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Abstract

Minerals detection over large volume of spectra is the challenge addressed by
current hyperspectral imaging spectrometer in Planetary Science. Instruments
such OMEGA (Mars Express), CRISM (Mars Reconnaissance Orbiter), M3

(Chandrayaan-1), VIRTIS (Rosetta) and many more, have been producing very
large datasets since one decade. We propose here a fast supervised detection
algorithm called LinMin, in the framework of linear unmixing, with innovative
arrangement in order to treat non-linear cases due to radiative transfer in both
atmosphere and surface. We use reference laboratory and synthetic spectral
library. Additional spectra are used in order to mimic the effect of Martian
aerosols, grain size, and observation geometry discrepancies between reference
and observed spectra. The proposed algorithm estimates the uncertainty on
“mixing coefficient” from the uncertainty of observed spectra. Both numeri-
cal and observational tests validate the approach. Fast parallel implementation
of the best algorithm (IPLS) on Graphics Processing Units (GPU) allows to
significantly reduce the computation cost by a factor of ˜40.

Keywords: spectroscopy, hyperspectral, supervised detection, linear unmixing
under constraint, sum to one, positivity, GPU, LinMin

1. Introduction

Various methods have been proposed to detect surface chemical species (min-
erals, ice) on large dataset of hyperspectral images. Supervised methods (know-
ing the spectra of the chemical species you want to detect) are widely used, for
instance : band ratio techniques ((Poulet et al., 2007; Ehlmann et al., 2011;
Carter et al., 2013)), linear unmixing ((Combe et al., 2008; Themelis et al.,
2012)), wavelet based detection ((Schmidt et al., 2007; Gendrin et al., 2006)),
correlation based detection - Spectral Angle Mapper ((Kruse et al., 1993)).
Other linear non-supervised techniques (estimating the spectra directly from the
scene) have been proposed, using Independent Component Analysis ICA ((Forni
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et al., 2005; Erard et al., 2009)) or Bayesian methods under constrained ((Mous-
saoui et al., 2008; Schmidt et al., 2010)). Also some algorithms only extract the
endmember spectra such: Pixel Purity Index ((Boardman et al., 1995)), N-
FINDR ((Winter, 1999)), or graph-based segmentation ((Gilmore et al., 2011))
.

The linear mixture is still valid in non-linear intimate mixture, but with sig-
nificant difference between retrieved “mixing coefficient” and actual abundance
((?Mustard et al., 1998)). Nevertheless, linear unmixing is satisfactory for min-
eral detection ((Combe et al., 2008; Themelis et al., 2012)). It has the significant
advantage to deal with complex mixture of a large variety of candidate minerals
(see fig. 3), whereas band ratio methods fails, due to the lack of defined refer-
ence “continuum” wavelength channel. In such situation each wavelength may
sample an absorption band of a particular mineral and no reference wavelength
can be found. If band ratio’s are adapted to detect minerals over flat spec-
tra, methods using the entire wavelength channels (such linear unmixing) are
adapted to detect minerals over a complex variety of background. Specifically,
we draw attention that the band ratio’s of the CRISM summary products are
only relevant in case of a pure mineral detection but may be irrelevant in case
of a mixture. We propose here to address the challenge to detect one mineral
type alone or a mineral type in an assemblage, from a very diverse potential
endmember spectra dataset.

Linear unmixing is relatively simple enough to provide a fast implementa-
tion. Furthermore supervised linear unmixing has the advantage that its in-
terpretation is directly and automatically provided in terms of mineralogical
class on the bulk hyperspectral image. Dimensionality reduction methods, such
unsupervised algorithms or endmember extractions are not required in linear
unmixing. Also linear unmixing does not require manual interpretation and
identification of spectra.

Previous linear unmixing algorithms have proposed to optimize the refer-
ence spectral library in order to solve positivity ((Combe et al., 2008)), forcing
for sum-to-one constraints on the mixing coefficients ((Roberts et al., 1998)).
(Roberts et al., 1998) discusses the benefits of constraining the number of end-
members from the spectral library. They have shown that the solutions with a
mixture of two endmembers have less overlap that three endmembers mixtures,
probably due to the dimension space. In our article, we focus on the interest of
both positivity and sum-to-one constraints, that allow to estimate the optimum
of all possibility of mixtures. Without positivity and sum-to-one constraints,
singularities may arise due “linear dependance” of endmember spectra ((Roberts
et al., 1998; Dalton et al., 2013)). We show that most recent algorithms, in-
cluding both positivity and sum-to-one constraints, handle this difficulty, thus
simplifying tremendously the treatment.

Our aim is to show that additional spectra (flat, slope) minimize the dif-
ferences between reference laboratory spectra and actually observed spectra,
by reducing the effect of grain size and continuum level (photometry, surface
roughness, compaction). Some differences between observations and reference
endmembers may still be present due to variations in composition, texture,...
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The selection of the reference spectra database requires always special care and
depends on the scientific questions addressed, but at least this database is ex-
plicitly known.

Once detection has been performed, time consuming inversions must be ap-
plied in order to retrieve quantitative estimate of surface properties (exact min-
eralogy, abundances, grain size, porosity, ...) as proposed by different techniques
such MGM ((Sunshine and Pieters, 1993; Kanner et al., 2007)) or radiative
transfer inversion ((Douté et al., 2007; Poulet et al., 2009a)). Also the particu-
lar mineral type, for instance Al/Fe or Mg/Fe phyllosilicate, must be addressed
by additional work using specific spectral library.

We propose here to extend the linear supervised detection technique using a
new set of constraint (positivity and sum to unity) and a new set of additional
spectra in order to improve the “mixing coefficient” estimation. We also intro-
duce a new renormalization with the goal to fit the signal, even in the case of
very low signal to noise ratio.

We propose to call LinMin our strategy of using:

1. linear unmixing technique under constraints (positivity, sum to unity/sum
lower than unity)

2. additional spectra made of flat and slope (also possibly cosine functions)

3. renormalization by the variance/covariance noise matrix

4. estimation of the error on the “mixing coefficient

In order to validate the LinMin approach, we test the detection limits on syn-
thetic data simulating a regolith mixture, the grain size effect and the Martian
aerosols effect. We also validate the method on actual hyperspectral dataset
of OMEGA, CRISM and M3. Quantitative estimate of the detection limits are
computed.

2. Method

2.1. Linear unmixing

The linear mixing model of hyperspectral reflectance is usually written as:

X = A.S + E (1)

with the collection of observed spectra X (M × Nλ matrix), the reference
spectra S (N ×Nλ matrix), the unknown mixing coefficients A (M ×N matrix)
and the additive noise error E (M ×Nλ matrix), assumed to be gaussian with
zero mean. Nλ is the number of wavelength, N the number of reference spectra,
M the number of observed spectra.

The unmixing problem then consists in the estimation of the mixing co-
efficients A that minimize the error E. Considering the least squares error
minimization, it is written:

min
A∈<M×N

F (A) with F (A) =

M∑
m=1

Nλ∑
λ=1

(Xmλ − (A.S)mλ)2 (2)
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The unconstrained solution A = X.ST .
(
S.ST

)−1
has been used the in pre-

vious detection methods ((Boardman et al., 1995; Combe et al., 2008)) but the
retrieved mixing coefficient A may be negative. One solution is to test all combi-
nation of reference spectra S in order to keep only positive case ((Roberts et al.,
1998; Combe et al., 2008)), but the computation cost is very high. In addition,
such case is more sensitive to degeneracies in comparison to the constrained
problem (see paragraph 2.4).

2.2. Linear unmixing under constraint

The previous formulation is not sufficient to describe physical constraints
on the mixing coefficients. Indeed, the mixing coefficients must satisfy non-
negativity :

∀m ∈ {1, . . . ,M} ∀n ∈ {1, . . . , N} Amn ≥ 0 (3)

and sum-to-one constraints:

∀m ∈ {1, . . . ,M}
N∑
n=1

Amn = 1 (4)

Non-Negative Least Squares (NNLS) algorithms((Lawson and Hanson, 1995;
Bro and De Jong, 1997)) aim at solving the problem 2 subject to constraint
3. Sum-to-one Constrained Least Squares (SCLS) methods (Settle and Drake,
1993) solve the same problem with constraint 4. Eventually, Fully Constrained
Least Squares (FCLS) algorithms ((Heinz and Chein-I-Chang, 2001; Dobigeon
et al., 2008)) solve the problem 2 subject to both constraints 3 and 4. In this ar-
ticle, two FCLS methods are considered: (i) IPLS based on primal dual interior
point optimization ((Chouzenoux et al., 2011)) that benefits from GPU imple-
mentation ((Chouzenoux et al., 2013)), (ii) BI-ICE in the bayesian framework
((Themelis et al., 2012)).

As stated in (Chouzenoux et al., 2013), the convexity of the criterion F is
sufficient to establish the convergence of IPLS when constraints 3 and 4 are
considered. Hence, the unmixing estimation can be performed even with corre-
lated reference spectra, such in fig. 2. Next sections will describe the results on
actual data.

2.3. Measurement uncertainty consideration

In some cases, the level of uncertainty is known and can be modeled by
a gaussian probability density function with zero mean and the covariance C
(Nλ × Nλ matrix). C−1 being a symmetric positive definite matrix, it can be
factorized using the Cholesky decomposition:

C−1 = L.LT (5)

with L lower triangular. Thus, noting X = [X1, . . . , XM ]T and A = [A1, . . . , AM ]T ,
the least squares criterion becomes:
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min
A∈<M×N

F (A) with F (A) =

M∑
m=1

(X ′m −Am.S′)(X ′m −Am.S′)T (6)

with X ′ = X.L and S′ = S.L. Thereby, the measurement uncertainty is handled
by modifying the observation matrix X and the reference spectra S before the
unmixing process.

An estimation of the error on the mixing coefficient A is directly provided
by the Hessian ((Chouzenoux et al., 2013)).

2.4. Reference spectra database

As stated in introduction, the reference spectra database depends on the
scientific goal of the detection. The total number of spectra is limited to the
number of wavelength. In the following, we used 32 spectra of the main min-
erals type proposed to be present at the surface of Mars and the Moon (see
fig. 3). More endmembers can be used but with increasing computation time
((Chouzenoux et al., 2013)).

The linear unmixing problem (eq. 2) is degenerated if the spectra in the
database are linearly dependent. Degeneracies can create false solution with
low RMS error ((Roberts et al., 1998; Combe et al., 2008)). We estimate here
the linear dependence of the database in order to show that positivity constraint
significantly decreases the appearance of degeneracies. This test is an “auto-
fit” of the reference spectra database. For each spectra of the database Sn, we
estimate the abundance matrix A′, for a new set of reference spectra made of
all endmembers except Sn (S′ = S r Sn). We use the unconstrained problem
(eq. 2):

Sn = A′.S′ + E (7)

and also the non-negative constrained problem (eq. 2 subject to constraint 3)
to estimate A′.

Figure 1, shows the residue E between the real endmember Sn and the best
linear mixture of all other endmember A′.S′, for all endmembers. The uncon-
strained problem shows smaller residues than the positivity constrained prob-
lem. In addition, the residues are unstructured (noisy) for the unconstrained
problem, in contradiction to the very structured residues (inverted spectra) for
the positivity constrained problem. This fact indicates that the spectra Sn−E is
better fitted with a linear mixture of false endmember S′instead of the real case.
In conclusion, an observed spectra with noise can likely create false detection
in the unconstrained problem but much less likely in the positivity constrained
problem.

2.5. Benefits of additional spectra

In order to model the effect of shading, grain size and aerosols, (Combe
et al., 2008) propose to add a positive and a negative linear slope, and also a
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Figure 1: Estimation of degeneracies of the reference database: (a) on left without positivity
constraints, (b) on right with positivity constraints.

flat spectrum in order to correct for the Mie scattering of the aerosols particles
(see fig. 2 in (Combe et al., 2008)).

This strategy can be extended in the case of linear unmixing under con-
straints. Since mixing coefficients are positive and constrained to one, the flat
spectra split in two : flat near zero level and also near 1 level (see fig. 2). Those
4 additional spectra allows to model the difference of level and slope between
X and S.

In order to model more complex continuum shape such aerosols, we could
also add cosine function with periods x2 and x4 of the spectral domain ((Schmidt
et al., 2011, 2012)). Similarly to Fourier transform, those cosine functions are
orthogonal and linearly independent, allowing unique mixing coefficient. In the
framework of linear unmixing under positivity and sum to one constraint, 12
additional spectra are required. Those 12 additional spectra allow to model
the large scale difference between X and S, similar to Fourier filtering. In
particular the aerosols contribution that peak at the wavelength similar to the
grain size may be fitted by large scale cosine. Figure 5 (b) show a pure aerosol
spectra (aot=100), that could be modeled by level/slope/sine/cosine functions.
Since the aerosols grain size may change, leading to an unknown peak over the
wavelength, our approach will be able to fit it.

Since those 4 (or 12) additional spectra are highly correlated, from algo-
rithmic point of view it may hard to estimate the mixing coefficient. To our
knowledge, the only algorithms that are able to estimate the unmixing under
constraints and high correlated reference spectra are IPLS ((Chouzenoux et al.,
2011)) and BI-ICE ((Themelis et al., 2012)). Next section will describe the
results on actual data.
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Figure 2: thick color lines : 4 additional spectra to fit difference of level and slope between X
and S. thin black lines : 8 cosine/sine function to model the large scale difference between X
and S.

3. Synthetic tests

In order to test the effect of various discrepancies between observation and
reference spectra on detection accuracy, we propose to simulate 3 cases: linear
random mixture at the surface without atmosphere, linear random mixture at
the surface observed trough a diffusive atmosphere, grain size change.

3.1. Surface mixture

In order to simulate a realistic set of spectra, we create a random set of
1000 binary mixture spectra from our 32 reference spectra database (see fig.
3) from USGS catalog ((Clark et al., 2003)), the CRISM Analysis Tool (CAT),
synthetic spectra from radiative transfer model ((Douté and Schmitt, 1998)).
Each simulated spectra are composed of:

• 90% is a flat component at reflectance 0.35 in agreement with OMEGA
studies (Vincendon, 2013) in order to reproduce the low level and flatness
of actual Martian spectra. The flatness is also representative of the Moon
or other planetary surface.

• 10% of a random mixture of two over 32 reference spectra with random
uniform mixing coefficients, noted as A0. For each endmember i, there
is ˜30 spectral mixture with non-null mixing coefficient (noted Apositive)
and ˜970 with null mixing coefficient (Afalse).
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Figure 3: 32 Reference spectra of minerals, ice and atmospheric gas representing major classes
of contributions of surface spectra. The difficulty to define continuum wavelength is due to
the overlapping signatures of all species. See Appendix for the names.

We add synthetic noise, simulating the noise level of a typical OMEGA
observation after gas correction. We estimate the noise covariance matrix from
dark current noise of ORB41 1, transferred into the gas corrected calibrated
observation space. The noise has a wavelength-average standard deviation of
1.3× 10−3. Other noise statistics can be used, such MNF shift difference from
ENVI software, but we point the fact that OMEGA dark current is archived,
estimating the minimum noise statistics (excluding spike and other non-linear
effects).

The estimated mixing coefficients are noted AIPLS , ABI−ICE and AIPLS,cov
for the renormalized problem.

Examples of fits are shown in fig. 5 on left with AOT=0.
Figure 4 compares estimated AIPLS,cov and actual A0 mixing coefficients,

for the IPLS algorithm using 32 and the 4 additional spectra, on the 1000 binary
mixture, with the renormalized unmixing problem. Usually, AIPLS,cov for actu-

ally present endmember (ApositiveIPLS,cov in green), are well separated from the absent

endmember (AfalseIPLS,cov in red), showing that a simple threshold can be used to
detect the endmember. Endmember No 18 (Magnetite) is not detectable be-

cause there is no difference between ApositiveIPLS,cov and AfalseIPLS,cov . Please note that

ApositiveIPLS,cov and Apositive0 are very close, the mean absolute difference is 0.0142,
one order of magnitude lower than the mixing coefficients (up to 10%), showing
that when linear mixing is true, the estimated mixing coefficients are validated
as real abundances. Also, the root-mean-square (RMS) error is compatible with
the level of noise (1.2× 10−3).
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Figure 4: Mixing coefficient for 32 spectra (see fig. 3) for the IPLS algorithm on 1000 binary
mixture, solving the renormalized unmixing problem (eq. 6), using 36 endmembers (32 spectra
and the 4 additional spectra). black points: actual mixing coefficient A0, generated randomly.

green points: estimated mixing coefficient Apositive
IPLS,cov in the case of positive detection. red

points: estimated mixing coefficient Afalse
IPLS,cov in the case of false detection. black line: best

threshold Ci
IPLS,cov to detect the endmember. Please note that artificial dispersion around

the endmember No has been added in order to increase the clarity of the figure.
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In order to estimate the best threshold CiIPLS,cov, avoiding the maximum
number of false detection but keeping the maximum positive detection, we pro-
pose the following formulation, for each endmember i:

CiIPLS,cov =
1

2

(
mean(ApositiveIPLS,cov)− 2.std(ApositiveIPLS,cov) + mean(AfalseIPLS,cov) + 6.std(AfalseIPLS,cov)

)
(8)

Figure 4 shows these threshold for all endmembers. It confirms that some end-
members can be detected with a larger detection limits than other, depending
on their relative similarities. Endmember No 18 (Magnetite) is not detectable
because its spectral shape is too close to a combination of the 4 artificial spectra,
because its spectra is featureless.

Actual positive detection and false detection rates without atmosphere are
shown in figure 7 at the AOT=10−3 for IPLS with/without renormalization,
for IPLS and BI-ICE, for 32 or 36 or 44 endmembers. For all algorithms the 4
additional spectra (called slope), clearly improve the classification over the 32
endmembers case (called no slope). Without renormalization, IPLS shows the
best results (> 70% of positive detection, < 20% of false detection) over BI-
ICE. With renormalization, the detection rates is improved (> 85% of positive
detection, < 5% of false detection) for IPLS. For non-renormalized IPLS, the
sum-to-one (sto) seems slightly better than sum-lower-than-one (slo).

The use of 12 additional spectra (including the sine/cosine), seems to be
less efficient that 4 additional spectra (83 % of positive detection, 5% of false
detection). It appears that the accuracy of detection slightly decreases for some
minerals with large scale feature such olivines or pyroxenes. Since, those phases
are major ones, we decide to focus on the 4 additional spectra.

As a summary, the best algorithm to detect linear mixture is clearly IPLS
with renormalization and 4 additional spectra. Please note that a different
threshold may change the positive/false detection rates but not change the rela-
tive accuracy of the classification. Estimating the threshold for real case images
is more difficult due to the possible differences between observation and refer-
ence spectra. Please note that our test uses the same spectra in the spectral
library and in the mixture.

3.2. Aerosols

In order to test if our methodology is able to reduce the effect of the non
linear surface-atmosphere coupling due to aerosols, we modified the previous
surface spectra by non linear radiative transfer using aerosol properties from
(Vincendon et al., 2007). These authors propose a parameterization of the dust
aerosol properties in form of a single scattering albedo and a shape of optical
thickness as a function of wavelength, rescaled to a Aerosols Optical Thickness
at 1 micron (AOT). The reflectance of a semi-infinite aerosol media is plot-
ted in figure 5 b, for AOT=100. The simulation uses the DISORT algorithm
((Stamnes et al., 1988)) with the bottom condition as lambertian surface with
the previous surface mixture spectra. We took into account the reflection and
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absorption of the aerosols but also the multiple reflection between surface and
atmosphere. We used the following geometry, typical of hyperspectral observa-
tion: emergence angle 0◦, incidence angle 76◦, azimuth angle 60◦. Other optical
properties and/or geometries may be used but we assume that the chosen prop-
erties are reasonable to simulate aerosols effects. We sample 104 values of AOT
(Aerosols Optical Thickness):

• The value 0 for no aerosols, identical to surface only (noted 10−3 in the
log scale graphs)

• 99 value in a logarithm from 0.01 to 4.6 using − log( 100−[1:99]
100 ).

• Four values : 5, 10, 20 and 100 to sample the optically thick cases.

We obtain a set of 104 000 spectra simulating the space-borne Martian obser-
vation from the top of the atmosphere. We also add the synthetic OMEGA
noise in order to simulate a realistic observation using the same approach that
previously described.

On a desktop with Dual Core at 2.53 Ghz with 4Go RAM memory, the
typical computation time to solve the non-normalized problem of eq. 2 on
M = 104000 spectra with Nλ = 110, N = 36 are : 3.3 h for BI-ICE, 4.5 min
for IPLS. The estimated mixing coefficients are noted AIPLS , ABI−ICE . Since
IPLS is the fastest algorithm, we also tried the solve the harder renormalized
problem of eq. 6 and found a computation time of 1.2h. We also use IPLS
to solve the renormalized problem using 12 additional spectra. The estimated
mixing coefficients are noted AIPLS,cov. Also GPU implementation on a TESLA
C 2050 (448 core at 1.15 GHz) may solve the problem with a computation time of
several 10s. The GPU implementation efficiency dependance on spectral/spatial
size and number of endmember is discussed in (Chouzenoux et al., 2013).

In order to illustrate the effect of AOT on the detection limits, figure 6
shows the same than figure 4 but for AOT=1. The positive detection mixing
coefficients endmembers (ApositiveIPLS,cov in green) are well separated from the ab-

sent endmember (AfalseIPLS,cov in red), showing again that a simple threshold can
be used to detect the endmember. Endmember No 18 (Magnetite) is still not
detectable. Please note that ApositiveIPLS,cov and Apositive0 are getting far, the mean
absolute difference is 0.0310, showing that when linear mixing is not true, the
estimated mixing coefficient may differ from the true abundances. The esti-
mated mixing coefficients ApositiveIPLS,cov are systematically lower than the “true”

Apositive0 because of the effect of aerosols, removing the minerals signature ( see
fig. 5).

Results on actual positive detection and false detection rates are shown in
figure 7 as a function of AOT. The positive detection rates of all algorithms drop
for AOT> 10−1 . For IPLS with renormalization, the positive detection rates
is 70 % at AOT=100 and 10 % at AOT=101, showing again that it is the best
algorithm. IPLS with renormalization is also the only providing a constant low
false detection rate (<5 %), independent of the AOT. The RMS error for IPLS
with renormalization and additional spectra is still very low and compatible

11



with the actual level of noise (at maximum 1.7× 10−3 for AOT=102), showing
that the non-linearity of the radiative transfer due aerosols can be fitted with
our model. Examples of fits are shown in fig. 5 b) demonstrating the effect of
decreasing mixing coefficient as a function of increasing AOT.

Figures 5 c) and d) show the effect of 4 additional spectra (level and slope)
or 12 additional spectra (level, slope, cosine) on the detection of pure diopside.
In the case of AOT=1 using 12 additional spectra, the mixing coefficient is
estimated to be 0.7 ± 2%, showing a non-probable detection in spite of the
actual 10% abundance. In the same case using 4 additional spectra, the mixing
coefficient is estimated to 5.5 ± 0.2%, showing a clear positive good detection.
We argue that all endmember with large scale absorption bands could have
the same behavior and thus, we prefer to use 4 additional spectra to detect
them. Users focused on spectra endmember with small scale features only, such
phyllosilicate, could use the 12 additional spectra.

As a summary, the best algorithm to detect non-linear coupling of a lin-
ear mixture under increasing aerosols content is IPLS with renormalization and
additional spectra. Please note that a different threshold may change the posi-
tive/false detection rates but not change the relative accuracy of the classifica-
tion. Estimating the threshold for real case images is more difficult due to the
possible differences between observation and reference spectra. Please note that
our test uses the same spectra in the spectral library and in the mixture.

Comparison with band ratio. In order to estimate the accuracy of those results
with the mostly used technique: band ratio, we compute the 1 microns band
spectral parameter to detect forsterite ((Poulet et al., 2007; Ody et al., 2013)),
called OSP1 ((Ody et al., 2013)), in our dataset. Figure 8 a) presents the pure
endmember with a ratio greater than the defined threshold (1.04) ((Poulet et al.,
2007; Ody et al., 2013)). This result shows the phenomena of false detection that
could occur in the presence of other endmembers, indicating that band ratio is
relevant to detect the presence of one single mineral feature vs no feature but it
is not able to handle detect mineral against a large dataset of mineral. This is
due to the difficulty to define a “continuum” wavelength, as shown in figure 3.

Figure 8 b) presents the detection of forsterite of the 1000 synthetic exam-
ples as a function of AOT, for the OSP1 band ratio and IPLS with different
constraints. The band ratio seems to be have difficulties to detect the presence
of forsterite in the 71 cases of mixture, because only 5% are detected. IPLS is
able to detect up to 60% of the mixture with forsterite with the use of additional
spectra, with a small range of false detection (<5%), similar to OSP1. In the
case of IPLS without additional spectra, the false detection rate is very large
(˜20%) and independent of the AOT, indicating wrong results. In this case,
IPLS performs a better detection with additional spectra.

As a summary, in case of diverse spectra and mixture, one single band ratio
is not able to detect the current spectra. This difficulty may be tackled by
defining several band ratios but it is more difficult with an increasing number
of candidate spectra. The LinMin strategy performs significantly better with
additional spectra.
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Figure 5: Examples of results using the IPLS algorithm: a) and b) with renormalization
and 12 additional spectra (flat and slope) in the case of a pure gypsum spectra (10% in
abundance). a) with different grain size factor, from x1000 to x1/1000, b) with different
atmospheric load from AOT=0 to AOT=100. ; c) and d) with renormalization in the case of
diopside (clinopyroxene). c) using 4 additional spectra (flat and slope), d) using 12 additional
spectra (flat, slope and cosine).
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Figure 6: Same fig. as 4 but with AOT=1 instead of AOT=0.

3.3. Grain size

We choose the first 26 minerals spectra (see Appendix) with following pa-
rameter to retrieve the optical index of the grain material using the inverse
Shkuratov theory ((Shkuratov et al., 1999)): real optical constant=1.7, volume
fraction filled by particles=0.8, grain size=100 microns. This approach has been
widely used in hyperspectral data analysis ((Poulet et al., 2002; Douté et al.,
2007; Poulet et al., 2009b)).

We then regenerate the reflectance spectra using the direct Shkuratov theory
but with 9 different grain size factor x1000, x100, x10, x5, x1, x 1

5 , x 1
10 , x 1

100 ,
x 1
1000 of the original 100 microns. We obtain a set of 234 synthetic spectra.

In order to simulate a realistic observation we use the same approach that
previously described for the surface mixture using flattening of the spectra and
OMEGA noise addition (see section 3.1).

We do not claim that all reference spectra have been recorded at a grain
size of 100 microns so that the generated dataset has a determined accurate
grain size. Nevertheless, this manner allows us to generate synthetic spectra
simulating a grain size factor change.

Since IPLS with renormalization is obviously the best algorithm, we only
tested this approach for the grain size. We used again the same threshold
strategy explained earlier in eq. 8. Here positivity constraint only may be
relevant in the case of higher grain size than the endmember, since the signature
are stronger and may imply mixing coefficient larger than 1.
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Figure 7: Positive detection rate (circle) and false detection rates (square) with optimized
threshold as a function of AOT for (a) IPLS with renormalization and 36 endmembers (b)
IPLS with renormalization and 44 endmembers (c), IPLS without renormalization and 36
endmembers (d) BI-ICE without renormalization and 36 endmembers. For each algorithm,
the positive/false detection rates are computed using 32 endmember spectra only (no slope),
or 36/44 endmember spectra (slope). IPLS has an option of sum-lower-than-one (slo) or sum-
to-one (sto) that is not relevant for other algorithms. The case without aerosols is plotted at
AOT=10−3.
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Figure 8: Detection of forsterite using band ratio and LinMin strategy using IPLS with
renormalization and 44 endmembers. Only 71 mixtures over 1000 contains forsterite. (a)
Detection rates and false detection rates as a function of AOT (b) random examples of false
detection using band ratio (>1.04), but absence of detection with LinMin (mixing coefficient
∼ 10−5)

Positive and negative detection rates are plotted in fig. 9 for 36 or 32 spectra,
for three constraints of IPLS : sum-lower-than-one (slo), sum-to-one (sto) and
positivity only (pos). First of all, the detection is nearly perfect (>90%) for
the grain size factor of x1, x5 and x1/5 using additional 4 spectra. The false
detection rate is very low (<2%). For 32 spectra, the positive detection is
around 60% for factor x1 to x10, and false detection is around 20%. Using the 4
additional spectra clearly improves the detection rates but slo, sto and pos are
equivalent in this case. For a factor of x 1

10 to x10, the detection rate is higher
than 65%. It then decreases, moving away from factor x1. The detection rates
are quite symmetrical in respect to increasing and decreasing grain size, with a
slightly lower detection rates for the increasing grain size. Examples of fits are
shown in fig. 5 demonstrating the effect of decreasing mixing coefficient as a
function of increasing/decreasing grain size factor. This plot clearly shows that
increasing grain sizes are more difficult to handle with our strategy because the
error between estimated spectra and true one is higher. The main solution is to
provide the endmembers with grain size higher than expected.

The RMS error is still very low and compatible with the actual level of noise
(at maximum 2.1×10−3), showing that the main non-linearity effects due grain
size factor can be fitted with our model.

As a summary, the best endmembers to detect mineral species in case of
a non-linear grain size effect again with the 4 additional spectra. Please note
that a different threshold may change the positive/false detection rates but
not change the relative accuracy of the classification. Estimating the threshold
for real case images is more difficult due to the possible differences between
observation and reference spectra. Please note that our test uses the same
spectra in the spectral library and in the mixture. Intimate mixture may be
generated from the Shkuratov theory but the detection limits may be forecast
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Figure 9: Positive detection rate (circle) and false detection rates (square) with optimized
threshold as a function of grain size factor for IPLS with renormalization: (a) using 36 end-
member spectra (using additional flat and slope endmember), (b) using 32 endmember spectra
only (no slope). IPLS has options of constraints: sum-lower-than-one (slo), sum-to-one (sto)
and positivity only (pos).

from this discussion, knowing that the largest grain size species is spectrally
dominant (as computed for ices in (Schmidt et al., 2007) for instance).

4. Real case

We propose to test our automatic algorithm to three different real case from
OMEGA, CRISM and M3 instrument. For all cases, we will compare our results
with other detection from the literature, mainly based on band ratio followed
by ratio of the region of interest spectra over a manually selected “flat” spectra.
For all cases, we do not test that the exact minerals types could be detected
since many equivalent spectra can be identified (clays, olivine, pyroxene, ...).
The names are the names of the material from laboratory spectra. For instance
“goethite” is an example of iron oxide. Since all mineral inside a class are
spectrally close (like for iron-oxides), it may be not possible to distinguish the
precise mineral. We decided to keep magnetite since it has been detected on
Mars ((Chevrier and Mathe, 2007)) but estimated mixing coefficients are not
relevant due to the featureless spectra. More accurate detections are possible by
adapting and improving the endmember spectra database. All maps, spectral
fits of the maximum mixing coefficient and average of each compounds are
available in supplementary material.

From previous section, IPLS seems the best algorithm to solve the LinMin
problem so that we will exclusively use it on the real case hyperspectral images.

The detection of minerals requires different conditions of good behavior of
the solution:

• The maximum mixing coefficient of the mineral should be higher than a
certain threshold. This condition permits to focus on the main spectral
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component but component with smaller contribution can be present. We
define the best compromise threshold for each observation due to noise
level uncertainties.

• The error on mixing coefficient should be lower than the mixing coefficient,
in order to have a significant detection.

• The RMS should be lower than the noise, basically estimated at 10 times
the dark current noise.

4.1. OMEGA

We select the observation ORB422 4 of Observatoire pour la Minéralogie,
l’Eau, les Glaces et l’Activité (OMEGA) onboard Mars Express (MEx) ((Bibring
et al., 2004)) of Syrtis Major as a test case because this single cube contains
well identified areas with very strong signatures of mafic minerals (pyroxenes,
olivines) and phyllosilicates ((Mustard et al., 2005; Combe et al., 2008; Ehlmann
and Mustard, 2012)). The data cube has been radiometrically calibrated and the
atmospheric gas transmission has been empirically corrected using the volcano
scan method ((Erard and Calvin, 1997; Langevin et al., 2005)). We estimated
the noise covariance matrix on the calibrated and atmosphere corrected cube
from the dark current. We then applied the renormalized IPLS algorithm using
36 spectra and sum-lower-than-one constraint.

The mixing coefficient results, plotted in figure 10, shows that orthopyroxene,
clinopyroxene, olivine, goethite, clays and maghemite are detected, in agreement
with previous detection ((Mustard et al., 2005; Combe et al., 2008; Ehlmann
and Mustard, 2012)). The fit of the spectra with highest mixing coefficient are
available in supplementary material. The estimated noise standard deviation
is 3.3 × 10−4 from dark current but 5.0 × 10−3 using the MNF shift difference
from ENVI software. The lack of fit estimated by the RMS error is 2.1 ×
10−3 , in agreement with the previous two extreme values. Using the fast
GPU implementation, the computation time is only 4 minutes for the complete
OMEGA image of M =128x366 pixels, Nλ = 110 bands. The computation
time can can be reduced to 0.3 min without any significant change in case of a
recalibration with C × 100.

4.2. CRISM

We propose to use the Compact Reconnaissance Imaging Spectrometer for
Mars (CRISM) onboard Mars Reconnaissance Orbiter (MRO) image frt0000A09C
((Murchie et al., 2007)) of Nili Fossae where carbonate has been detected us-
ing manual band ratio’s technique on stacked denoise spectra, divided by a
spectrally flat component ((Ehlmann et al., 2009)). The data cube has been
radiometrically calibrated and the atmospheric gas transmission has been em-
pirically corrected using the volcano scan method ((McGuire et al., 2008)). We
estimate the noise covariance matrix with the SNR=400 from the calibration
at the ground ((Murchie et al., 2007)) in the diagonal elements. We also add
a component in the non-diagonal terms of the covariance matrix in order to
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Figure 10: Detection of 8 minerals over 36 spectra on OMEGA image ORB422 4 of Syrtis
Major using IPLS in the hue-saturation-value color system. The hue (color) represents the
mixing coefficient. The saturation (color or b/w) represents the error. The value (intensity of
color or b/w) represents the rms. Spectral mixing coefficient map are shown with following
conditions : (i) maximum mixing coefficient > 5% , (ii) error on mixing coefficient < mix-
ing coefficient, and (iii) RMS < 10x the dark current noise (see text). Pyroxenes, olivines,
phyllosilicates and oxides are detected and the corresponding “mixing coefficient“ are mapped
(color refer to the online version of the article).
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take into account the correlation of the bands due to atmospheric gas residuals.
We corrected for the striped noise by removing the small scale residual in each
column ((Parente, 2008)). Nevertheless, this method is not able to fully remove
the non-gaussian noise and other more sophisticated methods could be applied
((Parente, 2008; Carter et al., 2013)). We did not correct for spectral smile
((Murchie et al., 2007)) unless this artifact can be corrected ((Ceamanos and
Doute, 2010)). Since the algorithm is comparing observed spectra to a single
reference spectra that cannot be shifted in wavelength, results may be affected
by the smile artifact. Nevertheless, the absorption bands of minerals are often
large and very insensitive to spectral smile, which is not the case for gas and
ices. Band ratios techniques may be less sensitive to spectral smile for detection,
but the value of the absorption depth is also affected by the spectral smile.

The results in fig. 11 and 12 confirm the detection of carbonate of (Ehlmann
et al., 2009). We stress the fact that our approach has been applied on raw
image, without stacking, neither dividing by a spectrally flat component, in
contrary to published detection.

The estimated noise standard deviation is 3.5×10−4 from SNR but 3.4×10−3

using the MNF shift difference from ENVI software. The lack of fit estimated by
the RMS error is 1.0×10−3 , in agreement with the previous two extreme values.
Using the fast GPU implementation, the computation time is 20 minutes for
M =600x478 pixels, Nλ = 56 bands. The computation time can can be reduced
to 2.7 min without any significant change in case of a recalibration with C×100.

The case of CRISM observation at a low SNR (frt0000a09) is exposed in sup-
plementary material. No formal detection can be done because the structured
noise level is higher than the signal level, with non-gaussian properties.

4.3. M3

We propose to use the Moon Mineralogy Mapper (M3) onboard Chandrayaan-
1 image G20090209T054031 ((Pieters et al., 2009)) of Aristarchus, where pecu-
liar olivines has been detected ((Le Mouëlic et al., 1999; Chevrel et al., 2009;
Mustard et al., 2011)).

We estimate the SNR=400 from the calibration at the ground ((Green et al.,
2011)),

The results in fig. 13 also confirms that the South East of Aristarchus is
olivine rich but without any spectral signature of pyroxene ((Le Mouëlic et al.,
1999; Chevrel et al., 2009; Mustard et al., 2011)).

The estimated noise standard deviation is 5.4×10−5 from SNR but 1.6×10−3

using the MNF shift difference from ENVI software. The lack of fit estimated by
the RMS error is 2.1×10−4, in agreement with the previous two extreme values.
Using the fast GPU implementation, the computation time is 13 minutes for
M =304x500 pixels, Nλ = 56 bands due to the very small noise level expected
from the SNR (5.4× 10−5 ). The computation time can can be reduced to 1.6
min without any significant change in case of a recalibration with C × 100.
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Figure 11: Detection of 6 minerals over 36 spectra on CRISM image frt0000A09C of Nili
Fossae (21.3◦N, 78.5◦E) using IPLS in the hue-saturation-value color system. The hue (color)
represents the mixing coefficient. The saturation (color or b/w) represents the error. The value
(intensity of color or b/w) represents the rms. Spectral mixing coefficient map are shown with
following conditions : (i) maximum mixing coefficient > 2% , (ii) error on mixing coefficient <
mixing coefficient, and(iii) RMS < 10x the dark current noise (see text). Pyroxenes, olivines,
phyllosilicates and carbonate are detected and the corresponding “mixing coefficient” are
mapped (color refer to the online version of the article ).

21



1.5 2 2.5
0.125

0.13

0.135

0.14

0.145

Wavelength (micrometers)

Re
fle

ct
an

ce

Carbonate; Siderite (scaled and shifted), mean 2798 spec

 

 

Measured spectrum
Estimated spectrum (rms=0.0004)
Oxide; Magnetite (8.3~0.0%)
Carbonate; Siderite (2.6~0.0%)
Silicate (Ino) ; Diopside CPX CRISM (2.0~0.0%)
Other (87.1%)

a b

1.5 2 2.5

0.12

0.125

0.13

0.135

0.14

0.145

Wavelength (micrometers)

Re
fle

ct
an

ce
Carbonate; Siderite (scaled and shifted), pixel 107−22

 

 

Measured spectrum
Estimated spectrum (rms=0.0005)
Carbonate; Siderite (4.3~0.4%)
Other (95.7%)

Figure 12: Example of spectra fit for the carbonate component (siderite in our spectral
database). All spectral endmember with significant mixing coefficients (>2%) are plotted
but the other component are retrieved by the algorithm (spectra called “Other”), mainly due
to atmospheric transmission and water ice most probably in form of clouds. a) maximum
mixing coefficients spectra (pixel coordinates is line No 108, row No 23), b) average value of
2896 spectra of the CRISM observation frt0000A09C.

5. Conclusion

We propose to incorporate additional spectra (constant, slope, and cosine
functions) to build a new supervised algorithm, called LinMin, based on linear
unmixing under positivity and sum-to-one constraints in the goal to detect min-
erals at the planetary surfaces. The main novelty of this approach is to treat
“linearly dependent spectra” (such constant, slope and cosine functions) that
create degeneracies in usual unconstrained unmixing algorithms, because under
our constraints, they are not linearly dependent anymore. Usually, the refer-
ence spectra database contains linearly independent spectra (simply because
they are different) so the degeneracies are very small. Nevertheless, if the ref-
erence spectra database contains significantly linearly dependent spectra, some
degeneracies may occur. Adding positivity constraint significantly reduces the
degeneracies. In the special case of linear subpixel mixing, the user may be
interested by the most precise aerial surface proportion. In this case, once the
detection step has been done, a second pass of the LinMin algorithm with the
detected spectrum only can enhance the surface proportion estimation.

Some hyperspectral images may be subject to “spike” noise, with non-
gaussian statistics. As stated in eq. 1, the linear unmixing methods usually
assume gaussian noise, so the results may be corrupted in the worst cases. One
solution may be to despike the data using average techniques ((Parente, 2008;
Carter et al., 2013)) before the treatment by LinMin.

We validated the usefulness of LinMin to estimate mixing coefficients in the
case of linear mixture on synthetic examples. We also tested numerically the
most important non-linear effects on the detection limits : aerosols content and
grain size change. Both cases are well treated with our modeling. Some minerals

22



Diopside CPX 
CRISM (%)

Olivine Fayalite 
CRISM (%)

Sum (%)

M3 G20090209T054031

RMS (10-3)

Hypersthene OPX 
(%)

Olivine Forsterite 
CRISM (%)

3.5

4.6

1.2

0

2

2.7

0.7

0

2.8

3.7

1.9

0.9

0

6.5

4.9

3.3

0

1.6

0.8

0.4

0

1.2

40

20

0

60
25°N

24°N

23°N

47°W 46°W

25°N

24°N

23°N

47°W 46°W

25°N

24°N

23°N

47°W 46°W

1.6

25°N

24°N

23°N

47°W 46°W

25°N

24°N

23°N

47°W 46°W

25°N

24°N

23°N

47°W 46°W

2.3

25°N

24°N

23°N

47°W 46°W

1.4

Figure 13: Detection of 4 minerals over 36 spectra on M3 image G20090209T054031 of
Aristarchus using IPLS in the hue-saturation-value color system. The hue (color) represents
the mixing coefficient. The saturation (color or b/w) represents the error. The value (intensity
of color or b/w) represents the rms. Spectral mixing coefficient map are shown with following
conditions : (i) maximum mixing coefficient > 2% , (ii) error on mixing coefficient <mixing
coefficient, and (iii) RMS < 10x the dark current noise (see text). Pyroxenes and olivines
are detected and the corresponding “mixing coefficient“ are mapped (color refer to the online
version of the article ).
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with large scale feature, such olivines and pyroxenes, cannot be detected in the
case of additional cosine function because their spectral signature can be also
fitted with a mixture of cosine. Nevertheless, the use of additional spectra
made of constant and slope components improve the detection of all minerals,
including olivines and pyroxenes in comparison with no additional spectra Our
approach permits to save the continuum fitting step since it is incorporated in
the linear unmixing. We also showed that the knowledge of the noise covariance
matrix, that can be estimated from dark current or using other techniques is
important to assess the detection limits, and in particular the error on mixing
coefficients.

We also tested LinMin on three real cases of hyperspectral images from
OMEGA, CRISM and M3 instruments. All three cases show detections in agree-
ment with previous analysis, validating the LinMin with approach. The main
difficulty of this approach, that is also present in band ratio and other detection
method, is to optimize the threshold for detection. Nevertheless, this problem
is partly tackled by the estimation of the error on the mixing coefficients. A
combination of threshold on RMS residues, error on mixing coefficients, and
maximum mixing coefficients seems to be the best compromise to ensure auto-
matic detection. This strategy has to be fully validated on large dataset.

IPLS is shown to be the best numerical algorithm to solve the LinMin
problem. Its fast GPU implementation is particularly relevant for the treat-
ment of large dataset of hyperspectral images. In the future, this methodology
should be applied in various planetary cases in order to study the surface ge-
ology, especially in more challenging detection situation such complex mafics
and anorthosites assemblage on the Moon ((Ohtake et al., 2009)), or mixture of
hydrous sulfates, hydrated acid and water ice on Europa ((McCord et al., 2010;
Dalton et al., 2013)). Also a significant improvement of the mineral detection
may be addressed by using spectral database adapted to the context.
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Appendix

Name of the 32 spectra:
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1 Inosilicate (Hypersthene OPX PYX02.h ¿250u) 12 Sulfate; Gypsum 23 Carbonate; Siderite

2 Inosilicate (Diopside CPX CRISM) 13 Sulfate; Jarosite 24 Phyllosilicate (Chlorite)

3 Olivine Fayalite CRISM 14 Sulfate; Kieserite 25 Muscovite GDS116 Tanzania

4 Olivine Forsterite CRISM 15 Epsomite USGS GDS149 26 Alunite GDS83 Na63

5 Phyllosilicate (Clay Montmorillonite Bentonite) 16 Oxide; Goethite 27 Atmospheric Transmission

6 Phyllosilicate (Clay Illite Smectite) 17 Oxide; Hematite 28 H2O grain 1

7 Phyllosilicate (Serpentine Chrysotile Clinochry.) 18 Oxide; Magnetite 29 H2O grain 100

8 Phyllosilicate (Serpentine Lizardite) 19 Ferrihydrite USGS GDS75 Sy F6 30 H2O grain 1000

9 Phyllosilicate (Clay Illite) 20 Maghemite USGS GDS81 Sy (M-3) 31 CO2 grain 100

10 Phyllosilicate (Clay Kaolinite) 21 Carbonate; Calcite 32 CO2 grain 10 000

11 Phyllosilicate (Nontronite) 22 Carbonate; Dolomite

Name of the 12 additional spectra:
33 Flat 1 37 cos 1/4 41 cos 1/2

34 Flat 0.0001 38 sin 1/4 42 sin 1/2
35 Slope Increasing 39 -cos 1/4 43 -cos 1/2
36 Slope Decreasing 40 -sin 1/4 44 -sin 1/2
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