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Abstract 

Oxidative stress is involved in the development of a wide range of chronic human diseases, 

ranging from cardiovascular to neurodegenerative and inflammatory disorders. As oxidative 

stress results from a complex cascade of biochemical reactions, its quantitative prediction 

remains incomplete. Here we describe a machine-learning approach to predict levels of 

oxidative stress in human subjects. From a database of biochemical analyses of oxidative 

stress biomarkers in blood, plasma and urine, nonlinear models have been designed, with a 

statistical methodology that includes variable selection, model training and model selection. 

We show that, despite a large inter- and intra-individual variability, levels of biomarkers of 

oxidative damage in biological fluids can be predicted quantitatively from measured 

concentrations of a limited number of exogenous and/or endogenous antioxidants. 

 

Keywords: machine learning, neural networks, training, model selection, variable selection, 

oxidative stress, antioxidants, biological markers 



 3 

1. Introduction 

Epidemiological studies have revealed a close correlation between elevation in oxidative 

stress, attenuation of antioxidant defence systems and development of a wide range of chronic 

human pathologies, including atherosclerosis, neurodegenerative diseases, cancer, 

inflammatory diseases and diabetes [1-4]. Conversely, elevated levels of antioxidants are 

frequently associated with reduced prevalence of these diseases [1-4]. Finally, it is relevant 

that oxidative stress plays a key role in the aging process [5].  

The clinical relevance of oxidative stress is further emphasised by the predominantly negative 

findings in recent large-scale studies of the relationship between antioxidant supplementation 

and incidence of cardiovascular disease and cancer [6-12]. Given the assumption that 

antioxidant supplementation may be beneficial in subjects with elevated levels of oxidative 

stress, the inability of dietary antioxidants to reduce the incidence of cardiovascular disease 

and cancer in such individuals can be related to the lack of knowledge of baseline levels of 

oxidative stress in the respective cohorts [13-15]. The absence of data may have resulted in 

antioxidant supplementation in subjects displaying normal levels of oxidative stress, and who 

would not be predicted to display further benefit. These findings demonstrate that knowledge 

of the oxidative status of a given individual might represent a key element in prevention of the 

progression of chronic human pathologies. 

At a cellular level, oxidative stress has its origin in a spectrum of oxidative systems, the 

principal among which are NADPH oxidase, myeloperoxidase, xanthine oxidase, 

lipoxygenase, nitric oxide synthase, cytochrome P450, the mitochondrial electron transport 

chain, ceruloplasmin and transferrin. Oxidative damage to biomolecules represents a major 

consequence of oxidative stress, resulting in the accumulation of oxidatively modified 

proteins, lipids, carbohydrates and nucleic acids [1, 16, 17]. Such oxidatively-modified 

biomolecules typically display impaired functionality, thereby providing a mechanistic 
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explanation for the pathological role of oxidative stress; levels of oxidised biomolecules are 

therefore considered as biomarkers of oxidative damage and represent highly relevant 

biomarkers of oxidative stress [1, 16, 17]. Oxidative stress can equally be assessed by a less 

direct approach involving determination of levels and/or activities of exogenous (e.g. vitamin 

C, vitamin E, carotenoids) or endogenous (e.g. glutathione, thiols, uric acid) antioxidants 

and/or antioxidative systems which protect functional biomolecules from oxidation [1]. 

Diverse forms of oxidative insult which occur in vivo result in distinct profiles of biomarkers 

of oxidative stress. The diversity of oxidative species implies that the choice of biomarkers 

which can be universally applied to characterise systemic oxidative stress in a living organism 

constitutes a major challenge.  Comprehensive comparative studies addressing this issue have 

recently been initiated by the US NIEHS in an animal model of oxidative stress [18, 19]. 

Biomarkers of oxidative stress are however characterised by strong cluster interdependence 

reflecting common oxidative pathways; such interrelationships facilitate identification of 

robust biomarkers and suggest the possibility of mutual prediction of biomarker levels. 

In order to assess the profile of biomarkers of oxidative stress in a French population, the first 

Clinical Centre for Oxidative Stress in Paris was launched in 2002. More than 10 established 

biomarkers of oxidative stress were measured, including plasma, whole blood or urine levels 

of exogenous and endogenous antioxidants and biomarkers of oxidative damage. In the 

present investigation, advantage has been taken of a large database of biochemical blood and 

urine analyses of individuals in a range of health conditions from healthy to strongly 

pathological. We have evaluated the feasibility of predicting levels of biomarkers of oxidative 

damage from measured levels of exogenous and endogenous antioxidants. We now describe 

the clinical database and protocols for measurement of biomarkers of oxidative stress, our 

approach to machine learning methods and finally the predictive ability of our models. 
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2. Clinical database: contents and protocols 

Subjects.  The Clinical Center for Oxidative Stress opened in Paris, France, in December 

2002; by the end of 2005, profiles of biomarkers of oxidative stress were available in plasmas 

from 731 subjects (250 males, 481 females). Clinical and biological parameters were equally 

measured in each subject. In 150 subjects, a second assessment of systemic oxidative stress 

followed within 4 to 6 months after the first visit. Majority of subjects presented with 

clinically-confirmed diagnoses as follows: cardiovascular disease (n=136), psychiatric disease 

(depressive syndrome and anxious disorders; n=98), neurodegenerative disease (Alzheimer’s 

disease, Parkinson’s disease and multiple sclerosis; n=61) rheumatic disease (n=34), 

infectious disease (HIV and hepatitis C; n=28), cancer (n=24) and endocrinological disease 

(thyroid dysfunction; n=20). In 74 subjects, simultaneous presence of multiple (two or more) 

pathologies was diagnosed; these subjects were considered as polypathic and excluded from 

statistical analyses. Subjects (n=127) who contacted our Center in the absence of any known 

symptoms and who were free of a clinical diagnosis were considered as healthy controls. Rest 

of the subjects (n=129) presented with relatively rare pathological conditions (n < 20 for each 

specific disease) and was therefore excluded from statistical analyses  

Blood samples. Venous blood (20 ml) was taken from each subject after an overnight fast and 

immediately centrifuged at 3000 rpm for 10 minutes. EDTA and heparin plasma were isolated 

and immediately frozen at -80°C until analysis. Urine was collected on the same visit and 

used for biomarker analyses within 24h. 

Biomarkers of oxidative stress. The typical profile of biomarkers of oxidative stress included 

measurements of plasma, whole blood or urine levels of substances of exogenous origin 

(vitamin C, vitamin E, β-carotene, selenium, zinc, copper), endogenous antioxidants (reduced 

and oxidised glutathion, thiols, uric acid) and of biomarkers of oxidative damage (oxLDL, 

antibodies against oxLDL, lipid hydroperoxides, 8-OHdG). 
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Determination of vitamin C. Vitamin C was spectrophotometrically measured in plasma 

stabilized with 10% metaphosphoric acid as the reduction of 2,6-dichlorophenolindophenol 

using a Perkin Elmer Lambda 40 spectrophotometer [20].  

Determination of vitamin E and β–carotene. Vitamin E and β–carotene were simultaneously 

determined by HPLC (Alliance Waters, USA) coupled to a diode array detector (PDA 2996, 

Waters, USA) [21]. Plasma levels of vitamin E were normalized to total cholesterol which 

was determined by a standard colorimetric kit containing cholesterol oxidase. 

Determination of selenium, zinc and copper. Plasma levels of selenium, zinc and copper were 

measured using inductively coupled plasma-mass spectroscopy [22].  

Determination of reduced and oxidised glutathione. Reduced (GSH) and oxidized (GSSG) 

glutathione were measured in whole blood using a Bioxytech GSH/GSSG-412TM kit 

(OxisResearch, Portland, USA). Initially developed by Tietze [23], this method employs 

Ellman’s reagent (5,5'- dithiobis-2-nitrobenzoic acid, DTNB) which reacts with GSH to form 

a product spectrophotometrically detectable at 412 nm. The thiol-scavenging reagent, 1-

methyl-2-vinylpyridinium trifluoromethanesulfonate, was used to prevent oxidation of GSH 

to GSSG during sample processing. GSSG was calculated as the difference between total 

glutathione (determined after reduction of GSSG to GSH by glutathione reductase and 

NADPH) and GSH. 

Determination of glutathione peroxidase (GPx) activity. GPx activity was measured in freshly 

isolated erythrocytes in the presence of reduced glutathione, NADPH, sodium azide, and 

glutathione reductase as a decrease in NADPH absorbance at 340 nm. 

Determination of total thiols and uric acid. Total plasma sulfhydryl groups were determined 

spectrophotometrically at 412 nm after their reaction with DTNB [24]. Plasma urate was 

measured using a commercially available analytical test (Kodak Ektachem DT Slides, 

Eastman Kodak Company, Rochester, England). 
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Determination of oxLDL. Levels of oxLDL were measured using a competitive enzyme-

linked immunosorbent assay (ELISA) kit supplied by Immunodiagnostik (Germany; inter- 

and intraassay coefficients of variation, 6.2 and 7.0% respectively). Briefly, oxLDL from the 

sample competes with a fixed amount of oxLDL bound to the microtiter well for the binding 

of the specific biotin-labelled antibodies. After a washing step that removed unreacted sample 

components, the biotin-labelled antibody bound to the well was detected by HRP-conjugated 

streptavidin. After a second incubation and an additional washing step, the bound conjugate 

was detected by reaction with TMB. The reaction was stopped by adding acid to produce a 

colorimetric endpoint that was detected spectrophotometrically. 

Determination of antibodies against oxLDL. The titre of IgG antibodies against oxLDL was 

assessed with a commercial enzymatic immunoassay (Biomedica Gruppe, Austria) using 

Cu2+-oxidized LDL as an antigen (inter- and intraassay coefficients of variation, 10.5 %). 

Determination of lipid peroxides. Lipid peroxides were assessed in plasma using an Oxystat 

spectrophotometric kit (Biomedica, Vienna, Austria) which employs peroxide hydrolysis by a 

peroxidase followed by reaction with TMB as a substrate, with detection at 450 nm. 

Determination of 8-hydroxy-2’-deoxyguanosine. Competitive ELISA was used for the 

quantitative measurement of the oxidative DNA adduct 8-OHdG in fresh urine samples 

(Japan Institute for the Control of Aging, Japan). The concentration of 8OHdG was 

normalised to urine levels of creatinine and expressed as ng/mg creatinine. 

3. The statistical machine learning approach: building models by training 

from examples 

3.1. A cursory introduction to statistical machine learning 

Statistical machine learning encompasses a variety of mathematical and statistical techniques 

that aim at reproducing the learning abilities exhibited by humans or animals. In that context, 
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a “machine” should not be understood as a physical object, but as a set of algorithms and 

procedures that are implemented on a computer. The mathematical foundations of statistical 

machine learning are described in [25]. In the present article, we focus on the application of 

machine learning to the design of predictive models in the form of nonlinear parameterized 

functions. In other words, functions are derived that  

− “explain”, in a statistical sense, the existing values, 

− can generalize to hitherto unknown situations, i.e. can predict the outcome of 

future measurements. 

3.1.1. Training 

Training is an algorithmic procedure whereby the parameters of the model are adjusted in 

order to fit the measurements present in a database called “training set”. There is a wide 

variety of training algorithms, depending on the task to be fulfilled and on the learning 

machine to be trained. The specific procedure used in the present study is described cursorily 

in section 3.2.3. 

3.1.2. Model selection and the bias-variance dilemma 

Model selection is a central task in statistical machine learning. It involves solving the so-

called “bias-variance dilemma”, i.e. defining the appropriate complexity of the model, given 

the training data. The complexity of the model can be characterized roughly by the number of 

its adjustable parameters. If a model is insufficiently complex, it is unable to learn the training 

data; conversely, if the model is too complex, it adjusts very accurately to the training data, 

thus to the noise present in it (a phenomenon known as overfitting), and generalizes poorly. A 

model that is too simple has high bias (it reproduces the training data inaccurately), but low 

variance (it is insensitive to the details of the training data), while an overly complex model 

has low bias (it learns the training data accurately) but high variance (being highly sensitive to 
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the noise present in the training data, it generalizes poorly). Metaphorically, the “intelligence” 

of a model results from a tradeoff between ignorance (low complexity, inability to learn) and 

stupidity (excessive complexity, inability to generalize), as illustrated on Figure 1. The 

estimation of the generalization ability of models is a basic ingredient in the model selection 

procedure. The model selection method used in the present study is described in section 3.2.4. 

 

Figure 1 
Pictorial representation of the bias-variance tradeoff. 

3.1.3. Variable selection 

Variable selection is also a key issue in statistical machine learning. The purpose of variable 

selection is to detect candidate variables that are not relevant for the task at hand; more 

specifically, the variables whose influence on the quantity to be modeled is smaller than the 

noise in the measurement of that quantity should be discarded. In most present-day models, 

the number of adjustable parameters is an increasing function of the number of variables in 

the model; therefore, the presence of irrelevant variables results in unnecessary model 

complexity, thereby increasing the probability of overfitting. 

On a statistical basis, variable selection involves the following approach. It is assumed that 

the relevance of the candidate variables is estimated by the value of an appropriately defined 
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“relevance index”: the larger the value of that index for a given variable, the more relevant the 

variable. It can then be expected that the probability distribution functions of the relevance 

index for relevant variables and for irrelevant variables will have little, or no, overlap, as 

shown in Figure 2. Variable selection consists of finding a decision threshold, so that all 

candidate variables with relevance index above the threshold will be retained, while all 

candidate variables with relevance index below the threshold will be discarded. The variable 

selection method used in the present study is described in section 3.2.2. 

 

Figure 2 
Statistical description of the variable selection problem; r0 is a decision threshold. A candidate variable whose 

relevance index is smaller than r0 will be considered irrelevant, hence discarded.  The hatched areas are the 
probability of a false positive (retaining a candidate variable although it is actually irrelevant) and of a false 

negative (discarding a candidate variable although it is actually relevant). 

 

3.1.4. Estimation of confidence intervals for the prediction 

In traditional regression, a knowledge-based model of the process of interest is derived from 

first principles, and the parameters of the model have a physical (biological, chemical, …) 
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significance, so that it is useful to estimate confidence intervals for the values of the 

parameters found by regression. In machine learning, there is no such thing as a “true” model, 

so that the parameters have no specific meaning; therefore, the focus is on the prediction 

itself, so that it is essential to estimate confidence intervals for the predictions. The specific 

confidence interval used in the present study is defined in section 3.2.5. 

3.2. Model design 

This section describes the specific methodology used to derive the results described in section 

4. 

3.2.1. The learning machines: “neural networks” 

Neural networks are learning machines that were primarily intended to model brain functions, 

but turned out to have useful properties in their own right, unrelated to their “biological” 

origin; for introductory textbooks, see for instance [26] and [27]. A neuron is a nonlinear, 

bounded, parameterized function. The neural networks used in the present study are linear 

combinations of so-called “hidden” neurons; such neural networks are termed “feedforward 

neural networks” or “multilayer Perceptrons”. 

More specifically, in the present study, a neuron performs an s-shaped (“sigmoid”), function 

of a linear combination of its variables. The neuron computes the value of f defined as: 

 
   
f = tanh ! "x( )  (1) 

where θ  is the vector of parameters (sometimes called “synaptic weights” in the literature) of 

the neuron, and x is the vector of variables, with an additional component, termed “bias”, 

which is equal to unity; therefore, if N is the number of variables, the size of x is N+1. 

A “feedforward neural network” g(x) is a linear combination of Nh “hidden” neurons fi (i = 1 

to Nh) and of a constant equal to 1. We denote by Θ1 the vector of parameters of the linear 

combination (of size Nh+1), by Θ2 the (N+1, Nh) matrix whose columns are the parameters of 
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the “hidden” neurons, and by f the vector (of size Nh+1) of functions computed by the hidden 

neurons, with an additional component equal to 1. Then the “neural” model is: 

 
   
g x( ) = !

1
" f !

2
x( ) . (2) 

Feedforward neural networks are frequently described pictorially as shown on Figure 3. 

 

Figure 3 
A feedforward neural network with N variables and Nh hidden neurons. 

 

Such neural networks are universal approximators: any continuous, differentiable function can 

be approximated, with arbitrary accuracy, by a neural network of the type described above, 

provided the number of its hidden neurons is large enough. Therefore, the complexity of a 

neural network is essentially the number of hidden neurons Nh, or alternatively, the number of 

parameters (N+2)(Nh+1). 

Neural networks are parsimonious: it is clear from relation (2) that the model g(x) is nonlinear 

with respect to the parameters of matrix Θ2, while a polynomial model, for instance, is linear 

with respect to all its parameters. In other words, a polynomial is a linear combination of 

monomials, whose shapes are fixed, while a neural network is a linear combination of 
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functions whose shapes are adjusted during training; that additional flexibility decreases the 

requirement in terms of number of parameters. The number of parameters of a neural network 

varies linearly with the number of variables N, while the number of parameters of a 

polynomial increases as N
d where d is the degree of the polynomial; therefore, neural 

networks are less prone to overfitting (as described in section 3.1.2) than polynomial models 

and, more generally, than linear-in-their-parameters models. 

3.2.2. Variable selection 

Variable selection was performed by the random probe method, as described in [28]. The 

principle of the method is the following: dummy candidate variables (“probes”) are generated 

randomly, and appended to the set of “true” candidate variables. All variables are ranked in 

order of decreasing relevance by the Gram-Schmitt orthogonalization method [29], so that the 

relevance index of a candidate variable is its rank in that ranked list. The probe variables are 

obviously irrelevant, and the probability distribution function of their rank can be estimated. 

The threshold is chosen such that the probability of selecting a variable that ranks below a 

probe variable, has a predetermined value. If there is a wealth of data, the threshold can be set 

relatively high, because one can afford to retain a variable although it is irrelevant; 

conversely, if data is sparse, the threshold is set to a low value, so as to keep the probability of 

a false positive low. More details on the random probe method, and alternative variable 

selection methods, can be found in [28] and [30]. 

3.2.3. Training 

Assume that a data base (called “training set”) is available; it contains n examples, i.e. n pairs 

{xk, yk}, where xk is the vector of selected variables for example k, and yk is the corresponding 

measured value of the quantity of interest. During training, the parameters of the network are 
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adjusted so as to minimize the least squares cost function, i.e. the sum of squared modeling 

errors on the examples present in the training set: 

 
   
J !

1
,!

2( ) = yk " g xk( )( )
2

k=1

n

#  (3) 

where g(xk) is the predicted value of the quantity of interest, for example k. The minimization 

of J was performed by the Levenberg-Marquardt algorithm. Being a second-order gradient 

optimization method, it requires the value of the gradient of the cost function with respect to 

the parameters, which was computed by the popular backpropagation algorithm (see e.g. 

[27]). 

3.2.4. Model selection 

As usual in the empirical risk minimization framework [25], models of increasing complexity 

were designed, and, for each degree of complexity, the corresponding generalization ability 

was estimated. This can be achieved in various ways, including hold-out, cross-validation, 

and leave-one-out. The latter method involves withdrawing an example from the data set, 

train the learning machine on the n-1 other examples, compute the prediction error on that 

example, reinsert the left-out example into the database, and iterate the whole procedure n 

times. The leave-one-out score E is computed as: 

 
  

E =
1

n
r

i

! i( )
2

i=1

n

"  (4) 

where 
 
r

i

! i  is the prediction error on example i when it is withdrawn from the training set. The 

leave-one-out score is proved to be an unbiased estimate of the generalization error [25]. 

Hence, that procedure is accurate, but very computer-intensive. It can be used only for small 

data sets. For large data sets, D-fold cross-validation is applicable: instead of withdrawing a 

single example from the data set, a fraction 1/D of the data set is withdrawn, training is 
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performed on the remaining examples, and the procedure is iterated D times (typically D = 5), 

so that each example is used for validation once and only once. 

For medium-sized data sets (a few tens to a few hundreds examples), as is the case in the 

present study, virtual leave-one-out is an attractive procedure [31], which provides an 

approximation of the leave-one-out score of nonlinear models, and an exact evaluation of the 

leave-one-out score for linear models (in which case it is called the PRESS – Predicted 

Residual Sum of Squares – statistic). Virtual leave-one-out consists of training the model on 

the whole data set, and approximating the modeling error that would have occurred on 

example i if it had been withdrawn from the training set as: 

 
  

r
i

! i
"

r
i

1 ! h
ii

 (5) 

where ri is the actual modeling error on example i, and hii is the i-th diagonal element of the 

“hat matrix” H: 

 
  
H = Z Z

T
Z( )

!1

Z
T . (6) 

Z is the Jacobian matrix, whose element zij is given by 

  

z
ij
=

!g x( )
!"

j

#

$
%

&

'
(

x=xi

. Relation (5) is exact 

for models that are linear in their parameters, and approximate otherwise. 

In analogy to relation (4), the virtual leave-one-out score Ep is defined as: 

 

  

Ep =
1

n

ri

1 ! hii

"

#$
%

&'

2

i=1

n

( . (7) 

hii is called the leverage of example i, because it reflects the influence of example i on the 

model [31]. The computation of H is straightforward, so that virtual leave-one-out is 

essentially n times as fast as the original leave-one-out procedure. 
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3.2.5. Estimation of confidence intervals for the prediction 

Several approximate confidence intervals for the predictions of nonlinear models have been 

proposed in the past [32]. In the present investigation, confidence intervals that involve the 

leverages (defined in the previous section) were used: the confidence interval for the 

prediction obtained for the vector of variables x, with confidence level α, is given by 

 
   
t
!

n" p
s z

T
Z

T
Z( )

"1

z  (8) 

where 
 
t
!

n" p  is a Student variable with n-p degrees of freedom, s is an estimate of the variance 

of the prediction error, and 
  
z =

!g x( )
!"

. The quantity under the square root sign is computed 

exactly as the leverages of the examples of the training set. 

3.3. Software tools 

The results described below were obtained with NeuroOne™ v.6, which implements the 

procedures described above for model training, variable selection, model selection and 

confidence interval estimation1. 

4. Results 

The results described in the present section illustrate various aspects of the predictive 

capabilities of the approach. 

4.1. Prediction of glutathione concentrations 

In order to unravel the relationship between the metabolism of glutathione and the 

concentrations of vitamins, oligo-elements, and proteins, the prediction of glutathione (GSH) 

was attempted. Table 1 shows the top of the ranked list of candidate variables, and the 

probability for each of them to be more relevant than a probe variable. The last two candidate 

                                                
1 NeuroOne™ is a trade mark of NETRAL S.A. (http://www.netral.com) 
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variables were discarded by the random probe method (see section 3.1.3), leaving six selected 

variables. 

 

Candidate variables Probability of the candidate variable being more relevant 

than a probe variable 

Selenium 0.97 

Protein thiol 0.97 

Cu/Zn ratio 0.92 

Vitamin E 0.83 

Vitamin E / Vitamin C ratio 0.72 

Oxidized DNA 0.69 

Vitamin C 0.49 

Oxidized LDL 0.42 

Table 1 

Variable selection for the prediction of glutathione; the top six variables were selected. 

 

For simplicity, we first report results obtained on a small database of 57 patients. In order to 

illustrate the influence of model complexity on prediction accuracy, Figure 4a shows the 

scatter plot (predicted value versus measured value) obtained with a model having three 

hidden neurons, and Figure 4b shows the scatter plot obtained with a more complex model (6 

hidden neurons), trained on the same data. The predictions of a model of intermediate 

complexity (4 hidden neurons) are shown in Figure 8. The estimated leave-one-out score for 

the three-hidden-neuron model is equal to 157 µmol/l, while it is equal to 24 µmol/l for the 

six-hidden-neuron model.  The improvement, resulting from a controlled increase of the 

complexity of the model, is clearly apparent. 
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(a) 

 

 

(b) 

Figure 4 
(a) scatter plot for a model with 3 hidden neurons; (b) scatter plot for a model with 6 hidden neurons. 
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The model with six hidden neurons was tested on fresh data (test set), i.e. on a set of examples 

that were used neither for training nor for variable and model selection. The results are shown 

on Figure 5. 

 

Figure 5 
Prediction of GSH on a test set. Figures are the numbers of the corresponding records in the database. 

 

Clearly, most examples are predicted accurately, with some exceptions: 

− Examples for which the measured glutathione concentration is lower than 750 

µmol/l. Those examples lie below the concentration range in which training was 

performed (see Figure 4): the prediction of such points cannot be expected to be 

accurate; 

− a few outliers; the figures printed by those points are the record numbers in the 

database; they are consecutive records, which gives strong suspicion of artifacts 

such as poor settings of the measurement apparatus on the day the analyses were 

performed, or data logging errors. 
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The estimations of the confidence intervals, reported on Figure 6, confirm that the predictions 

of those points should be accorded low confidence: all predictions are assigned a small 

confidence interval, while the outliers have large confidence intervals. 

The importance of variable selection is illustrated on Figure 7 and Figure 8. They show the 

scatter plots obtained for the prediction of glutathione concentration by models having the 

same complexity (4 hidden neurons), and, respectively, the three and six top variables of the 

ranked list (Table 1). As expected, the incidence of relevant variables improves the quality of 

the prediction to a large extent. 

The above examples, obtained on a relatively small database, illustrate clearly the ability of 

the proposed approach to predict the glutathione concentration with satisfactory accuracy. 

The examples described in the next section show the predictive ability of models based on a 

larger database (200 patients), with larger inter-individual variability. 

 

 

Figure 6 
Confidence intervals on the predictions of a model with 6 hidden neurons 
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Figure 7 
Prediction of GSH concentration from 3 variables by a model with 4 hidden neurons. Estimated generalization 

error: 175 µmol/l 

 

 

Figure 8 
Prediction of GSH concentration from 6 variables by a model with 4 hidden neurons. Estimated generalization 

error: 153 µmol/l 
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4.2. Prediction of glutathione and oxidized glutathione from exogenous anti-oxidants 

In order to evaluate the relationship between vitamins, oligo-elements and proteins, 

glutathione concentration and the log ratio of glutathione to oxidized glutathione were 

predicted from the following selected concentrations (ranked in order of decreasing 

relevance): ratio Cu/Zn (93%), selenium (89%), protein thiol (89%), vitamin E (82%), ratio of 

vitamin C to vitamin E (63%); as indicated previously, the numbers in parentheses represent 

the probability of the selected variable being more relevant than a probe variable. Figure 9 

and Figure 10 show that both quantities can be predicted with satisfactory accuracy. The 

generalization errors, estimated by virtual leave-one-out, are 177 µmol/l and 1.01 log unit. 

respectively.  

 

 

Figure 9 
Prediction of glutathione concentration from exogenous antioxidants (199 examples). 
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Figure 10 
Prediction of the ratio of the concentration of glutathione to the concentration of oxidized glutathione, from 

exogenous antioxidants (215 examples) 

 

4.3. Prediction of strong markers of oxidative stress: ratio 8-OH-dG/creatinine and 

oxidized LDL 

In the present section, we show that the proposed approach allows the prediction of two 

strong markers of oxidative stress: the ratios of the concentration of 8-OH-dG (8-hydroxy-2’-

deoxyguanosine) to the concentration of creatinine, and the concentration of oxidized LDL 

(low density lipoproteins). 

The results are shown in Figure 11 and Figure 12. For the (8-OH-dG/creatinine) concentration 

ratio, the selected variables were the Cu/Zn concentration ratio (98%), the glutathione to 

oxidized glutathione concentration ratio (98%), and the concentrations of vitamin E (90%), 

selenium (84%), vitamin C (75%) and protein thiol (57%). The estimated generalization error 

was 5.3. For the prediction of oxidized LDL, the log of the concentration (µmol/l) was 

predicted, because of the large range of measured concentrations. The selected variables were 

protein thiol (99%), vitamin E (99%), vitamin C (98%), GSSG (94%), selenium (89%), GSH 

(81%), and Cu/Zn concentration ratio. The estimated generalization error was 0.6 log units. 
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Figure 11 
Prediction of the concentration ratio of 8-OH-dG to creatinine (121 examples). 

 

 

Figure 12 
Prediction of the concentration of oxidized LDL (230 examples). 

5. Discussion 

For the first time, the present study has validated the feasibility of predicting concentrations of 

markers of oxidative stress, from measurements of exogenous and endogenous antioxidants in 

plasma and urine from a large clinical and biological database derived from patients 

presenting a wide range of clinical disorders involving chronic inflammation and oxidative 
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stress. It addresses the question of the choice of pertinent oxidative stress markers in the 

context of chronic inflammatory disease, and highlights three clusters of biomarkers: 

exogenous markers of antioxidant status (vitamins E and C, copper, zinc, selenium, thiols), 

endogenous markers (GSH and GSSG), and terminal markers of oxidative damage (oxidized 

LDL and 8-OHdG). The innovative application of a machine learning approach to the 

prediction of oxidative stress allows us for the first time to predict abnormalities in markers of 

one group relative to marker abnormalities grouping another. 

The critical role of methodological tools including model selection, variable selection, and 

confidence interval estimation has been demonstrated. From the machine learning point of 

view, the main open question is the following: are the present results optimal or can they be 

improved, e.g. by using different learning machines, or by implementing regularization as in 

support vector machines, or by designing “committees of machines”? That question can be 

answered if and only if an estimate of the experimental error is available: if the uncertainty of 

the prediction is of the order of magnitude of the uncertainty in the measurement, no 

improvement can be expected. If the experimental uncertainty is substantially lower than the 

prediction error however, then the results can be improved. 

Glutathione level can thus be predicted on the basis of levels of vitamins and some 

oligoelements, and preferentially by selenium, total thiols, copper/zinc ratio, vitamin E 

concentration, and finally by the vitamin C/vitamin E ratio (Figures 4 and 5). The predictive 

power of this approach progressively diminishes when the number of markers decreases from 

6 to 3 (Figures 7 and 8), thereby implying that a minimal number of associated markers is 

required for the pertinent prediction of oxidative stress (Figure 9). The GSH/GSSG ratio can 

equally be predicted under similar conditions, with the exception of the order of predictive 

power (order of prediction: copper/zinc ratio, selenium, thiols, vitamin E, and finally vitamin 

C/vitamin E). 
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The markers of oxidative damage assayed in this study (i.e., circulating oxidized LDL as a 

marker of lipid peroxidation, and urine 8OHdG/creatinine as a marker of DNA oxidation) can 

be predicted by others, as exemplified by those required for glutathione prediction; in 

addition, GSH/GSSG ratio has also a predictive value for biomarkers of lipid and DNA 

oxidation. 

The pertinence level attained leads to a more appropriate choice of oxidative stress markers, 

and the predictive power allows reduction in the number of markers to be evaluated, thereby 

resulting in greater technical and economical feasibility. Clearly then, the appropriate choice 

of markers is essential for an informative and pertinent diagnostic approach. Finally, the 

choice of biomarkers constitutes a critical feature of clinical studies involving antioxidant 

supplementation as it provides key information in the efficiency of the therapeutic response. 

These informative findings show that it is worth while pursuing this study on a large biobank 

derived from patient populations of distinct ethnicity, lifestyle and diet. Moreover, the future 

targeted patient populations must include a wide spectrum of chronic diseases involving 

inflammation and oxidative stress in order to allow further evaluation of the present 

innovative approach. 
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