∥

1

∂zρ
∂z ṽ

∥∥∥∥
Xσ

+

∥∥∥∥
1

∂zρ
∂z ṽ

∥∥∥∥
L∞(J×R

d)

∥∥∂2zρ
∥∥
L2(J ;Hs−1)

,

and using the estimates (2.6) and tame estimates gives the majoration for A. Estimates
on B and C follows along the same lines. For the second one, paraproduct estimates give
immediately

‖γ∂z ṽ‖L1(J ;Hσ+δ) ≤ ‖∂z ṽ‖
L2(J ;Hσ+1

2 )
‖γ‖L2(J ;Hs0−1) ,

and using the estimate on γ from Lemma 2.11 enable us to conclude.

We now replace multiplication by α (resp. β) with paramultiplication by Tα (resp. Tβ).

Lemma 2.15. ṽ satisfies the paradifferential equation

∂2z ṽ + Tα∆xṽ + Tβ · ∇x∂z ṽ = F̃0 + F̃1 + F̃2,

for some remainder
F̃2 = (Tα − α)∆xṽ + (Tβ − β) · ∇x∂z ṽ

satisfying for all J ⊂ I
∥∥∥F̃2

∥∥∥
Y σ+δ(J)

≤ F(‖η‖W 1,∞(Rd))
[
1 + ‖η‖

Hs+1
2 (Rd)

]
‖∇x,z ṽ‖L∞(Rd×J) ,

or ∥∥∥F̃2

∥∥∥
Y σ+δ(J)

≤ F(‖η‖Hs0 (Rd)) ‖∇x,z ṽ‖Xσ(J) .

Proof. First, we have

F̃2 =

(
T
α−h2

16

−
(
α− h2

16

))
∆xṽ −

h2

16
(T1 − 1)∆xṽ + (Tβ − β) · ∇x∂z ṽ,

which, according to (A.5) and (A.3) gives

∥∥∥F̃2

∥∥∥
Y σ+δ

≤ C

[
‖∆xṽ‖L∞C−1

∗

(∥∥∥∥α− h2

16

∥∥∥∥
L2Hσ+δ+1

2

+ 1

)

+ ‖∇x∂z ṽ‖L∞C−1
∗

‖β‖
L2Hσ+δ+1

2

]
.

As σ + δ + 1/2 ≤ s, we have

∥∥∥F̃2

∥∥∥
Y σ+δ

≤ C

[
1 +

∥∥∥∥α− h2

16

∥∥∥∥
Xs− 1

2

+ ‖β‖
Xs− 1

2

]
‖∇x,z ṽ‖L∞ .

Using the estimates (2.9) and (2.10) completes the proof of the first inequality.

Using again (A.5) and (A.3) gives
∥∥∥∥
(
T
α−h2

16

−
(
α− h2

16

))
∆xṽ

∥∥∥∥
L1Hσ+δ

≤ C ‖∆xṽ‖
L2Hσ−

1
2

(∥∥∥∥α− h2

16

∥∥∥∥
L2Hs0+

1
2

+ 1

)
,
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and
‖(Tβ − β) · ∇x∂z ṽ‖L1Hσ+δ ≤ C ‖∇x∂z ṽ‖

L2Hσ−
1
2
‖β‖L2Hs0 ,

so that ∥∥∥F̃2

∥∥∥
Y σ+δ

≤ C

[
1 +

∥∥∥∥α− h2

16

∥∥∥∥
Xs0−

1
2

+ ‖β‖
Xs0−

1
2

]
‖∇x,z ṽ‖Xσ .

The estimates (2.9) and (2.10) enable us to conclude once again.

We can now decouple the equation into a forward and a backward parabolic evolution equation.

Lemma 2.16. There exists two symbols a,A in Γ1
ε(R

d × I) and a remainder F̃3 such that

(2.19) (∂z − Ta)(∂z − TA)ṽ = F̃0 + F̃1 + F̃2 + F̃3,

with

(2.20) M1
ε(a) +M1

ε(A) ≤ F (‖η‖W 1,∞) ‖η‖C1+ε
∗

,

and for all J ⊂ I

∥∥∥F̃3

∥∥∥
Y σ+δ(J)

≤ F (‖η‖W 1,∞) ‖η‖C1+ε
∗

‖∇x,z ṽ‖Xσ(I) .

Proof. We see from [4] that this holds true with

(2.21) a =
1

2
(iβ · ξ −

√
4α|ξ|2 − (β · ξ)2), A =

1

2
(−iβ · ξ +

√
4α|ξ|2 − (β · ξ)2).

Using the Hölder estimates (2.12) and (2.13) gives (2.20). A straightforward estimate of the
remainder along the lines of [4] ends the proof.

Proof of Proposition 2.13. Still following [4], we apply proposition A.13 twice. We will prove
only inequality (2.15), since the proof of inequality (2.16) is along the same lines.

Suppose first that Hσ is satisfied. This means that for J0 = [ζ0, 0], we have

‖∇x,z ṽ‖Xσ([ζ0,0])
≤ F

(
‖η‖(C1+ε

∗ ∩L2)(Rd)

)[
‖f‖Hσ+1(Rd) +

∥∥∥F̃0

∥∥∥
Y σ(I)

+ ‖η‖
Hs+1

2 (Rd)
‖∇x,z ṽ‖L∞(I×R

d) + ‖ṽ‖
X−

1
2 ([−1,0])

]
.

We will then prove that, for any ζ1 > ζ0, we have

‖∇x,z ṽ‖Xσ+δ([ζ1,0])
≤ F(‖η‖(C1+ε

∗ ∩L2)(Rd))

[
‖f‖Hσ+1+δ(Rd) +

∥∥∥F̃0

∥∥∥
Y σ+δ(J0)

+ ‖η‖
Hs+1

2 (Rd)
‖∇x,z ṽ‖L∞(I×R

d) + ‖∇x,z ṽ‖Xσ(J0)

]
,

which will finish the proof of the proposition.
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Take χ a cutoff function such that χ(ζ0) = 0 and χ(z) = 1 for z ≥ ζ1. We then put
w̃ := χ(z)(∂z − TA)ṽ. We see from (2.19) that

∂zw̃ − Taw̃ = F̃ ′,

with
F̃ ′ = χ(z)(F̃0 + F̃1 + F̃2 + F̃3) + χ′(z)(∂z − TA)ṽ.

All those terms, the last one excepted, have already been estimated. Since δ ≤ 1/2, a simple
computation gives

‖(∂z − TA)ṽ‖Y σ+δ(J0)
≤ ‖(∂z − TA)ṽ‖Xσ(J0)

≤ F
(
‖η‖W 1,∞(Rd)

)
‖η‖C1+ε

∗

‖∇x,z ṽ‖Xσ(J0)
,

where we have used the fact that A is a symbol of order 1, whose norm has already been
estimated in (2.20).

We see from the definition of a that it is elliptic, with an ellipticity constant depending only
on h. Since we have w|z=z0 = 0, Proposition A.13 gives the estimate

‖w̃‖Xσ+δ(I0)
≤ F

(
‖η‖C1+ε(Rd)

)∥∥∥F̃ ′
∥∥∥
Y σ+δ(J0)

≤ F
(
‖η‖(C1+ε

∗ ∩L2)(Rd)

)[∥∥∥F̃0

∥∥∥
Y σ+δ(J0)

+ ‖η‖
Hs+1

2 (Rd)
‖∇x,z ṽ‖L∞(I×R

d) + ‖∇x,z ṽ‖Xσ(J0)

]
,

where we have used the estimates from Lemma 2.14, 2.15 and 2.16. Notice that on J1 := [ζ1, 0],
we have χ = 1, so that

∂z ṽ − TAṽ = w̃.

In fact, we have
∂z∇xṽ − TA∇xṽ = ∇xw̃ + T∇xAṽ.

Changing z to −z, and using again Proposition A.13, we have

‖∇xṽ‖Xσ+δ(J1)
≤ F

(
‖η‖C1+ε(Rd)

) [
‖∇xf‖Hσ+δ(Rd) + ‖∇xw̃‖Y σ+δ(J1)

+ ‖∇xṽ‖Xσ(J0)

]
.

Since ‖∇xw̃‖Y σ+δ(J1)
≤ ‖w̃‖Xσ+δ(J1)

, we obtain the estimate

(2.22) ‖∇xṽ‖Xσ+δ([ζ1,0])
≤ F

(
‖η‖(C1+ε

∗ ∩L2)(Rd)

)[
‖∇xf‖Hσ+1+δ(Rd) +

∥∥∥F̃0

∥∥∥
Y σ+δ(J0)

+ ‖η‖
Hs+1

2 (Rd)
‖∇x,z ṽ‖L∞(I×R

d) + ‖∇x,z ṽ‖Xσ(J0)

]
.

The estimate for ∂z ṽ follows from ∂z ṽ = TAṽ + w̃, the estimate for w and the fact that A is
of order 1. This completes the proof of Proposition 2.13, and hence of Proposition 2.12.
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2.5 Applications

In this section we apply the previous elliptic estimates to study the Dirichlet-Neumann oper-
ator and its paralinearization.

Proposition 2.17. Let d ≥ 1, s > 1 + d/2, s0 > 1/2 + d/2, and 1/2 ≤ σ ≤ s+ 1/2. Then

‖G(η)f‖Hσ−1 ≤ F
(
‖η‖C1+ε

∗

) [
‖f‖Hσ + ‖η‖

Hs+1
2
‖∇x,zv‖L∞

]
,

and
‖G(η)f‖Hσ−1 ≤ F

(
‖η‖

Hs0+
1
2

)
‖f‖Hσ ,

where v is the harmonic extension of f . We also have

‖G(η)f‖L∞ ≤ F (‖η‖W 1,∞) ‖∇x,zv‖L∞ .

Remark. The term ‖∇x,zv‖L∞ can generally be expressed only with terms defined on Σ, using
the maximum principle of Proposition 2.7 and its consequence, Proposition 2.8.

Proof. As seen in [4], the Dirichlet-Neumann can be expressed by

(2.23) G(η)f =
1 + |∇xρ|2

∂zρ
∂zv −∇xρ · ∇xv

∣∣∣∣∣
z=0

.

Now using Proposition 2.12, the estimates on ρ from (2.5), and the tame estimates (A.8), the
first two estimates of the proposition immediately follow. The last one is a straightforward
consequence of (2.23).

We know from [4] that the Dirichlet-Neumann can be expressed as

(2.24) G(η) = Tλ +R(η),

where

(2.25) λ(x, ξ) :=

√
(1 + |∇η(x)|2) |ξ|2 − (∇η(x) · ξ)2,

and R(η) is a smoothing operator. Using tame estimates, we obtain

Proposition 2.18. Let d ≥ 1, s > 1 + d/2, 0 < ε ≤ ε′ ≤ 1/2 and 1/2 ≤ σ ≤ s+ 1/2. Then

‖R(η)f‖Hσ−1+ε′ ≤ F
(
‖η‖C1+ε

∗

)(
1 + ‖η‖

C1+ε′
∗

) [
‖f‖Hσ + ‖η‖

Hs+1
2
‖∇x,zv‖L∞

]
,

and if s0 > 1/2 + d/2 and ε′ ≤ s0 − d/2− 1/2,

‖R(η)f‖Hσ−1+ε′ ≤ F
(
‖η‖

Hs0+
1
2

)
‖f‖Hσ .
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Proof. As in the proof of Proposition 2.13, we use Proposition A.13 to get

‖(∂z − TA)ṽ‖Xσ−1+ε′ (J0)
≤ F

(
‖η‖C1+ε(Rd)

)∥∥∥F̃ ′
∥∥∥
Y σ−1+ε′ (J0)

Now since

G(η)f =
1 + |∇xρ|2

∂zρ
∂zv −∇xρ · ∇xv

∣∣∣∣∣
z=0

,

we set

ζ1 :=
1 + |∇xρ|2

∂zρ
, ζ2 := ∇xρ.

According to (2.5),

(2.26)

∥∥∥∥ζ1 −
4

h

∥∥∥∥
C([−1,0];Hs− 1

2 )

+ ‖ζ2‖
C([−1,0];Hs− 1

2 )
≤ F(‖η‖W 1,∞) ‖η‖

Hs+1
2
.

Let
R′ := ζ1∂zv − ζ2 · ∇xv − (Tζ1∂zv − Tζ2∇xv).

Using the tame estimates of (A.8), we verify that

∥∥R′
∥∥
C0(I;Hσ−1+ε′ )

≤ F(‖η‖W 1,∞) ‖∂zv‖L∞ ‖η‖
Hs+1

2
.

Furthermore,
Tζ1∂zv − Tζ2∂xv|z=0 − (Tζ1TAv − Tiζ2·ξv)|z=0 := R′′,

with

∥∥R′′
∥∥
Hσ−1+ε′ ≤ F

(
‖η‖C1+ε

∗

)(
1 + ‖η‖

C1+ε′
∗

) [
‖f‖Hσ + ‖η‖

Hs+1
2
‖∇x,zv‖L∞

]
.

Finally, we have

∥∥Tζ1(z)TA(z) − Tζ1(z)A(z)

∥∥
Hσ→Hσ−1+ε′ ≤ F(‖η‖W 1,∞) ‖η‖

C1+ε′
∗

,

and hence
G(η)f = Tζ1Av − Tiζ2·ξv


z=0

+R(η)f,

where

‖R(η)f‖Hσ−1+ε′ ≤ F(‖η‖C1+ε
∗

)
(
1 + ‖η‖

C1+ε′
∗

) [
‖f‖Hσ + ‖η‖

Hs+1
2
‖∇x,zv‖L∞

]
.

Let

λ :=
1 + |∂xρ|2

∂zρ
A− i∂xρ · ξ


z=0

=

√
(1 + |∂xη(x)|2)|ξ|2 −

(
∂xη(x) · ξ

)2
.

Then
G(η)f = Tλf +R(η)f,

which concludes the proof of the first inequality. The second one is proved along the same
lines.
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3 Paralinearization of the system

We still follow [4] to reduce the equations to a paradiferential hyperbolic system. This process
yields remainders that we need to estimate. To simplify the expression of these estimates, we
will denote by K a constant of the form

K(t) := F
(
1

h
,
1

c
, ‖η(t)‖W 1+ε,∞(Rd) , ‖a(t)‖W ε,∞(Rd) , ‖η‖L2(Rd) , ‖(V,B)‖W ε(Rd)

)
,

with F positive nondecreasing. It will appear in the proof of the first version of our main
theorem, Theorem 1.2, involving only Hölder norms. For the proof of the second version,
Theorem 1.3, involving the reference Sobolev norm of index s0 > 1/2 + d/2, we will use a
constant

K0(t) := F
(
1

h
,
1

c
, ‖a(t)‖W ε,∞(Rd) , ‖(η, ψ, V,B) (t)‖

Hs0+
1
2 (Rd)×Hs0+

1
2 (Rd)×Hs0 (Rd)×Hs0 (Rd)

)
.

Using Sobolev embeddings, we see that we can take K ≤ K0.

We still denote by C a generic constant. To get the optimal regularity, we need to change the
unknowns we are working with, using instead

ζ = ∇η, B = ∂yφ|y=η, V = ∇xφ|y=η, a = −∂yP |y=η,

where φ is the velocity potential and P the pressure, uniquely determined by the equation

−P = ∂tφ+
1

2
|∇x,yφ|2 + gy.

Those follow the following evolution equations.

Proposition 3.1. We have

(∂t + V · ∇)B = a− g,(3.1)

(∂t + V · ∇)V = −aζ,(3.2)

(∂t + V · ∇) ζ = G(η)V + ζG(η)B + γ,(3.3)

where the remainder γ satisfies the estimates

(3.4) ‖γ‖
Hs− 1

2
≤ K

[
‖(V,B, ψ)‖

Hs− 1
2×Hs− 1

2×Hs+1
2
+ ‖η‖

Hs+1
2
‖(V,B)‖C1+ε

∗

]
,

and

(3.5) ‖γ‖
Hs− 1

2
≤ K0

[
‖(V,B, ψ)‖

Hs− 1
2×Hs− 1

2×Hs+1
2

]
.

Proof. The first two equations are proved in [4]. For the estimations of γ, we start from the
equation

∂tη = B − V · ∇η.
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Differentiating this with respect to xi yields for i = 1, ..., d

(∂t + V · ∇) ∂iη = ∂iB −
d∑

j=1

∂iVj∂jη,

and using the definitions of V and B and the chain rule,

(3.6) (∂t + V · ∇) ∂iη = [∂y∂iφ−∇η · ∇∂iφ]|y=η + ∂iη [∂y(∂yφ)−∇η · ∇∂yφ]|y=η.

We now introduce θi, the variational solution of the problem

∆x,yθi = 0 in Ω, θi|Σ = Vi, ∂nθi = 0 on Γ.

Then
G(η)Vi = (∂yθi −∇η · ∇θi)|Σ.

We can now write

(∂y −∇η · ∇) ∂iφ|y=η = G(η)Vi +Ri, where Ri = (∂y −∇η · ∇) (∂iφ− θi)|Σ.

If there was no bottom, we would see that at least formally, Ri would be 0. Then, in our
setting, we expect a control of this remainder, and to obtain it, we continue to follow [4] and
localize the problem near Σ.

Let χ0 ∈ C∞(R), η1 ∈ H∞(Rd) be such that χ0(z) = 1 if z ≥ 0, χ0(z) = 0 if z ≤ −1/4, and

η(x)− h

4
≤ η1(x) ≤ η(x)− h

5
.

Set

Ui(x, y) = χ0

(
y − η1(x)

h

)
(∂iφ− θi) (x, y).

We see that
Ri = (∂y −∇η · ∇)Ui|Σ.

And Ui satisfies the equation

∆x,yUi =

[
∆x,y, χ0

(
y − η1(x)

h

)]
(∂iφ− θi) := Fi

with

suppFi ⊂ S 1
2
, 1
5
:=

{
(x, y) : x ∈ R

d, η(x)− h

2
≤ y ≤ η(x)− h

5

}
.

We can then control the right hand term of this equation, using lemma 3.16 of [4], which gives
for all α ∈ N

d+1,

(3.7)
∥∥Dα

x,yFi

∥∥
L∞(S 1

2 , 15
)∩L2(S 1

2 , 15
)
≤ Cα ‖(V,B)‖

H
1
2×H

1
2
.

Then changing variables, we get on the domain Ω̃ that

(
∂2z + α∆+ β · ∇∂z − γ∂z

)
Ũi =

(∂zρ)
2

1 + |∇ρ|2
F̃i.
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We can then apply the estimate (2.15), with f = 0.

∥∥∥∇x,zŨi

∥∥∥
C0([z0,0];H

s− 1
2 )

≤ K
[∥∥∥F̃i

∥∥∥
Y s− 1

2
+ ‖η‖

Hs+1
2

∥∥∥∇x,zŨi

∥∥∥
L∞

+
∥∥∥∇x,zŨi

∥∥∥
X−

1
2

]
.

Using equation 3.7, the control on the X− 1
2 norm of a variational solution, and the maximum

principle for gradients of Proposition 2.8, this yields

∥∥∥∇x,zŨi

∥∥∥
C0([z0,0];H

s− 1
2 )

≤ K
[
‖(V,B, ψ)‖

Hs− 1
2×Hs− 1

2×Hs+1
2
+ ‖η‖

Hs+1
2
‖(V,B)‖C1+ε

∗

]
.

Since

Ri =

[(
1 + |∇η|2
1 + δ〈Dx〉η

∂z −∇η · ∇
)
Ũi

]∣∣∣∣∣
z=0

,

we have

‖Ri‖
Hs− 1

2
≤ K

[
‖(V,B, ψ)‖

Hs− 1
2×Hs− 1

2×Hs+1
2
+ ‖η‖

Hs+1
2
‖(V,B)‖C1+ε

∗

]
.

The same argument shows that

(∂y −∇η · ∇) ∂yφ = G(η)B +R0,

where R0 satisfies the same estimate as Ri. This proves the first estimate. The second one
follows exactly the same scheme, using (2.16) instead.

Using the same method, and following proposition 4.5 of [4], it is possible to prove the following
relation.

Proposition 3.2. We have G(η)B = −div V + γ′, where

∥∥γ′
∥∥
Hs− 1

2
≤ K

[
‖(V,B)‖

Hs− 1
2×Hs− 1

2
+ ‖η‖

Hs+1
2
‖(V,B)‖C1+ε

∗

]
,

and ∥∥γ′
∥∥
Hs− 1

2
≤ K0

[
‖(V,B)‖

Hs− 1
2×Hs− 1

2

]
.

We will now perform a paralinearization of the system. We will start with the estimate for
the first theorem. We introduce as a new unknown

U := V + TζB.

Rather than estimating U and ζ in Sobolev spaces, it will be easier to estimate

Us := 〈Dx〉sV + Tζ〈Dx〉sB,(3.8)

ζs := 〈Dx〉sζ.(3.9)

Proposition 3.3. We have

(3.10)

{
(∂t + TV · ∇)Us + Taζs = f1,

(∂t + TV · ∇) ζs = TλUs + f2,
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where λ is the symbol

λ(t;x, ξ) :=

√(
1 + |∇η(t, x)|2

)
|ξ|2 − (∇η(t, x) · ξ)2,

and where

(3.11)

‖f1‖L2 ≤ K

{[
‖∇η‖

C
1
2
∗

‖∇B‖
C

−
1
2

∗

+ ‖∇B‖L∞ + ‖V ‖W 1,∞

]
‖V ‖Hs

+

[
1 + ‖a‖

C
1
2
∗

]
‖ζ‖

Hs− 1
2

+
[
‖V ‖C1+ε

∗

+ ‖∇B‖L∞

]
‖B‖Hs

+ ‖∇η‖
C

1
2
∗

‖a− g‖
Hs− 1

2

}
,

and

(3.12)
‖f2‖

H−
1
2
≤ K

[(
1 + ‖∇η‖

C
1
2
∗

)
(‖B‖Hs + ‖V ‖Hs)

+
(
‖B‖C1+ε

∗

+ ‖V ‖C1+ε
∗

)
‖η‖

Hs+1
2
+ ‖ψ‖

Hs+1
2

]
.

Proof. The computations are long, however they still mirror the ones of [4]. First we paralin-
earize the equation

(∂t + V · ∇)V + aζ = 0.

We will prove the identity

(∂t + TV · ∇)V + Taζ + Tζ (∂t + TV · ∇)B = h1

with a remainder h1 satisfying

‖h1‖Hs ≤ K

[
‖∇V ‖L∞ ‖V ‖Hs +

(
1 + ‖a‖

C
1
2
∗

)
‖ζ‖

Hs− 1
2
+ ‖∇B‖L∞ ‖V ‖Hs

]
.

First we have V · ∇V = TV · ∇V +A1 with

‖A1‖Hs ≤ C ‖∇V ‖L∞ ‖V ‖Hs .

We also have (a− g)ζ = Ta−gζ + Tζ(a− g) +R(ζ, a− g) where

‖R(ζ, a− g)‖Hs ≤ C ‖ζ‖
Hs− 1

2
‖a‖

C
1
2
∗

.

We can now replace a by g + (∂tB + V · ∇B) to get

Tζa = Tζ (∂tB + TV · ∇B) + Tζ (V − TV ) · ∇B,

with
‖Tζ (V − TV ) · ∇B‖Hs ≤ C ‖∇η‖L∞ ‖∇B‖L∞ ‖V ‖Hs .
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We then commute our identity with 〈Dx〉s. Using the product estimates of Theorem A.5, we
have the estimates

‖[TV · ∇, 〈Dx〉s]V ‖L2 ≤ C ‖V ‖W 1,∞ ‖V ‖Hs ,(3.13)

‖[Ta, 〈Dx〉s] ζ‖L2 ≤ C ‖a‖
C

1
2
∗

‖ζ‖
Hs− 1

2
,(3.14)

(3.15) ‖[Tζ , 〈Dx〉s] (∂t + TV · ∇)B‖L2 ≤ C ‖ζ‖
C

1
2
∗

‖(∂t + TV · ∇)B‖
Hs− 1

2

≤ C ‖ζ‖
C

1
2
∗

[
‖(∂t + V · ∇)B‖

Hs− 1
2
+ ‖(V − TV ) · ∇B‖

Hs− 1
2

]

≤ C ‖ζ‖
C

1
2
∗

[
‖a− g‖

Hs− 1
2
+ ‖∇B‖

C
−

1
2

∗

‖V ‖Hs

]
,

‖Tζ [TV · ∇, 〈Dx〉s]B‖L2 ≤ C ‖ζ‖L∞ ‖V ‖W 1,∞ ‖B‖Hs ,(3.16)

‖[Tζ , ∂t + TV · ∇] 〈Dx〉sB‖L2 ≤ C
[
‖∇B‖L∞ + ‖∇η‖L∞ ‖V ‖C1+ε

∗

]
‖B‖Hs .(3.17)

Those commutators estimates prove that

(3.18) (∂t + TV · ∇) (〈Dx〉sV + Tζ〈Dx〉sB) + Ta〈Dx〉sζ = f1,

where f1 satisfies (3.11).

We now paralinearize the equation

(∂t + V · ∇) ζ = G(η)V + ζG(η)B + γ.

We use the paralinearization of the Dirichlet-Neumann (2.24) to get

(∂t + TV · ∇) ζ = TλU + h2

with
h2 = − (V − TV ) · ∇ζ + [Tζ , Tλ]B +R(η)V + ζR(η)B + (ζ − Tζ)TλB + γ.

From Theorem A.8, we get

‖(V − TV ) · ∇ζ‖
Hs− 1

2
≤ C ‖∇η‖

C
1
2
∗

‖V ‖Hs .

Theorem A.5 and simple estimates on the symbol λ give

‖[Tζ , Tλ]B‖
Hs− 1

2
≤ C

(
M0

0(ζ)M1
1
2

(λ) +M0
1
2

(ζ)M1
0 (λ)

)
‖B‖Hs(3.19)

≤ K ‖∇η‖
C

1
2
∗

‖B‖Hs .(3.20)

Then with the estimates of Proposition 2.18 and the maximum principle (2.8), we have

‖R(η)V ‖
Hs− 1

2
≤ K

(
‖V ‖Hs + ‖η‖

Hs+1
2
‖∇V ‖C1+ε

∗

)
,
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and using paraproduct from Theorem A.8, a rough estimate of ‖R(η)B‖L∞ , and the maximum
principle (2.8),

‖ζR(η)B‖
Hs− 1

2
≤ C

(
‖ζ‖

Hs− 1
2
‖R(η)B‖L∞ + ‖ζ‖L∞ ‖R(η)B‖

Hs− 1
2

)
(3.21)

≤ K
(
‖η‖Hs+ 1

2
‖B‖C1+ε

∗

+ ‖B‖Hs

)
.(3.22)

At last, we see thanks to the estimates of Theorem A.5 that

‖(ζ − Tζ)TλB‖
Hs− 1

2
≤ K ‖B‖C1+ε

∗

‖ζ‖
Hs− 1

2
.

Then as in the previous part, commuting the equation with 〈Dx〉s and using (3.4) yields (3.12).

In order to obtain a closed inequality system, we need an estimate of ‖a(t)− g‖
Hs− 1

2
in terms of

the Sobolev norms of the unknowns η, ψ, V,B. This is the object of the following proposition.

Proposition 3.4. The Taylor coefficient satisfies the estimates

‖a− g‖
Hs− 1

2
≤ K

[
‖η‖

Hs+1
2

(
1 + ‖(V,B)‖C1+ε

∗

)
+ ‖(V,B)‖C1+ε

∗

‖ψ‖
Hs+1

2

]
,

and
‖a− g‖

Hs− 1
2
≤ K0 ‖η, ψ, V,B‖

Hs+1
2×Hs+1

2×Hs×Hs

Proof. The pressure is defined by

P = −
(
∂tφ+

1

2
|∇xφ|2 +

1

2
(∂yφ)

2 + gy

)
,

where φ is the harmonic extension of ψ. This means that P satisfies the elliptic equation

∆x,yP = −
∣∣∇2

x,yφ
∣∣2 ,

with P = 0 on the free surface Σ. We change variables using the transformation ρ from (2.4),
and set

ϕ(x, z) = φ(x, ρ(x, z)), P(x, z) = P (x, ρ(x, z)) + gρ(x, z),

with

a− g = − 1

∂zρ
∂zP

∣∣∣∣
z=0

.

The elliptic equation on P becomes

∂2zP + α∆xP + β · ∇x∂zP − γ∂zP = −α
∣∣Λ2ϕ

∣∣2 for z < 0,(3.23)

P = gη on z = 0,(3.24)

where Λ = (Λ1,Λ2) is defined in (2.7).

We first need to study the right-hand term of the equation. Since φ is harmonic, we recover
from Proposition 2.12 and the variational estimate of ‖∇x,zϕ‖

X−
1
2

the inequality

‖∇x,zϕ‖
Xs− 1

2
≤ K

[
‖η‖

Hs+1
2
+ ‖ψ‖

Hs+1
2

]
.
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Now using the fact that (Λ2
1 + Λ2

2)ϕ = 0, we can recover estimates on ∂2zϕ from estimates
on ∇x∇x,zϕ, so that ∥∥Λ2ϕ

∥∥
Xs− 3

2
≤ K

[
‖η‖

Hs+1
2
+ ‖ψ‖

Hs+1
2

]
.

At last, using the paraproduct rules, and the estimates on α from Lemma 2.11, we find
∥∥∥−α

∣∣Λ2ϕ
∣∣2
∥∥∥
Y s− 1

2
≤K

∥∥Λ2ϕ
∥∥
L∞

[
‖η‖

Hs+1
2

∥∥Λ2ϕ
∥∥
L∞([−1,0];C−1

∗ )
+
∥∥Λ2ϕ

∥∥
Xs− 3

2

]
(3.25)

≤K ‖(V,B)‖C1+ε
∗

[
‖η‖

Hs+1
2
+ ‖ψ‖

Hs+1
2

]
,(3.26)

where
∥∥Λ2ϕ

∥∥
L∞([−1,0];C−1

∗ )
has been estimated from ‖Λϕ‖L∞ using (Λ2

1+Λ2
2)ϕ = 0 once again.

For the version with a reference Sobolev index, we recall from the proof of Proposition 3.1
that if θi is the harmonic extension of Vi, and if τi is its straightening by the diffeomorphism ρ
to the strip, then up to a harmless restriction of the interval J close to the boundary we have

‖∇x,z (τi − Λiϕ)‖
Xs− 1

2 (J)
≤ K0 ‖(ψ, V,B)‖

Hs+1
2×Hs− 1

2×Hs− 1
2
.

Also, we have from (2.16)
‖∇x,zτi‖Xs−1 ≤ K0 ‖V ‖Hs .

Combining those two results and doing the same for B and ∂zϕ gives

∥∥Λ2ϕ
∥∥
Xs−1 ≤ K0 ‖η, ψ, V,B‖

Hs+1
2×Hs+1

2×Hs×Hs
.

At last, using paraproduct estimates, we gain

(3.27)
∥∥∥−α

∣∣Λ2ϕ
∣∣2
∥∥∥
Y s− 1

2
≤ K0 ‖η, ψ, V,B‖

Hs+1
2×Hs+1

2×Hs×Hs
.

We then take from [4] the estimate

‖∇x,zP‖
X−

1
2
≤ K

[
‖η‖

H
1
2
+
∥∥∥|∇ϕ|2

∥∥∥
X

1
2

]
(3.28)

≤ K
[
1 + ‖(V,B)‖C1+ε

∗

] [
‖η‖

Hs+1
2
+ ‖ψ‖

Hs+1
2

]
.(3.29)

A last application of the elliptic regularity of Proposition 2.12 gives the estimate

‖∂zP‖
Xs− 1

2
≤ K

[
‖η‖

Hs+1
2
(1 + ‖∂zP‖L∞) +

∥∥∥−α
∣∣Λ2ϕ

∣∣2
∥∥∥
Y s− 1

2
+ ‖∇x,zP‖

X−
1
2

]
(3.30)

≤ K
[
‖η‖

Hs+1
2

(
1 + ‖(V,B)‖C1+ε

∗

)
+ ‖(V,B)‖C1+ε

∗

‖ψ‖
Hs+1

2

]
,(3.31)

and a last use of the paraproduct gives the first result. The second one follows along the same
lines, using (2.16) and (3.27) instead.

We can now perform a symmetrization of the system as follows

Proposition 3.5. We introduce the symbols

γ :=
√
aλ, q :=

√
a

λ
,
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and the new variable
θs := Tqζs.

Then we have the equations

(3.32)

{
∂tUs + TV · ∇Us + Tγθs = F1,

∂tθs + TV · ∇θs − TγUs = F2,

where the source terms F1 and F2 satisfy

‖F1‖L2 ≤ K

[(
1 + ‖∇η‖

C
1
2
∗

)(
1 + ‖(V,B)‖C1+ε

∗

)
‖(V,B)‖Hs

+

(
1 + ‖a‖

C
1
2
∗

+
(
1 + ‖(V,B)‖C1+ε

∗

)(
1 + ‖∇η‖

C
1
2
∗

))(
1 + ‖ζ‖

Hs− 1
2

)

+
(
1 + ‖(V,B)‖C1+ε

∗

)(
1 + ‖∇η‖

C
1
2
∗

)
‖ψ‖

Hs+1
2

]
,

and

‖F2‖L2 ≤ K

[(
1 + ‖∇η‖

C
1
2
∗

)
‖(V,B)‖Hs

+
(
1 + ‖(V,B)‖C1+ε

∗

+ ‖∂ta+ V · ∇a‖L∞

)(
1 + ‖ζ‖

Hs− 1
2

)

+ ‖ψ‖
Hs+1

2

+

(
1 + ‖a‖

C
1
2
∗

+ ‖∇η‖
C

1
2
∗

)
‖Us‖L2

]
.

Proof. We have from the preceding system (3.10) that (3.32) is satisfied for

F1 = f1 + (TγTq − Ta) ζs,

F2 = Tqf2 + (TqTλ − Tγ)Us − [Tq, ∂t + TV · ∇] ζs.

Thanks to Lemma A.12, we have

‖[Tq, ∂t + TV · ∇] ζs‖L2 ≤ C

[
M− 1

2
0 (q) ‖V ‖C1+ε

∗

+M− 1
2

0 (∂tq + V · ∇q)
]
‖ζs‖

H−
1
2
.

It can be computed that

M− 1
2

0 (q) ≤ K,

and that

M− 1
2

0 (∂tq + V · ∇q) ≤ K (1 + ‖∂ta+ V · ∇a‖L∞ + ‖∂t∇η + V · ∇∇η‖L∞) .

A differentiation of the identity
(∂t + V · ∇)η = B

gives the estimate

‖(∂t + V · q)∂xiη‖L∞ ≤ ‖∇B‖L∞ + ‖∇V ‖L∞ ‖∇η‖L∞ ,
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so that

(3.33) ‖[Tq, ∂t + TV · ∇] ζs‖L2 ≤ K
(
‖(V,B)‖C1+ε

∗

+ ‖∂ta+ V · ∇a‖L∞

)
‖ζs‖

H−
1
2
.

The estimates of the other terms give respectively

(3.34)

‖(TγTq − Ta)ζs‖L2 ≤ C

[
M

1
2
1
2

(γ)M− 1
2

0 (q) +M
1
2
0 (γ)M

− 1
2

1
2

(q)

]
‖ζs‖

H−
1
2

≤ K

[
1 + ‖a‖

C
1
2
∗

+ ‖∇η‖
C

1
2
∗

]
‖ζs‖

H−
1
2
,

(3.35)

‖(TqTλ − Tγ)Us‖L2 ≤ C

[
M− 1

2
1
2

(q)M1
0(λ) +M− 1

2
0 (q)M1

1
2

(λ)

]
‖Us‖L2

≤ K

[
1 + ‖a‖

C
1
2
∗

+ ‖∇η‖
C

1
2
∗

]
‖Us‖L2 ,

and lastly

(3.36)
‖Tqf2‖L2 ≤ CM− 1

2
0 (q) ‖f2‖

H−
1
2

≤ K ‖f2‖
H−

1
2
.

This, together with the previous estimates, give the expected result.

The analogous result with the reference Sobolev index is

Proposition 3.6. The source terms F1 and F2 from the preceding proposition satisfy

‖F1‖L2 ≤ K0

[(
1 + ‖∇η‖

C
1
2
∗

+ ‖(V,B)‖C1+ε
∗

)
‖(V,B)‖Hs

+

(
1 + ‖a‖

C
1
2
∗

+ ‖∇η‖
C

1
2
∗

)(
1 + ‖ζ‖

Hs− 1
2

)

+

(
1 + ‖∇η‖

C
1
2
∗

)
‖ψ‖

Hs+1
2

]
,

and

‖F2‖L2 ≤ K0

[(
1 + ‖∇η‖

C
1
2
∗

)
‖(V,B)‖Hs

+
(
1 + ‖(V,B)‖C1+ε

∗

+ ‖∂ta+ V · ∇a‖L∞

)(
1 + ‖ζ‖

Hs− 1
2

)

+ ‖ψ‖
Hs+1

2

+

(
1 + ‖a‖

C
1
2
∗

+ ‖∇η‖
C

1
2
∗

)
‖Us‖L2

]
.
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4 Estimates of the original unknowns

In order to obtain a closed system of energy estimates, we need a control of the norms
of η, ψ, V,B, in terms of lower order norms and of norms of Us, θs. The formers will then
be studied using transport equations on the various unknowns, and for the latters we will use
the paralinearized system of Proposition 3.5.

Proposition 4.1. There holds

‖η‖
Hs+1

2
≤ K (‖θs‖L2 + ‖ζs‖H−1) ,

‖(V,B)‖Hs ≤ K

[
1 + ‖Us‖L2 +

(
1 + ‖η‖

C
3
2
∗

)
‖(V,B)‖

Hs− 1
2

+ ‖(V,B)‖C1+ε
∗

(‖θs‖L2 + ‖ζs‖H−1)
]
,

and

‖ψ‖
Hs+1

2
≤ K

[
1 + ‖Us‖L2 +

(
1 + ‖η‖

C
3
2
∗

)
‖(V,B)‖

Hs− 1
2

+ ‖(V,B)‖C1+ε
∗

(‖θs‖L2 + ‖ζs‖H−1) + ‖ψ‖L2

]
.

Proof. We start with the estimate on η. Fist we remark that

‖η‖
Hs+1

2
≤ ‖η‖L2 + ‖∇η‖

Hs− 1
2

≤ K
(
1 + ‖ζs‖

H−
1
2

)
,

since ζs = 〈Dx〉s∇η. We then construct and use a parametrix to go back from θs = Tqζs to ζs.
If our ε is small enough, typically 0 < ε < s − d/2 − 1, we choose N an integer such that
(N + 1)ε > 1/2, and we take R = I − T1/qTq, keeping in mind that q =

√
a/λ. Then

ζs = T1/qTqζs +Rζs

=
(
I +R+ · · ·+RN

)
T1/qTqζs +RN+1ζs.

Then from the composition formula for paradifferential operators in Theorem A.5, we have

‖R‖Hµ→Hµ+ε ≤ C

(
M− 1

2
ε (q)M

1
2
0 (1/q) +M− 1

2
0 (q)M

1
2
ε (1/q)

)

≤ K,

and from the definition of q, we see that

∥∥T1/q
∥∥
L2→H−

1
2
≤ M

1
2
0 (1/q) ≤ K.

Those estimations put together give

‖η‖
Hs+1

2
≤ K (‖θs‖L2 + ‖ζs‖H−1) .
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To simplify the equations, we worked with the unknown Us = 〈Dx〉sV + Tζ〈Dx〉sB. We first
show how to go back from this to U = V + TζB. We have

(4.1) 〈Dx〉sU = Us + [〈Dx〉s, Tζ ]B,

and Theorem A.5 gives
‖[〈Dx〉s, Tζ ]B‖L2 ≤ ‖ζ‖

C
1
2
∗

‖B‖
Hs− 1

2
.

Putting those two identities together gives

‖U‖Hs ≤ ‖Us‖L2 + ‖∇η‖
C

1
2
∗

‖B‖
Hs− 1

2
.

Then to get back to B from this, we take the divergence of U and use Proposition 3.2 to
link V and B and the paralinearization of the Dirichlet-Neumann (2.24), so that

divU = div TζB

= G(η)B + γ′ + Tdiv ζB + Tζ · ∇B
= TpB +R(η)B + Tdiv ζB + γ′,

where
p := −λ+ iζ · ξ.

Now p is a symbol of order 1 and 1/p of order −1, with

(4.2) M1
r(p) +M−1

r (1/p) ≤ K ‖∇η‖Cr
∗

.

Now we use a new parametrix from TqB to B, giving

(4.3)
B = T1/pTpB + (I − T1/pTp)B

= T1/p divU − T1/pγ
′ + T1/p (−Tdiv ζ −R(η))B + (I − T1/pTp)B.

This gives, using (4.2), Proposition 3.2, Proposition 2.18, and the maximum principle 2.8,

‖B‖Hs ≤ K

(
‖U‖Hs +

∥∥γ′
∥∥
Hs−1 + ‖∇η‖

C
1
2
∗

‖B‖
Hs− 1

2
+ ‖R(η)B‖Hs−1

)

≤ K

(
‖Us‖L2 +

(
1 + ‖η‖

C
3
2
∗

)
‖(V,B)‖

Hs− 1
2
+ ‖(V,B)‖C1+ε

∗

‖η‖
Hs+1

2

)
,

which combined with the previous estimate on η gives the expected result. Using the relation

U = V + TζB

gives the same estimation on V .

At last, we have the identity
∇ψ = V +B∇η,

and the quantities in the right side have all been estimated, so that a tame estimate on B∇η
concludes the proof.
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For the version with a reference Sobolev norm, we have a simpler proposition.

Proposition 4.2. There holds

‖η‖
Hs+1

2
≤ K0 (‖θs‖L2 + ‖ζs‖H−1) ,

‖(V,B)‖Hs ≤ K0

[
‖Us‖L2 + ‖(V,B)‖

Hs− 1
2

]
,

and
‖ψ‖

Hs+1
2
≤ K0

[
‖Us‖L2 + ‖(V,B)‖

Hs− 1
2

]
.

Proof. The first estimate is a simple consequence of the previous proposition and of our hy-
pothesis that K ≤ K0.

For the second one, we combine (4.1) and (4.3) to get

B = T 1
p

[
div〈Dx〉−sUs + γ′

]
+
[
T 1

p

(
div〈Dx〉−s [〈Dx〉s, Tζ ]−R(η)− Tdiv ζ

)
+
(
I − T 1

p
Tp

)]
B,

:=M +RB.

As before, this gives
B =

(
I +R+ · · ·+RN

)
M +RN+1B,

where again (N + 1) ε > 1/2 with 0 < ε < s0 − 1/2− d/2. Then we see using Proposition 3.2
that

‖M‖Hs ≤ K0

[
‖Us‖L2 + ‖(V,B)‖

Hs− 1
2

]
.

We see using (4.2) and Proposition 2.18 that R is of order −ε, with

‖R‖Hσ→Hσ+ε ≤ K0

when s− 1
2 ≤ σ ≤ s. This gives the estimate on B, and the estimates on V and ψ are deduced

from it as in the previous proposition.

5 Energy estimates

We start with a standard energy estimate on the now symmetric quasilinear system (3.32).

Proposition 5.1. The following estimates hold punctually in time

(5.1)

d

dt
‖(Us, θs)‖L2 ≤K

(
‖a‖

C
1
2
∗

+ ‖(∂t + V · ∇) a‖L∞ +Q

(
‖∇η‖

C
1
2
∗

, ‖(V,B)‖C1+ε
∗

))

×
(
‖(Us, θs)‖L2 + ‖ψ‖L2 + ‖ζs‖H−1 + ‖(V,B)‖

Hs− 1
2

)
,

where Q is an explicit polynomial of degree 3, and

(5.2)

d

dt
‖(Us, θs)‖L2 ≤K0

(
‖a‖

C
1
2
∗

+ ‖(∂t + V · ∇) a‖L∞ + ‖∇η‖
C

1
2
∗

+ ‖(V,B)‖C1+ε
∗

)

×
(
‖(Us, θs)‖L2 + ‖ψ‖L2 + ‖ζs‖H−1 + ‖(V,B)‖

Hs− 1
2

)
.
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Proof. Multiplication of the equations by Us and θs respectively, followed by integration in
space gives

d

dt
[‖Us‖L2 + ‖θs‖L2 ] ≤ A+B + C,

with

A := 〈TV · ∇Us, Us〉+ 〈TV · ∇θs, θs〉 ,
B := 〈Tγθs, Us〉 − 〈TγUs, θs〉 ,
C := 〈F1, Us〉+ 〈F2, θs〉 .

Now using Theorem A.5, we see that

‖(TV · ∇)∗ + (TV · ∇)‖L2→L2 ≤ C ‖V ‖W 1,∞ ,

and ∥∥Tγ − T ∗
γ

∥∥
L2→L2 ≤ CM

1
2
1
2

(γ),

and the estimates on F1 and F2 of Proposition 3.5 and Proposition 3.6 complete the proof.

The next proposition exploits the transport equations available on the remaining variables to
close the system of estimates.

Proposition 5.2. With the same Q as in the previous proposition, there holds, for A = ‖ψ‖L2 ,
A = ‖ζs‖H−1 or A = ‖(V,B)‖

Hs− 1
2
,

d

dt
A ≤K

(
‖a‖

C
1
2
∗

+ ‖(∂t + V · ∇) a‖L∞ +Q

(
‖∇η‖

C
1
2
∗

, ‖(V,B)‖C1+ε
∗

))

×
(
‖(Us, θs)‖L2 + ‖ψ‖L2 + ‖ζs‖H−1 + ‖(V,B)‖

Hs− 1
2

)
,

and
d

dt
A ≤K0

(
‖a‖

C
1
2
∗

+ ‖(∂t + V · ∇) a‖L∞ + ‖∇η‖
C

1
2
∗

+ ‖(V,B)‖C1+ε
∗

)

×
(
‖(Us, θs)‖L2 + ‖ψ‖L2 + ‖ζs‖H−1 + ‖(V,B)‖

Hs− 1
2

)
.

We will need the following lemma on transport equations

Lemma 5.3. If σ > 0, and if u solves

(∂t + V · ∇)u = f,

Then
d

dt
‖u‖L2 . ‖V ‖W 1,∞ ‖u‖L2 + ‖f‖L2 ,

and

d

dt
‖u‖Hσ . ‖V ‖W 1,∞ ‖u‖Hσ + ‖(V − TV ) · ∇u‖Hσ + ‖(V − TV ) · 〈Dx〉σ∇u‖L2 + ‖f‖Hσ .
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Proof. The L2 energy estimate is standard, and the Sobolev estimate follows from commuting
the equation with 〈Dx〉σ, using the L2 estimate, and observing that

‖[〈Dx〉σ, V ]∇u‖L2 ≤‖[〈Dx〉σ, TV ] · ∇u‖L2 + ‖[〈Dx〉σ, V − TV ] · ∇u‖L2

≤‖V ‖W 1,∞ ‖u‖Hσ + ‖(V − TV ) · ∇u‖Hσ + ‖(V − TV ) · 〈Dx〉σ∇u‖L2 .

Proof of Proposition 5.2. First, from the equation on ψ and the definitions of V and B we
have the transport equation

(∂t + V · ∇)ψ = −gη + 1

2
V 2 +

1

2
B2.

The previous L2 estimate and a simple tame estimate on the L2 norms of V 2 and B2 give the
estimate on ψ.

We then recall equation (3.3),

(∂t + V · ∇) ζ = G(η)V + ζG(η)B + γ,

and use the previous Sobolev estimate with σ = s− 1 to get

d

dt
‖ζ‖Hs−1 . ‖V ‖W 1,∞ ‖ζ‖Hs−1 + ‖(V − TV ) · ∇ζ‖Hs−1 +

∥∥(V − TV ) · 〈Dx〉s−1∇ζ
∥∥
L2

+ ‖G(η)V ‖Hs−1 + ‖ζ‖L∞ ‖G(η)B‖Hs−1 + ‖ζ‖Hs−1 ‖G(η)B‖L∞

+ ‖γ‖Hs−1 .

Using the parproduct rules from Theorem A.8 gives

‖(V − TV ) · ∇ζ‖Hs−1 ≤ ‖∇ζ‖
C

−
1
2

∗

‖V ‖
Hs− 1

2

≤ ‖∇η‖
C

1
2
∗

‖V ‖
Hs− 1

2

and

∥∥(V − TV ) · 〈Dx〉s−1∇ζ
∥∥
L2 ≤

∥∥〈Dx〉s−1∇ζ
∥∥
C1−s+ε

∗

‖V ‖Hs

≤ ‖∇η‖Cε
∗

‖V ‖Hs .

To estimate the Dirichlet-Neumann operators, we use Proposition 2.17, and γ is estimated
using (3.4) or (3.5).

Recall also that B follows equation (3.1),

(∂t + V · ∇)B = a− g.

The Sobolev estimate gives

d

dt
‖B‖

Hs− 1
2
. ‖V ‖W 1,∞ ‖B‖

Hs− 1
2
+ ‖(V − TV ) · ∇B‖

Hs− 1
2

+
∥∥∥(V − TV ) · 〈Dx〉s−

1
2∇B

∥∥∥
L2

+ ‖a− g‖
Hs− 1

2
,
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and as for ζ, we have

‖(V − TV ) · ∇B‖
Hs− 1

2
≤ ‖∇B‖L∞ ‖V ‖

Hs− 1
2

and
∥∥∥(V − TV ) · 〈Dx〉s−

1
2∇B

∥∥∥
L2

≤
∥∥∥〈Dx〉s−

1
2∇B

∥∥∥
C

1
2−s+ε
∗

‖V ‖
Hs− 1

2

≤ ‖B‖C1+ε
∗

‖V ‖
Hs− 1

2
.

a− g is estimated using Proposition 3.4.

At last V follows equation (3.2),

(∂t + V · ∇)V = −aζ,

so we use the same bound for the commutator that we used for B and remark that

‖aζ‖
Hs− 1

2
. ‖a− g‖

Hs− 1
2
‖ζ‖L∞ + (g + ‖a‖L∞) ‖ζ‖

Hs− 1
2

from which the proposition follows.

6 Proof of the main results

The main theorems will follow as usual from the expression of the energy estimates. The one
with only Hölder components is

Proposition 6.1. Let d ≥ 1, s > 1 + d/2, and ε > 0. Let (η, ψ) be a solution of the
water-waves system (1.6) on [0, T ] from theorem 1.1, and define V,B, h, a, c in the same way.
Then

(6.1) sup
0≤t≤T

‖(η, ψ, V,B)(t)‖
Hs+1

2 (Rd)×Hs+1
2 (Rd)×Hs(Rd)×Hs(Rd)

≤ F
(
T, sup

0≤t≤T

1

h
, sup
0≤t≤T

1

c
, sup
0≤t≤T

‖η(t)‖W 1+ε,∞(Rd) , sup
0≤t≤T

‖(V,B)(t)‖W ε,∞(Rd) ,

sup
0≤t≤T

‖a‖W ε,∞(Rd) ,

∫ T

0
‖(∂ta+ V · ∇a)(t)‖L∞(Rd) dt,

∫ T

0
‖a(t)‖

W
1
2 ,∞(Rd)

dt,

∫ T

0
‖∇η(t)‖3

W
1
2 ,∞(Rd)

dt,

∫ T

0
‖(V,B)(t)‖3W 1+ε,∞(Rd) dt

)
,

with F a positive, strictly increasing function of each of its variable, depending only on d, s,
ε, the bottom Γ, and on ‖η0, ψ0, V0, B0‖

Hs+1
2 (Rd)×Hs+1

2 (Rd)×Hs(Rd)×Hs(Rd)
.

Proof. We see from propositions 5.1 and 5.2 that if

A := ‖(Us, θs)‖L2 + ‖ψ‖L2 + ‖ζs‖H−1 + ‖(V,B)‖
Hs− 1

2
,
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and if

B :=

(
‖a‖

C
1
2
∗

+ ‖(∂t + V · ∇) a‖L∞ +Q

(
‖∇η‖

C
1
2
∗

, ‖(V,B)‖C1+ε
∗

))
,

with Q the polynomial of degree 3 of those propositions, then for all t ∈ [0, T ],

d

dt
A(t) ≤ K(t)× B(t)×A(t) ≤ K × B(t)×A(t),

where
K = sup

0≤t≤T
K(t).

Using Grönwall’s lemma gives

sup
0≤t≤T

A(t) ≤ KA(0) exp

(∫ T

0
B(t) dt

)
.

Using Hölder inequality to bound

∫ T

0
Q

(
‖∇η‖

C
1
2
∗

, ‖(V,B)‖C1+ε
∗

)
dt

gives

(6.2)

sup
0≤t≤T

A(t) ≤ F
(
T, sup

0≤t≤T

1

h
, sup
0≤t≤T

1

c
, sup
0≤t≤T

‖η(t)‖W 1+ε,∞(Rd) , sup
0≤t≤T

‖(V,B)(t)‖W ε,∞(Rd) ,

sup
0≤t≤T

‖a‖W ε,∞(Rd) ,

∫ T

0
‖(∂ta+ V · ∇a)(t)‖L∞(Rd) dt,

∫ T

0
‖a(t)‖

W
1
2 ,∞(Rd)

dt,

∫ T

0
‖∇η(t)‖3

W
1
2 ,∞(Rd)

dt,

∫ T

0
‖(V,B)(t)‖3W 1+ε,∞(Rd) dt

)
,

with F a positive, strictly increasing function of each of its variable, depending only on d,
s, ε, the bottom Γ, and on A(0), which is easily seen to be controlled by the initial data
‖η0, ψ0, V0, B0‖

Hs+1
2×Hs+1

2×Hs×Hs
.

The water-waves system 1.6 is Hamiltonian, and the Hamiltonian (1.7) controls the L2 norm
of η, so that

sup
0≤t≤T

‖η(t)‖L2 ≤ ‖η0‖
Hs+1

2

.

Now to finish the proof of the estimate, we remark that for any ν > 0 there exists a con-
stant Cν > 0 such that

‖(η, V,B)‖
C

3
2
∗ ×C1+ε

∗ ×C1+ε
∗

≤ Cν ‖(η, V,B)‖L2 + ν ‖(η, V,B)‖
Hs+1

2×Hs×Hs
,

which, combined with Proposition 4.1 gives that ‖(η, V,B)‖
Hs+1

2×Hs×Hs
is finite as soon as

the right side of (6.1) is bounded.
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The energy estimate with reference Sobolev index is proved along the same lines, using the
corresponding estimates.

Proposition 6.2. Let d ≥ 1, s > 1 + d/2, s > s0 > 1/2 + d/2 and s0 − 1/2 − d/2 > ε > 0.
Let (η, ψ) be a solution of the water-waves system (1.6) on [0, T ] from theorem 1.1, and define
V,B, h, a, c in the same way. Then

(6.3) sup
0≤t≤T

‖(η, ψ, V,B)(t)‖
Hs+1

2 (Rd)×Hs+1
2 (Rd)×Hs(Rd)×Hs(Rd)

≤ F
(
T, sup

0≤t≤T

1

h
, sup
0≤t≤T

1

c
, sup
0≤t≤T

‖(η, ψ, V,B) (t)‖
Hs0+

1
2 (Rd)×Hs0+

1
2 (Rd)×Hs0 (Rd)×Hs0 (Rd)

,

sup
0≤t≤T

‖a‖W ε,∞(Rd) ,

∫ T

0
‖(∂ta+ V · ∇a)(t)‖L∞(Rd) dt,

∫ T

0
‖a(t)‖

W
1
2 ,∞(Rd)

dt,

∫ T

0
‖∇η(t)‖

W
1
2 ,∞(Rd)

dt,

∫ T

0
‖(V,B)(t)‖W 1+ε,∞(Rd) dt

)
,

with F a positive, strictly increasing function of each of its variable, depending only on d, s,
s0, ε, the bottom Γ, and on ‖η0, ψ0, V0, B0‖

Hs+1
2 (Rd)×Hs+1

2 (Rd)×Hs(Rd)×Hs(Rd)
.

At last Theorem 1.4 is a consequence of the following proposition from [5],

Proposition 6.3 (Proposition 3.6 of [5]). For s0 > 3/4 + d/2, and 0 < ε < s0 − 3/4− d/2,

(6.4) ‖a‖
C

1
2
∗

+ ‖(∂t + V · ∇) a‖L∞

≤ F
(
‖(η, ψ, V,B) (t)‖

Hs0+
1
2×Hs0+

1
2×Hs0×Hs0

)[
1 + ‖η‖

C
1
2+ε
∗

+ ‖(V,B)‖C1+ε
∗

]
.

Proof. The estimate on ‖a‖
C

1
2
∗

is proved in details in [5]. We will record here a proof of the

estimate on ‖(∂t + V · ∇) a‖L∞ . First, observe that

(∂t + V · ∇) a = (∂t +∇x,yφ · ∇x,y) (−∂yP )|y=η

= − ∂y (∂t +∇x,yφ · ∇x,y)P |y=η − [(∂t +∇x,yφ · ∇x,y) , ∂y]P |y=η .

The second term on the right hand side is

− [(∂t +∇x,yφ · ∇x,y) , ∂y]P |y=η = ∇x∂yφ · ∇xP |y=η + ∂2yφ∂yP |y=η

= a∇η · ∇x∂yφ|y=η + a∆xφ|y=η

= a div V,

where we have used that since P |y=η = 0,

0 = ∇(P |y=η) = (∇xP )|y=η +∇η(∂yP )|y=η,

and that
div V = ∆xφ|y=η +∇η · (∇x∂yφ)|y=η.
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The proposition will then be proved once we have shown that

(6.5) ‖∂y (∂t +∇x,yφ · ∇x,y)P‖
Xs0−

3
4
≤ F

(
‖(η, ψ, V,B) (t)‖

Hs0+
1
2×Hs0+

1
2×Hs0×Hs0

)
.

This is a consequence of the following elliptic equation

∆x,y (∂t +∇x,yφ · ∇x,y)P = (∂t +∇x,yφ · ∇x,y)∆x,yP + [∆x,y, (∂t +∇x,yφ · ∇x,y)]P

= − (∂t +∇x,yφ · ∇x,y)
∣∣∇2

x,yφ
∣∣2 + 2∇2

x,yφ · ∇2
x,yP

= −2∇2
x,yφ · ∇2

x,y(−∂tφ− 1

2
|∇x,yφ|2 − gy) + 2∇2

x,yφ · ∇2
x,yP

= 4∇2
x,yφ · ∇2

x,yP.

Now (6.5) follow along the same lines as in Proposition 3.4, using the regularity on P already
established in this proposition.

A Paradifferential calculus

We review the fundamental results of Bony’s paradifferential calculus, introduced in [7], fol-
lowing Métivier presentation in [20].

A.1 Paradifferential operators

Definition A.1. Given ρ ∈ [0, 1] and m ∈ R, Γm
ρ (Rd) denotes the space of locally bounded

functions a(x, ξ) on R
d× (Rd \0), which are C∞ with respect to ξ for ξ 6= 0 and such that, for

all α ∈ N
d and all ξ 6= 0, the function x 7→ ∂αξ a(x, ξ) belongs to W ρ,∞(Rd) and there exists a

constant Cα such that,

∀|ξ| ≥ 1

2
,
∥∥∂αξ a(·, ξ)

∥∥
W ρ,∞(Rd)

≤ Cα(1 + |ξ|)m−|α|.

From a symbol a, we define the paradifferential operator Ta by

T̂au(ξ) = (2π)−d

∫
χ(ξ − η, η)â(ξ − η, η)ψ(η)û(η) dη,

where â(θ, ξ) =
∫
e−ix·θa(x, ξ) dx is the Fourier transform of a with respect to the first variable.

χ and ψ are two fixed C∞ functions such that:

ψ(η) = 0 for |η| ≤ 1, ψ(η) = 1 for |η| ≥ 2,

and χ(θ, η) satisfies, for 0 < ε1 < ε2 small,

χ(θ, η) = 1 if |θ| ≤ ε1 |η| , χ(θ, η) = 0 if |θ| ≥ ε2 |η| ,

and such that
∀(θ, η) :

∣∣∣∂αθ ∂βηχ(θ, η)
∣∣∣ ≤ Cα,β(1 + |η|)−|α|−|β|.
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A.2 Symbolic calculus

In order to get quantitative results about operator norm estimates, we introduce the following
semi-norms

Definition A.2. For m ∈ R, ρ ∈ [0, 1] and a ∈ Γm
ρ (Rd), put

Mm
ρ (a) = sup

|α|≤ 3d
2
+1+ρ

sup
|ξ|≥1/2

∥∥∥(1 + |ξ|)|α|−m∂αξ a(·, ξ)
∥∥∥
W ρ,∞(Rd)

.

The natural spaces for paradifferential operators to act on are the following

Definition A.3 (Besov spaces). Consider a dyadic decomposition of the identity: I = ∆−1+∑∞
q=0∆q. If s is any real number, we define the Besov class Bs

p,q(R
d) as the space of functions

of tempered distributions u such that

‖u‖Bs
p,q

:=

(∑

k∈N

2pks ‖∆ku‖pLq

) 1
p

< +∞.

We rename the space Bs
∞,∞ as the Zygmund space Cs

∗ .

Remark. The space Cs
∗(R

d) is the usual Hölder space W s,∞(Rd) if s > 0 is not an integer.
The space Bs

2,2(R
d) is the usual Sobolev space Hs(Rd).

We will mainly use the Sobolev and Zygmund cases.

Definition A.4. Let m ∈ R. An operator T is said to be of order m if, for all µ ∈ R, it is
bounded from Hµ to Hµ−m and from Cµ

∗ to Cµ−m
∗ , where the Cµ

∗ are the Zygmund spaces
defined in

We resume most of the calculus properties we will use in the following theorem.

Theorem A.5. Let m ∈ R and ρ ∈ [0, 1].

(i) If a ∈ Γm
0 (Rd), then Ta is of order m. Moreover, for all µ ∈ R there exists a constant K

such that
‖Ta‖Hµ→Hµ−m ≤ KMm

0 (a), ‖Ta‖Cµ
∗→Cµ−m

∗

≤ KMm
0 (a).

(ii) If a ∈ Γm
ρ (Rd), b ∈ Γm′

ρ (Rd) then TaTb − Tab is of order m + m′ − ρ. Moreover, for
all µ ∈ R there exists a constant K such that

‖TaTb − Tab‖Hµ→Hµ−m−m′+ρ ≤ KMm
ρ (a)Mm′

0 (b) +KMm
0 (a)Mm′

ρ (b),

‖TaTb − Tab‖Cµ
∗→Cµ−m−m′+ρ

∗

≤ KMm
ρ (a)Mm′

0 (b) +KMm
0 (a)Mm′

ρ (b).

(iii) Let a ∈ Γm
ρ (Rd). Denote by (Ta)

∗ the adjoint operator of Ta and by a the complex
conjugate of a. Then (Ta)

∗−Ta is of order m−ρ. Moreover, for all µ there exists a constant K
such that

‖(Ta)∗ − Ta‖Hµ→Hµ−m+ρ ≤ KMm
ρ (a), ‖(Ta)∗ − Ta‖Cµ

∗→Cµ−m+ρ
∗

≤ KMm
ρ (a).
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In this article, we need to consider paradifferential operators with negative regularity. As a
consequence, we extend our previous definition.

Definition A.6. For m ∈ R and ρ ∈ (−∞, 0), Γm
ρ (Rd) denotes the space of distribu-

tions a(x, ξ) on R
d × (Rd \ 0), which are C∞ with respect to ξ and such that, for all α ∈ N

d

and all ξ 6= 0, the function x 7→ ∂αξ a(x, ξ) belongs to Cρ
∗ (R

d) and there exists a constant Cα

such that

∀|ξ| ≥ 1

2
,
∥∥∂αξ a(·, ξ)

∥∥
Cρ

∗

≤ Cα(1 + |ξ|)m−|α|.

Then Γ̇m
ρ (Rd) denotes the subspace of Γm

ρ (Rd) which consists of symbols a(x, ξ) which are
homogeneous of degree m with respect to ξ. For a ∈ Γm

ρ , we define

Mm
ρ (a) = sup

|α|≤ 3d
2
+ρ+1

sup
|ξ|≥1/2

∥∥∥(1 + |ξ|)|α|−m∂αξ a(·, ξ)
∥∥∥
Cρ

∗ (R
d)
.

A.3 Paraproducts and product rules

If a = a(x) is a function of x only, the paradifferential operator Ta is called a paraproduct.

Definition A.7. Given two functions a, b defined on R
d we define the remainder

R(a, u) = au− Tau− Tua.

We record here various estimates about paraproducts (see chapter 2 in [6] or [10]).

Theorem A.8. 1. Let α, β ∈ R. If α+ β > 0 then

‖R(a, u)‖
Hα+β− d

2 (Rd)
≤ K ‖a‖Hα(Rd) ‖u‖Hβ(Rd) ,(A.1)

‖R(a, u)‖
Cα+β

∗ (Rd)
≤ K ‖a‖Cα

∗
(Rd) ‖u‖Cβ

∗ (R
d)
,(A.2)

‖R(a, u)‖Hα+β(Rd) ≤ K ‖a‖Cα
∗
(Rd) ‖u‖Hβ(Rd) .(A.3)

2. Let m > 0 and s ∈ R. Then

‖Tau‖Hs ≤ K ‖a‖L∞ ‖u‖Hs(A.4)

‖Tau‖Hs−m ≤ K ‖a‖C−m
∗

‖u‖Hs ,(A.5)

‖Tau‖Cs−m
∗

≤ K ‖a‖C−m
∗

‖u‖Cs
∗

,(A.6)

‖Tau‖Cs
∗

≤ K ‖a‖L∞ ‖u‖Cs
∗

.(A.7)

3. Let s0, s1, s2 be such that s0 ≤ s2 and s0 < s1 + s2 − d
2 , then

‖Tau‖Hs0 ≤ K ‖a‖Hs1 ‖u‖Hs2 .

We shall mainly use the following consequences
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Proposition A.9. Let µ,m, n ∈ R, µ,m, n > 0 and m,n 6∈ N. Then

(A.8) ‖u1u2‖Hµ ≤ K
(
‖u1‖C−n

∗

‖u2‖Hµ+n + ‖u2‖C−m
∗

‖u1‖Hµ+m

)
,

and

(A.9) ‖u1u2‖Cµ
∗

≤ K
(
‖u1‖C−n

∗

‖u2‖Cµ+n
∗

+ ‖u2‖C−m
∗

‖u1‖Cµ+m
∗

)
.

Recall from [4] the following

Proposition A.10. 1. Let s > d/2 and consider F ∈ C∞(CN ) such that F (0) = 0. Then
there exists a non-decreasing function F : R+ → R

+ such that

‖F (U)‖Hs ≤ F
(
‖U‖L∞

)
‖U‖Hs ,

for any U ∈ Hs(Rd)N .

2. Let s ≥ 0 and consider F ∈ C∞(CN ) such that F (0) = 0. Then there exists a non-
decreasing function F : R+ → R

+ such that

‖F (U)‖Cs
∗

≤ F
(
‖U‖L∞

)
‖U‖Cs

∗

,

for any U ∈ Cs
∗(R

d)N .

We also recall from [4] the following generalization of (A.5).

Proposition A.11. Let ρ < 0, m ∈ R and a ∈ Γ̇m
ρ . Then the operator Ta is of order m− ρ:

|Ta|Hs→Hs−(m−ρ) ≤ CMm
ρ (a),

|Ta|Cs
∗
→C

s−(m−ρ)
∗

≤ CMm
ρ (a).

We will also need the following commutator estimate between a paradifferential operator and
a convective derivative

Lemma A.12 (Lemma 2.16 of [4]). Let V ∈ C0([0, T ];C1+ε
∗ (Rd)) and let p = p(t, x, ξ) be a

symbol homogeneous of order m ∈ R in ξ. Then there exists C > 0 independent if p and V ,
such that for any t ∈ [0, T ] and any u ∈ C0([0, T ;Hm(Rd)),

‖[Tp, ∂t + TV · ∇]u(t)‖L2(Rd)

≤ C
{
Mm

0 (p) ‖V (t)‖C1+ε
∗

+Mm
0 (∂tp+ V · ∇p)

}
‖u(t)‖Hm(Rd) .

A.4 Parabolic evolution equation

Given I ⊂ R, let Γm
ρ (I ×R

d) be the set of symbols a(z, x, ξ) satisfying

Mm
ρ (a) = sup

z∈I
sup

|α|≤ 3d
2
+ρ+1

sup
|ξ|≥1/2

∥∥∥(1 + |ξ|)|α|−m∂αξ a(z; ·, ξ)
∥∥∥
W ρ,∞(Rd)

< +∞.
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We need to study the parabolic evolution equation

∂zw + Tpw = f, w|z=z0 = w0,

with an elliptic symbol p ∈ Γm
ρ (I ×R

d), which means that

(A.10) p(z;x, ξ) ≥ c |ξ| ,

for some positive constant c.

Define for µ ∈ R the spaces

(A.11)
Xµ(I) = L∞

z (I;Hµ(Rd)) ∩ L2
z(I;H

µ+ 1
2 (Rd)),

Y µ(I) = L1
z(I;H

µ(Rd)) + L2
z(I;H

µ− 1
2 (Rd)).

We will use the following proposition from [4].

Proposition A.13 (Proposition 2.18 of [4]). Let ρ ∈ (0, 1), J = [z0, z1] ⊂ R, p ∈ Γ1
ρ(R

d× J)
with the assumption that

Re p(z;x, ξ) ≥ c |ξ| ,
for some positive constant c. Assume that w solves

∂zw + Tpw = F, w|z=z0 = w0.

Then we have
‖w‖Xr ≤ K {‖w0‖Hr + ‖F‖Y r} ,

for some positive constant K depending only on r, ρ, c and M1
ρ(p).

In the following study, we will need the following Chemin-Lerner type of time-dependent
spaces. See for example [6].

Definition A.14. If s is any real number, and if 1 ≤ p, q, l ≤ ∞, we define the space
L̃p
z(I;Bs

q,l(R
d)) as the space of tempered distributions u such that

‖u‖L̃p
z(I;B

s
q,l(R

d)) :=

(∑

k∈N

2lks ‖∆ku‖lLp
z(I;Lq)

) 1
l

< +∞.

For q = l = 2, L̃p
z(I;Bs

2,2(R
d)) = L̃p

z(I;Hs(Rd)). Also for q = l = ∞, L̃p
z(I;Bs

∞,∞(Rd)) =

L̃p
z(I;Cs

∗(R
d)). As can be seen for example in [6], we have

‖u‖L̃p
z(I;B

s
q,l)

≤ ‖u‖Lp
z(I;B

s
q,l)

if l ≥ p, ‖u‖L̃p
z(I;B

s
q,l)

≥ ‖u‖Lp
z(I;B

s
q,l)

if l ≤ p.

The paraproduct properties can be passed to the time dependent spaces as long as the expo-
nents respect the conditions for Hölder inequality.

In the following, we will need the following Bernstein inequalities
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Lemma A.15. Let 1 ≤ p ≤ q ≤ ∞, α ∈ N
d. Then it holds that

‖∂αSku‖Lq ≤ C2
kd( 1

p
− 1

q
+|α|) ‖Sku‖Lp for k ∈ N,

‖∆ku‖Lq ≤ C2
kd( 1

p
− 1

q
+|α|)

sup
|β|=|α|

∥∥∥∂β∆ku
∥∥∥
Lp

for k ≥ 1.

We will also use the following parabolic smoothing effect

Lemma A.16. Let κ > 0 and p ∈ [1,∞]. Then there exists some c > 0 such that for any
t > 0, k ≥ 1, we have ∥∥∥e−tκ〈Dx〉∆ku

∥∥∥
Lp

≤ Ce−ct2k ‖∆ku‖Lp ,

where 〈Dx〉 = (I −∆x)
1
2 .

The proof is classical (see [6]).
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