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SECOND ORDER MEAN FIELD GAMES WITH DEGENERATE DIFFUSION AND LOCAL COUPLING

We analyze a (possibly degenerate) second order mean field games system of partial differential equations. The distinguishing features of the model considered are (1) that it is not uniformly parabolic, including the first order case as a possibility, and (2) the coupling is a local operator on the density. As a result we look for weak, not smooth, solutions. Our main result is the existence and uniqueness of suitably defined weak solutions, which are characterized as minimizers of two optimal control problems. We also show that such solutions are stable with respect to the data, so that in particular the degenerate case can be approximated by a uniformly parabolic (viscous) perturbation.

Introduction

This paper is devoted to the analysis of second order mean field games systems with a local coupling. The general form of these systems is:

   (i) -∂ t φ -A ij ∂ ij φ + H(x, Dφ) = f (x, m(x, t)) (ii) ∂ t m -∂ ij (A ij m) -div(mD p H(x, Dφ)) = 0 (iii) m(0) = m 0 , φ(x, T ) = φ T (x) (1) 
where A : R d → R d×d is symmetric and nonnegative, the Hamiltonian H : R d ×R d → R is convex in the second variable, the coupling f : R d × [0, +∞) → [0, +∞) is increasing with respect to the second variable, m 0 is a probability density and φ T : R d → R is a given function. The functions H and f , and the matrix A, could as well depend on time, but since this does not give any additional difficulty, we will avoid it just to simplify notations. Mean field game systems (MFG systems) have been introduced simultaneously by Lasry-Lions [START_REF] Lasry | Jeux à champ moyen. I. Le cas stationnaire[END_REF][START_REF] Lasry | Jeux à champ moyen. II. Horizon fini et contrôle optimal[END_REF][START_REF] Lasry | Mean field games[END_REF][START_REF] Lions | Cours au Collège de France[END_REF] and Huang-Caines-Malhamé [START_REF] Huang | Large population stochastic dynamic games: closedloop McKean-Vlasov systems and the Nash certainty equivalence principle[END_REF] to describe Nash equilibria in differential games with infinitely many players. The first unknown φ = φ(t, x) is the value function of an optimal control problem of a typical small player. In this control problem, the dynamics is given by the controlled stochastic differential equation dX s = v s ds + Σ(X s )dB s , where (v s ) is the control, (B s ) is a Brownian motion and ΣΣ T = A. The cost is given by

E T 0 H * (X s , -v s ) + f (X s , m(s, X s )) ds + φ T (X T )
For each time t ∈ [0, T ] the quantity m(t, x) denotes the density of population of small players at position x. In the control problem the term involving f formalizes the fact that the cost of the player depends on this density m. As φ is the value function of this control problem, the optimal control of a typical small player is formally given by the feedback (t, x) → -D p H(x, Dφ(t, x)). Hence the second equation ( 1)-(ii) is the Kolmogorov equation of the process (X s ) when the small player plays in an optimal way. By the mean field approach, this equation also describes the evolution of the whole population density as all players play in an optimal way. MFG systems with uniformly parabolic diffusions-typically A ij ∂ ij φ = ∆φ-have been the object of several contributions, either by PDE methods (see, e.g., [START_REF] Cardaliaguet | Long time average of mean field games[END_REF][START_REF] Lasry | Jeux à champ moyen. I. Le cas stationnaire[END_REF][START_REF] Lasry | Jeux à champ moyen. II. Horizon fini et contrôle optimal[END_REF][START_REF] Lasry | Mean field games[END_REF][START_REF] Lions | Cours au Collège de France[END_REF][START_REF] Gomes | Time dependent mean-field games in the subquadratic case[END_REF][START_REF] Gomes | Time dependent mean-field games in the superquadratic case[END_REF][START_REF] Porretta | Weak solutions to Fokker-Planck equations and mean field games[END_REF]) or by stochastic techniques (see, e.g., [START_REF] Carmona | Probabilist analysis of Mean-Field Games[END_REF][START_REF] Huang | Large population stochastic dynamic games: closedloop McKean-Vlasov systems and the Nash certainty equivalence principle[END_REF]): in this setting one often expects the solutions to be smooth, at least if the coupling is nonlocal and regularizing or if it has a "small growth". The case of local couplings with an arbitrary growth has been discussed in [START_REF] Cardaliaguet | Long time average of mean field games[END_REF] for purely quadratic hamiltonians (i.e. H = |Dφ| 2 ), in which case solutions are proved to be smooth, and in [START_REF] Porretta | Weak solutions to Fokker-Planck equations and mean field games[END_REF] for general hamiltonians, by proving existence and uniqueness of weak solutions.

Here we concentrate on degenerate parabolic equations. In this case the usual fixed point techniques used to prove the existence of solutions in the uniformly parabolic setting break down by lack of regularity. One then has to rely on convex optimization methods: this idea, which goes back to the analysis of some optimal transport problems (see [START_REF] Benamou | A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem[END_REF][START_REF] Cardaliaguet | Geodesics for a class of distances in the space of probability measures[END_REF]), has already been used to study first order MFG systems (i.e., A ≡ 0): see [START_REF] Cardaliaguet | Weak solutions for first order mean field games with local coupling[END_REF][START_REF] Cardaliaguet | Mean field games systems of first order[END_REF][START_REF] Graber | Optimal control of first-order Hamilton-Jacobi equations with linearly bounded Hamiltonian[END_REF]. However it was not clear in these papers wether the weak solution was stable with respect to viscous approximation, i.e., if we could obtain weak solutions of the first order MFG systems by passing to the limit in uniformly parabolic ones. This issue has partially motivated our study.

In this paper we show the existence and uniqueness of a weak solution for the degenerate mean field game system (1) as well as the stability of solutions with respect to perturbation of the data: this includes of course stability by viscous approximation.

Concerning existence and uniqueness of solutions, the paper improves the existing results in two directions. First we consider non uniformly parabolic second order MFG systems, which have never been considered before. The introduction of second order derivatives induces several issues: in particular, in contrast with the first order equations, we do not expect the function φ to be BV (as in [START_REF] Cardaliaguet | Mean field games systems of first order[END_REF][START_REF] Graber | Optimal control of first-order Hamilton-Jacobi equations with linearly bounded Hamiltonian[END_REF]), which obliges us to be very careful about trace properties. Secondlyand this is new even for first order MFG systems-we drop a restriction between the growth condition of H and the growth condition of f , restriction which was mandatory in the previous papers: see [START_REF] Cardaliaguet | Weak solutions for first order mean field games with local coupling[END_REF][START_REF] Cardaliaguet | Mean field games systems of first order[END_REF]. To overcome the difficulty, we provide new integral estimates for subsolutions of Hamilton-Jacobi equations with unbounded right-hand side (Theorems 2.1 and 2.3). We think that these results are of independent interest. With these estimates in hand, the structure of proof for the existence and uniqueness follows roughly the lines already developed in [START_REF] Cardaliaguet | Weak solutions for first order mean field games with local coupling[END_REF][START_REF] Cardaliaguet | Mean field games systems of first order[END_REF][START_REF] Cardaliaguet | Geodesics for a class of distances in the space of probability measures[END_REF][START_REF] Graber | Optimal control of first-order Hamilton-Jacobi equations with linearly bounded Hamiltonian[END_REF]: basically it amounts to show that the MFG system can be viewed as an optimality condition for two convex problems, the first one being an optimal control of Hamilton-Jacobi equation, the second one an optimal control problem for the Fokker-Planck equation (see section 3 for details). A byproduct of this approach is the stability of weak solutions with respect to the data (Theorem 5.5), which can be obtained by Γ-convergence techniques.

The paper is organized as follows. First we introduce the notation and assumptions needed throughout the paper (section 1). Then (section 2) we give our new estimates for subsolutions of Hamilton-Jacobi equations with a superlinear growth in the gradient variable and an unbounded right-hand side. In section 3, we introduce the two optimal control problems and show that they are in duality while in section 4 we show that the optimal control problem for the Hamilton-Jacobi equation has a "relaxed solution." Section 5 is devoted to the analysis of the MFG system (existence, uniqueness and characterization). In the last section we discuss the stability of solutions.

Notations and assumptions

Notations : We denote by x, y the Euclidean scalar product of two vectors x, y ∈ R d and by |x| the Euclidean norm of x. We use conventions on repeated indices: for instance, if a, b ∈ R d , we often write a i b i for the scalar product a, b . More generally, if A and B are two square symmetric matrices of size d × d, we write A ij B ij for Tr(AB).

To avoid further difficulties arising from boundary issues, we work in the flat d-dimensional torus T d = R d \Z d . We denote by P (T d ) the set of Borel probability measures over T d . It is endowed with the weak convergence. For k, n ∈ N and T > 0, we denote by C k ([0, T ] × T d , R n ) the space of maps φ = φ(t, x) of class C k in time and space with values in R n . For p ∈ [1, ∞] and T > 0, we denote by L p (T d ) and L p ((0, T ) × T d ) the set of p-integrable maps over T d and [0, T ] × T d respectively. We often abbreviate L p (T d ) and L p ((0, T ) × T d ) into L p . We denote by f p the L p -norm of a map f ∈ L p .

Assumptions:

We now collect the assumptions on the coupling f , the Hamiltonian H and the initial and terminal conditions m 0 and φ T . These conditions are supposed to hold throughout the paper.

(H1) (Condition on the coupling) the coupling f : T d × [0, +∞) → R is continuous in both variables, increasing with respect to the second variable m, and there exist q > 1 and

C 1 such that 1 C 1 |m| q-1 -C 1 ≤ f (x, m) ≤ C 1 |m| q-1 + C 1 ∀m ≥ 0 . (2) 
Moreover we ask the following normalization condition to hold:

f (x, 0) = 0 ∀x ∈ T d . (3) 
We denote by p the conjugate of q: 1/p + 1/q = 1. (H2) (Conditions on the Hamiltonian) The Hamiltonian H :

T d × R d → R is continuous in
both variables, convex and differentiable in the second variable, with D p H continuous in both variables, and has a superlinear growth in the gradient variable: there exist r > 1 and

C 2 > 0 such that 1 rC 2 |ξ| r -C 2 ≤ H(x, ξ) ≤ C 2 r |ξ| r + C 2 ∀(x, ξ) ∈ T d × R d . (4) 
We note for later use that the Fenchel conjugate H * of H with respect to the second variable is continuous and satisfies similar inequalities

1 r ′ C 2 |ξ| r ′ -C 2 ≤ H * (x, ξ) ≤ C 2 r ′ |ξ| r ′ + C 2 ∀(x, ξ) ∈ T d × R d , (5) 
where r ′ is the conjugate of r:

1 r + 1 r ′ = 1. ( H3 
) (Conditions on A) there exists a Lipschitz continuous map Σ :

T d → R d×D such that ΣΣ T = A : let C 3 be a constant such that |Σ(x) -Σ(y)| ≤ C 3 |x -y| ∀x, y ∈ T d , (6) 
Moreover we suppose that either r ≥ p or A ≡ 0.

We recall that p is the conjugate of q. (H4) (Conditions on the initial and terminal conditions) φ T :

T d → R is of class C 2 , while m 0 : T d → R is a C 1 positive density (namely m 0 > 0 and T d m 0 dx = 1).
Condition (3) is just a normalization condition, which we may assume without loss of generality. Indeed, if all the conditions (H1). . . (H4) but (3) hold, then one just needs to replace f (x, m) by f (x, m) -f (x, 0) and H(x, p) by H(x, p) -f (x, 0): the new H and f still satisfy the above conditions (H1). . . (H4) with [START_REF] Carmona | Probabilist analysis of Mean-Field Games[END_REF].

Let us set

F (x, m) =    m 0 f (x, τ )dτ if m ≥ 0 +∞ otherwise
Then F is continuous on T d × (0, +∞), differentiable and strictly convex in m and satisfies

1 qC 1 |m| q -C 1 ≤ F (x, m) ≤ C 1 q |m| q + C 1 ∀m ≥ 0 (8) 
(changing the constant C 1 if necessary). Let F * be the Fenchel conjugate of F with respect to the second variable. Note that F * (x, a) = 0 for a ≤ 0 because F (x, m) is nonnegative and equal to +∞ for m < 0. Moreover,

1 pC 1 |a| p -C 1 ≤ F * (x, a) ≤ C 1 p |a| p + C 1 ∀a ≥ 0 . (9) 
2. Basic estimates on solutions of Hamilton-Jacobi equations

In this section we prove estimates in Lebesgue spaces for subsolutions of Hamilton-Jacobi equations of the form

(i) -∂ t φ -A ij (x)∂ ij φ + H(x, Dφ) ≤ α(t, x) (ii) φ(x, T ) ≤ φ T (x) (10) 
in terms of Lebesgue norms of α and φ T . We assume that ( 4) and ( 6) hold, and ( 10) is understood in the sense of distributions. This means that Dφ ∈ L r and, for any nonnegative test function

ζ ∈ C ∞ c ((0, T ] × T d ), - T d ζ(T )φ T + T 0 T d φ∂ t ζ + Dζ, ADφ + ζ(∂ i A ij ∂ j φ + H(x, Dφ)) ≤ T 0 T d αζ.
The estimates will be a consequence of the divergence structure of second order terms.

Theorem 2.1. Assume that φ ∈ L r ((0, T ); W 1,r (T d )) is a nonnegative function satisfying, in distributional sense,

(i) -∂ t φ -∂ i (A ij (x)∂ j φ) + c 0 |Dφ| r ≤ α(t, x) (ii) φ(x, T ) ≤ φ T (x) (11) 
for some nonnegative, bounded Lipschitz matrix A ij , and some r > 1, c 0 > 0, α ∈ L p ((0, T )×T d ) and φ T ∈ L ∞ (T d ). Then, there exists a constant

C = C(p, d, r, c 0 , T, α L p ((0,T )×T d ) , φ T L η (T d ) ) such that φ L ∞ ((0,T ),L η (T d )) + φ L γ ((0,T )×T d ) ≤ C where η = d(r(p-1)+1) d-r(p-1) and γ = rp(1+d) d-r(p-1) if p < 1 + d r and η = γ = +∞ if p > 1 + d r .
We note for later use that γ > r.

Proof. Up to a rescaling, we may assume that c 0 = 1. We first claim that, for any real function g ∈ W 1,∞ (R) which is nondecreasing, and nonnegative in R + , we have

T d G(φ(τ )) dx + T τ T d |Dφ| r g(φ) dxdt ≤ T τ T d α g(φ) dxdt + T d G(φ T ) dx (12) 
for a.e. τ ∈ (0, T ), where G(r) = r 0 g(s) ds. There are several possible ways to justify [START_REF] Gomes | Time dependent mean-field games in the subquadratic case[END_REF], one is to use regularization.

We first extend φ to (0, T + 1] × T d by defining φ = φ T on [T, T + 1]. Then it still holds in the sense of distributions

-∂ t φ -∂ i Ãij (t, x)∂ j φ + |Dφ| r χ (0,T ) ≤ α(t, x) (13) 
where Ãij (t, x) = A ij (x)χ (0,T ) (t) and α(t, x) = α(t, x)χ (0,T ) (t). Let ξ be a standard convolution kernel in (t, x) defined on R d+1 and ξ ǫ (t, x) = ξ((t, x)/ǫ)/(ǫ) d+1 , ξ ǫ ≥ 0, R d+1 ξ ǫ (t, x)dtdx = 1, for all ǫ > 0. Let φ ǫ = ξ ǫ ⋆ φ and α ǫ = ξ ǫ ⋆ α. Then φ ǫ , α ǫ are C ∞ and converge to φ, α in their respective Lebesgue spaces. Convolving ξ ǫ with (13) we obtain on (0, T + 1) × T d :

-∂ t φ ǫ -∂ i Ãij (t, x)∂ j φ ǫ + |ξ ǫ ⋆ (D φ)| r ≤ α ǫ (t, x) + R ǫ
where D φ = Dφχ (0,T ) and we used the fact that Dφ → |Dφ| r is convex, and where

R ǫ = -∂ i Ãij (t, x)∂ j φ ǫ + ξ ǫ ⋆ ∂ i Ãij (t, x)∂ j φ .
Using the notation (cf. [START_REF] Diperna | Ordinary differential equations, transport theory and Sobolev spaces[END_REF])

[ξ ǫ , c](f ) := ξ ǫ ⋆ (cf ) -c(ξ ǫ ⋆ f ) we can rewrite R ǫ as R ǫ = [ξ ǫ , ∂ i Ãij ](∂ j φ) + [ξ ǫ , Ãij ∂ i ](∂ j φ). Invoking [10, Lemma II.1], we have that R ǫ → 0 in L r , since Dφ ∈ L r and A ij is Lipschitz.
Multiplying by g(φ ǫ ) and integrating over [τ,

T + ε] × T d , for τ ∈ (0, T ), it follows T d G(φ ǫ (τ ))dx - T d G(φ ǫ (T + ε))dx + T τ T d A ij (x)∂ j φ ǫ g ′ (φ ǫ )∂ i φ ǫ dxdt + T +ε τ T d |ξ ǫ ⋆ (D φ)| r g(φ ǫ )dxdt ≤ T +ε τ T d g(φ ǫ )α ǫ (t, x)dxdt + T +ε τ T d g(φ ǫ )R ǫ dxdt . Since T τ T d A ij (x)∂ j φ ǫ g ′ (φ ǫ )∂ i φ ǫ dxdt ≥ 0, and since φ ǫ (T + ε) = ξ ǫ ⋆ φ T , we obtain T d G(φ ǫ (τ ))dx - T d G(ξ ǫ ⋆ φ T )dx + T +ε τ T d |ξ ǫ ⋆ (D φ)| r g(φ ǫ )dxdt ≤ T +ε τ T d g(φ ǫ )α ǫ (t, x)dxdt + T +ε τ T d g(φ ǫ )R ǫ dxdt .
Since g is bounded, while R ǫ and α ε converge in L r ((0, T )×T d ) and in L p ((0, T )×T d ) respectively, we can pass to the limit as ǫ goes to zero and for almost every τ we get [START_REF] Gomes | Time dependent mean-field games in the subquadratic case[END_REF]. Now we proceed with the desired estimate. First we observe that, up to replacing g(r) with g(r ∧ k), we can assume that φ is bounded and that g may be any C 1 function. In particular, we take g(φ) = φ (σ-1)r for σ > 1, obtaining

1 (σ -1)r + 1 T d φ(τ ) (σ-1)r+1 dx + 1 σ r T τ T d |Dφ σ | r dxdt ≤ T τ T d α φ (σ-1)r dxdt + 1 (σ -1)r + 1 T d φ (σ-1)r+1 T dx.
Let us denote henceforth by c possibly different constants only depending on r, σ, d and T . By arbitrariness of τ , the previous inequality implies

φ σ (σ-1)r+1 σ L ∞ ((0,T );L (σ-1)r+1 σ (T d )) + Dφ σ r L r ((0,T )×T d ) ≤ c T 0 T d α φ (σ-1)r dxdt + c T d φ (σ-1)r+1 T dx.
On the other hand, by interpolation we have (see e.g. [9, Proposition 3.1, Chapter 1])

v q L q ((0,T )×T d ) ≤ c v ηr d L ∞ ((0,T );L η (T d )) Dv r L r ((0,T )×T d )
where q = r d+η d [START_REF] Graber | Optimal control of first-order Hamilton-Jacobi equations with linearly bounded Hamiltonian[END_REF] for any v ∈ L r ((0, T ); W 1,r (T d )) such that T d v(t) dx = 0 a.e. in (0, T ). So we deduce that

φ σ q L q ((0,T )×T d ) ≤ c T 0 T d α φ (σ-1)r dxdt + T d φ (σ-1)r+1 T dx 1+ r d + c T 0 T d φ(t) σ dx q dt for η = (σ-1)r+1
σ and q = r η+d d . We choose σ such that σq = (σ -1)rp ′ and therefore, by Hölder inequality, we conclude

φ σ q L q ((0,T )×T d ) ≤ c α 1+ r d L p ((0,T )×T d ) φ σ q p ′ (1+ r d ) L q ((0,T )×T d ) + c T d φ (σ-1)r+1 T dx 1+ r d + c T 0 T d φ(t) σ dx q dt . Since T d φ(t) dx is estimated in terms of α L 1 ((0,T )×T d ) and φ T L 1 (T d ) , last term can be ab- sorbed into the left-hand side up to a constant C = C( α L 1 ((0,T )×T d ) , φ T L 1 (T d ) ). Moreover, since p < 1 + d r , we have q p ′ (1 + r d ) < q.
Hence we end up with an estimate

φ σ q L q ((0,T )×T d ) ≤ C( α L p ((0,T )×T d ) , φ T L (σ-1)r+1 (T d ) )
. Computing the value of σ in terms of r and p we get

qσ = rp(1 + d) d -r(p -1)
and (σ -1)r + 1 = d(r(p -1) + 1) d -r(p -1) so the first part of the Theorem is proved.

Finally, we prove the L ∞ estimate by using a strategy which goes back to [START_REF] Stampacchia | Le problème de Dirichlet pour les équations elliptiques du seconde ordre à coefficients discontinus[END_REF]. To this purpose, we replace φ with φ -k and use [START_REF] Gomes | Time dependent mean-field games in the subquadratic case[END_REF] 

with g(s) = (s + ) r ′ ; for any k ≥ φ T L ∞ (T d ) we obtain T d [(φ -k) + (τ )] σ+1 dx + T τ T d |D(φ -k) σ + | r dxdt ≤ T τ T d α (φ -k) σ + dxdt
with σ = r ′ . Using as before the embedding ( 14) we get

(φ -k) σ + q L q ((0,T )×T d ) ≤ c T 0 T d α (φ -k) σ + dxdt 1+ r d + c T 0 T d (φ -k) σ + dx q dt ≤ c T 0 T d α (φ -k) σ + dxdt 1+ r d + c T 0 |{x : φ(t) > k}| q-1 T d (φ -k) σ q + dxdt ,
where, using that σ = r ′ , we have

q = r σ+1 σ + d d = r d (d + 2 - 1 r ) . (15) 
Notice that |{x : φ(t) > k}| is uniformly small provided k is large, only depending on α L 1 and φ T L 1 . Therefore, absorbing last term in the left-hand side we deduce

(φ -k) σ + q L q ((0,T )×T d ) ≤ c T 0 T d α (φ -k) σ + dxdt 1+ r d for some c = c( α L 1 ((0,T )×T d ) , φ T L 1 (T d ) )
. One can check that, since r > 1, (15) implies q > 1 + r d and, in particular, 1 q + 1 p < 1. Thus, by Hölder inequality we get

(φ -k) σ + q L q ((0,T )×T d ) ≤ c (φ -k) σ + 1+ r d L q ((0,T )×T d ) α 1+ r d L p ((0,T )×T d ) |A k | (1-1 q -1 p )(1+ r d ) ,
where A k := {(t, x) : φ(t, x) > k}. Since, for any h > k we have

T 0 T d (φ -k) σq + dxdt ≥ |A h |(h -k) σq ,
we end up with the inequality

|A h | 1-1 q (1+ r d ) (h -k) σ q-σ(1+ r d ) ≤ (φ -k) σ + q-(1+ r d ) L q ((0,T )×T d ) ≤ c α 1+ r d L p ((0,T )×T d ) |A k | (1-1 q -1 p )(1+ r d )
which means that

|A h | ≤ C |A k | β (h -k) δ ∀h > k ≥ φ T L ∞ (T d )
for some C = C( α L p ((0,T )×T d ) ), some δ > 0 and with β =

(1-1 q -1 p )(1+ r d ) 1-1 q (1+ r d ) . One can check that β > 1 since p > 1 + d r .
Therefore, by a classical iteration lemma (see e.g. [START_REF] Stampacchia | Le problème de Dirichlet pour les équations elliptiques du seconde ordre à coefficients discontinus[END_REF]), it follows that |A k 0 | = 0 for some (explicit) k 0 > 0, which in particular implies the desired bound in terms of α L p ((0,T )×T d ) and φ T L ∞ (T d ) .

Remark 2.2. The assumption that φ is nonnegative can be dropped and in this case the estimates are given on φ + ; indeed, if φ satisfies [START_REF] Ekeland | Convex analysis and variational problems[END_REF], then φ + also does. This can be seen in the previous proof by taking g = g(r + ), with g(0) = 0.

Let us also stress that the Lipschitz continuity of the matrix A was only used to recover the estimate from the distributional formulation (namely, to be sure that φ is limit of solutions of smooth approximating problems). The constant C of the estimate, however, does not depend on A in any way; in particular, the estimate will hold uniformly for any viscous approximation to possibly less regular matrices.

As a corollary, we deduce the following result for problem [START_REF] Diperna | Ordinary differential equations, transport theory and Sobolev spaces[END_REF].

Theorem 2.3. Assume that (4) and (6) hold true and let φ satisfy [START_REF] Diperna | Ordinary differential equations, transport theory and Sobolev spaces[END_REF] 

with α ∈ L p ((0, T )×T d ), φ T ∈ L ∞ (T d ).
Then, φ + satisfies the estimates of Theorem 2.1. In particular, if φ is bounded below, we have

φ L ∞ ((0,T ),L η (T d )) + φ L γ ((0,T )×T d ) ≤ C where η = d(r(p-1)+1) d-r(p-1) and γ = rp(1+d) d-r(p-1) if p < 1+ d r and η = γ = +∞ if p > 1+ d r , with a constant C depending on T, p, d, r, C 2 , C 3 (appearing in (4) and (6)) and on α L p ((0,T )×T d ) , φ T L η (T d ) and φ -L ∞ (T d ) .

Two optimization problems

Mean field games systems with local coupling can be studied as an optimality condition between two problems in duality.

The first optimization problem is described as follows: let us denote by K 0 the set of maps φ ∈ C 2 ([0, T ] × T d ) such that φ(T, x) = φ T (x) and define, on K 0 , the functional

A(φ) = T 0 T d F * (x, -∂ t φ(t, x) -A ij ∂ ij φ + H(x, Dφ(t, x))) dxdt - T d φ(0, x)dm 0 (x). ( 16 
)
Then the problem consists in optimizing inf

φ∈K 0 A(φ) . ( 17 
)
For the second optimization problem, let K 1 be the set of pairs (m, w)

∈ L 1 ((0, T ) × T d ) × L 1 ((0, T ) × T d , R d ) such that m(t, x) ≥ 0 a.e., with
T d m(t, x)dx = 1 for a.e. t ∈ (0, T ), and which satisfy in the sense of distributions the continuity equation

∂ t m -∂ ij (A ij (x)m) + div(w) = 0 in (0, T ) × T d , m(0) = m 0 . (18) 
On the set K 1 , let us define the following functional

B(m, w) = T 0 T d m(t, x)H * x, - w(t, x) m(t, x) + F (x, m(t, x)) dxdt + T d φ T (x)m(T, x)dx
where, for m(t, x) = 0, we impose that

m(t, x)H * x, - w(t, x) m(t, x) = +∞ if w(t, x) = 0 0 if w(t, x) = 0 .
Since H * and F are bounded from below and m ≥ 0 a.e., the first integral in B(m, w) is well defined in R ∪ {+∞}. In order to give a meaning to the last integral

T d φ T (x)m(T, x)dx we proceed as follows: let us define v(t, x) = - w(t, x) m(t, x) if m(t, x) > 0 and v(t, x) = 0 otherwise.
Thanks to the growth of H * (implied by [START_REF] Cardaliaguet | Mean field games systems of first order[END_REF], which follows from (H2)), B(m, w) is infinite if m|v| r ′ / ∈ L 1 (dxdt). Therefore, we can assume without loss of generality that m|v| r ′ ∈ L 1 (dxdt), or, equivalently, that v ∈ L r ′ (m dxdt). In this case equation ( 18) can be rewritten as a Kolmogorov equation

∂ t m -∂ ij (A ij (x)m) -div(mv) = 0 in (0, T ) × T d , m(0) = m 0 . ( 19 
)
Lemma 3.1. The map t → m(t) is Hölder continuous a.e. for the weak* topology of P (T d ).

This Lemma implies, in particular, that the measure m(t) is defined for any t, therefore the second integral term in the definition of B(m, w) is well defined.

For the sake of completeness, we give the proof here.

Proof. We first extend the pairs (m, w) to [-1, T ] × T d by defining m = m 0 on [-1, 0] and w(s, x) = 0 for (s, x) ∈ (-1, 0) × T d . Note that ∂ t m -∂ ij ( Ãij (t, x)m) + div(w) = 0 holds in the sense of distributions on (-1, T ) × T d , where Ãij (t, x) = A ij (x) if t ∈ (0, T ) and Ãij (t, x) = 0 otherwise. Let ξ be a standard convolution kernel in (t, x), a support compact on R d+1 and ξ ǫ (t, x) = ξ((t, x)/ǫ)/(ǫ) d+1 , ξ ǫ ≥ 0, R d+1 ξ ǫ (t, x)dtdx = 1, for all ǫ > 0. Let m ǫ = ξ ǫ ⋆ m and w ǫ = ξ ǫ ⋆ w. Then m ǫ , w ǫ are C ∞ and T d m ǫ (t, x)dx = 1 for all t ∈ (0, T ) and ǫ > 0 small enough. Convolving ξ ǫ with (18), we obtain

∂ t m ǫ -∂ ij (ξ ǫ * ( Ãij (t, x)m)) + div(w ǫ ) = 0 in (-1/2, T ) × T d , with m ǫ (-1/2, x) = R T d ξ ǫ (s, x -y)m 0 (y)dyds.
The equation can be rewritten as

∂ t m ǫ -∂ ij ( Ãǫ ij (t, x)m ǫ )) -div(m ǫ v ǫ ) = 0 in (-1/2, T ) × T d (20) 
where Ãǫ ij =

ξ ǫ ⋆( Ãij m) mǫ
and v ǫ = -wǫ mǫ . Let us consider the following stochastic differential equations defined for all ǫ > 0

dX ǫ t = v ǫ (t, X ǫ t )dt + Σ ǫ (X ǫ t )dB ǫ t t ∈ [-1/2, T ] X ǫ -1/2 = Z ǫ -1/2 , (21) 
where dB ǫ t is a standard d-dimensional Brownian motion over some probability space (Ω, A, P), Σ ǫ Σ T ǫ = Ãǫ , and the initial condition Z ǫ -1/2 ∈ L 1 (T d ) is random, independent of (B ǫ t ) and with law m ǫ (-1/2, •).

For all ǫ > 0, the vector field v ǫ is continuous, uniformly Lipschitz continuous in space and bounded. Therefore, there exists a unique solution to [START_REF] Lions | Cours au Collège de France[END_REF]. Moreover, as a consequence of Ito's formula, we have that, if the density L(Z ǫ 0 ) = ξ ǫ ⋆ m 0 , then m ǫ (t) = L(X ǫ t ) solves [START_REF] Bris | Existence and uniqueness of solutions to Fokker-Planck type equations with irregular coefficients[END_REF] in the sense of distributions.

Let d 1 be the Kantorovich-Rubinstein distance on P (T d ) and γ ǫ ∈ Π(m ǫ (t), m ǫ (s)) the law of the pair (X ǫ t , X ǫ s ) for 0 ≤ s < t ≤ T , where Π(m ǫ (t), m ǫ (s)) is the set of Borel probability measures µ on

T d × T d such that µ(A × T d ) = m ǫ (t, A) and µ(T d × A) = m ǫ (s, A) for any Borel set A ∈ T d . We have d 1 (m ǫ (t), m ǫ (s)) ≤ T d ×T d |x -y|dγ ǫ (x, y) = E[|X ǫ t -X ǫ s |].
Moreover,

E[|X ǫ t -X ǫ s |] ≤ E[ t s |v ǫ (τ, X ǫ τ )|dτ ] + E t s Σ ǫ (X ǫ τ )dB τ ≤ t s T d |v ǫ (τ, x)|m ǫ (τ, x)dxdτ + E t s Σ ǫ Σ * ǫ (X ǫ τ )dτ 1/2 ≤ t s T d |v ǫ (τ, x)|m ǫ (τ, x)dxdτ + A ∞ C|t -s| 1 2 .
Recalling the definition of v ǫ , we have that

m ǫ |v ǫ | r ′ = |wǫ| r ′ m r ′ -1 ǫ belongs to L 1 ([0, T ] × T d ) for all ǫ > 0. Indeed, the function (m, w) → |w| r ′ m r ′ -1 is convex and |w| r ′ m r ′ -1 belongs to L 1 ([0, T ] × T d ). Thus T 0 T d |ξ ǫ ⋆ w| r ′ (ξ ǫ ⋆ m) r ′ -1 dxdτ ≤ T 0 T d ξ ǫ ⋆ |w| r ′ m r ′ -1 dxdτ ≤ |w| r ′ m r ′ -1 1 .
Therefore, using Hölder inequality,

d 1 (m ǫ (t), m ǫ (s)) ≤ t s T d |v ǫ (τ, x)| r ′ m ǫ (τ, x)dxdτ 1 r ′ t s T d m ǫ (τ, x)dxdτ 1 r + A ∞ C|t -s| 1 2 ≤ |w| r ′ m r ′ -1 1 r ′ 1 |t -s| 1 r + A ∞ |t -s| 1 2 . Letting ǫ → 0 we have m ǫ → m in L 1 ([0, T ] × T d ) and for a.e. τ ∈ [0, T ], m ǫ (τ ) → m(τ ) in L 1 (T d ), moreover for a.e. 0 ≤ s < t ≤ T lim ǫ→0 d 1 (m ǫ (t), m ǫ (s)) = d 1 (m(t), m(s)).
Thus for a.e. 0 ≤ s < t ≤ T

d 1 (m(t), m(s)) ≤ C|t -s| 1 r + A ∞ |t -s| 1 2 .
The second optimal control problem is the following:

inf (m,w)∈K 1 B(m, w) . ( 22 
)
Lemma 3.2. We have inf

φ∈K 0 A(φ) = -min (m,w)∈K 1 B(m, w).
Moreover, the minimum in the right-hand side is achieved by a unique pair (m, w) ∈ K 1 satisfying

(m, w) ∈ L q ((0, T ) × T d ) × L r ′ q r ′ +q-1 ((0, T ) × T d ).
Remark 3.3. Note that r ′ q r ′ +q-1 > 1 because r ′ > 1 and q > 1. Proof. The strategy of proof-which is very close to the corresponding one in [START_REF] Cardaliaguet | Weak solutions for first order mean field games with local coupling[END_REF][START_REF] Cardaliaguet | Mean field games systems of first order[END_REF][START_REF] Cardaliaguet | Geodesics for a class of distances in the space of probability measures[END_REF]-consists in applying the Fenchel-Rockafellar duality theorem (cf. e.g., [START_REF] Ekeland | Convex analysis and variational problems[END_REF]). In order to do so, it is better to reformulate the first optimization problem [START_REF] Lasry | Jeux à champ moyen. I. Le cas stationnaire[END_REF] in a more suitable form. Let

E 0 = C 2 ([0, T ]×T d ) and E 1 = C 0 ([0, T ] × T d , R) × C 0 ([0, T ] × T d , R d ).
We define on E 0 the functional

F(φ) = - T d m 0 (x)φ(0, x)dx + χ S (φ),
where χ S is the characteristic function of the set S = {φ ∈ E 0 , φ(T, •) = φ T }, i.e., χ S (φ) = 0 if φ ∈ S and +∞ otherwise. For (a, b) ∈ E 1 , we define

G(a, b) = T 0 T d F * (x, -a(t, x) + H(x, b(t, x))) dxdt .
The functional F is convex and lower semi-continuous on E 0 while G is convex and continuous on E 1 . Let Λ : E 0 → E 1 be the bounded linear operator defined by Λ

(φ) = (∂ t φ + A ij ∂ ij φ, Dφ).
We can observe that inf

φ∈K 0 A(φ) = inf φ∈E 0 {F(φ) + G(Λ(φ))} .
It is easy to verify that the qualification hypothesis, that ensures the stability of the above optimization problem, holds. Indeed, there is a map φ such that F(φ) < +∞ and such that G is continuous at Λ(φ): it is enough to take φ(t, x) = φ T (x). Therefore we can apply the Fenchel-Rockafellar duality theorem, which states that inf

φ∈E 0 {F(φ) + G(Λ(φ))} = max (m,w)∈E ′ 1 {-F * (Λ * (m, w)) -G * (-(m, w))}
where E ′ 1 is the dual space of E 1 , i.e., the set of vector valued Radon measures (m, w) over [0, T ] × T d with values in R × R d , E ′ 0 is the dual space of E 0 , Λ * : E ′ 1 → E ′ 0 is the dual operator of Λ and F * and G * are the convex conjugates of F and G respectively. By a direct computation we have

F * (Λ * (m, w)) =    T d φ T (x)dm(T, x) if ∂ t m -∂ ij (A ij m) + div(w) = 0, m(0) = m 0 +∞ otherwise
where the equation ∂ t m-∂ ij (A ij m)+div(w) = 0, m(0) = m 0 holds in the sense of distributions. Following [START_REF] Cardaliaguet | Weak solutions for first order mean field games with local coupling[END_REF], we have

G * (m, w) = +∞ if (m, w) / ∈ L 1 and, if (m, w) ∈ L 1 , G * (m, w) = T 0 T d K * (x, m(t, x), w(t, x))dtdx,
where

K * (x, m, w) =    F (x, -m) -mH * (x, -w m ) if m < 0 0 if m = 0, w = 0 +∞ otherwhise is the convex conjugate of K(x, a, b) = F * (x, -a + H(x, b)) ∀(x, a, b) ∈ T d × R × R d . Therefore max (m,w)∈E ′ 1 {-F * (Λ * (m, w)) -G * (-(m, w))} = max T 0 T d -F (x, m) -mH * (x, - w m ) dtdx - T d φ T (x)m(T, x) dx
where the last maximum is taken over the L 1 maps (m, w) such that m ≥ 0 a.e. and

∂ t m -∂ ij (A ij m) + div(w) = 0, m(0) = m 0
holds in the sense of distributions. Since

T d m 0 = 1 , it follows that T d m(t) = 1 for any t ∈ [0, T ].
Thus the pair (m, w) belongs to the set K 1 and the first part of the statement is proved.

Take now an optimal (m, w) ∈ K 1 in the above system. Observe that due to optimality we have w(t, x) = 0 for all (t, x) ∈ [0, T ] × T d such that m(t, x) = 0. The growth conditions ( 4) and [START_REF] Cardaliaguet | Long time average of mean field games[END_REF] imply

C ≥ T 0 T d F (x, m) + mH * (x, - w m ) dtdx + T d φ T (x)m(T, x) dx ≥ T 0 T d 1 C |m| q + m C w m r ′ -C(m + 1) dxdt -φ T ∞ .
Therefore m ∈ L q . Moreover, by Hölder inequality, we also have

T 0 T d |w| r ′ q r ′ +q-1 = {m>0} |w| r ′ q r ′ +q-1 ≤ m r ′ -1 r ′ +q-1 q {m>0} |w| r ′ m r ′ -1 q r ′ +q-1 ≤ C so that w ∈ L r ′ q r ′ +q-1 .
Finally, a minimizer to [START_REF] Porretta | Weak solutions to Fokker-Planck equations and mean field games[END_REF] should be unique, because the set K 1 is convex and the maps F (x, •) and H * (x, •) are strictly convex: thus m is unique and so is w m in {m > 0}.

As w = 0 in {m = 0}, uniqueness of w follows as well.

Analysis of the optimal control of the HJ equation

In general, we do not expect problem [START_REF] Lasry | Jeux à champ moyen. I. Le cas stationnaire[END_REF] to have a solution. In this section we exhibit a relaxation for (17) (Proposition 4.2) and show that this relaxed problem has at least one solution (Proposition 4.4).

4.1.

The relaxed problem. Recall that the exponents η > 1 and γ > 1 are defined in Theorem 2.3. Let K be the set of pairs (φ, α) ∈ L γ ((0, T ) × T d ) × L p ((0, T ) × T d ) such that Dφ ∈ L r ((0, T ) × T d ) and which satisfy in the sense of distributions

-∂ t φ -A ij (x)∂ ij φ + H(x, Dφ) ≤ α, φ(T, •) ≤ φ T (23) 
(for the precise meaning of the inequality, see the beginning of Section 2). The following statement explains that φ has a "trace" in a weak sense. 

T d ζ(x)φ(t + , x)dx its right limit at t ∈ [0, T ), then the map ζ → T d ζ(x)φ(t + , x)dx is continuous in L η ′ (T d ).
As a consequence, for any nonnegative C 1 map ϑ : [0, T ] × T d → R, one can write the integration by parts formula: for any 0

≤ t 1 ≤ t 2 ≤ T , - T d ϑφ t 2 t 1 + t 2 t 1 T d φ∂ t ϑ + Dϑ, ADφ + ϑ(∂ i A ij ∂ j φ + H(x, Dφ)) ≤ t 2 t 1 T d αϑ.
Proof of Lemma 4.1. One easily checks that, for any Lipschitz continuous, nonnegative map We extend the functional A to K by setting

ζ : T d → R, - d dt T d ζφ(t) + T d Dζ, ADφ(t) + ζ(∂ i A ij ∂ j φ + H(x, Dφ) -α) ≤ 0,
A(φ, α) = T 0 T d F * (x, α(x, t)) dxdt - T d φ(x, 0)m 0 (x) dx ∀(φ, α) ∈ K.
The next proposition explains that the problem inf

(φ,α)∈K A(φ, α) (24) 
is the relaxed problem of [START_REF] Lasry | Jeux à champ moyen. I. Le cas stationnaire[END_REF]. For this we first note that inf

(φ,α)∈K A(φ, α) = inf (φ,α)∈K, α≥0 a.e. A(φ, α) (25) 
because one can always replace α by α ∨ 0 since F * (x, α) = 0 for α ≤ 0.

Proposition 4.2. We have inf

φ∈K 0 A(φ) = inf (φ,α)∈K A(φ, α).
The proof requires the following inequality:

Lemma 4.3. Let (φ, α) ∈ K and (m, w) ∈ K 1 . Assume that mH * (•, -w/m) ∈ L 1 ((0, T ) × T d ) and m ∈ L q ((0, T ) × T d ). Then T d mφ T t + T t T d m α + H * (x, - w m ) ≥ 0 ( 26 
)
and

T d mφ t 0 + t 0 T d m α + H * (x, - w m ) ≥ 0.
Moreover, if equality holds in the inequality (26) for t = 0, then w = -mD p H(x, Dφ) a.e.

Proof. We first extend the pairs (m, w) to [-1,

T + 1] × T d by defining m = m 0 on [-1, 0], m = m(T ) on [T, T + 1] and w(s, x) = 0 for (s, x) ∈ (-1, 0) ∪ (T, T + 1) × T d . Note that ∂ t m -∂ ij ( Ãij (t, x)m) + div(w) = 0 on (-1, T + 1) × T d , where Ãij (t, x) = A ij (x) if t ∈ (0, T )
and Ãij (t, x) = 0 otherwise. Let ξ ǫ = ξ ǫ (t, x) be a smooth convolution kernel with support in B ǫ ; we smoothen the pair (m, w) in a standard way into (m ǫ , w ǫ ). Then (m ǫ , w ǫ ) solves

∂ t m ǫ -∂ ij ( Ãij m ǫ ) + div(w ǫ ) = ∂ i R ǫ in (-1/2, T + 1/2) (27)
in the sense of distributions, where

R ǫ := [ξ ǫ , ∂ j Ãij ](m) + [ξ ǫ , Ãij ∂ j ](m). ( 28 
)
Here we use again the commutator notation (cf. [START_REF] Diperna | Ordinary differential equations, transport theory and Sobolev spaces[END_REF])

[ξ ǫ , c](f ) := ξ ǫ ⋆ (cf ) -c(ξ ǫ ⋆ f ) . (29) 
Invoking [10, Lemma II.1], we have that R ǫ → 0 in L q , since m ∈ L q and Ãij ∈ W 1,∞ . Let us fix time t ∈ (0, T ) at which φ(t + ) = φ(t -) = φ(t) in L γ (T) and m ǫ (t) converges to m(t). By the inequality satisfied by (φ, α), we have

T t T d φ∂ t m ǫ + ∂ i φ∂ j ( Ãij m ǫ ) + m ǫ H(x, Dφ) + T d m ǫ (t)φ(t) -m ǫ (T )φ T ≤ T t T d αm ǫ .
By (27) we have

T t T d φ∂ t m ǫ + ∂ i φ∂ j ( Ãij m ǫ ) = T t T d -∂ i φR ǫ + Dφ, w ǫ .
On the other hand, by convexity of H,

T t T d -m ǫ H * (x, - w ǫ m ǫ ) ≤ T t T d w ǫ , Dφ + m ǫ H(x, Dφ) . ( 30 
)
Collecting the above (in)equalities we obtain

T d m ǫ (t)φ(t) ≤ T d m ǫ (T )φ T + T t T d m ǫ (α + H * (x, - w ǫ m ǫ )) + ∂ j φR ǫ .
By assumption [START_REF] Cardaliaguet | Hölder continuity to Hamilton-Jacobi equations with superquadratic growth in the gradient and unbounded right-hand side[END_REF] which states that r ≥ p, and since Dφ ∈ L r , we have ∂ j φR ǫ → 0 as ǫ → 0. Following the proof of Lemma 2.7 in [START_REF] Cardaliaguet | Mean field games systems of first order[END_REF] we have

T t T d -m ǫ H * (x, - w ǫ m ǫ ) → T t T d -mH * (x, - w m ) as ǫ → 0.
The continuity of t → m(t) in P (T d ) given by Lemma 3.1 implies the convergence

T d m ǫ (T )φ T → T d m(T )φ T .
Recalling that φ is bounded below, we finally get by Fatou's Lemma the inequality

-φ -∞ + T d m(t)(φ(t) + φ -∞ ) ≤ T d m(T )φ T + T t T d m(α + H * (x, - w m )),
which implies that m(t)φ(t) is integrable with

T d m(t)φ(t) ≤ T d m(T )φ T + T t T d m(α + H * (x, - w m ))
We can argue similarly in the time interval [0, t] using that T d m ǫ (t)φ(t) → T d m(t)φ(t); this is certainly true, up to a subsequence, for a.e. t, because m ǫ φ strongly converges in L 1 ((0,

T ) × T d ) since φ ∈ L γ ((0, T ) × T d ), m ∈ L q ((0, T ) × T d
) and γ ≥ p. We obtain then

T d m 0 φ(0) ≤ T d m(t)φ(t) + t 0 T d m(α + H * (x, - w m )).
Let us assume finally that the following equality holds:

T d mφ T 0 + T 0 T d m α + H * (x, - w m ) = 0.
Then there is an equality in inequality (26) for almost all t. Fix such a t ∈ (0, T ) and let

E σ (t) := (s, y) , s ∈ [t, T ], m(H * (y, - w m ) + H(x, Dφ)) ≥ -w, Dφ + σ .
If |E σ (t)| > 0, then for ǫ > 0 small enough, the set

E ǫ,σ (t) := {(s, y) , s ∈ [t, T ], m ǫ (H * (y, - w ǫ m ǫ ) + H(x, Dφ)) ≥ -w ǫ , Dφ + σ/2}
has a measure larger than |E σ (t)|/2. Coming back to inequality (30), we have

T t T d -m ǫ H * (x, - w ǫ m ǫ ) ≤ T t T d w ǫ , Dφ + m ǫ H(x, Dφ) -|E σ (t)|σ/4
Then inequality (26) becomes

T d m(t)φ(t) ≤ T d m(T )φ T + T t T d m(α + H * (x, - w m )) -|E σ (t)|σ/4,
which contradicts the fact that there is an equality in (26). So |E σ (t)| = 0 for any σ and for a.e. t, which shows that m(H * (y, -w m ) + H(x, Dφ)) = -w, Dφ a.e. Thus w = -mD p H(x, Dφ) holds a.e. in {m > 0} and, as w = 0 in {m = 0}, a.e. in (0, T ) × T d .

Proof of Proposition 4.2. We follow the argument developed by Graber in [START_REF] Graber | Optimal control of first-order Hamilton-Jacobi equations with linearly bounded Hamiltonian[END_REF]. Inequality inf

φ∈K 0 A(φ) ≥ inf (φ,α)∈K
A(φ, α) being obvious, let us check the reverse one. Let (φ, α) ∈ K.

For any (m, w) ∈ K 1 with mH * (•, -w m ) ∈ L 1 , we have, by Lemma 4.3,

A(φ, α) ≥ T 0 T d αm -F (m) - T d m 0 φ(0) ≥ T 0 T d -mH * (x, - w m ) -F (m) - T d m(T )φ T = -B(m, w)
Taking the sup with respect to (m, w) in the right-hand side we obtain thanks to Lemma 3.2: Proof. We start with the construction of a suitable minimizing sequence. Let ( φn ) be a minimizing sequence for problem [START_REF] Lasry | Jeux à champ moyen. I. Le cas stationnaire[END_REF] and let us set

A(φ, α) ≥ -inf (m,w)∈K 1 B(m, w) = inf φ∈K 0 A(φ).
α n (t, x) = max{0 ; -∂ t φn (t, x) -A ij ∂ ij φn (t, x) + H(x, D φn (t, x))}. (31) 
By Proposition 4.2 and the fact that F * (x, α) = 0 if α ≤ 0, the pair (φ n , α n ) is also a minimizing sequence of (24). Let ψ be the unique viscosity solution to

-∂ t ψ -A ij (x)∂ ij ψ + H(x, Dψ) = 0, ψ(T, •) = φ T . As φ T is C 2 , ψ(t, x) ≥ φT (x) -C(T -t),
where the constant C depends on φ T C 2 , on A ij C 0 and on H(•, Dφ T ) ∞ . Let φ n be the (continuous) viscosity solution to

-∂ t φ n -A ij (x)∂ ij φ n + H(x, Dφ n ) ≤ α n , ψ(T, •) ≤ φ T . (32) 
By comparison, φ n ≥ φn ∨ ψ. As H is convex, (32) holds in the sense of distributions (see [START_REF] Ishii | On the equivalence of two notions of weak solutions, viscosity solutions and distribution solutions[END_REF]). Therefore the sequence (φ n , α n ) is still minimizing, with the following bound below for (φ n ):

φ n (t, x) ≥ φ T (x) -C(T -t). (33) 
Step 1: We claim that (α n ) is bounded in L p ((0, T ) × T d ). For this, we integrate (32) against m 0 on (0, T ) × T d

T d φ n (0)m 0 + T 0 T d ∂ i m 0 A ij ∂ j φ n +(∂ j A ij )m 0 ∂ j φ n +m 0 H(x, Dφ n ) ≤ T 0 T d m 0 α n + T d φ T m 0 .
As (1/C 0 ) ≤ m 0 ≤ C 0 for some C 0 > 0, Dm 0 ∞ < +∞ and H is coercive, we get

T d φ n (0)m 0 + 1 C T 0 T d |Dφ n | r ≤ C 0 α n p + C. (34) 
On the other hand, as (φ n ) is a minimizing sequence and F * is coercive,

1 C α n p p - T d φ n (0)m 0 ≤ T 0 T d F * (x, α n ) - T d φ n (0)m 0 + C ≤ C.
Adding the previous inequalities, we get

1 C α n p p + 1 C T 0 T d |Dφ n | r ≤ C 0 α n p + C, so that (α n ) is bounded in L p ((0, T ) × T d ) while (Dφ n ) is bounded in L r .
Step 2: We show here that (φ n , α n ) has a limit. As (α n ) is bounded in L p and (φ n ) is uniformly bounded below thanks to (33), Theorem 2.3 implies that (φ n ) is bounded in L γ . So we can assume with loss of generality that α n ⇀ ᾱ in L p , φ n ⇀ φ in L γ and Dφ n ⇀ D φ in L r where, in view of the convexity of H, the pair ( φ, ᾱ) belongs to K.

Step 3: We now prove that ( φ, ᾱ) is a minimizer. By weak lower semicontinuity arguments, we have 

lim inf n T 0 T d F * (x, α n ) ≥ T 0 T d F * (x, ᾱ). Let ζ n (t) = T d m 0 φ n (t)
(∂ i A ij ∂ j φ n + H(x, Dφ n ) -α n ) ≤ 0,
we also have by coercivity of H and thanks to the bound on (α n ):

ζ n (0) -Ct 1 p ′ ≤ ζ n (t) ∀t ∈ [0, T ].
Letting n → +∞: lim sup

n ζ n (0) -Ct 1 p ′ ≤ ζ(t) a.e. t ∈ [0, T ],
so that lim sup

n ζ n (0) ≤ T d m 0 φ(0). Hence lim inf n T 0 T d F * (x, α n ) - T d m 0 φ n (0) ≥ T 0 T d F * (x, ᾱ) - T d m 0 φ(0)
and ( φ, ᾱ) is a minimum.

Remark 4.5. If r > 2 and p > 1 + d/r, then by [START_REF] Cardaliaguet | Hölder continuity to Hamilton-Jacobi equations with superquadratic growth in the gradient and unbounded right-hand side[END_REF] the sequence (φ n ) built at the beginning of the proof is uniformly Hölder continuous. Hence so is φ.

5.

Existence and uniqueness of a solution for the MFG system

In this section we show that the MFG system (1) has a unique weak solution and prove the stability of this solution with respect to the data. 5.1. Definition of weak solutions. The variational method described above provides weak solutions for the MFG system. By a weak solution, we mean the following: Definition 5.1. We say that a pair (φ, m) ∈ L γ ((0, T ) × T d ) × L q ((0, T ) × T d ) is a weak solution to (1) if (i) the following integrability conditions hold:

Dφ ∈ L r , mH * (•, D p H(•, Dφ)) ∈ L 1 and mD p H(•, Dφ)) ∈ L 1 .
(ii) Equation ( 1)-(i) holds in the following sense: inequality

-∂ t φ -∂ i (A ij (x)∂ j φ) + (∂ i A ij )∂ j φ + H(x, Dφ) ≤ f (x, m) in (0, T ) × T d , (35) 
with φ(T, •) ≤ φ T , holds in the sense of distributions, (iii) Equation ( 1)-(ii) holds:

∂ t m -∂ ij (A ij (x)m) -div(mD p H(x, Dφ))) = 0 in (0, T ) × T d , m(0) = m 0 (36)
in the sense of distributions, (iv) The following equality holds:

T 0 T d m(t, x) (f (x, m(t, x)) + H * (x, D p H(x, Dφ)(t, x))) dxdt + T d m(T, x)φ T (x) -m 0 (x)φ(0, x)dx = 0. ( 37 
)
Our main result is the following existence and uniqueness theorem:

Theorem 5.2. There exists a weak solution (φ, m) to the MFG system [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF]. Moreover this solution is unique in the following sense: if (φ, m) and (φ ′ , m ′ ) are two solutions, then m = m ′ a.e. and φ = φ ′ in {m > 0}.

Finally, there exists a solution which is bounded below by a constant depending on φ T C 2 , on A ij C 0 and on H(•, Dφ T ) ∞ .

Remark 5.3. Under the assumptions of Remark 4.5, i.e., if r > 2 and p > 1 + d/r, the φ-component of the solution is locally Hölder continuous. 5.2. Existence of a weak solution. The first step towards the proof of Theorem 5.2 consists in showing a one-to-one equivalence between solutions of the MFG system and the two optimizations problems [START_REF] Porretta | Weak solutions to Fokker-Planck equations and mean field games[END_REF] and (24). Theorem 5.4. Let ( m, w) ∈ K 1 be a minimizer of [START_REF] Porretta | Weak solutions to Fokker-Planck equations and mean field games[END_REF] and ( φ, ᾱ) ∈ K be a minimizer of (24). Then ( φ, m) is a weak solution of the mean field games system [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF] 

and w = -mD p H(•, D φ) while ᾱ = f (•, m) a.e..
Conversely, any weak solution ( φ, m) of ( 1) is such that the pair ( m, -mD p H(•, D φ)) is the minimizer of (22) while ( φ, f (•, m)) is a minimizer of (24).

Proof. Let ( m, w) ∈ K 1 be a minimizer of Problem ( 22) and ( φ, ᾱ) ∈ K be a minimizer of Problem (24). Due to Lemma 3.2 and Proposition 4.2, we have

T 0 T d F * (x, ᾱ) + F (x, m) + mH * x, - w m dxdt + T d φ T m(T ) -φ(0)m 0 dx = 0.
We show that ᾱ = f (x, m). Indeed, by convexity of F ,

F * (x, ᾱ(t, x)) + F (x, m(t, x)) -ᾱ(t, x) m(t, x) ≥ 0, (38) hence 
T 0 T d ᾱ(t, x) m(t, x) + mH * x, - w m dxdt + T d φ T m(T ) -φ(0)m 0 dx ≤ 0.
Thanks to Lemma 4.3, the above inequality is in fact an equality, w = -mD p H(•, D φ) a.e. and the equality holds almost everywhere in Equation (38). Therefore,

ᾱ(t, x) = f (x, m(t, x)) (39) 
almost everywhere and (37) holds:

T 0 T d f m + mH * x, - w m dxdt + T d φ T m(T ) -φ(0)m 0 dx = 0. In particular mH * (•, D p H(•, D φ)) ∈ L 1 .
Moreover, since ( φ, ᾱ) ∈ K and Equation (39) holds, we have

-∂ t φ -A ij ∂ ij φ + H(x, D φ) ≤ f (x, m) in the sense of distributions and φ(T ) ≤ φ T .
Furthermore, since ( φ, ᾱ) ∈ K and w = -mD p H(•, D φ), we have that mD p H(•, D φ) ∈ L 1 and (36) holds in the sense of distributions.

Therefore ( φ, m) is a solution in the sense of Definition 5.1. Suppose now that ( φ, m) is a weak solution of (1) as in Definition 5.1. Set w = -mD p H(•, D φ) and ᾱ(t, x) = f (x, m(t, x)). By definition of weak solution w, ᾱ ∈ L 1 , m ∈ L q and φ ∈ L γ . Moreover, since f is increasing in m and m ∈ L q , the growth condition [START_REF] Cardaliaguet | Long time average of mean field games[END_REF] implies that ᾱ ∈ L p . Therefore ( m, w) ∈ K 1 and ( φ, ᾱ) ∈ K.

It remains to show that ( φ, ᾱ) minimizes A and ( m, w) minimizes B. Let ( φ′ , ᾱ′ ) ∈ K. By the convexity of F in the second variable, we have

A( φ′ , ᾱ′ ) = T 0 T d F * (x, ᾱ′ (t, x))dxdt - T d φ′ (0, x)m 0 (x)dx ≥ T 0 T d F * (x, ᾱ(t, x)) + ∂ α F * (x, ᾱ(t, x))(ᾱ ′ (t, x) -ᾱ(t, x))dxdt - T d φ′ (0, x)m 0 (x)dx ≥ T 0 T d F * (x, ᾱ(t, x)) + m(t, x)(ᾱ ′ (t, x) -ᾱ(t, x))dxdt - T d φ′ (0, x)m 0 (x)dx, ≥ A( φ, ᾱ) + T 0 T d m(t, x)(ᾱ ′ (t, x) -ᾱ(t, x))dxdt + T d ( φ(0, x) -φ′ (0, x))m 0 (x)dx.
Due to Equation (37) and Lemma 4.3 applied to ( φ′ , ᾱ′ ) and ( m, w) we have

T 0 T d m(t, x)(ᾱ ′ (t, x) -ᾱ(t, x))dxdt + T d ( φ(0, x) -φ′ (0, x))m 0 (x)dx = T 0 T d m(t, x)ᾱ ′ (t, x) + m(t, x)H * (x, - w(t, x) m(t, x) )dxdt + T d φ T (x) m(T, x) -φ′ (0, x)m 0 (x)dx ≥ 0.
Hence, A( φ′ , ᾱ′ ) ≥ A( φ, ᾱ), and ( φ, ᾱ) is a minimizer of A.

The argument for ( m, w) is similar. Let ( m′ , w′ ) minimize B. Then because F is convex in the second variable, we have

B( m′ , w′ ) = T d φ T m′ (T ) + m′ H * x, - w′ m′ + F (x, m′ ) ≥ T d φ T m′ (T ) + m′ H * x, - w′ m′ + F (x, m) + f (x, m)( m′ -m) = T d φ T m′ (T ) + m′ H * x, - w′ m′ + F (x, m) + ᾱ( m′ -m) = B( m, w) + T d φ T m′ (T ) -m 0 φ(0) + m′ H * x, - w′ m′ + ᾱ m′ ≥ B( m, w).
Here we used Equation (37) in the next to last line, and we applied Lemma 4.3 to ( φ, ᾱ) and ( m′ , w′ ) in the last line. Therefore ( m, w) is a minimizer of B.

Uniqueness of the weak solution.

Proof of Theorem 5.2 (uniqueness part). Let ( φ, m) be a weak solution to [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF]. In view of Theorem 5.4, the pair ( m, -mD p H(•, D φ)) is the minimizer of ( 22) while ( φ, f (•, m)) is a solution of (24). In particular, m is unique because of the uniqueness of the solution of [START_REF] Porretta | Weak solutions to Fokker-Planck equations and mean field games[END_REF].

Let now (φ 1 , m) and (φ 2 , m) be two weak solutions of (1), and set ᾱ = f (•, m). Let φ = φ 1 ∨φ 2 . Assume for now that φ is a subsolution of ( 23) in the sense of distributions. Then ( φ, ᾱ) ∈ K, and so because -φ(0)m 0 ≤ -φ 1 (0)m 0 we have that ( φ, ᾱ) is also a solution of (24). Indeed, one deduces from Lemma 4.3 that for a.e. t ∈ [0, T ], ( φ, ᾱ) and (φ 1 , ᾱ), are both minimizers of the problem inf

(φ,α)∈K T t T d F * (x, α) - T d m(t)φ(t).
In particular,

T d m(t) φ(t) =
T d m(t)φ 1 (t). As φ 1 ≤ φ, this implies that φ 1 = φ a.e. in { m > 0}.

The same argument, replacing φ 1 with φ 2 , shows that φ 2 = φ a.e. in { m > 0}, and uniqueness is proved.

The main work to be shown is that φ = φ 1 ∨ φ 2 is indeed a subsolution of [START_REF] Stampacchia | Le problème de Dirichlet pour les équations elliptiques du seconde ordre à coefficients discontinus[END_REF] in the sense of distributions, i.e. For now we will fix a smooth vector field ψ on [0, T ] × T d . Notice that

-∂ t φk -A ij ∂ ij φk + ψ • D φk ≤ α + H * (x, ψ) (44) 
in the sense of distributions on (-2ǫ, T + 2ǫ) × T d . Let ξ 1 be a smooth convolution kernel in R d+1 with support in the unit ball, with ξ 1 ≥ 0 and ξ 1 = 1. Then define the standard mollifier sequence ξ ǫ (t, x) = ǫ -d-1 ξ 1 ((t, x)/ǫ). Set φ ǫ k = ξ ǫ ⋆ φk and α ǫ = ξ ǫ ⋆ α. By taking the convolution we have, in a pointwise sense, (46) Here we use the same commutator notation as in (29). Invoking [10, Lemma II.1], we have that R k ǫ and S k ǫ , k = 1, 2 are smooth functions which converge to zero in L r , since A ij ∈ W 1,∞ is given and ψ may also be chosen in W 1,∞ .

-∂ t φ ǫ k -A ij ∂ ij φ ǫ k + ψ • Dφ ǫ k ≤ α ǫ + ξ ǫ ⋆ H * (•, ψ) + R k ǫ -S k
Define R ǫ := max{R 1 ǫ -S 1 ǫ , R 2 ǫ -S 2 ǫ }. This, too, converges to zero in L r . Moreover, for k = 1, 2

-∂ t φ ǫ k -A ij ∂ ij φ ǫ k + ψ • Dφ ǫ k ≤ α ǫ + ξ ǫ ⋆ H * (•, ψ) + R ǫ ( 
47) holds in a pointwise sense, hence also in a viscosity sense. By standard results, (47) holds also for φ ǫ := φ ǫ 1 ∨ φ ǫ 2 in a viscosity sense. The result of [START_REF] Ishii | On the equivalence of two notions of weak solutions, viscosity solutions and distribution solutions[END_REF] implies that it also holds in the sense of distributions, that is, for any smooth map ζ with support in (0, T ] × T d we have Now since ψ is an arbitrary smooth vector field, we may take a sequence that approximates ∂ p H(x, D φ) in L r ′ . By the convexity of H(x, •) this yields (40), as desired.

5.4. Stability. We now consider the stability of solutions with respect to the data A, H and f and the data m 0 and φ T . More precisely, assume that (A n ), (H n ), (f n ) m n 0 and φ n T satisfy conditions (H1). . . (H4) uniformly with respect to n and converge to A, H, f , m 0 and φ T locally uniformly.

Theorem 5.5. Let (φ n , m n ) be a weak solution of (1) associated with A n , H n , f n and with the initial and terminal conditions m n 0 and φ n T . Assume also that the sequence φ n is uniformly bounded below. Then (m n ) converges strongly to m in L q while φ n converges weakly and up to a subsequence to a map φ in L γ , where the pair ( φ, m) is a weak solution to [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF].

Note that the existence of a solution (φ n , m n ), such that φ n is bounded by below, is ensured by Theorem 5.2.

The result is a simple consequence of Theorem 5.4 and of the Γ-convergence of the corresponding variational problems.

Lemma 4 . 1 .

 41 Let (φ, α) ∈ K. Then, for any Lipschitz continuous map ζ : T d → R, the map t → T d ζ(x)φ(t, x)dx has a BV representative on [0, T ]. Moreover, if we denote by

4. 2 .Proposition 4 . 4 .

 244 Existence of a solution for the relaxed problem. The next proposition explains the interest of considering the relaxed problem (24) instead of the original one[START_REF] Lasry | Jeux à champ moyen. I. Le cas stationnaire[END_REF]. The relaxed problem (24) has at least one solution (φ, α) ∈ K which is bounded below by a constant depending on φ T C 2 , on A ij C 0 and on H(•, Dφ T ) ∞ .

  t ζ + Dζ, AD φ + ζ(∂ i A ij ∂ j φ + H(x, D φ)) ≤ smooth map ζ with support in (0, T ] × T d . Let ǫ > 0. Introduce the following translation and extension of (φ k , ᾱ), k = 1, 2: φk (t, x) = φ k (t + 2ǫ, x) if t ∈ [-2ǫ, T -2ǫ) φ T (x) if t ∈ [T -2ǫ, T + 2ǫ](41)andα(t, x) = ᾱ(t + 2ǫ, x) if t ∈ [-2ǫ, T -2ǫ) λ if t ∈ [T -2ǫ, T + 2ǫ] (42)where λ = max x H(x, Dφ T (x)) + A ij (x)∂ ij φ T (x). Then we have that-∂ t φk -A ij ∂ ij φk + H(x, D φk ) ≤ α (43)in the sense of distributions on (-2ǫ, T + 2ǫ) × T d .

  T ] × T d , where R k ǫ := [ξ ǫ , A ij ∂ j ](∂ i φk ), S k ǫ := [ξ ǫ , ψ](D φk ).

  )φ ǫ (T ) + T 0 T d φ ǫ ∂ t ζ + Dζ, ADφ ǫ + ζ(∂ i A ij ∂ j φ ǫ + Dφ ǫ • ψ) ǫ + ξ ǫ ⋆ H * (•, ψ) + R ǫ ). (48) By construction, φ ǫ (T ) = φ T for all ǫ > 0. Observe that φ ǫ → φ in L γ and Dφ ǫ → D φ in L r ,as these sequences are only slight adaptations of classical convolutions of φ and D φ. Finally, note that α ǫ → ᾱ in L p , while ξ ǫ ⋆ H * (•, ψ) → H * (•, ψ) uniformly. Letting ǫ → 0+, we are left with t ζ + Dζ, AD φ +ζ(∂ i A ij ∂ j φ+ψ •D φ) ≤ T 0 T d ζ(ᾱ+H * (•, ψ)). (49)

  holds in the sense of distributions. As the second integral is in L 1 ((0, T )), the map t → T d ζφ(t) is BV. If now ζ is Lipschitz continuous and changes sign, one can write ζ = ζ + -ζ -and the map t → T d ζφ(t) = T d ζ + φ(t) -T d ζ -φ(t) is still BV. The continuity with respect to ζ comes from the L ∞ ((0, T ), L η (T d )) estimate on φ given in Theorem 2.3.
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Proof. Let us set w n = -m n D p H n (•, Dφ n )) and α n = f (•, m n ). According to the second part of Theorem 5.4, the pair (m n , w n ) is a minimizer of problem [START_REF] Porretta | Weak solutions to Fokker-Planck equations and mean field games[END_REF] associated with A n , H n , f n , m n 0 and φ n T , while the pair (φ n , α n ) is a minimizer of problem (24) associated with the same data. Using the estimates established for the proof of Proposition 4.2, we have

By lower semi-continuity of the functional B, (m n , w n ) converge weakly up to a subsequence to to the minimum ( m, w) of the problem ( 22) associated with A, H, f , m 0 and φ T . The limit problem being strictly convex, the convergence actually holds strongly in L q × L r ′ q r ′ +q-1 . Then the growth condition (2) on f implies that the sequence (

The end of the proof follows closely the argument in Proposition 4.4: (Dφ n ) is bounded in L r , so that, up to a subsequence, (φ n ) converges weakly to some φ in L γ while Dφ n converges weakly to Dφ in L r where ( φ, ᾱ) belongs to K. Moreover ( φ, ᾱ) is a minimizer of the relaxed problem (24). Theorem 5.4 then states that the pair ( φ, m) is a solution to the MFG problem [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF].