
HAL Id: hal-01048649
https://hal.science/hal-01048649v1

Submitted on 5 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Compilation Flow for Parametric Dataflow:
Programming Model, Scheduling, and Application to

Heterogeneous MPSoC
Mickaël Dardaillon, Kevin Marquet, Tanguy Risset, Jérôme Martin,

Henri-Pierre Charles

To cite this version:
Mickaël Dardaillon, Kevin Marquet, Tanguy Risset, Jérôme Martin, Henri-Pierre Charles. A Compi-
lation Flow for Parametric Dataflow: Programming Model, Scheduling, and Application to Hetero-
geneous MPSoC. International Conference on Compilers, Architecture and Synthesis for Embedded
Systems (CASES), Oct 2014, New Dehli, India. pp.1-10, �10.1145/2656106.2656110�. �hal-01048649�

https://hal.science/hal-01048649v1
https://hal.archives-ouvertes.fr

A Compilation Flow for Parametric Dataflow: Programming
Model, Scheduling, and Application to Heterogeneous MPSoC

Mickaël Dardaillon ∗ Kevin

Marquet Tanguy Risset

Université de Lyon, Inria,
INSA-Lyon, CITI-Inria,

F-69621 Villeurbanne, France

firstname.lastname@insa-lyon.fr

Jérôme Martin

Univ. Grenoble Alpes,
F-38000 Grenoble, France

CEA, LETI, Minatec campus,
F-38054 Grenoble, France

jerome.martin@cea.fr

Henri-Pierre Charles

Univ. Grenoble Alpes,
F-38000 Grenoble, France

CEA, LIST, Minatec campus,
F-38054 Grenoble, France

henri-pierre.charles@cea.fr

Abstract

Efficient programming of signal processing applications on embed-
ded systems is a complex problem. High level models such as Syn-
chronous dataflow (SDF) have been privileged candidates for deal-
ing with this complexity. These models permit to express inherent
application parallelism, as well as analysis for both verification and
optimization. Parametric dataflow models aim at providing suffi-
cient dynamicity to model new applications, while at the same time
maintaining the high level of analyzability needed for efficient real
life implementations.

This paper presents a new compilation flow that targets para-
metric dataflows. Built on the LLVM compiler infrastructure, it of-
fers an actor based C++ programming model to describe paramet-
ric graphs, a compilation front-end providing graph analysis fea-
tures, and a retargetable back-end to map the application on real
hardware. This paper gives an overview of this flow, with a spe-
cific focus on scheduling. The crucial gap between dataflow mod-
els and real hardware on which actor firing is not atomic, as well
as the consequences on FIFOs sizing and execution pipelining are
taken into account.The experimental results illustrate our compila-
tion flow applied to compilation of 3GPP LTE-Advanced demodu-
lation on a heterogeneous MPSoC with distributed scheduling fea-
tures. This achieves performances similar to time-consuming hand
made optimizations.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Data-flow languages; D.3.3
[Programming Languages]: Processors—Retargetable compilers

Keywords data flow, programming model, heterogeneous MP-
SoC, compiler, scheduling

∗ This work is sponsored by Région Rhône Alpes ADR 11 01302401.

1. Introduction

Implementation of signal processing algorithms in the dataflow
programming model is an active research area, and many popular
signal processing environments (Simulink, Labview, etc.) already
use this paradigm. Dataflow programming models are natural can-
didates for streaming applications. They allow both static analy-
sis and explicit parallelism, making them suitable for embedded
applications such as packet processing, cryptography, telecommu-
nications, video decoding, etc. This is of particular interest in the
wireless digital telecommunication domain where implementation
of wireless protocol has to be computationally efficient and pre-
dictable for real time communication, but also energy efficient to
be embedded in mobile phones.

“Advanced” 4G (e.g. LTE-Advanced) and forthcoming 5G wire-
less protocols, the advent of SDR technologies and the development
of cognitive radio networks reveal new challenges for expressing
and compiling wireless applications. The physical layer of wire-
less protocols have a dynamic behavior and require fast dynamic
reconfigurations which are not possible with today’s wireless de-
vices. These technological trends have re-activated past research
axes such as dynamic dataflow compiling or distributed signal pro-
cessing algorithm. In particular, the need for flexible but still ver-
ifiable programs has led very recently to the appearance of new
parametric dataflow Models of Computation (MoC).

A typical example to illustrate dataflow dynamicity comes from
LTE-Advanced: the type of modulation used to decode samples
in a LTE-Advanced frame (i.e. QPSK, 16-QAM, etc.) is indicated
within the frame itself. Hence the hardware should be able to adapt
to this modulation within a few micro-seconds. Classical dataflow
programming models that cannot express dynamic behavior need
to be extended [7].

LTE-Advanced decoding, as well as 5G telecommunications
protocols, will run on dedicated system on chip (SoC) with suffi-
cient processing power (order of 40 GOPS for LTE-Advanced [12,
31]) and reasonable power consumption (less than 500 mW). The
challenge with these SoCs is to set up a real compilation flow that
takes advantage of the hardware acceleration while retaining porta-
bility. There already exist some implementations of LTE-Advanced
being commercially deployed. Unfortunately these implementa-
tions are highly dedicated to a single architecture and are usually
manually tuned to meet the hard performance and power-efficiency
constraints. Our proposal is a step towards a more generic ap-
proach: compiling SDR waveforms from high level dataflow rep-
resentations rather than manual tuning.

The contributions provided by this work are:

1 2014/8/5

1. A new high level format for expressing parametric dataflow
graphs based on semi-static actors. This format permits to ex-
press parametrized dataflow graphs in an high level program-
ming model so as to describe, for instance, a MIMO receiver
with N antennas (detailed hereafter). As N should be known
before compilation we refer to this format as semi-static.

2. A new static analysis paradigm called micro-schedule that
permits a more precise analysis of deadlock when mapping
parametrized data-flow graph to real architecture. We have
used model checking to show the applicability of our micro-
schedule paradigm to the specific problem of advanced actor
pipelining in the context of dedicated target architecture with
small buffers.

3. The first complete compilation flow for the Magali platform [11].
Magali programs are usually tuned by hand. Our compilation
framework has been instantiated for the Magali architecture
(with part of it still being manual, such as mapping for in-
stance) and we obtain performance of the compiled programs
which are roughly equivalent to manually tuned programs. This
highlights the fact that our generic compilation framework can
adapt to very dedicated architectures such as Magali.

The paper is organized as follows: section 2 present our compi-
lation framework, sections 3 and 4 present parametric synchonous
dataflow and the micro-schedule proposal. Experimental results are
presented in section 5 and related work are presented in section 6.

2. Overview of Compilation Framework

In this section, we describe simultaneously the input format used to
express parametric dataflow graphs and the compilation flow that
we have built to compile these programs. A dataflow compilation
framework should compile high level specifications of a dataflow
representation (we use the parametric dataflow paradigm) and pro-
duce the executable codes needed to program the target platform.
To be retargetable, it should also take as input a description of the
target architecture. As the target architecture often contains dedi-
cated processors, we use the term “hardware IP” (or simply IP for
intellectual property) to refer the various kind of processors (gen-
eral or dedicated) that are present in the target machine.

Our dataflow compilation framework, illustrated in Fig. 1, is
split into two phases: i) Front-End for parsing and analysis of
the dataflow graph, and ii) Back-End for mapping, scheduling
and assembly code generation. Only the back-end uses the target
architecture characteristics as input.

The analysis checks that the data flow graph is correct. The map-
ping phase associate nodes of the data flow graph with hardware IPs
on which they will be executed. The scheduling schedules, o n each
IP, the order of execution of the different nodes assigned to it. Then,
the code is generated for each IP. Depending on the target architec-
ture, a central controller is used for global synchronization or the
synchronization can be distributed.

Our compilation also includes features that are not present in
other dataflow compilation frameworks. These features, detailed
further in the paper are: handling of parametric dataflow pro-
grams, complex dataflow graph construction, buffer size checking
on scheduled application, and code generation for complex hetero-
geneous SoCs.

2.1 Compiler Front-End

The compiler front-end is in charge of lowering the high-level rep-
resentation to intermediate representation (IR). It is based on the
LLVM framework [3]. We present now our actor based program-
ming model and how it is processed down to IR with the added
graph representation.

Mapping

Scheduling

Front-End Back-End

graph (c++)

Reduced dataflow

(CLang)

C++ Front-End

graph (LLVM IR)

Reduced dataflow

construction

dataflow graph

graph

Extended dataflow

(SPIN)

buffer check

generation

Code

(ASM)

SoC code

Figure 1. Proposed compilation flow from dataflow to heteroge-
neous SoC.

2.1.1 Parametric Dataflow Format

The input format follows the Schedulable Parametric DataFlow
(SPDF) model of computation propose by Fradet et al. in [16].
In a dataflow graph (DFG), from the classical dataflow model of
computation, the integers on the arcs represent the number of
samples produced or consumed by the actor at each execution.
In SPDF, this number can be a symbolic parameter whose value
is produced by an actor. A simple SPDF graph is represented on
Fig. 2b, the set p[1] indicates that the actor A produces a new
value for parameter p each time it fires. Also, the graph indicates
that actor A defines p and then output 2p data.

// actors declaration
class A : public Actor {

public:
PortOut <int > out;
ParamOut p;
void compute () {

[...]
p.set ([...])
for (i=0; i<p; i++)

out.push ([...]);
}

[...]
// Graph declaration
A actorA;
B actorB;
actorB.in <= actorA.out;
[...]

(a) Simple SPDF graph in PaDaF

A
set p[1]

B

2p

1

(b) simple
SPDF graph

Figure 2. Simple SPDF graph expressed in PaDaF

The input format we propose, called PaDaF (Parametric Dataflow
Format) is an actor programming model based on c++. It consists
of a set of classes allowing to describe a parametric data flow graph.
Fig. 2a present parts of the program implementing the simple SPDF

graph of Fig. 2b, it illustrates how actors are declared and shows
specific classes for data ports (PortOut class) and for parameters
produced (ParamOut class). Our format is close to systemC [28].
The originality of PaDaF is that it permits to describe the DFG in
a closed form (or reduced graph) using classical control structure

2 2014/8/5

[...]
SRC src[NB_ANT];
OFDM fft[NB_ANT];
DECODING mimo(NB_ANT);
SINK sink;
for(i = 0; i < NB_ANT; i++) {

fft[i].in <= src[i].out;
mimo.in[i] <= fft[i].out;

}
sink.in <= mimo.out;
[...]

(a) program excerpt (Reduced graph).

SRC OFDM
7168 1024

SRC OFDM
7168 1024

SRC OFDM
7168 1024

SRC OFDM
7168 1024

SINK

600

4200
4200

4200

4200

600

600

600

p*57 57
set p[1]

DECODING

(b) Corresponding Extended graph (for 4 antennas): SPDF model

Figure 3. PaDaF simple input program (Fig. 3a) representing a MIMO receiver with NB ANT antenna. The graph on the right (Fig. 3b) has
been extended for NB ANT=4 and corresponds to a parametric data-flow graph in the SPDF model, p is a parameter instantiated at runtime:
the number of data sample decoded in the frame by the DECODING IP is computed after receiving some of the 4200 samples of the frame
itself.

instructions (for loop for instance) and any C++ structure for that
matter. The only constraint is that the graph structure is static, i.e.
all the information to draw the graph has to be known at com-
pilation time. Fig. 3a illustrates the use of PaDaF to describe, in a
closed form, a SPDF graph with a parametric number of OFDM nodes
(NB ANT is the name of this parameter). The extended data flow
graph of this PaDaF program is shown on Fig. 3b for NB ANT=4.

Each actor has a single compute method that represents the
execution of one iteration of the actor. The code of this method is
written in C++ and uses various push/pop intrinsics to send/receive
data and parameters. An excerpt of the compute method of the
DECODING actor is shown on Fig. 4

void DECODING :: compute () {
[...]
for(i = 0; i < NB_ANT; i++) {

val[i] = in[i].pop ();
}
[...]
p.set(size);
[...]

Figure 4. PaDaF program excerpt for the core computation.

Choosing C/C++ language for the core code of the actors ex-
hibits many advantages: it allows designers to reuse legacy code
and highly optimized tools such as C compilers; it does not re-
quire to learn a new language; and it permits easy simulation and
functional validation. Moreover, the support of a general purpose
language for describing the graph structure greatly simplifies the
specification of some applications as it provides important capabil-
ities such as the ability to iterate for the construction of complex
structures (channels of the MIMO receiver illustrated on Fig. 3). As
a matter of fact, arbitrary C++ code can be used for the DFG con-
struction, as long as it produces a static graph at compilation time.
This approach raises challenges that we solve in the following para-
graph.

2.1.2 Dataflow Graph Construction

From the program describing the reduced DFG (e.g. Fig 3a), we
build the extended DFG (e.g. Fig. 3b). First of all, we compile the
C++ code using the Clang compiler [1]. We obtain a low-level
description of the graph in the LLVM IR bytecode that we call the
reduced graph representation. In this representation, the multiple
instances of the same actor are not instantiated and loop structures

are kept. Building the extended graph representation in which the
different instances exist is difficult because the reduced graph is
described using arbitrary complex control structures. We use here a
technique already applied to SystemC [27]: we execute the program
to create all instances.

At this point, the DFG lives in memory, we can work with the
internal memory representation as a classic C++ object: to generate
the final code, we need to process the compute method of each
actor. This method describes the actor behavior during a cycle, it
contains input/output instructions operating on ports (pop/push).
For instance, in the instruction in[i].pop() on Fig. 4, the object
in[i] represents a port. In general it can be expressed by arbitrarily
complex code, e.g. an array accessed within a loop in Fig. 4. We
need to expand this code and to link each port access with its
corresponding port in the extended DFG to continue the compilation
flow.

We rely on the solution used in [27], divided in three parts:

1. We use a slicing algorithm on the LLVM IR to extract only
the code that is used to build input/ouptut instructions such as
in[i].pop(). If these instructions are dependent of the loop
index, the loops are unrolled (at this point, the loop range has to
be known).

2. All these instructions are put in a new LLVM function.

3. This function is executed by an instance of the LLVM Just-In-
Time compiler. The result is the address of in[i] (for each i),
which points to an actor port of the extended dataflow graph in
memory.

After that, the execution is interrupted and a callback function is
executed to launch the Back-end phase of our compiler using the
extended graph present in memory as internal representation.

2.2 Compiler Back-End

Once we have built our graph, the Back-End of the compiler is in
charge of specializing the program for the platform targeted. We
describe the different steps of this specialization.

Mapping Mapping actors on hardware cores on the basis of an
Architecture Description Language has been the focus of numerous
past research works [9, 10, 22, 24]. However they did not provided
a satisfactory solution. We did not investigate in this direction.
Given that the granularity of the actors in the SDR domain is
quite large (an actor can contain a full FFT), we assume that this
mapping is done manually, as it is already the case in many existing
heterogeneous SoC programming environments. Hence, in our flow,

3 2014/8/5

the hardware core on which each actor executes is given by the
programmer.

Scheduling Once the mapping is performed, the compiler com-
putes a schedule for each core. The simplest schedule is to run all
actors concurrently on a core and postpone the scheduling to run-
time by data synchronization. However, dedicated platforms such
as Magali [11] does not support runtime scheduling. In such case,
we generate a static schedule for the execution of the different ac-
tors on the core. More details on the scheduling methodology can
be found in section 3.

Buffer Checking Given the constraints introduced by the applica-
tion specialization to a given platform (e.g. static scheduling, mem-
ory constraints), we introduce a buffer size verification step before
the code generation. This step generates a model of the applica-
tion’s communication on the targeted platform. The model is gen-
erated in the PROMELA language, and is run on the SPIN model
checker [4] (explained in section 4).

Each core is represented by a concurrent process, containing the
static schedule of the actors mapped on the core. Each actor is re-
duced to its communications on the graph. All the communications
are represented as access to blocking FIFOs. This model permits to
control the absence of deadlock due to memory constraints. The
verification process and the communication representation as the
micro-schedule are explained in section 4. Evaluation of the verifi-
cation step on several applications is presented section 5.3.

Code Generation Our code generation is original in two ways.
First, it is able to generate communications from high-level DFG

representation, while taking advantage of the platform-specific
mechanisms. Second, it is able to generate distributed schedul-
ing and synchronization based on the extended DFG representation.
Depending on the platform, it gives the ability to have completely
distributed control, or to have a centralized controller scheduling
the different cores.

For example, on the Magali platform presented in section 5.1,
parameter synchronization has to be done by the central CPU. In this
case, each core is associated with a thread on the central CPU man-
aging the parameter. The remaining schedule is managed locally
by the core. This approach differs from classic telecommunication
control, where applications are split into different phases, each one
running a static data flow, whereas phase transitions reflect param-
eter changes. By relaxing the control constraints, we aim to take
advantage of the potential pipelining introduced by the data flow
MoC. Evaluation of our compiler in terms of development time
and generated code performance for the Magali platform is done in
section 5.3.

3. Parametric Dataflow Scheduling

Scheduling is a key optimisation problem for efficient map of
dataflow applications on a real hardware. In this section, we show
how the well-known case of static dataflows scheduling has been
recently extended to parametric dataflows, bringing more flexibil-
ity to model and map real life applications. We also show some
limitations of these approaches when targeting certain kinds of real
hardware platforms.

3.1 Scheduling Static Dataflows

Dataflow languages rely on a MoC in which a program is usually
formalized as a directed graph G = (A,E). An actor v ∈ A repre-
sents a computational module or a hierarchically nested subgraph.
A directed edge e = (X1, X2) ∈ E represents a FIFO buffer from
its source actor X1 to its destination actor X2. The execution (or
firing) of an actor X consumes data tokens from its incoming edges

and produces data tokens on its outgoing edges. The number of to-
kens produced on an outgoing edge or consumed on an incoming
edge by an actor at each firing is called a rate. It is usually repre-
sented as a label on the edges ends. In the following, incoming and
outgoing edges are also called input and output edges, respectively.

Dataflow graphs follow a data-driven execution: an actor can
be fired only when enough data samples are available on its input
edges. From the model point of view, firing of actor X is an
atomic operation, which consumes from each of X’s input edge the
amount of samples corresponding to the edge’s rate, and produces
on each of X’s output edge the number of data sample given by the
edge’s rate.

Many dataflow-compliant programming models have been pro-
posed for specific applications. An important category comprises
dataflows where the graph topology and rates is static, i.e. fixed and
known at compile-time. A famous example of such static dataflow
representation is called Synchronous DataFlow (SDF [25]). A ma-
jor advantage of SDF is that, if it exists, a bounded schedule can be
found statically. Such a schedule ensures that each actor is eventu-
ally fired (ensuring liveness) and that the graph returns to its initial
state after a certain sequence of firings (ensuring boundedness of
the FIFOs). A sequence that verify these properties with the min-
imum number of firing of each actor is called an iteration. This
minimum number of firing can be obtained by solving the so-called
system of balance equations. This system is made of one equation
per edge e = (X1, X2) of the form

#X1 · re,1 = #X2 · re,2 (1)

where #X1 and #X2 denote the number of firings of the actors X1

and X2 in an iteration, re,1 is the output rate of X1 on edge e, and
re,2 is the input rate of X2 on edge e. A graph is consistent if its
system of balance equations has non-null solutions. The minimal
solution of the balance equations is called repetition vector (or
iteration vector) [25].

3.2 Scheduling Parametric Dataflows

Many other MoCs have been proposed to relax the condition that
the number of tokens should be known at compile time. These
related works are detailed in section 6. Among them, SPDF has
shown interesting properties, being used to program homogeneous
multi-core architectures [5] as well as heterogeneous systems-on-
chip [15].

SPDF [16] is a dataflow MoC where the number of tokens can
be parametric. Parameters are represented by a set of symbolic
variables p,q,. . . which can take only integer values. In SPDF, input
and output rates can be integers, parameters, or products of these
two. The reader should refer to [16] for a more formal definition of
SPDF.

B

C

set p[1] D

2p
1

2p
p p

p

pq
q

A

set q[2p]

Figure 5. Example of dataflow application in the SPDF model of

computation with repetition vector AB2pC2D2.

Fig. 5 shows an example of SPDF graph with four actors and
two parameters: p and q, the notation q[2p] in actor B indicates the
change period of the parameter: q is set every 2p execution of B. In

4 2014/8/5

this example, the iteration vector of the graph is: (A,B2p, C2, D2),
it is usually written in the following way: AB2pC2D2 although it
does imply a sequential ordering of the firings. A way to compute
this vector is presented in [16].

A parameter cannot change anywhere in during the execution of
the iteration. Allowing arbitrary parameter change period greatly
complicates analysis of SPDF graphs, and of course not all parame-
ter change period are valid. In this paper we choose, as it was done
in other works following SPDF [5, 6], to impose that the parameters
change only once per iteration, in practice at the beginning of the
iteration.

Using this notation (e.g. AB2pC2D2) for the iteration vector
does not indicate when and where parameters are set and used.
Fradet et al. [16] introduce the notion of quasi-static schedule
which is a set of elements executed in a sequential manner. These
elements are of three kinds:

• Executing n times the actor X . It is denoted Xn, where n can
be a parametric expression.

• Actor X getting the value of a parameter p is denoted getX(p)
(or get(p) when it is not ambiguous),

• Actor X setting the value of a parameter p, denoted setX(p).

The setting of a parameter by an actor is performed after actor firing
and the getting of a parameter is performed before actor firing. A
quasi-static iteration vector is therefore a repetition of quasi-static
schedules of each actor possibly interleaved with production and
consumption of parameters. Because of our assumption concerning
parameter change period, it is safe to impose that each parameter
consumption is performed before the execution of the actor and
each parameter production is performed after the execution of the
actor. For instance, for the graph of Fig. 5, the quasi-static schedule
of the graph corresponding to the extension of the iteration vector
with parameter synchronization, is:

(A; setA(p)) (getB(p);B
2p; setB(q))

(getC(p);C
2) (getD(p); getD(q);D2) .

(2)

If the SPDF graph is to be executed on a single computing
resource, one can define a sequential schedule of the iteration. This
sequential schedule is obtained by a topological sort of the graph
if it is acyclic. This method can be extended to cyclic graph on
certain conditions [8]. Finding a sequential quasi-static schedule for
a SPDF graph is beyond the scope of this paper. Based on previous
works [16], we assume that we have a valid sequential schedule. For
instance, this is a valid sequential schedule obtained by topological
sort of the SPDF graph of Fig. 5:

(A; setA(p); getC(p);C
2; getB(p);B

2p; setB(q);
getD(p); getD(q);D2) .

(3)

Such a global sequential schedule of our SPDF graph can be
easily used as a starting point for graph scheduling onto a multi-
core platform. In the following, we use the term IP to show that
we make no particular assumption on the nature of processing
elements of the hardware platform (general purpose processors,
DSPs, dedicated hardware). In the general case, one or several graph
actors may be mapped on a given IP. Corresponding schedule can
be easily built by simply scheduling each mapped actor in the order
it was scheduled in the global sequential schedule.

Consider for instance, the simple SPDF graph of Fig. 5 executed
on two IPs: IP1 and IP2. If A and C are mapped on IP1 and B and
D on IP2, we obtain a valid multi-core schedule by scheduling on
each core, the actors in the order it was in the sequential schedule:

SIP1 = (A; setA(p); getC(p);C
2)

SIP2 = (getB(p);B
2p; setB(B) q; getD(p); getD(q);D2) .

(4)

If parameters are shared by actors mapped the same IP, we can
remove redundant synchronization. We then obtain the following
schedule:

SIP1 = (A; set(p);C2)
SIP2 = (get(p);B2p; set(q);D2) .

(5)

3.3 Limitations with Existing Approach

In many works dealing with classical SDF schedule [8, 17, 25], a
specific focus is made on minimizing the size of the FIFOs needed
to forbid deadlock. Indeed, FIFO size optimization is often a ma-
jor concern in real life implementation, where available memory is
often limited, because of its cost and power consumption. In em-
bedded hardware platforms for example, memory reserved for data
communications between actors is usually very restricted. for in-
stance the Magali platform only allows 64 bytes of data in its fixed-
size communication FIFO.

However, classical approaches with dataflow formalism are of-
ten ill-suited to correctly model data transfers between actors on a
real platform. Consider example of Fig. 5, and suppose the quasi-
static schedule (5) from previous section. With this scheduling for-
malism, we need a FIFO of size |AB| = 2pmax between A and
B (usually a maximal value pmax for each parameter is specified
allowing to assess bound for the FIFOs). However, B could be trig-
gered as soon as one token is produced on the channel. Hence, if
A is able to output data one token at a time and if the platform
provides the necessary synchronization facilities (basically block-
ing write operation on FIFOs), the size of the required FIFO can be
limited to one.

In practice, actor firing do not strictly follow the read inputs →
compute → write outputs model. Computation may start with
only part of input data, and the first output data samples may be
sent before all input samples are read. Size of FIFOs can therefore
be optimized further if this behavior is taken into account.

In the particular case of SPDF, parameter synchronization be-
tween quasi-static schedules is another example of required model
improvements: as is, the set(p) → get(p) dependency in sched-
ule (5) forbids any firing of B before A has finished to produce all
data samples. However, computation of parameter p may usually be
done before the token production, i.e. the sequentiality A; setA(p)
in the model is artificial and does not reflect real behavior. In next
section, we introduce micro-schedules as a way to explicitly ex-
press the relative dependencies between production and consump-
tion of data and parameters.

4. Micro-Schedules

In this section, we introduce our refinement to the quasi-static
scheduling formalism: the micro-schedule formalism. Then we
show how we have used micro-schedule to check in a more precise
way, the consistency between the FIFO sizes of the actual target
architecture and the schedule of the actors.

4.1 Refining Quasi-Static Schedules

The quasi-static schedule formalism was obtained by adding the
production and consumption of parameters in the scheduling. We
propose a second refinement which consists in adding the produc-
tion and consumption of each token. This is what we name micro-
schedule.

Micro-schedules express the sequential order of input and out-
put operation of each actor. Note that this introduces constraints
related to the target architecture: is this order fixed? is it statically
known? can it rely on runtime decisions of the execution engine?
In our study, we assume that the micro-schedule is quasi-static and
known at compilation time. It is extracted from actor’s computation
code for processors, or predefined for hardware accelerators IPs.

5 2014/8/5

Formally, the micro-schedule for a SPDF graph includes the
following instructions in addition to the components of quasi-static
schedules introduced in Section 3.2:

• Actor X sending n tokens to actor Y is denoted pushXY (n)

• Actor X receiving n tokens from actor Y is denoted popXY (n)

• Test for actor nth execution during an iteration is denoted
i = n?

Extra care is needed for parameter synchronization in this for-
malism. As we have seen in section 3.2, parameters are fixed for the
whole iteration, meaning that, in the general case, parameter pro-
duction and consumption is not done at each actor execution. We
explain in the following paragraphs where parameter production
and consumption should be indicated.

Parameter Production A Parameter is produced by an actor and
should therefore be included in its micro-schedule and not in the
micro-schedule of the IP on which it is mapped. The simplest case
is an actor X which is fired only once per iteration: it produces a
new parameter value at each execution, which makes the inclusion
of the setX(p) inside the micro-schedule straightforward. If the
actor is fired several time in an iteration, the i = n? test operator is
mandatory to precise which actor execution enables the production
of the new parameter value. Usual cases are parameter production
at the beginning or at the end of the iteration (i = 1? or i = #X?
respectively), but other cases are allowed.

Parameter Consumption Parameters consumption are provided
in IP micro-schedule rather than in actor micro-schedule for two
purposes. The first is when an actor is scheduled a parametric num-
ber of times (e.g. (get(p);Xp)). In this case, getting the parameter
is done in the IP schedule unambiguously. The second possible use
of a parameter is when an actor uses its value during its execu-
tion, e.g. produces or consumes a parametric number of tokens. In
this case the parameter value is used inside the actor, and the get(p)
could be integrated in the micro-schedule. However, the refresh rate
of the parameter is imposed by the scheduling of the whole graph.
To respect this constraint, we keep the parameter’s get outside the
actor’s micro-schedule, dissociating the synchronization imposed
by the scheduling from the parameter usage inside the actor.

A valid micro-schedule for the actors of Fig. 5 could be:

µS(A) =
(

set(p);
(

pushAB(1); pushAC(1)
)

2p)

µS(B) =
(

popAB(1); i = 1?set(q); pushBC(q)
)

µS(C) =
(

popAC(p); pushCD(p)
)

µS(D) =
(

popBD(q); popCD(1)
)p

.

(6)

Again, this micro-schedule can be used for multi-core schedul-
ing. Assuming a mapping of actors A and C on IP1, B and D on
IP2, the multi-core schedule (5) is changed to reflect the setting of
parameters inside the micro-schedules :

SIP1 = (µS(A);µS(C)2)
SIP2 = (get(p);µS(B)2p;µS(D)2) .

(7)

In this example, we can reduce the FIFO to |AB| = 1, as well
as |CD| = pmax. Building on this micro-schedule formalism, we
solve the following problem in the next section: given a multi-core
quasi-static micro-schedule of a SPDF graph on an architecture, are
the FIFOs between the IPs of the architecture sufficiently large to
avoid deadlock?

4.2 Checking Buffer Requirements

In previous section, we introduced the concept of micro-schedule
to describe actors behavior in a dataflow graph. The execution of
micro-schedule is guaranteed to be correct, provided that we have
sufficiently large FIFOs. However, since on a real platform, the size

of the buffers may be fixed and of small size, we now want to ensure
that a given micro-schedule will execute correctly with available
buffer sizes.

To a given micro-schedule µS correspond several real execution
traces, because IPs run concurrently. Therefore, we want to check
that, for any of these real executions, no deadlock is reached. Our
approach is to walk through all possible execution traces thanks to
the use of a model-checker.

Spin [4] is a model-checker targeting verification of multi-
threaded software. It is extensively used in research and its ma-
turity, efficiency and support for buffered message passing made
it a good choice for our purpose. In addition, it has been used in
previous work very similar [17] to our proposal. We now intro-
duce our model using the Promela language with an example in the
next section. Verification results on LTE-Advanced examples are
presented in section 5.3.

4.2.1 Overview of the Promela Model

In order to prove the absence of deadlock, our Promela model is
setup as follows:

• Each core is encoded as a Promela process proctype. As seen
in section 4, we are refining the dataflow MoC by removing the
hypothesis imposing atomic actor execution.

• The writing (resp. reading) of data is modeled by the PRODUCE(c,
n) (resp. CONSUME(c, n)) primitives. This primitive models
the writings (resp. reading) of n tokens in channel c by counting
the number of tokens written (resp. read) in the channel. Hence
the channel state is simply maintained by an integer indicating
how many data are stored in it.

• Setting and getting parameters is modeled thanks to the set()
and get() primitives. These primitives use channel type to
model the transmission of parameters because we need the
values or these parameters. Note that Spin is not a symbolic
model-checker and that therefore, all possible values of the
parameters are explicitly tested by Spin.

Based on this model, we ask SPIN to cover all possible execu-
tions, verifying the absence of deadlock. The next section illustrates
the resolution with a simple example.

4.2.2 Micro-Schedule Modeling: Example

The example on Fig. 6 is the Promela code for checking buffer
requirements of the execution of the graph on Fig. 2b with the
following micro-schedules µS(A) =

(

set(p); pushAB(2)
p
)

and

µS(B) =
(

popAB(1)
)

. This execution takes place on an architec-

ture with two IPs (Core0 and Core1) and a FIFO of size |AB| =
2 between Core0 and Core1. The IP schedules are SCore0 =
(µS(A)) and SCore1 = (get(p);µS(B)2p). The select state-
ment is used to describe all possible values of the parameter p:
1 ≤ p ≤ 3.

The inline A() and B() model the communications (i.e.
micro-schedule) of actors A and B respectively. The actors A and B
are mapped on Core0 and Core1, the proctype processes imple-
ments the mapping using the multi-core schedule: Core0 executes
A(), Core1 gets parameter p and executes 2p times B(). The val-
ues of the max array indicate the maximum size of FIFOs in the
architecture.

During the execution of the Promela code, the global integer
array ch encodes the current number of tokens in the FIFOs, here
only the FIFO between Core0 and Core1. The macros PRODUCE and
CONSUME model the production and consumption of tokens on the
FIFOs. The execution of PRODUCE(c,n) (i.e. produce n tokens on
FIFO c) checks the memory availability on FIFO c and add n tokens
to the FIFO. The memory check is blocking, the process has to wait

6 2014/8/5

#define PRODUCE(c,n) atomic{ch[c]+n <= max[c]
-> ch[c] = ch[c]+n;}

#define CONSUME(c,n) atomic{ch[c] >=n
-> ch[c] = ch[c]-n;}

#define SET(c,v) p[c]!v;
#define GET(c,v) p[c]?v;

int ch[1]; int max [1];
chan p[1]=[1] of {int};

inline A(){
int i, p_a;
select(p_a :1..3);
SET(0,p_a);
for(i:1.. p_a) {

PRODUCE (0 ,2);
}

}
inline B(){

CONSUME (0 ,1);
}

proctype Core0 (){
do :: {

A();
} od

}

proctype Core1 (){
do :: {

int x, p_a;
GET(0,p_a);
for(x:1..2* p_a) {

B();
}

} od
}

init{
max [0] = 2;
atomic{

run Core0 ();
run Core1 ();

}
}

ltl deadlock {[]<> np_}

Figure 6. Promela code for the SPDF graph of Fig. 2b

until sufficient memory is available. This process is blocked if the
FIFO is full, until sufficient memory is available in the FIFO to add
the n tokens.

CONSUME(c,n) (i.e. consume n tokens on FIFO c) checks if suf-
ficient tokens n are available on FIFO c before consuming them.
SET(c,v) (set parameter c with value v) and GET(c,v) (get pa-
rameter c value in variable v) are used to set and get parameters.
Note that we use parameter channels chan p to transmit parame-
ters between actors because we need the values of the parameters
in each actor. For push and pop modeling we only need the num-
bers of token exchanged, hence we use integers which reduce the
complexity of the resolution.

Finally, the ltl (linear temporal logic) is used to set the correct-
ness requirement. Our objective is to avoid deadlock due to com-
munications, the ltl statement means: always ([]) eventually (<>)
the system will be in a progress state (np), that is to say: process
is allways active. Using this statement, we challenge the model-
checker to find one execution that will finish in a non progress state,
i.e. a deadlock.

The execution of the program of Fig. 6 indicates that SPIN could
not find a deadlock, meaning that FIFO deadlock will not occur on
this architecture. The SPIN execution was almost immediate, using
328 states and 458 transitions; In section 5 we provide complexity
measure of the Promela programs that we have use for LTE.

To conclude with section 3 and 4, we have shown that the
association of micro-schedule with model checking offers, for the
first time, a tool to control very precisely the pipeline between two
IPs. In each architecture using hardware FIFOs, the sizes of these
FIFO are small (because inter-IP hardware FIFOs are very costly),
and these sizes are fixed of course. In next section we show how
we have used this technique to check the absence of deadlock on
the Magali platform, there was no such tool for that before.

5. Experimental Results

In this section we illustrate our compilation flow on the Magali
chip. We start by presenting the experimental framework with the
hardware platform and its simulation framework. Then we intro-

duce our test applications based on LTE-Advanced, and finally we
analyze the performance results.

5.1 Experimental Platform

Hardware Architecture The Magali chip [11], represented on
Fig. 7a is a system on chip dedicated to physical layer process-
ing of OFDMA radio protocols, with a special focus to 3GPP LTE-
Advanced as reference application. It includes heterogeneous com-
putation hardware, with very different degrees of programmability,
from configurable blocks (e.g. FFT size and mask for OFDM modu-
lation) to DSPs programmable in C. Main configuration and control
of the chip is done by an ARM CPU, and communications between
blocks use a 2D-mesh network on chip. Magali offers distributed
control features, enabling to program sequences of computations at
block level, thus limiting the required number of reconfigurations
done by the CPU in the case of complex applications.

Simulation Framework The simulation framework is based on
a SystemC transaction level model (TLM) of the Magali chip.
Timing are extracted from the block synthesized in 65nm CMOS
technology. The ARM central controller code is run on a QEMU

virtual machine connected to the TLM model of the platform. Time
synchronization between the TLM model and the QEMU virtual
machine is done at the transaction level block granularity.

5.2 Applications

In order to assess our compiler results on the Magali platform,
representative parts of the LTE-Advanced protocol were extracted
to illustrate the challenges in terms of programmability and dy-
namicity. Overall description of the LTE-Advanced protocol can be
found in [33], with implementation examples in [11, 32]. The im-
plemented test case applications corresponds to ofdma and channel
decoder parts from [33]. The test case applications are represented
on Fig. 7b and Fig. 7c, and are described to highlight their potential
challenge.

DSP1 CPU$

SME1 OFDM1 SME2 DSP3 DSP4 CHANDEC

OFDM2 DSP2 SME3 RXBIT

N
o
C
$I
/O

$I
n
te
rf
a
ce
$

(a)

Data
Source

FFT
OFDM

Deframing
Data
Sink (b)

7168
1024

1024
1024

600
600

Word
Deinterleaver

Bit
Deinterleaver

(c)

1200

60
60

Depuncturer
Turbo

Decoder
Controller

30
93

93
4

8
set mod[1]

240

60
60

60

Data
Sink

Word
Deinterleaver

Bit
Deinterleaver mod*300

mod*300

Depuncturer
Turbo

Decoder

300
1353

1353
57

57

240

mod*300
mod*300

mod*300

mod

Demapper

Demapper

1200

Data
Source

240

1200

Split

1440

1440

Data
Source

240 Split

1200

1440

1440

Figure 7. Mapping of the test case applications on Magali.

OFDM test case The OFDM test case, presented in Fig. 7b, shows
the mapping of the FFT and deframing actors onto a single OFDM

core. It abstracts Magali architectural specifics while benefiting
from specific hardware operators.

7 2014/8/5

Demodulation test case The demodulation test case is another
part of the LTE-Advanced application presented in the lower part
of Fig. 7c, in which modulation (the “mod” parameter) would be
statically fixed. It illustrates a more complex mapping of actors and
communications between 6 blocks.

Parametric Demodulation test case The parametric demodula-
tion (whole Fig. 7c) extends the previous test case by showcasing
the use of parameters. Here the “mod” parameter represents the
modulation scheme, which depends on the computations done by
the upper part of the data-flow — i.e. on the decoding of signaling
channels at the beginning of the received frame — and directly im-
pacts the rest of the computation — the decoding of user data in the
frame.

5.3 Performances

Application PaDaF code handwritten code
#lines C++ / time #lines C / ASM / time

FFT 60 / 1 h 150 / 200 / 1 week

demodulation 160 / 4 h 300 / 600 / 1 month

param. demod. 260 / 8 h 500 / 800 / 3 months

Table 1. Comparison of compiled code and handwritten code tar-
geting Magali.

The benefits of using our compiler are described in Tab. 1. Re-
sults are based on Magali developers’ experience. Required time to
write an application is a subjective metric, because its process in-
cludes reflection times difficult to gauge, and because it is highly
dependent on the developer. However, when applications are writ-
ten by people of similar technical skills and with the same knowl-
edge of the hardware platform and wireless protocol, it gives a rel-
evant estimate of the benefits coming from the provided tool. Code
size for the Magali platform is split between C code for the ARM

central controller and assembly code for the distributed control.
The rather low code lines/time ratio for handwritten code is due to
the inherent complexity of programming the platform: distributed
control requires configuring different independent hardware blocks
with globally consistent values that all together represent the ap-
plication. Without a dedicated support tool, ensuring — and de-
bugging — this global consistency is an error-prone process for the
programmer. As a consequence, whereas the size of the code gener-
ated by our compiler is roughly equivalent to the size of handwrit-
ten code, the initial code size is divided by five and the development
time approximately by 40.

Application states transitions execution time

FFT 1.28× 104 2.56× 104 0.1 s

demodulation 2.12× 106 1.07× 107 9 s

param. demod. 6.07× 107 2.22× 108 199 s

Table 2. Buffer checking results on the SPIN model checker.

Model checking techniques, used for checking buffer require-
ments, can be limited by complexity issues when exploring large
state space. To evaluate this complexity, simulation results using
the SPIN model checker are presented in Tab. 2. These simulations
were run on a 2.4 GHz Intel Core i5 with 8 Go of RAM running
OS X 10.9.2. PROMELA models of the different test cases were
generated as described in Section 4.2.1 with all loops unrolled to
reduce the number of states tenfold. As expected, the complexity
increases with the graph size, but all applications were explored in
reasonable time. On Magali, such analysis was not possible before,
programmers would profile the code and optimize it if a deadlock

Application handwritten [29] generated optimized

FFT 149 µs
500 µs 168 µs 149 µs

(+236%) (+13%) (+0%)

demod. 180 µs
- 283 µs 180 µs

(+57%) (+0%)

parametric
419 µs

- 558 µs 288 µs
demod. (+33%) (-31%)

Table 3. Performance result of generated code with respect to
handwritten code

was encountered. Using this method, we are now able to prove the
absence of deadlock due to communications for this application.

The performance for the applications described in section 5.2
are presented in Table 3. The manual — and time consuming —
porting of the 3GPP LTE-Advanced application that has been made
on Magali has also previously been explained [11]. This approach
is used as a baseline to compare our solutions. Previous work
on a radio virtual machine [29] shows the penalty of not using
the distributed control mechanisms, with an overhead of 236%
for the simple FFT application. Results of our compilation flow
are presented on the generated approach, which corresponds to
unmodified code generated by our compiler, and the optimized
approach, with manual optimization to the central controller code
generated by the compiler.

The overhead of the generated approach vary from 13% for
small applications up to 57%, and is due to the central controller
latency. This latency is caused by the use of one thread per core
which increases the number of synchronizations between the cores
and the central controller. The optimized approach uses only one
thread, with synchronizations limited to parameter changes. This
optimisation was done manually by modifying C code, and should
be automated in the future. As a conclusion to these experiments,
our compiler produces codes whose performances are similar to
the handwritten code for non parametric applications, and even
improved for parametric applications.

6. Related Work

Various compilation flows are used to program SDR platforms,
many of them programmed using more than one language (C and
assembly code, or Matlab and VHDL for instance). On the other
hand, many Integrated Design Environments (IDEs) are emerging,
targeting general purpose applications on parallel architectures or
dedicated to software defined radio. Among these design tools,
one can mention OSSIE [18] (implementing SCA), SPEX [26] or
DiplodocusDF [19] (see [14] for a complete survey).

Up to now, few SDR programming environment has been
adapted to more than one hardware architecture, except for “real”
software projects such as GNUradio[2]. GNUradio is adapted to
low-performance computing power radio applications but cannot
address demanding applications such as LTE-Advanced in real-
time. MAPS [10] proposes to program several SDR platforms using
a library of so called nuclei, which are computational kernels com-
mon to several communication standards. These nuclei are plat-
form independent and can be implemented in several ways, called
flavors. Our approach is similar, with a standard API offering com-
putational kernels implemented on different platforms.

Many SDR programming environments are adopting the dataflow
MoC. Some MoCs hold much information, offering various levels
of static verification and optimization, such as Synchronous data
flow (SDF). Others allow very dynamic behaviors, such as Kahn
Process Networks (KPN), see [14, 21] for recent surveys. Recently,
the need for verifiable but still flexible dataflow MoCs lead to the
appearance of two new MoCs: Scenario-Aware DataFlow [30] and

8 2014/8/5

Parametric DataFlow [16]. Fradet et al. identify a subclass of this
MoC called Schedulable Parametric DataFlow (SPDF) where the
schedulability of the dataflow graph can still be assessed stati-
cally, which matches the kind of dynamicity that is required in
telecom applications such as LTE-Advanced [7]. They also pro-
vide a scheduling procedure for SPDF graphs and are able to check
FIFO size, but they do not reach the level of accuracy obtained
by micro-schedules because parameter setting are always included
after actor’s execution.

In terms of language, the only other dataflow language provid-
ing complex graph construction we are aware of is ΣC [20]. It is
based on an extension of C, with a complete new compilation flow.
In contrary, our approach is based on existing compilation tools,
both requiring less engineering effort and providing all the C++
expressivity for the DFG construction.

Scheduling for buffer minimization is a NP complete prob-
lem [8]. Many heuristics have been developed to schedule un-
der memory constraints [8, 13, 17, 23]. We focus on model-
checking solutions based on the work by Geilen et al. [17], which
solves the scheduling problem on constrained buffer size for syn-
chronous dataflow graphs. Using a similar approach, Damavand-
peyma et al. [13] minimize buffer on scheduled synchronous
dataflow graphs. In this context, the originality of our work is
twofold, with the modelization of parametric dataflow graphs, as
well as the use of a finer grain modelization using micro-schedule
to check the absence of deadlock on scheduled dataflow graphs.

7. Conclusion

As dynamicity increases in applications, new models of computa-
tion such as parametric dataflow are used in the signal processing
domain. In this paper, we propose a new compilation flow, based
on the LLVM framework, that compiles SPDF graphs down to het-
erogeneous MPSoC. We also propose a new format based on C++
to express complex parametric graphs. In order to solve practi-
cal problem encountered during code generation for heterogeneous
MPSoC, we introduce the micro-schedule formalism to describe
actors communication behavior. Based on this formalism, precise
buffer size verification can be performed.

To validate our results, experimentation on the Magali platform
are performed using the LTE-Advanced application. All test cases
are successfully checked for their buffer usage. Performances close
to the handwritten implementation are generated automatically by
our compiler (max +57%). Support for other heterogeneous MP-
SoC is another important future work to prove the portability of
our approach.

References

[1] clang: a C language family frontend for LLVM. URL http://
clang.llvm.org. 2014.

[2] GNU radio framework. URL http://gnuradio.org. 2014.

[3] The LLVM Compiler Infrastructure. URL http://llvm.org. 2014.

[4] Spin - Formal Verification. URL http://spinroot.com. 2014.

[5] V. Bebelis, P. Fradet, A. Girault, and B. Lavigueur. A Framework to
Schedule Parametric Dataflow Applications on Many-Core Platforms.
In 17th workshop on Compilers for Parallel Computing, CPC, Lyon,
FR, July 2013.

[6] V. Bebelis, P. Fradet, A. Girault, and B. Lavigueur. BPDF: A statically
analyzable dataflow model with integer and boolean parameters. In
Proc. International Conference on Embedded Software (EMSOFT),
pages 1–10, Montreal, QC, Sept. 2013.

[7] H. Berg, C. Brunelli, and U. Lucking. Analyzing models of compu-
tation for software defined radio applications. In Proc. International

Symposium on System-on-Chip, pages 1–4, Tampere, Finland, Nov.
2008.

[8] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee. Synthesis of em-
bedded software from synchronous dataflow specifications. Journal of

VLSI signal processing systems for signal, image and video technol-

ogy, 166(2):151–166, 1999.

[9] João M. P. Cardoso, P. C. Diniz, and M. Weinhardt. Compiling for
reconfigurable computing. ACM Computing Surveys, 42(4):1–65, June
2010.

[10] J. Castrillon, S. Schürmans, A. Stulova, W. Sheng, T. Kempf, R. Leu-
pers, G. Ascheid, and H. Meyr. Component-based waveform develop-
ment: The Nucleus tool flow for efficient and portable software defined
radio. Analog Integrated Circuits and Signal Processing, 69(2-3):173–
190, June 2011.

[11] F. Clermidy, R. Lemaire, X. Popon, D. Ktenas, and Y. Thonnart.
An Open and Reconfigurable Platform for 4G Telecommunication:
Concepts and Application. In 12th Euromicro Conference on Digital

System Design, Architectures, Methods and Tools, pages 449–456,
Patras, Greece, Aug. 2009.

[12] F. Clermidy, C. Bernard, R. Lemaire, J. Martin, I. Miro-Panades,
Y. Thonnart, P. Vivet, and N. Wehn. A 477mW NoC-based digital
baseband for MIMO 4G SDR. In Proc. IEEE International Solid-State

Circuits Conference, ISSCC, pages 278–279, San Francisco, CA, Feb.
2010.

[13] M. Damavandpeyma, S. Stuijk, T. Basten, M. Geilen, and H. Corpo-
raal. Modeling static-order schedules in synchronous dataflow graphs.
In 2012 Design, Automation & Test in Europe Conference & Exhibi-

tion (DATE), pages 775–780, Dresden, Germany, Mar. 2012.

[14] M. Dardaillon, K. Marquet, J. Martin, T. Risset, and H.-P. Charles.
Cognitive Radio Programming: Existing Solutions and Open Issues.
Technical Report September, Inria, 2013.

[15] M. Dardaillon, K. Marquet, T. Risset, J. Martin, and H.-p. Charles.
Compilation for heterogeneous SoCs : Bridging the gap between soft-
ware and target-specific mechanisms. In Workshop on High Perfor-

mance Energy Efficient Embedded Systems (HIPEAC), Vienna, Aus-
tria, Jan. 2014.

[16] P. Fradet, A. Girault, and P. Poplavko. SPDF: A schedulable paramet-
ric data-flow MoC. In Design, Automation & Test in Europe Confer-

ence & Exhibition (DATE), pages 769–774, Dresden, Germany, Mar.
2012.

[17] M. Geilen, T. Basten, and S. Stuijk. Minimising buffer requirements
of synchronous dataflow graphs with model checking. In Proc. 42nd

annual conference on Design automation - DAC ’05, page 819, San
Diego, CA, June 2005.

[18] C. Gonzalez, C. Dietrich, S. Sayed, H. Volos, J. Gaeddert, P. Robert,
J. Reed, and F. Kragh. Open-source SCA-based core framework and
rapid development tools enable software-defined radio education and
research. IEEE Communications Magazine, 47(10):48–55, Oct. 2009.

[19] J. Gonzalez-Pina, R. Ameur-Boulifa, and R. Pacalet. DiplodocusDF,
a Domain-Specific Modelling Language for Software Defined Radio
Applications. In 38th Euromicro Conference on Software Engineering

and Advanced Applications, pages 1–8, Cesme, Izmir, Sept. 2012.

[20] T. Goubier, R. Sirdey, S. Louise, and V. David. ΣC A Programming
Model and Language for Embedded Manycores. In Algorithms and

Architectures for Parallel Processing - 11th International Conference,

ICA3PP, pages 385–394, Melbourne, Australia, Oct. 2011.

[21] W. M. Johnston, J. R. P. Hanna, and R. J. Millar. Advances in dataflow
programming languages. ACM Computing Surveys, 36(1):1–34, Mar.
2004.

[22] S.-H. Kang, H. Yang, L. Schor, I. Bacivarov, S. Ha, and L. Thiele.
Multi-objective mapping optimization via problem decomposition for
many-core systems. In Embedded Systems for Real-time Multimedia

(ESTIMedia), 2012 IEEE 10th Symposium on, pages 28–37, Oct 2012.

[23] M. Karczmarek, W. Thies, and S. Amarasinghe. Phased scheduling of
stream programs. In Conference on Languages, Compilers, and Tools

for Embedded Systems (LCTES’03), page 103, San Diego, CA, June
2003.

9 2014/8/5

http://clang.llvm.org
http://clang.llvm.org
http://gnuradio.org
http://llvm.org
http://spinroot.com

[24] S. Kwon, Y. Kim, W. C. Jeun, S. Ha, and Y. Paek. A retargetable
parallel-programming framework for mpsoc. ACM Trans. Des. Autom.

Electron. Syst., 13(3):1–18, 2008.

[25] E. A. Lee and D. G. Messerschmitt. Synchronous data flow. Proceed-

ings of the IEEE, 75(9):1235–1245, June 1987.

[26] Y. Lin, R. Mullenix, M. Woh, S. Mahlke, T. Mudge, A. Reid, and
K. Flautner. SPEX: A programming language for software defined
radio. In SDR Forum Technical Conference, pages 13 – 17, Orlando,
Florida, Nov. 2006.

[27] K. Marquet and M. Moy. PinaVM: a SystemC Front-End Based on an
Executable Intermediate Representation. In Proceedings of the tenth

ACM international conference on Embedded software - EMSOFT ’10,
page 79, Scottsdale, Arizona, Oct. 2010.

[28] P. R. Panda. SystemC - A modeling platform supporting multiple
design. In Proc. 14th International Symposium on Systems Synthesis

(ISSS), pages 75–80, Montreal, QC, Sept. 2001.

[29] T. Risset, R. Ben Abdallah, A. Fraboulet, and J. Martin. Digital Front-

End in Wireless Communications and Broadcasting, chapter Program-
ming models and implementation platforms for software defined ra-
dio configuration, pages 650–670. Cambridge University Press, 2011.
ISBN 9781107002135.

[30] S. Stuijk, M. Geilen, B. Theelen, and T. Basten. Scenario-aware
dataflow: Modeling, analysis and implementation of dynamic ap-
plications. In International Conference on Embedded Computer

Systems: Architectures, Modeling and Simulation, pages 404–411,
Samos, Greece, July 2011.

[31] M. Woh, Y. Harel, S. Mahlke, T. Mudge, C. Chakrabarti, and K. Flaut-
ner. SODA: A Low-power Architecture For Software Radio. In 33rd

International Symposium on Computer Architecture, ISCA, pages 89–
101, Boston, MA, June 2006.

[32] M. Woh, S. Seo, H. Lee, Y. Lin, S. Mahlke, T. Mudge, C. Chakrabarti,
and K. Flautner. The next generation challenge for software defined
radio. In Embedded Computer Systems: Architectures, Modeling, and

Simulation, pages 343–354, Samos, Greece, 2007.

[33] J. Zyren and W. McCoy. Overview of the 3GPP long term evolution
physical layer. Technical report, Freescale Semiconductor Inc., 2007.

10 2014/8/5

