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Abstract—Recently, the Permanent Magnet Synchronous 
Motor (PMSM) find a widespread utilization in modern 
adjustable AC drives. This is achieved by using current 
controlled Voltage Source Inverter (VSI) systems. Because of its 
ease implementation, fast current control response and inherent 
peak current limiting capability, hysteresis current control is 
considered as the simplest technique used to control the motor 
currents for AC machines. On the other hand, the ramp 
comparator controller has some advantages, such as limiting 
maximum inverter switching frequency to the carrier triangular 
waveform frequency and producing well-defined harmonics. In 
order to take advantage of the position features of both these two 
controllers, this paper presents the design and software 
implementation of a hybrid current controller. The proposed 
intelligent controller is a simultaneous combination and 
contribution of the hysteresis current controller and the ramp 
comparator. Comparisons using simulations on a 0.9-kW PMSM 
confirm that the proposed hybrid current controller gives better 
performance and has the advantage of conceptual simplicity. In 
particular, harmonic spectra of the stator current, obtained by 
using a fast Fourier transform, are used for comparison 
purposes. 

 
Index Terms—PMSM, robustness, hysteresis controller, 

ramp comparator, hybrid controller. 
 

NOMENCLATURE 
 

s, (r)  = stator (rotor) index; 

d, q  = synchronous reference frame index; 

V   = voltage; 

I   = current; 

f   = permanent magnet flux; 

Te,   = electromagnetic torque; 

Tl   = load torque; 

R   = resistance; 

L   = inductance; 

r   = angular speed; 

   = rotor position; 

f   = viscosity coefficient; 
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J   = rotor inertia; 

np   = pole pair number; 

KT   = KT = 3 np f / 2; 

p   = derivative operator. 
 

I. INTRODUCTION 
 

Permanent Magnet Synchronous Motor (PMSM) drives 
are today gradually replacing classic dc drives in a large 
number of industrial applications, taking full advantage of 
key features of PM motors, such as compactness, efficiency, 
robustness, reliability, and shape adaptation to the working 
environment [1-2]. 

Substantial development efforts have been devoted to the 
application of various classes of robust control techniques in 
order to exploit the efficiency and extremely fast dynamic 
capabilities of the PMSM. More specifically, there have been 
several papers describing applications of various strategies of 
speed and current controllers [3-10]. The closed loop vector 
control technique is used for the PMSM to obtain the 
equivalent performance of a separately excited dc motor. 
Such technique is implemented using both current and speed 
controllers. A typical closed loop vector control scheme for 
the PMSM drive is shown in Fig. 1. 
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Fig. 1. PMSM control block diagram. 
 

The most common strategies of current controllers can be 
classified as hysteresis and ramp comparator controllers [11]. 
Each scheme has its advantages and drawbacks with regard to 
insensitivity to parameters variations, accuracy, robustness 
and dynamic response over the entire speed range. The 
advantages of hysteresis current controllers lie in their 
simplicity and their providing fast responses and good 
accuracy, because they act quickly. However, the switching 
frequency may vary widely during the fundamental period, 
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resulting in irregular inverter operations. This is mainly due to 
the interference between the three-phase commutations. Thus, 
the actual current waveform is not determined by the 
hysteresis current control, the current slope may vary widely 
and current peaks may significantly exceed the limits of 
hysteresis bands. The ramp comparator controller has the 
advantages of limiting the maximum inverter switching 
frequency to the carrier triangular waveform frequency and 
producing well-defined harmonics. On the other hand, 
magnitude and phase errors in the line currents may be 
produced. Furthermore, multiple crossings of the ramp may 
become a serious problem when the current error time rate of 
change exceeds that of the ramp. A third strategy of current 
controllers is that of predictive controllers. The next 
switching-state vector for achieving good current tracking 
control is determined via prediction and optimization. The 
lookup table method is usually utilized to realize this kind of 
switching control approach. The current control response 
might be slower than other types of current controllers due to 
the extra processing time [12]. 

Up to now, most of the research [13-18] has been 
performed to allow the hysteresis current-controlled PWM 
inverter to have a constant switching frequency. Recently, in 
[19], a robust hysteresis current control with nonconstant 
switching frequency has been proposed. However, the 
detailed investigation and the way to overcome the limitations 
of various current controllers at variable-speed drive 
applications have not yet been reported. 

Therefore, to deal with the above-cited problems and to 
take advantage of the position features of both the hysteresis 
and ramp controllers, this paper proposes a hybrid current 
control strategy to follow up the comparative study reported 
in [20], where a detailed comparison between hysteresis and 
ramp controllers provide the clue to develop a hybrid current 
controller. The proposed controller is a combination of 
hysteresis and ramp comparator controllers. Contrary to the 
hybrid controller proposed in [20], where the hysteresis 
current controller is used for high-speed operations and the 
ramp comparator scheme is used for low speed operations, the 
proposed controller has the particularity of a simultaneous 
combination of the above controllers in order to achieve 
better performance over the entire speed range. 

Simulation results on a 0.9-kW PMSM are presented to 
highlight the advantages and the simplicity of the proposed 
hybrid current controller. In particular, harmonic spectra of 
the stator current, obtained using a fast Fourier transform, are 
presented for comparison purposes. 

 

II.  PMSM MODELING 
 

The voltage equations in a synchronous reference frame 
can be presented by the following equation. 
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From the above equations, the developed torque can be 
written as 
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and the motor dynamics can be simply described by 
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Using the field orientation concept, assumption can be 
made that the d-axis current is controlled to be zero. The 
second term of equation (2) therefore becomes negligible. 
The reduced dynamic model of the PMSM is therefore given 
by the following set of equations. 
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The above system resolution provides the output variables 
(Iq, ωr, θ, Id, Te) of the PMSM block. 

 

III.  CURRENT CONTROLLER DESIGN 
 

A. Hysteresis Current controller 
 

In the vector control scheme, the current controller has 
direct influence on the drive performance and its design 
requires special considerations. The basic requirements for the 
current controllers are low harmonics to reduce losses, low 
torque pulsation, low noise in the motor, and fast response in 
order to provide high dynamic performance [20-21]. 

The logic operation of the voltage source inverter under 
current control is reported in table 1. There are eight switch 
combinations for the six switches of the inverter. The voltage 
vectors corresponding to the active states are shown in Fig. 2. 
The six commands V1 to V6 correspond to active voltage 
vectors; the remaining two V0 and V7 correspond to the zero 
voltage vectors [20], [22-23]. 

In the hysteresis current controller of Fig. 3, load currents 
Ia, Ib and Ic are respectively forced to follow reference 
currents Iaref, Ibref and Icref within a hysteresis band by the 
switching action of the inverter. 

The upper and lower bounds of the hysteresis band are set 
for the motor current, and the hysteresis controller logic 
control can be described according to the following rules. 

 
Rule A: For Iaref > 0: Th4 = 0, 

If   Ia > Iaref + ΔI  Then Th1 = 0, 
Else if  Ia < Iaref – ΔI  Then Th1 = 1, 
Else  no change. 

Rule B: For Iaref < 0: Th1 = 0, 
If   Ia > Iaref + ΔI  Then Th4 = 1, 
Else if  Ia < Iaref – ΔI  Then Th4 = 0, 
Else  no change. 



Table 1. VSI conduction modes. 
 

 

State 
Order 

Legs 
“Phase 1” 

Legs 
“Phase 2” 

Legs 
“Phase 3” 

 

Operation 
Modes 

Th1 Th4 Th3 Th6 Th5 Th2 
V0 0 1 0 1 0 1 Freewheeling 
V1 1 0 0 1 0 1 Active 
V2 0 1 1 0 0 1 Active 
V3 1 0 1 0 0 1 Active 
V4 0 1 0 1 1 0 Active 
V5 1 0 0 1 1 0 Active 
V6 0 1 1 0 1 0 Active 
V7 1 0 1 0 1 0 Freewheeling 

 

α

β

V1(1,-1,-1)

V0(1,1,1)
V7(-1,-1,-1)

V4(-1,1,1)

V3(-1,1,-1) V2(1,1,-1)

V6(1,-1,1)V5(-1,-1,1)
 

 

Fig. 2. Switching states under current controller. 
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Fig. 3. Hysteresis current controller. 
 

In a basic implementation of the hysteresis current 
controller, the switching signals are derived from the 
comparison of the current error with a fixed hysteresis band. 
Although it is simple and extremely robust, the control 
technique suffers several drawbacks, mainly the variation of 
the modulating frequency of the power converter. Generally 
speaking, a three-phase VSI does not work properly if 
controlled by three independent hysteresis loops. This is due 
to the inherent coupling between the inverter three phases. 
Figure 3 shows that the use of individual controllers provides 
mutual interactions of the controllers and current errors equal 
to twice the imposed tolerance band ΔI. 

B. Ramp Comparator Controller 
 

The PMSM is generally driven by using current controlled 
VSI. In the ramp comparator scheme, the motor currents are 
sensed and compared to the reference currents, which are 
generated from the field-oriented controller. The ramp 
comparator controller is based on the following control logic 
rules. 

 
Rule A: For Iaref > 0, 

If Va – Vtr> 0 Then Th4=1 Else  Th1=1. 
Rule B: For Iaref < 0 

If Va – Vtr> 0 Then Th1=1 Else  Th4=1. 
 

In Figure 4, the error signals are compared to a triangular 
waveform to produce inverter constant frequency PWM drive 
signals. The switching frequency is limited to that of the 
triangular waveform and this represents the main advantage 
of the ramp comparator controller. However, inherent 
tracking amplitude and phase errors are the main drawbacks 
of this technique. Although good performances can be 
obtained for low and medium speeds, the amplitude and phase 
errors are introduced in the motor line currents. These 
amplitude and phase errors become unacceptable for high 
performance drive applications. 
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Fig. 4. Ramp comparator controller. 
 

C. Hybrid Current Controller 
 

In order to overcome the previously mentioned drawbacks 
of the hysteresis and ramp comparator controllers, a hybrid 
controller is proposed and implemented. The schematic 
diagram of the controller is shown in Fig. 5. The proposed 
hybrid current controller consists in the simultaneous use of 
the hysteresis and the ramp comparator controllers without a 
switching mode level between the hysteresis and ramp 
comparator modes. 

The principle of the proposed hybrid current controller is 
based on the superposition of a high and a fixed frequency 
triangular signals to the current references. New current 
references are obtained; these are given by the following 
equations. 
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Fig. 5. Hybrid current controller. 
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The new reference signals are compared to the actual 
currents. Error signals ea, eb and ec then become the inputs to 
the hysteresis block control as illustrated by Fig. 5. 
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The upper and lower bounds of the hybrid current 
controller could then be defined using the new current 
references and the hysteresis band size I. 
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As illustrated by Fig. 6, the intersections of Ia and Ianref 
waveforms represent the switching instants. If a fixed 
frequency is required at the output, two rules must be 
respected. They are 

 
Rule 1. The switching ON of Th1 is obtained by the 

intersection of the descending part of the real 
current with the ascending part of the lower 
bound of the new current reference. 

Rule 2. The switching OFF of Th1 is obtained by the 
intersection of the ascending part of the real 
current with the descending part of the upper 
band limit of the new current reference. 

 
However, in case of a failure to comply with the above 

rules, two extreme cases will be obtained as depicted in Figs. 
7 and 8. Theoretically speaking, the feasibility limits (Fig. 9) 
of the proposed hybrid current controller are defined by the 
minimum and maximum angles given by 
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Fig. 6. Design of hybrid controller. 
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Fig. 7. Extreme case 1: Very high variable switching frequency. 
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Fig. 8. Extreme case 2: Low and variable switching frequency. 
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Fig. 9. Feasibility limits of the proposed controller. 



Hence, it is obvious that an exact design of the controller 
depends on the triangular waveform amplitude and frequency 
parameters noted respectively Atr and ftr, the hysteresis band 
size I and the stator time constants d = Ld/Rs and q = Lq/Rs. 

The purpose of the hybrid current controller is to impose a 
fixed switching frequency to the inverter. As a result, the 
following expression is always true. 

   trarefa AIImax             (9) 

 
At the upper and lower limits, DC link voltage E may 

reset the switching frequency. 
 

IV.  SIMULATION RESULTS 
 

The control algorithms of the hysteresis, the ramp 
comparator and the proposed hybrid controller, for the PMSM 
drive system, have been developed and implemented using a 
Matlab/Simulink programming environment. Simulations 
were carried on a 0.9-kW PMSM whose ratings and 
parameters are presented in the appendix. 

Figure 10 shows the performance of the hybrid current 
controller for a 150-rad/sec speed command at a rated load 
condition (Tl = 3-N.m). It is worth mentioning that the motor 
speed accurately tracks the command with no overshoot. 
During the start up period, the developed torque equals the 
motor maximum capability. This ensures that the PMSM runs 
up in the shortest time possible and the developed torque 
decreases in order to satisfy the applied load torque. 

Figure 11 shows the steady state line current and the 
reference current at various speed references, with a 
triangular carrier frequency of 1.5-kHz. The instantaneous 
value of the real current is lower than the reference current. 
The actual current remains at the inferior part of the triangular 
waveform of the new reference current. 

 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0

50

100

150


r

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0

5

10

T
ref

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0

5

10

T
e

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

-200

0

200

V
an

Time (sec)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0

50

100

150


r

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0

5

10

T
ref

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0

5

10

T
e

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

-200

0

200

V
an

Time (sec)  
 

Fig. 10. Hybrid current controller performance. 
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Fig. 11. Speed command effect on the steady state line current. 
 

At a given speed, the error between Ia and Iaref increases as 
the instantaneous value of the real current increases near the 
peak value of Iaref. In the neighborhood of the zero crossing-
point, the difference is small. This is exactly in agreement 
with the mixed band hysteresis current controller that 
combines the fixed and the sinusoidal band controllers [23]. 
In addition, during a single period Ttr of the triangular 
waveform, four changes of current dIa/dt are observed. Two 
changes are caused by phase A. The other two are caused by 
the switching of B and C phases. 

Figure 12 shows that phase voltage Van waveform has the 
same shape as the one obtained by the ramp comparator 
controller with five levels: 0,  E/3 and 2 E/3. For Ia 0, the 
Van corresponding values are obtained by the following 
applied vectors: V1(1,0,0), V2(1,1,0), V6(1,0,1), and V7(0,0,0). 

In case of the fixed band hysteresis controller, even if the 
regulation requires increased current, it can decrease due to 
the controllers’ interaction. Any voltage vectors V0 to V7 may 
be applied. This leads to an irregular waveform of the voltage 
and a variable switching frequency of the inverter as depicted 
in Fig. 13. As a result, the harmonics order can reach 80. 
Figure 14 shows the corresponding harmonic spectrum at a 
rated load and a rated speed. It is observed that in the case of 
the hybrid current controller, the harmonic distortion is low as 
compared to the fixed band hysteresis controller. 

The proposed hybrid controller then shows a compromise 
between the harmonic distortion and the inverter switching 
frequency. 
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Fig. 12. Hybrid current controller phase voltage. 
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Fig. 13. Fixed band hysteresis current controller. 
 

V. CONCLUSION 
 

It has been shown in recent literature that good 
performance with a high-speed drive may be achieved by 
using the hysteresis current controller, whereas with a low-
speed drive the ramp comparator controller is the most 
appropriate one. To take advantage of both controllers, a new 
hybrid current controller has been proposed and validated by 
simulations. Detailed analysis of various current controllers 
for a PMSM drive has been presented. 
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Fig. 14. Stator current FFT. a) Hybrid controller; b) Hysteresis controller. 
 

Comparisons through simulations confirm that the 
proposed hybrid current controller gives better performance 
and has the advantage of conceptual simplicity. 

In contrast to the classical current control schemes, the 
following features characterize the proposed hybrid current 
controller. 

– The switching frequency is kept almost constant. 
– Regular voltage waveform is given by a limited 

number of voltage vectors. 
– Exact agreement with a mixed band hysteresis 

controller, defined as a combination of fixed and 
sinusoidal band hysteresis controllers [24]. 

– Notable reduction of the distortion components that 
are concentrated around the near-switching frequency. 

 

APPENDIX 
RATED DATA OF THE SIMULATED PMSM 

 

 

Rated values    Power    0.9   kW 
Frequency   50   Hz 
Voltage (/Y)  220   V 
Speed    1500  rpm 
Torque    3   N.m 
Pole pair (np)   2 

Rated parameters   f     0.314  Wb 
Rs     1.5    
Ld     0.0349  H 
Lq     0.0627  H 
J     0.003  kg.m2 

f     0.00008  N.m.s 
Constants    Atr     1.1   A 

ftr     1.5   kHz 
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