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The diameter of a random elliptical cloud

Yann Demichel* Ana Karina Fermı́n* Philippe Soulier∗

Abstract

We study the asymptotic behavior of the diameter or maximum interpoint dis-
tance of a cloud of i.i.d. d-dimensional random vectors when the number of points in
the cloud tends to infinity. This is a non standard extreme value problem since the
diameter is a U -statistic, hence a sum of dependent random variables. Therefore, the
limiting distributions may not be extreme value distributions. We obtain exhaustive
results for the Euclidean diameter of a cloud of elliptical vectors whose Euclidean
norm is in the domain of attraction for the maximum of the Gumbel distribution.
We also obtain results in other norms for spherical vectors and we give several bi-
dimensional generalizations. The main idea behind our results and their proofs is
a specific property of random vectors whose norm is in the domain of attraction of
the Gumbel distribution: the localization into subspaces of low dimension of vectors
with a large norm.

Keywords: Spherical distributions, Elliptical Distributions, Interpoint Distance, Extreme
Value Theory, Gumbel Distribution.

AMS Classification (2010): 60D05 60F05

1 Introduction

Let {X,Xi, i ≥ 1} be i.i.d. random vectors in R
d, for a fixed d ≥ 1. The quantities of

interest in this paper are the maximum Euclidean normMn(X) and the Euclidean diameter

M
(2)
n (X) of the sample, that is

Mn(X) = max
1≤i≤n

‖Xi‖ , (1.1)

M (2)
n (X) = max

1≤i<j≤n
‖Xi − Xj‖ , (1.2)

∗Laboratoire Modal’X, Université Paris Ouest Nanterre, 200 avenue de la République, 92000 Nanterre,
France
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where ‖ · ‖ denotes the Euclidean norm in R
d. The behavior of Mn(X) as n tends to

infinity is a classical univariate extreme value problem. Its solution is well known. If the
distribution of ‖X‖ is in the domain of attraction of some extreme value distribution, then
Mn(X), suitably renormalized, converges weakly to this distribution. We are interested
in this paper only in the case where the limiting distribution is the Gumbel law. More
precisely, the working assumption of this paper will be that there exist two sequences {an}
and {bn} such that limn→∞ an = ∞, limn→∞ bn/an = 0 and

lim
n→∞

nP(‖X‖ > an + bnz) = e−z (1.3)

for all z ∈ R, or equivalently,

lim
n→∞

P

(
Mn(X)− an

bn
≤ z

)
= e−e

−z

.

The asymptotic behavior of the diameter of the sample cloud is also an extreme value prob-
lem since M

(2)
n (X) is a maximum, but it is a non standard one, because of the dependency

between the pairs (Xi,Xj).

This problem has been recently investigated by [JJ12] for spherically distributed vectors,
that is, vectors having the representation X = TW where W is uniformly distributed on
the Euclidean unit sphere Sd−1 of Rd and T is a positive random variable in the domain
of attraction of the Gumbel distribution, independent of W. This reference also contains
a review of the literature concerning other domains of attractions.

If d = 1, a spherical random variable is simply a symmetric random variable, that is a
positive random variable multiplied by an independent random sign. The diameter of
a real valued sample is simply its maximum minus its minimum, and by independence
and symmetry, it is straightforward to check that (M

(2)
n (X) − 2an)/bn converges weakly

to the sum of two independent Gumbel random variables with location parameter log 2,
i.e. distributed as Γ− log 2, where Γ is a standard Gumbel random variable. Note that the
tail of such a sum is heavier than the tail of one Gumbel random variable.

If d ≥ 2, [JJ12] have shown that in spite of the dependency, the limiting distribution is the
Gumbel law, but a correction is needed. Precisely, they proved that if (1.3) holds, with
an additional mild uniformity condition, there exists a sequence {dn} such that dn → ∞,
dn = O(log(an/bn)) and

lim
n→∞

P

(
M

(2)
n (X)− 2an

bn
+ dn ≤ z

)
= e−e

−z

. (1.4)

The exact expression of the sequence {dn} will be given in the comments after Theorem 3.2.

This implies that M
(2)
n (X)/(2Mn(X)) converges in probability to 1, but the behaviors of

Mn(X) and M
(2)
n (X) are subtly different. Specifically, an is typically a power of log n, so

log(an/bn) is of order log log n.
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It is possible to give some rationale for the presence of the diverging correcting factor dn
in (1.4). In dimension one, two vectors with a large norm may be either on the same
side of the origin or on opposite sides. In the latter case their distance is automatically
large, typically twice as large as the norm of each one. In higher dimensions, two spherical
vectors with a large norm can be close to each other and their distance will be typically
much smaller than twice the norm of the largest one. Therefore we expect the probability
that the diameter is large to be smaller in the latter case.

This suggests that the asymptotic behavior of the diameter is related to the localization
of vectors with large norm. The behavior will differ if large values are to be found in some
specific regions of the space or can be found anywhere.

There are many possible directions to extend the results of [JJ12]. One very simple case
not covered by these results is the multivariate Gaussian distribution with correlated com-
ponents. The Gaussian distribution is a particular case of elliptical distributions. The
main purpose of this paper is to investigate the behavior of the diameter of a sample cloud
of elliptical vectors.

Elliptical vectors are widely used in extreme value theory since they are in the domain
of attraction of multivariate extreme value distributions. These distributions and their
generalizations have been recently considered in the apparently unrelated problem of ob-
taining limiting conditional distributions given one component is extreme, see [FS10] and
the references therein.

In this paper, the tail behavior of a product TU , where T is in the domain of attraction of
the Gumbel distribution and U is a bounded positive random variable independent of T ,
was obtained as a by-product of the main result. Under some regularity assumption on
the density of U at its maximum, the tail of TU is slightly lighter than the tail of T . The
main reason is that if a random variable T is in the domain of attraction of the Gumbel
distribution, then for any α > 1,

lim
x→∞

P(T > αx)

P(T > x)
= 0 .

This implies that for TU to be large, U must be very close to its maximum. The full
strength of this remark was recently exploited in [BS13] to obtain the rate of convergence
of U towards its maximum when the product TU is large and its limiting distribution.
This property explains deeply the conditional limits obtained in [FS10]. Having in mind
the earlier remarks on the link between the localization of the vectors with large norm and
the asymptotic distribution of the diameter, it is clear that this localization property will
be helpful to study the problem at hand in this paper.

The rest of the paper is organized as follows. In Section 2, we will define elliptical vectors
and state our main results. In section 2.1, extending the results of [BS13], we will show that
the realizations of a d-dimensional random elliptical vector with large norm are localized
on a subspace of Rd whose dimension is the multiplicity of the largest eigenvalue of the
covariance matrix. This result will be crucial to prove our main results which are stated
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in Section 3. As partially conjectured by [JJ12, Section 5.4], if the largest eigenvalue of
the covariance matrix is simple, then the limiting distribution of the diameter is similar
but not equal to the one which arises when d = 1: correcting terms appear that are due
the fluctuations around the direction of the largest eigenvalue. If the largest eigenvalue is
not simple, say its multiplicity is k, then the diameter behaves as in the spherical case in
dimension k, up to constants.

In Section 4, we will answer another question of [JJ12], namely we will investigate the lq

diameter of a cloud of spherical vectors, for 1 ≤ q ≤ ∞. This problem is actually simpler
than the corresponding one in Euclidean (l2) norm, since the vectors with large norm
are always localized close to a finite number of directions. Therefore, the “localization
principle” applies and we obtain the same type of limiting distribution as in the case of
an elliptical distribution with simple largest eigenvalue. For q = 1 and q > 2 the problem
simplifies even further since the corrective terms vanish and the limiting distribution of
the one dimensional case is obtained.

In Section 5, we discuss further possible generalizations and give several bidimensional
examples.

We think that beyond answering certain questions on the diameter of a random cloud, the
main purpose of this paper is to emphasize the use of the localization principle of vectors
with large norm in the domain of attraction of the Gumbel distribution. This principle
should be useful in other problems.

2 The Euclidean norm of an elliptical vector

A random vector X in R
d has an elliptical distribution if it can be expressed as

X = TAW (2.1)

where T is a positive random variable, A is an invertible d×dmatrix andW = (W1, . . . ,Wd)
is uniformly distributed on the sphere Sd−1. The covariance matrix of X is then given by
E[T 2]A′A where M ′ denotes the transpose of any matrix M . Let λ1 ≥ · · · ≥ λd > 0 be its
ordered eigenvalues repeated according to their multiplicity. The distribution is spherical
if all the eigenvalues are equal. Otherwise, there exists k ∈ {1, . . . , d− 1} such that

λ1 = · · · = λk > λk+1 . (2.2)

We will see that this number k plays a crucial role for tail of the norm and the asymptotic
distribution of the diameter.

Let Wi = (Wi,1, . . . ,Wi,d), i = 1, 2, be independent random vectors uniformly distributed
on Sd−1, and define Xi = TiAWi, which are i.i.d. with the same distribution as X. Since
for any orthogonal matrix P (i.e. P ′ = P−1), PW is also uniformly distributed on Sd−1, it
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holds that

‖X‖2 (d)
= T 2

d∑

q=1

λqW
2
q ,

‖X1 − X2‖2
(d)
= T 2

d∑

q=1

λq(W1,q −W2,q)
2 ,

where
(d)
= denotes equality in law. Define

Y = T (
√
λ1W1, . . . ,

√
λdWd) (2.3)

and let {Yi, i ≥ 1} is a sequence of i.i.d. vectors with the same distribution as Y. Then

Mn(X)
(d)
= Mn(Y) , M (2)

n (X)
(d)
= M (2)

n (Y) .

Therefore, we will prove our results using the vectors {Yi, i ≥ 1}.
In all the sequel, we will assume that T is in the max domain of attraction of the Gumbel
law, i.e. the limit (1.3) holds, or equivalently, there exists a function ψT , called an auxiliary
function for T , defined on (0,∞) such that

lim
x→∞

ψT (x)

x
= 0 ,

and

lim
x→∞

P(T > x+ ψT (x)z)

P(T > x)
= e−z , (2.4)

locally uniformly with respect to z ∈ R. Moreover, the survival function of T can be
expressed as

P(T > x) = ϑ(x) exp

(
−
∫ x

x0

ds

ψT (s)

)
, (2.5)

where limx→∞ ϑ(x) ∈ (0,∞). See e.g. [Res87, Chapter 0].

Define the functions ψA and φA on (0,∞) by

ψA(x) =
√
λ1ψT (x/

√
λ1) , φA(x) =

√
ψT (x/

√
λ1)

x/
√
λ1

=
√
ψA(x)/x .

In the sequel, the notation ∼ means that the ratio of the two terms around ∼ tend to one

when their parameter (x or n) tends to infinity and
(d)−→ denotes weak convergence of

probability distribution.
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Theorem 2.1. Let X be as in (2.1) with T satisfying (2.4), W uniformly distributed
on Sd−1, and assume that the eigenvalues of the correlation matrix λ1, . . . , λd satisfy (2.2).
Then,

P(‖X‖ > x) ∼ Γ(d
2
)

Γ(k
2
)
2(d−k)/2

(
d∏

q=k+1

λ1
λ1 − λq

)1/2

φd−kA (x) P(T > x/
√
λ1) .

Let Y be as in (2.3). Then, as x→ ∞, conditionally on ‖Y‖ > x,
(
‖Y‖−x
ψA(x)

,W1, . . . ,Wk,
Wk+1

φA(x)
, . . . , Wd

φA(x)

)
(d)−→ (E,W(k),

√
λ1

λ1−λk+1
Gk+1, . . . ,

√
λ1

λ1−λdGd) ,

where E is an exponential random variable with mean 1, W(k) is uniformly distributed on
Sk−1, Gk+1, . . . , Gd are independent standard Gaussian random variables, and all compo-
nents are independent.

Comments

• This result implies that ‖X‖ is in the domain of attraction of the Gumbel distribution
and that an auxiliary function for ‖X‖ is ψA.

• The first statement can be obtained as a consequence of [FS10, Proposition 3.2.1].
In dimension 2, the second result is a consequence of [BS13, Theorem 2.1], where
a real valued random variable X which can be expressed X = Tu(S) is considered,
with T satisfying (2.5), S taking values in [0, 1] and the bounded function u having
some regularity properties around its maximum and the asymptotic behavior of S
conditionally on the product Tu(S) being large is obtained.

We now consider the polar representation of the vector Y, that is we define Θ = Y

‖Y‖ and

for q = k + 1, . . . , d, we define also τ 2q = λq
λ1−λq .

Corollary 2.2. Under the conditions of Theorem 2.1, as x→ ∞, conditionally on ‖Y‖ > x,
(
‖Y‖−x
ψA(x)

,Θ1, . . . ,Θk,
Θk+1

φA(x)
, . . . , Θd

φA(x)

)
(d)−→ (E,W(k), τk+1Gk+1, . . . , τdGd) ,

where E is an exponential random variable with mean 1, W(k) is uniformly distributed on
Sk−1, Gk+1, . . . , Gd are independent standard Gaussian random variables, and all compo-
nents are independent.

This result can be rephrased in terms of weak convergence of point processes (see e.g. [Res87,
Proposition 3.21]). Let an be the 1 − 1/n quantile of the distribution of ‖X‖ or ‖Y‖, i.e.
P(‖X‖ > an) = P(‖Y‖ > an) ∼ 1/n and set bn = ψA(an) and cn = φA(an). Define the
points

Pn,i =

(‖Yi‖ − an
bn

,Θ1, . . . ,Θk,
Θk+1

cn
, . . . ,

Θd

cn

)
. (2.6)
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Corollary 2.3. Under the conditions of Theorem 2.1, the point processes
∑n

i=1 δPn,i con-
verge weakly to a Poisson point process N =

∑∞
i=1 δPi on R× Sk−1 × R

d−k with

Pi = (Γi,W
(k)
i , τk+1Gi,k+1, . . . , τdGi,d) , (2.7)

where {Γi, i ≥ 1} are the points of a Poisson point process on (−∞,∞] with mean mea-

sure e−xdx, {W(k)
i , i ≥ 1} are i.i.d. vectors uniformly distributed on Sk−1 and {Gi,q, i ≥

1, q = k + 1, . . . , d} are i.i.d. standard Gaussian variables, all sequences being mutually
independent.

Comments Since the measure e−x dx is finite on any interval [a,∞], a ∈ R, the point
process N has a finite number of points on any set [a,∞] × Sd−1 × R

d−k. Therefore, the
points can and will be numbered in such a way that Γ1 > Γ2 > . . . . Moreover, if the points
Pn,i are also numbered in decreasing order of their first component, then for each fixed
integer m, (Pn,1, . . . , Pn,m) converges weakly to (P1, . . . , Pm).

(a) λ1 = 4, λ2 = 1, λ3 = 0.5 (b) λ1 = λ2 = 4, λ3 = 0.5

Figure 1: Two sample clouds of size 1000 of the trivariate Gaussian distribution. The eigenvalues of the
correlation matrix are given under each figure. The gray spheres are the points which realize the diameter.
The black lines are the principal axes.

We illustrate Theorem 2.1 for three dimensional Gaussian vectors whose maximum eigen-
value λ1 of the correlation matrix is simple (Figure 1a) or double (Figure 1b). The rate of
convergence to zero of the coordinates corresponding to the smallest eigenvalues is O(log n).

Proof of Theorem 2.1

We will need the following Lemma.
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Lemma 2.4. Let W be uniformly distributed on Sd−1. For k ∈ {1, . . . , d − 1}, define the
random vector W

(k) on Sk by

W
(k) =

1√
1−W 2

k+1 − · · · −W 2
d

(W1, . . . ,Wk) .

Then W
(k) is uniformly distributed on Sk and independent of (Wk+1, . . . ,Wd). If f is

continuous and compactly supported on R
d, then

lim
s→∞

sd−k E[f(W1, . . . ,Wk, sWk+1, . . . , sWd)]

=
Γ(d

2
)

π
d−k
2 Γ(k

2
)

∫

Rk

E[f(W(k), tk+1, . . . , td)] dtk+1 . . . dtd . (2.8)

The convergence (2.8) can be extended to sequences of continuous functions fx with com-
pact support which depend on x provided they converge locally uniformly to a continuous
function with compact support. By bounded convergence, it can also be extended to se-
quences of bounded continuous functions fx if there exists a function f ∗ (not depending on
x) and such that |fx| ≤ f ∗ for all x and

∫
Rk

E[f ∗(W(k), tk+1, . . . , td)] dtk+1 . . . dtd <∞. The
proof of the Lemma consists merely in a change of variable and is postponed to Section 6.

Proof of Theorem 2.1. Note first that if (w1, . . . , wd) ∈ Sd−1, then
d∑

q=1

λqw
2
q = λ1

(
1−

d∑

q=k+1

γ−2q w2
q

)
,

with γ2q = λ1/(λ1 − λq), q = k + 1, . . . , d. Thus we can write

‖Y‖ =
√
λ1T −

√
λ1Tg(Wk+1, . . . ,Wd) ,

where

g(wk+1, . . . , wd) = 1−

√√√√1−
d∑

q=k+1

γ−2q w2
q ,

and

lim
s→∞

s2g(s−1wk+1, . . . , s
−1wd) =

1

2

d∑

q=k+1

γ−2q w2
q ,

locally uniformly with respect to wk+1, . . . , wd.
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For x > 0, define the function kx on R
d−k+1 by

kx(z, wk+1, . . . , wd) =
P (‖X‖ > x+ ψA(x)z | Wq = φA(x)wq, q = k + 1, . . . , d)

P(T > x/
√
λ1)

=
P

(
T > x/

√
λ1 + ψT (x/

√
λ1)z

1−g(φA(x)wk+1,...,φA(x)wd)

)

P(T > x/
√
λ1)

.

Since we have defined φA such that xφ2
A(x) =

√
λ1ψT (x/

√
λ1), we obtain that

lim
x→∞

kx(z, wk+1, . . . , wd) = exp

(
− z − 1

2

d∑

q=k+1

γ−2q w2
q

)
,

locally uniformly with respect to z, wk+1, . . . , wd. Let f be a continuous function with
compact support in R

d. Applying Lemma 2.4, we obtain

lim
x→∞

1

φk−dA (x)P(T > x/λ1)
E

[
f
(
W1, . . . ,Wk,

Wk+1

φ(x)
, . . . , Wk+1

φ(x)

)
✶{‖Y‖>x+ψA(x)z}

]

= lim
x→∞

φk−dA (x)E
[
f
(
W1, . . . ,Wk,

Wk+1

φ(x)
, . . . , Wk+1

φ(x)

)
kx

(
z, Wk+1

φA(x)
, . . . , Wd

φA(x)

)]

=
Γ(d

2
)

π(d−k)/2Γ(k
2
)
e−z

∫

Rd−k

E[f(W(k), tk+1, . . . , td)] e
− 1

2

∑d
q=k+1 γ

−2
q w2

q dtk+1 . . . dtd

=
Γ(d/2)

Γ(k/2)
2(d−k)/2

d∏

q=k+1

γq e
−z

E[f(W(k), γk+1Gk+1, . . . , γdGd)] , (2.9)

where Gk+1, . . . , Gd are i.i.d. standard Gaussian random variables.

The last step is to extend the convergence (2.9) to all bounded continuous functions f . By
the comments after Lemma 2.4, it suffices to prove that the function kx can be bounded by
a function k∗ independent of x and integrable with respect to Lebesgue’s measure on R

d−k.
For any u ≥ 0 and p > 0, there exists a constant C such that, for large enough x,

P(T > x+ ψT (x)u)

P(T > x)
≤ C(1 + u)−p , (2.10)

(see e.g. [FS10, Lemma 5.1]). For z ≥ 0, this trivially yields

P(T > x+ ψT (x)(z + u))

P(T > x)
≤ C(1 + u)−p . (2.11)

For a fixed z < 0, we write

P(T > x+ ψT (x)(z + u))

P(T > x)
=

P(T > x+ ψT (x)z)

P(T > x)

P(T > x+ ψT (x)z + ψT (x)u)

P(T > x+ ψT (x)z)
.
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The first ratio in the right hand side is convergent hence bounded and since z is fixed,
we can apply the bound (2.10) to the second ratio, upon noting that limx→∞ ψT (x +
ψT (x)z)/ψT (x) = 1 for all z ∈ R. Thus (2.11) also holds with a constant C uniform with
respect to z in compact sets of (−∞, 0].

Since

1

1− g(wk+1, . . . , wd)
≥ 1 +

1

2

d∑

q=k+1

γ−2q w2
q ,

we obtain, applying (2.11) with u = 1
2

∑d
q=k+1 γ

−2
q w2

q and a fixed z ∈ R,

kx(z, wk+1, . . . , wd) ≤
P
(
T > x/

√
λ1 + ψT (x/

√
λ1)(z + u)

)

P(T > x/
√
λ1)

≤ C(1 + u)−p .

For p large enough, the function k∗(w1, . . . , wd) =
(
1 + 1

2

∑d
q=k+1 γ

−2
q w2

q

)−p
is integrable

with respect to Lebesgue’s measure on R
d−k. This concludes the proof.

3 Asymptotic behavior of the Euclidean diameter

We now study the behavior of the diameter of the elliptical cloud {Xi, 1 ≤ i ≤ n}. Precisely,
we investigate the asymptotic behavior of (M

(2)
n (X)− 2an)/bn in the case k = 1 and k > 1.

As previously, we will prove our results with the vectors Yi, i ≥ 1.

3.1 Case k = 1: single maximum eigenvalue

In this case, the points Pn,i defined in (2.6) become

Pn,i =

(‖Yi‖ − an
bn

,Θ1,
Θ2

cn
, . . . ,

Θd

cn

)
.

By Corollary 2.3, Nn =
∑n

i=1 δPn,i converges weakly to a Poisson point process N =∑∞
i=1 δPi on R × {−1, 1} × R

d−1 with Pi = (Γi, εi, τ2Gi,2, . . . , τdGi,d), where εi, i ≥ 1 are
i.i.d. symmetric random variables with values in {−1,+1} and the other components are
as in Corollary 2.3.

By the independent increment property of the Poisson point process, the point process N
can be split into two independent Poisson point processes N+ and N− on R

d whose points
are the points of N with second component equal to +1 or −1 respectively. The mean
measure of both processes is 1

2
e−x dxΦτ2(dt2) · · ·Φτd(dtd).
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Then the point processes N+
n and N−n defined by

N+
n =

n∑

i=1

δPn,i✶{Θi,1>0} , N−n =
n∑

i=1

δPn,i✶{Θi,1<0} ,

converge weakly to the independent point processes N+ and N− on R
d which can be

expressed as

N± =
∞∑

i=1

δ(Γ±i ,τ2G
±
i,2,...,τdG

±
i,d)

,

where {Γ±i , i ≥ 1} are the points of a Poisson point process with mean measure 1
2
e−xdx on

R, and {G±i,q, i ≥ 1, q = 2, . . . , d} are i.i.d. standard Gaussian variables, independent of
the points {Γ±i , i ≥ 1}.
Since the mean measure is finite on the half planes (x,∞]× [−∞,∞], there is almost surely
a finite number of points of N± in any of these half planes. Thus, the points of N± can
and will be numbered in decreasing order of their first component.

We can now state the main result of this section.

Theorem 3.1. Let {Xi, i ≥ 1} be a sequence of i.i.d. random vectors with the same dis-
tribution as X and let the assumptions of Theorem 2.1 hold with k = 1, i.e. λ1 > λ2,
then

M
(2)
n (X)− 2an

bn

(d)−→ max
i,j≥1

{
Γ+
i + Γ−j − 1

4

d∑

q=2

λq
λ1 − λq

(G+
i,q −G−j,q)

2

}
, (3.1)

where {(Γ+
i , G

+
i,2, . . . , G

+
i,d), i ≥ 1} and {(Γ−i , G−i,2, . . . , G−i,d), i ≥ 1} are the points of two

independent point processes with mean measure 1
2
e−xdxΦ(dt2) . . .Φ(dtd).

Comments The random variable defined in (3.1) is almost surely finite, since it is upper
bounded by Γ+

1 +Γ−1 . The lower bound Γ+
1 +Γ−1 − 1

4

∑d
q=2

λq
λ1−λq (G

+
1,q−G−1,q)2 trivially holds.

These two bounds imply that the limiting distribution is tail equivalent to the sum of two
independent Gumbel random variables which is heavier tailed than a Gumbel distribution.
However, it is not the sum of two independent Gumbel random variables. Therefore this
result is different from the result in the spherical case in any dimension.

3.1.1 Case of the dimension 2

In dimension 2, a bivariate elliptical random vector X with correlation ρ ∈ (0, 1) can be
defined by

X = T (cosU, ρ cosU +
√
1− ρ2 sinU) = T (cosU, cos(U − U0)) ,

11



where U is uniformly distributed on [0, 2π], cosU0 = ρ and sinU0 =
√
1− ρ2. The vector

X admits the polar representation X = R(cosΘ, sinΘ) with

R = T
√

1 + ρ cos(2U − U0) ,

cosΘ =
cosU√

1 + ρ cos(2U − U0)
, sinΘ =

cos(U − U0)√
1 + ρ cos(2U − U0)

.

The correlation matrix of X is then
(
1 ρ
ρ 1

)
.

Its eigenvalues are 1 + ρ and 1− ρ. By Theorem 2.1, we know that ‖X‖ is in the domain
of attraction of the Gumbel law and more precisely, as x→ ∞,

P(‖X‖ > x
√
1 + ρ) ∼

√
1 + ρ

πρ

√
ψT (x)

x
P (T > x) .

Note that (1, 1) is always an eigenvector associated with the eigenvalue 1 + ρ. This means
that the vectors in the cloud with large norm are localized close to the diagonal, whatever
the value of ρ ∈ (0, 1). More precisely, let Θ̃n be the angle of the point X̃n of the cloud

{Xi, 1 ≤ i ≤ n} such that ‖X̃n‖ = Mn(X). Then (Θ̃n − π
4
− π✶{cos Θ̃n<0})/cn converges

weakly to a Gaussian variable with mean zero and variance (1− ρ)/2ρ.

By Theorem 3.1, the limiting distribution of the diameter can be expressed as

max
i,j≥1

{
Γ+
i + Γ−j − 1− ρ

8ρ
(G+

i −G−j )
2

}
, (3.2)

where {(Γ+
i , G

+
i ), i ≥ 1} and {(Γ−i , G−i ), i ≥ 1} are the points of two independent point

processes with mean measure 1
2
e−xdxΦ(dt). If ρ = 1, the one dimensional case is recovered,

but there is a discontinuity with the spherical case ρ = 0 where the limiting distribution
is Gumbel and the normalization is different. Moreover, if X̂n and X̌n are the points such
that ‖X̂n − X̌n‖ = M

(2)
n (X), if Θ̂n and Θ̌n are their respective angle such that cos Θ̂n > 0,

cos Θ̌n < 0, then ((Θ̂n−π/4)/cn, (Θ̌n−5π/4)/cn) converges weakly to a pair of i.i.d. Gaus-
sian random variables with mean zero and variance (1− ρ)/2ρ.

In Figure 2 we show two sample clouds of size 1000 of bivariate Gaussian variables with
correlation ρ = 0.2 and ρ = 0.8. The rate of convergence to the diagonal is O(log n).
In Figure 3, we show the empirical cumulative distribution function (cdf) of the limiting
distribution based on 500 replications of the diameter of a Gaussian cloud (with correlation
ρ = 0.2) of size 100 000. In simulations, the indices realizing the maximum in (3.2) are
often i = 1 and j = 1. This implies that the limiting distribution of the diameter should
be close to the distribution of the sum of two independent Gumbel random variables minus
the square of a Gaussian random variable. We show this distribution together with the
empirical and theoretical cdf of the diameter in Figure 3.
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(b) ρ = 0.8

Figure 2: Two bidimensional Gaussian clouds. The black triangles are the points which realize the
diameter. The black line is the diagonal and the dotted line is the regression line y = ρx. The ellipses are
the level lines of the density of the Gaussian distribution.
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Figure 3: Distribution function of the limiting distribution of the diameter of a bidimensional elliptical
cloud. The black thick line is the (simulated) theoretic cdf; the thick gray line is the empirical cdf based
on 500 clouds of 100 000 points. The thin gray line is the cdf of the sum of two independent Gumbel
random variables with location parameter log 2.

3.1.2 Proof of Theorem 3.1

Define the set On = {w ∈ R
d−1 | c2n‖w‖2 ≤ 1} and the function fn on R×{−1,+1}×On →

R
d by

fn(r, ǫ, w) = (an + bnr)(ǫ
√

1− c2n‖w‖2, cnw) .

Define next the function gn on R× {−1,+1} ×On × R× {−1,+1} ×On by

gn(r1, ǫ1, w1, r2, ǫ2, w2) =
‖fn(r1, ǫ1, w1)− fn(r2, ǫ2, w2)‖ − 2an

bn
.
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Since cn → 0, any w ∈ R
d−1 is in On for all large enough n. Then, for any r1, r2 > 0, for

ǫ1, ǫ2 ∈ {−1, 1} and any w1, w2 ∈ R
d−1,

lim
n→∞

gn(r1, ǫ1, w1, r2, ǫ2, w2) = g(r1, ǫ1, w1, r2, ǫ2, w2)

=

{
−∞ if ǫ1ǫ2 = 1 ,

r1 + r2 − 1
4

∑d
q=2(w1,q − w2,q)

2 if ǫ1ǫ2 = −1 .

The convergence is locally uniform. Moreover

M
(2)
n (Y)− 2an

bn
= max

1≤i<j≤n
gn(Pn,i, Pn,j) .

We want to conclude that the limiting distribution of (M
(2)
n (Y)−2an)/bn is max1≤i<j g(Pi, Pj)

(where the points Pi are defined in (2.7)) by a continuous mapping argument, but some
care is needed.

Define M+
n = max{‖Yi‖ | Θ1,i > 0} and M−

n = max{‖Yi‖ | Θ1,i < 0}. Let Y+
n and Y

−
n be

the points such that M+
n = ‖Y+

n ‖ and M−
n = ‖Y−n ‖. Then, by definition of the diameter,

we have

‖Y+
n − Y

−
n ‖ ≤M (2)

n (Y) ≤M+
n +M−

n .

Define An = ‖Y+
n − Y

−
n ‖ −M+

n −M−
n . This yields the following lower and upper bounds

for the diameter:

M+
n +M−

n − An ≤M (2)
n (Y) ≤M+

n +M−
n . (3.3)

As a corollary of the point process convergence, we obtain that

(
M+

n − an
bn

,
M−

n − an
bn

,
An
bn

)
(d)−→

(
Γ+
1 ,Γ

−
1 ,

1

4

d∑

q=2

τ 2q (G
+
1,q −G−1,q)

2

)
.

The bounds (3.3) imply that the diameter is achieved by a pair of points (Ŷn, Y̌n) such
that

‖Ŷn‖ ∧ ‖Y̌n‖ ≥M+
n ∧M−

n − An .

Indeed otherwise,

M (2)
n (Y) = ‖Ŷn − Y̌n‖ ≤ ‖Ŷn‖+ ‖Y̌n‖ < M+

n ∧M−
n − An +M+

n ∨M−
n

≤M+
n +M−

n − An ≤M (2)
n (Y) ,
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which is a contradiction. This implies that

M
(2)
n (Y)− 2an

bn
= max

x,y∈En
gn(x, y) ,

where En is the set of points of Nn whose first component is at least equal to (M+
n ∧M−

n −
an)/bn − An/bn, i.e.

En = {Pn,i | ‖Xi‖ ≥M+
n ∧M−

n − An} .

Since by definition Y
+
n and Y

−
n belong to En, it obviously holds that

M
(2)
n (Y)− 2an

bn
≥ max

(x,y)∈E+
n×E−n

gn(x, y) ≥ gn(P
+
n , P

−
n ) ,

where E+
n and E−n are the points of En whose second component is positive or negative,

respectively, and P±n is the point of E±n with the largest first component, i.e. Y±n .

The convergence of the points of Nn suitably numbered to those of N imply that the sets
E+
n and E−n converge to the sets E+ and E− of points of N+ and N− defined by

E± =

{
P±i | Γ±i ≥ Γ+

1 ∧ Γ−1 − 1

4

d∑

q=2

τ 2q (G
+
1,q −G−1,q)

2

}
.

The sets E+ and E− are almost surely finite since the points Γ±i are only finitely many in
any interval (x,∞). This implies that the cardinals of the sets E±n are constant for large
enough n. By Skorohod’s representation theorem [Kal02, Theorem 3.30], we may moreover
assume that the points of E±n converge almost surely to those of E±.

Since gn converges uniformly to g on compact sets of R× {1} × R
d−1 × R× {−1} × R

d−1

and since P±n converge to P±1 , gn(P
+
n , P

−
n ) converges to g(P

+
1 , P

−
1 ) which is finite. On the

other hand, the points of (E+
n × E+

n ) ∪ (E−n × E−n ) are all included in a fixed compact set
and thus limn→∞max

(x,y)∈(E+
n×E+

n )∪(E(
n×E−n )

gn(x, y) = −∞. This implies that for n large

enough,

max
(x,y)∈(E+

n×E+
n )∪(E−n ×E−n )

gn(x, y) ≤ gn(P
+
n , P

−
n ) .

We conclude that

M
(2)
n (Y)− 2an

bn
= max

x,y∈En
gn(x, y) = max

(x,y)∈E+
n×E−n

gn(x, y) .

We can now apply a continuous mapping argument, since gn converges uniformly to g on
compact sets of R× {1} × R

d−1 × R× {−1} × R
d−1. We obtain

M
(2)
n (Y)− 2an

bn

(d)−→ max
(x,y)∈E+×E−

g(x, y) .

15



To see that this is identical to (3.1), note that if

Γ+
i ∧ Γ−j < Γ+

1 ∧ Γ−1 − 1

4

d∑

q=2

τ 2q (G
+
1,q −G−1,q)

2 ,

then

Γ+
i + Γ−j − 1

4

d∑

q=2

τ 2q (G
+
i,q −G−j,q)

2

≤ Γ+
i + Γ−j ≤ Γ+

1 ∧ Γ−1 − 1

4

d∑

q=2

τ 2q (G
+
1,q −G−1,q)

2 + Γ+
1 ∨ Γ−1

= Γ+
1 + Γ−1 − 1

4

d∑

q=2

τ 2q (G
+
1,q −G−1,q)

2 .

This proves that the maximum of g over all pairs of points of N+ and N− is actually
obtained over the pairs of E+ × E−.

3.2 Case k > 1: multiple maximum eigenvalue

If k > 1, as in [JJ12], a strengthening of domain of attraction condition is needed to
prove the result. Since an auxiliary function ψ can be chosen differentiable and such that
limx→∞ ψ

′(x) = 0, it always holds that limx→∞ ψ(x + ψ(x)t)/ψ(x) = 1 locally uniformly
with respect to t ∈ R. We must strengthen this uniformity as follows.

Assumption 3.1. For any positive function ℓ such that ℓ(x) → ∞ and ℓ(x) = O(log(x/ψ(x)))
as x→ ∞,

lim
x→∞

ℓ(x) sup
|t|≤ℓ(x)

∣∣∣∣
ψ(x+ ψ(x)t)

ψ(x)
− 1

∣∣∣∣ = 0 . (3.4)

This assumption is satisfied by all usual distributions, such as the Weibull, Gaussian,
exponential or log-normal distributions. An important consequence is that the quantile of
order 1− 1/n of ‖X‖ and T can be related. Recall from Theorem 2.1 that, as x→ ∞,

P(‖X‖ > x
√
λ1) ∼ Dk

(
ψT (x)

x

)(d−k)/2
P(T > x) , (3.5)

with

Dk =
Γ(d/2)

Γ(k/2)
2(d−k)/2

(
d∏

q=k+1

λ1
λ1 − λq

)1/2

.
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Let aTn be such that P(T > aTn ) ∼ 1/n and set bTn = ψT (a
T
n ). Define the sequence {an} by

an =
√
λ1 a

T
n −

√
λ1b

T
n

(
d− k

2
log

aTn
bTn

− logDk

)
. (3.6)

Then P(‖X‖ > an) ∼ 1/n. This is a consequence of the equivalence (3.5) and Lemma 6.2.
Let thus an be defined as in (3.6) and define bn = ψA(an) and

dn =
k − 1

2
log

an
bn

− log log
an
bn

− logCk

with

Ck = (2d− k − 1)2k−4π−1/2Γ(k/2)

(
d∏

q=k+1

λ1
λ1 − λq

)−1/2
. (3.7)

Theorem 3.2. Let {Xi, i ≥ 1} be a sequence of i.i.d. random vectors with the same dis-
tribution as X and let the assumptions of Theorem 2.1 hold with k ≥ 2. If moreover
Assumption 3.1 holds, then for all z ∈ R,

lim
n→∞

P

(
M

(2)
n (X)− 2an

bn
+ dn ≤ z

)
= e−e

−z

. (3.8)

Comments

• In the spherical case k = d, we recover [JJ12, Theorem 1.1] and the constant cd
therein is equal to the constant Ck in (3.7) (taking the product over an empty set of
indices to be equal to 1).

• We actually prove slightly more than the convergence (3.8). The proof can be used
to check the conditions of Kallenberg’s Theorem (see e.g. [Res87, Proposition 3.22])
which prove that the point process

∑

1≤i<j≤n
δ ‖Xi−Xj‖−2an

bn
+dn

converges to a Poisson point process with mean measure e−xdx on (−∞,∞]. This
result might be used for instance to derive the asymptotic distribution of the order
statistics of the interpoint distances.

Proof of Theorem 3.2

The proof is nearly the same as the proof of [JJ12, Theorem 1.1]. We prove the convergence
of a U -statistic of indicators to a Poisson random variable. The difference lies in added
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technicalities due to the coordinates of the vector corresponding to the smaller eigenvalues
which have to be integrated out. In more precise terms, as in the proof of Theorem 3.1,
we work with vague convergence of measures rather than weak convergence.

Define sn = 1
2
log dn and

Sn(z) =
∑

1≤i<j≤n
✶{‖Yi−Yj‖>2an−bndn+bnz} .

Since P(M
(2)
n (Y) > 2an − bndn + bnz) = P(Sn(z) = 0), it suffices to prove that for all

z ∈ R, Sn(z) converges weakly to a Poisson random variable with mean e−z. For technical
reasons, as in[JJ12], we must truncate the sum defining Sn(z). Define

S ′n(z) =
∑

1≤i<j≤n
✶{‖Yi−Yj‖>2an−bndn+bnz}✶{Ti∨Tj≤aTn+bTn sn} .

In words, we restrict the sum to the indices of vectors whose norm is not too large, hence
not too small either, since their distance must be large. Note that Sn(z) 6= S ′n(z) implies
that there is at least one index i such that Ti > aTn + bTnsn. Since sn → ∞, this implies
that for any A > 0,

lim sup
n→∞

P(Sn(z) 6= Sn(z
′)) ≤ lim sup

n→∞
nP(T > aTn + bTnsn)

≤ lim sup
n→∞

nP(T > aTn + bTnA) = e−A .

Since A is arbitrary, this proves that for all z ∈ R,

lim
n→∞

P(Sn(z) 6= S ′n(z)) = 0 .

This in turn implies that we only need to prove that S ′n(z) converges weakly to a Poisson
random variable with mean e−z. This convergence is obtained by applying the criterion of
[JJ86, Theorem 3.1 and Remark 3.4].

Lemma 3.3. Under the Assumptions of Theorem 3.2,

lim
n→∞

n2

2
P(‖Y1 − Y2‖ > 2an − bndn + bnz ; T2 ∨ T2 ≤ aTn + bTnsn) = e−z , (3.9)

lim
n→∞

n3
P(‖Y1 − Y2‖ ∧ ‖Y1 − Y3‖ > 2an − bndn + bnz ; T2 ∨ T2 ≤ aTn + bTnsn) = 0 . (3.10)

The convergences (3.9) and (3.10) imply that S ′n(z) converges weakly to a Poisson distri-
bution with mean e−z and this concludes the proof of Theorem 3.2.

The proof of Lemma 3.3 consists mainly in checking the vague convergence of certain
measures and then strengthening this convergence to weak convergence by bounded con-
vergence arguments. The requested bounds are obtained by means of Assumption 3.1
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which is slightly stronger than the assumption of uniformity used in [JJ12, Theorem 1.1],
but is satisfied for all usual distributions. Apart from these arguments, the proof follows
the same lines as the proof of [JJ12, Theorem 1.1]. In view of their tedious technical nature,
this proof is postponed to Section 6.

Let us note that as a by-product of the proof, we obtain in Lemma 6.5 the convergence of
the cosine of the angle between two vectors Y1 and Y2 and of the components corresponding
to the smaller eigenvalues, given that their distance is large and their norm is large, but
not too large (this is quantified in the definition of S ′n(z)). This parallels the convergence
proved in Theorem 2.1, but we do not explicitly use it in the proof of Theorem 3.2. It may
eventually prove to be of interest for some other problem.

4 The lq norm of a random spherical vector

In this Section, the localization principle will be used to answer another question raised
in [JJ12], namely, the asymptotic behavior of the lq diameter of a cloud of spherical random
vectors in dimension d ≥ 2. Define the lq norm of a vector x ∈ R

d by

‖x‖q = (|x1|q + · · ·+ |xd|q)1/q .

For d ≥ 2 and q ≥ 1, q 6= 2, the maximum of the lq norm is achieved on the l2 sphere Sd−1
at isolated points. Specifically,

• if q ∈ [1, 2), then maxw∈Sd−1 ‖w‖q = d1/q−1/2; it is achieved at the 2d “diagonal”
points (±d−1/2, . . . ,±d−1/2).

• if q ∈ (2,∞), then maxw∈Sd−1 ‖w‖q = 1; the maximum is achieved at the 2d intersec-
tions of the axes with Sd−1.

Therefore, the localization phenomenon will occur. A spherical vector whose norm is large
must be close to the direction of one of these maxima, and the diameter will be achieved
by points which are nearly diametrically opposed along one of these directions.

We consider a spherically distributed random vector, i.e. X = TW where T and W are
independent and W is uniform on Sd−1. Let {Xi, i ≥ 1} be a sequence of i.i.d. vectors with
the same distribution as X. Define

Mn,q(X) = max
1≤i≤n

‖Xi‖q , M (2)
n,q(X) = max

1≤i<j≤n
‖Xi − Xj‖q .

The behavior of ‖X‖q differs only by constants for q ∈ [1, 2) and for q > 2, whereas the
diameter has two very different behavior if q ∈ [1, 2) and q > 2. Therefore, we study these
two cases separately. We start with the case q > 2 which is somewhat easier.
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4.1 Case q > 2

For q > 2, the maximum of the lq norm on the l2 sphere is 1 and is achieved at the
2d intersections of the sphere with the axes. We will see that the localization of the
vectors with large norms occurs at a very fast rate, and therefore the diameter behaves
asymptotically as in the one dimension case.

For i = 1, . . . , d, define ∆i = {x ∈ R
d | xi > max1≤j≤d,j 6=i |xj|} and ∆−i = −∆i. Then

∩1≤i,−i≤d∆i = ∅ and ∪1≤i,−i≤d∆̄i = R
d. Define φ(x) =

√
ψ(x)/x.

Theorem 4.1. Let X = TW where T and W are independent, W is uniform on Sd−1
and T satisfies (1.3). For q ∈ (2,∞],

P(‖X‖q > x) ∼ 2(d−1)/2 dΓ2((d− 1)/2) Γ(1/2)

Γ(d/2)
φd−1(x)P(T > x) . (4.1)

Moreover, conditionally on ‖X‖q > x and X ∈ ∆1, as x→ ∞,

(‖X‖q − x

ψ(x)
,
1−W1

φ2(x)
,
W2

φ(x)
, . . . ,

Wd

φ(x)

)
(d)−→ (E,

1

2
(G2

2 + . . . , G2
d), G2, . . . , Gd)

where E is an exponential random variable with mean 1 and G2, . . . , Gd are i.i.d. standard
Gaussian random variables, independent of E.

Proof. If W is uniformly distributed on Sd−1, then the distribution of W1 has the density
β−1d (1−s2)(d−1)/2 on [−1, 1] with βd =

Γ(d/2)
Γ((d−1)/2)Γ(1/2) . Define W̃ = (1−W 2

1 )
−1/2(W2, . . . ,Wd).

By Lemma 2.4, W̃ is uniformly distributed on Sd−2 and independent of W1. Let f be con-
tinuous with compact support in R

d and define the function kx on [0, φ−2(x)]× R by

kx(u, z)

=
1

P(T > x)
E

[
f

(
1− u

φ2(x)
,

√
1− u2

φ(x)
W̃

)
✶{T> x+ψT (x)z

{uq+((1−u2)q/2‖W̃‖
q
q}

1/q
}✶{u>

√
1−u2 max2≤i≤d |W̃i|}

]
,

for 2 < q <∞ or

kx(u, z) =
1

P(T > x)
E

[
f

(
1− u

φ2(x)
,

√
1− u2

φ(x)
W̃

)
✶{T> x+ψT (x)z

u∨
√

1−u2‖W̃‖∞
}✶{u>

√
1−u2 max2≤i≤d |W̃i|}

]
,

for q = ∞. Then the following convergence holds, locally uniformly on [0,∞)× R,

lim
x→∞

kx(1− φ2(x)v, z) = e−z e−v E
[
f
(
v/2,

√
vW̃
)]

.
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This yields, for f continuous and compactly supported on R
d,

E

[
f

(
1−W1

φ2(x)
,
(W2, . . . ,Wd)

φ(x)

)
✶{‖X‖q>x+ψT (x)z}✶∆1(W)

]

= β−1d P(T > x)

∫ 1

0

kx(u, z)(1− u2)(d−3)/2 du

= β−1d φd−1(x)P(T > x)

∫ φ−2(x)

0

kx(1− φ2(x)v, z)(2v − φ2(x)v2)(d−3)/2 dv

∼ β−1d φd−1(x)P(T > x) e−z
∫ ∞

0

E

[
f
(
v,
√
2vW̃

)]
(2v)(d−3)/2 e−v dv

= β−1d φd−1(x)P(T > x) e−z Γ((d− 1)/2)2(d−3)/2 E
[
f
(
R2/2, RW̃

)]
,

where R has χ2
d−1 distribution and is independent of W̃. This implies that

√
RW̃ is a

(d− 1) dimensional standard Gaussian vector. Equivalently, (R2/2, RW̃) can be expressed
as (1

2
(G2

2 + · · · + G2
d), G2, . . . , Gd), where G2, . . . , Gd are i.i.d. standard Gaussian random

variables. This yields, for f continuous and compactly supported on R
d,

lim
x→∞

1

φd−1(x)P(T > x)
E

[
f

(
1−W1

φ2(x)
,
(W2, . . . ,Wd)

φ(x)

)
✶{‖X‖q>x+ψT (x)z}✶∆1(W)

]

=
2(d−3)/2 Γ(1/2) Γ2((d− 1)/2)

Γ(d/2)
E
[
f
(
1
2
(G2 + · · ·+G2

d), G2, . . . , Gd

)]
e−z .

The last step is to extend the convergence to bounded continuous functions. This is done
as in the proof of Theorem 2.1, using the bound (2.11). Summing these equivalent over
the 2d regions ∆i yields (4.1).

Define

U =
X

‖X‖q
=

W

‖W‖q
.

Corollary 4.2. Under the assumptions of Theorem 4.1, as x → ∞, conditionally on
‖X‖q > x and X ∈ ∆1,

(‖X‖q − x

ψ(x)
,
1− U1

φ2(x)
,
U2

φ(x)
, . . . ,

Ud
φ(x)

)
(d)−→ (E, 0, G2, . . . , Gd) , (4.2)

where E is an exponential random variable with mean 1 and G2, . . . , Gd are i.i.d. standard
Gaussian random variables, independent of E.

Proof. Define Rx = (1−W1)/φ
2(x). Conditionally on ‖X‖q > x and X ∈ ∆1, Rx

(d)−→ R,
hence Rx = OP (1). Thus, conditionally on ‖X‖q > x and X ∈ ∆1,

‖W‖q = 1− φ2(x)Rx + oP (φ
2(x)) = 1 +OP (φ

2(x)) .
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This yields

(‖X‖q − x

ψ(x)
,
U2

φ(x)
, . . . ,

Ud
φ(x)

)
=

(‖X‖q − x

ψ(x)
,

W2

φ(x)‖W2‖
, . . . ,

Wd

φ(x)‖Wd‖

)

=

(‖X‖q − x

ψ(x)
,

W2

φ(x){1 +OP (φ2(x))} , . . . ,
Wd

φ(x){1 +OP (φ2(x))}

)

(d)−→ (E,G2, . . . , Gd) .

Moreover,

1− U1 = 1− W1

‖W‖q
= 1− 1− φ2(x)Rx

1− φ2(x)Rx + oP (φ2(x))
= oP (φ

2(x)) .

This yields (4.2).

The degeneracy with respect to the second variable in the convergence (4.2) is the key to
the behavior of the diameter in this case. Let an be the 1−1/n quantile of the distribution
of ‖X‖q and bn = ψT (an).

Theorem 4.3. Let {Xi, i ≥ 1} be a sequence of i.i.d. random vectors with the same disti-
bution as X which satisfies the assumptions of Theorem 4.1. Then, for q ∈ (2,∞],

M
(2)
n,q(X)− 2an

bn

(d)−→ max
1≤i≤d

(Γ+
i + Γ−i ) , (4.3)

where Γ+
i and Γ−i , 1 ≤ i ≤ d are independent Gumbel random variable with location

parameter log 2d.

Proof. With probability tending to one, the diameter will be achieved by a pair of points
in two symmetric regions ∆i and ∆−i.

For j = 1, . . . , d, define the points

P+
n,i,j =

(
‖Xi‖q−an

bn
, Ui−(0,...,1,...,0)

cn

)
, P−n,i,j =

(
‖Xi‖q−an

bn
, Ui−(0,...,−1,...,0)

cn

)

(where the ±1 is on the j-th position) and the point processes N±n,j =
∑∞

i=1 δP±n,i,j✶{Xi∈∆±j}.

Corollary 4.2 yields the point process convergence {N+
n,j, N

−
n,j, j = 1, . . . , d} (d)−→ {N+

j , N
−
j , j =

1, . . . , d} with N±j =
∑∞

i=1 δP±i and

P±i = (Γ±i,j, 0, G
±
i,j,2, . . . , G

±
i,j,d) ,

where N+
j , N

−
j are independent Poisson point processes, {Γ±i,j, i ≥ 1, j = 1, . . . , d} are

the points of a Poisson point process with mean measure 1
2d
e−x dx, independent of the

i.i.d. standard Gaussian vectors (G±i,j,2, . . . , G
±
i,j,d), i ≥ 1, j = 1, . . . , d.
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For j = 1, . . . , d, let X+
n,j and X

−
n,j be the vectors of the sample with the largest norms in

∆j and ∆−j, respectively. With probability tending to one, it holds that

max
1≤j≤d

‖X+
n,j − X

−
n,j‖q − 2an

bn
≤ M

(2)
n,q(X)− 2an

bn
≤ max

1≤j≤d

{
‖X+

n,j‖q − an

bn
+

‖X−n,j‖q − an

bn

}
.

For each j = 1, . . . , d, the sum of the rightmost terms inside the max converges weakly to
Γ+
j,1+Γ−j,1. Define Z

±
n,j = (‖X±n,j‖q−an)/bn andG

±
n,j =

(
X
±
n,j/‖X±n,j‖q − (0, . . . ,±1, . . . , 0)

)
/cn.

The point process convergence entails the following one:

(Z+
n,j, Z

−
n,j,G

+
n,j,G

−
n,j)

(d)−→ (Γ+
1 ,Γ

−
1 , 0,G

+
j , 0,G

−
j ) ,

where all components are independent and the components of G±j are standard Gaussian
(d− 1) dimensional Gaussian vectors. By Corollary 4.2, cnG

±
n,j,1 = o(c2n), thus,

‖X+
n,j − X

−
n,j‖q = an

[{
(1 + c2nZ

+
n,j)(1 + cnG

+
n,j,1) + (1 + c2nZ

−
n,j)(1− cnG

−
n,j,1)

}q
+O(cqn)

]

= 2an{1 +
1

2
c2n(Z

+
n,j + Z−n,j) + o(c2n)} = 2an + bn(Z

+
n,j + Z−n,j) + o(bn) .

This proves that (‖X+
n,j − X

−
n,j‖q − 2an)/bn

(d)−→ Γ+
j,1 + Γ−j,1. This yields (4.3).

4.2 Case 1 ≤ q < 2

Let Rd be split into 2d isometric regions Qj, ±j = 1, . . . , 2d−1 around each “diagonal” line
x1 = ±x2 = · · · = ±xd, numbered in such a way that Qj = −Q−j and that Q1 is the region
which contains the point 1 = (1, . . . , 1). For q ∈ [1, 2), a spherical vector with a large lq

norm must be close to one of the diagonals.

Define, ψq(x) = d1/q−1/2ψT (d
1/2−1/qx) and φq(x) =

√
ψq(x)/x.

Theorem 4.4. Let X be as in Theorem 4.1. If 1 ≤ q < 2, then

P(‖X‖q > x) ∼ 23(d−1)/2Γ(1/2)Γ2((d− 1)/2)

(2− q)(d−1)/2Γ(d/2)
φd−1q (x)P

(
T > xd

1
2
− 1
q

)
. (4.4)

Moreover, conditionally on ‖X‖q > x and X ∈ Q1, as x→ ∞,
(‖X‖q − x

ψq(x)
,
W− d−1/21

φq(x)

)
(d)−→ (E,G) , (4.5)

where E is an exponential random variable with mean 1 and G is a Gaussian vector inde-
pendent of E with covariance matrix

Σ =
1

d(2− q)




d− 1 −1 . . . −1
−1 d− 1 . . . −1
...

...
−1 . . . −1 d− 1



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Note that the form of the covariance matrix implies that the components of the vectors G
sum up to zero. This is natural since G must be in the space tangent to the sphere at the
point d−1/21.

Proof of Theorem 4.4. Let P be an orthogonal matrix such that d−1/2P1 = (1, 0, . . . , 0)′

and define g = f ◦ P−1. Note that PW is uniformly distributed on Sd−1, i.e. has the same
distribution as W. For f continuous and compactly supported on R

d, we have

E

[
f
(

W−d−1/2
1

φq(x)

)
✶{T>x+ψq(x)z

‖W‖q
}✶{W∈Q1}

]

= E

[
g
(

W−(1,0,...,0)}
φq(x)

)
✶{T> x+ψq(x)z

‖P−1W‖q
}✶{W∈PQ1}

]

=
1

βd

∫ 1

0

E

[
g
(
u−1
φq(x)

, 1−u
2

φq(x)
W̃

)
✶{T> x+ψq(x)z

‖P−1(u,
√

1−u2W̃)‖q
}

]
(1− u2)(d−3)/2 du

=
1

βd
φd−1q (x)

∫ 1/φq(x)

0

E

[
g
(
−φq(x)v,

√
2v − φ2

q(x)v
2W̃

)

✶{T> x+ψq(x)z

‖P−1(1−φ2q(x)v,φq(x)
√

2v−φ2q(x)v
2W̃)‖q

}

]
(2v − φ2

q(x)v
2)(d−3)/2 dv .

Denote Ũ = P−1(0, W̃). Then Ũ ∈ Sd−1 and moreover,

〈Ũ,1〉 = 〈P−1(0, W̃),1〉 = 〈(0,W), P1〉 = 〈(0,W), d1/2(1, 0, . . . , 0)〉 = 0 .

In view of this, a second order Taylor expansion yields

‖P−1(1− φ2
q(x)v, φq(x)

√
2v − φ2

q(x)v
2W̃)‖q

= d
1
q
− 1

2

{
1− d−1/2φq(x)

√
2v

d∑

i=1

Ũi + φ2
q(x)v

(
(q − 1)‖Ũ‖2 − 1

)
+ oP (φ

2
q(x))

}

= d
1
q
− 1

2
{
1− φ2

q(x)(2− q)v + oP (φ
2
q(x))

}
.
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This yields, for f continuous and compactly supported,

lim
x→∞

φ1−d
q (x)

P(T > xd
1
2
− 1
q )
E

[
f
(

W−d−1/2
1

φq(x)

)
✶{T>x+ψq(x)z

‖W‖q
}✶{W∈Q1}

]

=
1

βd
e−z
∫ ∞

0

E[g(0,
√
2vW̃)](2v)(d−3)/2e−(2−q)v dv

=
1

2(2− q)(d−1)/2βd
e−z
∫ ∞

0

E[g(0,
√

w
2−qW̃)]w(d−3)/2e−w/2 dw

=
2(d−3)/2Γ((d− 1)/2)

(2− q)(d−1)/2βd
e−zE[g(0, (2− q)−1/2RW̃)]

=
2(d−3)/2Γ((d− 1)/2)

(2− q)(d−1)/2βd
e−zE[f((2− q)−1/2P−1(0, RW̃)]

=
2(d−3)/2Γ((d− 1)/2)

(2− q)(d−1)/2βd
e−zE[f((2− q)−1/2RŨ)] ,

whereR2 has a χ2
d−1 distribution and is independent of W̃. ThusRW̃ is a (d−1) dimensional

standard Gaussian vector. This implies that (2 − q)−1/2RŨ is a d dimensional Gaussian
vector with covariance matrix

1

2− q
P−1




0 · · · 0
0 1 · · · 0
...

. . .
...

0 · · · 0 1


P =

1

d(2− q)




d− 1 −1 . . . −1
−1 d− 1 . . . −1
...

...
−1 . . . −1 d− 1


 = Σ .

This also implies that the components of RŨ sum up to zero. Summarizing, we have proved
that, for f continuous and compactly supported

lim
x→∞

φ1−d
q (x)

P(T > xd
1
2
− 1
q )
E

[
f
(

W−d−1/2
1

φq(x)

)
✶{T>x+ψq(x)z

‖W‖q
}✶{W∈Q1}

]

=
2(d−3)/2Γ(1/2)Γ2((d− 1)/2)

(2− q)(d−1)/2Γ(d/2)
e−zE[f(G)] ,

whereG is a Gaussian vector with mean zero and covariance matrix Γ. Again, the extension
of the convergence to bounded continuous functions is done as in the proof of Theorem 2.1,
using the bound (2.11). This proves (4.5). Summing this equivalence over the 2d regions
Qj yields (4.4).

Define

U =
X

‖X‖q
=

W

‖W‖q
.
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Theorem 4.4 yields that conditionally on ‖X‖q > x and U ∈ Q1,

(‖X‖q − x

ψq(x)
,
U− d−1/q1

φq(x)

)
(d)−→ (E, d1/2−1/qG) . (4.6)

Theorem 4.4 and the convergence (4.6) can be adapted to each region Qj. For j = 1, . . . , 2d,
let εj be the point of {−1, 1}d \ {1} which is in Qj. Then, conditionally on ‖X‖q > x and
U ∈ Qj,

(‖X‖q − x

ψq(x)
,
U− d−1/qεj

φq(x)

)
(d)−→ (E, d1/2−1/qGj) ,

where Gj = (ε1G1, . . . , εdGd) and (G1, . . . , Gd) is a Gaussian vector with zero mean and
covariance matrix Σ.

The previous results can be translated into point process convergence. Let an be the
1 − 1/n quantile of the distribution of ‖X‖q. Define bn = ψq(an) and cn =

√
bn/an. For

j = 1, . . . , 2d and i = 1, . . . , n, define

Pn,i,j =
(
‖Xi‖q−an

bn
,
Ui−d−1/q

εj

cn

)
.

Corollary 4.5. Let {Xi, i ≥ 1} be a sequence of i.i.d. random vectors with the same
distibution as X which satisfies the assumptions of Theorem 4.1. Then,

n∑

i=1

δPn,i,j✶{Ui∈Qj}
(d)−→

∞∑

i=1

δPi,j

where Pi,j = (Γi,j, d
1/2−1/q

Gi),
∑∞

i=1 δΓi,j are independent Poisson point processes with
mean measure 2−de−xdx and {Gi,j, i ≥ 1}, j = 1, . . . , 2d are independent sequences of
i.i.d. Gaussian vectors with the same distribution as Gj, independent of {Γi,j, i ≥ 1},
j = 1 . . . , 2d.

These point process convergences yield the asymptotic behavior of the diameter.

Theorem 4.6. Let {Xi, i ≥ 1} be a sequence of i.i.d. random vectors with the same disti-
bution as X which satisfies the assumptions of Theorem 4.1. Then,

M
(2)
n,q(X)− 2an

bn

(d)−→ max
1≤j≤2d−1

max
i,i′≥1

{
Γ+
i,j + Γ−i′,j −

q − 1

4

d∑

ℓ=1

(G+
i,j,ℓ +G−i′,j,ℓ)

2

}
, (4.7)

where Γ±i,j, i ≥ 1 j = 1, . . . , 2d−1 are the points of independent Poisson point processes on

(−∞,∞] with mean measure 2−de−x dx and G
±
i,j = (G±i,j,1, . . . , G

±
i,j,d), i ≥ 1, j = 1, . . . , 2d−1

are i.i.d. Gaussian vectors with covariance matrix Σ

26



Comments For q = 1, the corrective terms in (4.7) vanish and so the limiting distribution
of the diameter is maxj=1,...,2d−1 Γ+

1,j +Γ−1,j. If d > 2, it differs from the case q > 2 since the

space is split into more regions (there are 2d−1 diagonals and d axes).

Proof of Theorem 4.6. The diameter will be achieved by points nearly diametrically op-
posed and close to one of the diagonals. More precisely,

lim
n→∞

P

(
M (2)

n,q(X) = max
1≤j≤2d−1

max{‖Xi − Xi′‖q | Xi ∈ Qj,Xi′ ∈ Q−j, 1 ≤ i, i′ ≤ n}
)

= 1 .

In order to obtain the convergence of each sub-maximum, we proceed as in the proof of
Theorem 3.1. The main step is the following. Define

rn,i = an + bnri , i = 1, 2 , wn,1 = d−1/2✶ − cnu , wn,2 = −d−1/2✶ − cnv ,

where u and v are such that ‖u‖q = ‖v‖q = 1. This implies that

cn

d∑

i=1

ui = −d 1
q
q − 1

2
c2n

d∑

j=1

u2j + o(c2n) ,

cn

d∑

i=1

vi = d
1
q
q − 1

2
c2n

d∑

j=1

v2j + o(c2n) .

This yields the expansion

‖rn,1wn,1 − rn,2wn,2‖q = 2an

{
1 +

1

2
c2n(r1 + r2)−

d
2
q
−1(q − 1)

8

d∑

j=1

(uj + vj)
2 + o(c2n)

}
.

This implies the convergence

lim
n→∞

‖rn,1wn,1 − rn,2wn,2‖q − 2an
bn

= r1 + r2 −
d

2
q
−1(q − 1)

4

d∑

j=1

(uj + vj)
2 .

The rest of the proof is exactly along the lines of the proof of Theorem 3.1.

5 Further generalizations

There are many ways to generalize the results of the previous sections, and because of
the very local nature of the behavior of random vectors in the domain of attraction of
the Gumbel distribution, it is possible to build all kind of ad hoc examples to illustrate
nearly any type of behaviors. In this section we will only briefly describe several reasonable
generalizations of elliptical distributions.
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One possibility is to consider a random vector X that has the representation X = TW,
where W is a random vector on the sphere Sd−1, no longer assumed to be uniformly
distributed, and T is a positive random variable, independent of W. A second possibility
is to assume that the vector X can be expressed as X = Tg(W), where W is uniformly
distributed on Sd−1 and g is a bounded continuous function. This model includes the
previous one if the function g takes values in the unit sphere. These models were used by
[FS10] and [BS13] in the investigation of conditional limit laws of a bivariate vector given
that one component is extreme. In such a model, the behavior of the vector given that its
norm is large and the behavior of the diameter will be determined by the maxima of the
function ‖g‖. If they are isolated points, the localization phenomenon will arise and results
such as Theorem 2.2 and 3.1 may be obtained. Otherwise, if g is constant on non empty
open subsets of the sphere, we rather expect to obtain results similar to Theorem 3.2.

Another way to generalize the elliptical distributions is to consider vectors whose distribu-
tion has a density on R

d of the form f(x) = e−U(x) where U is a continuous function on
R
d and the level sets of U are closed and convex and U satisfies some type of multivariate

regular variation or asymptotic homogeneity. This type of assumptions has been used in
[BE07] to obtain conditional limit laws of a vector given that one component is extreme
and by [HR05] in the study of the longest edge of the minimum spanning tree of a random
sample.

We leave this last direction as the subject of future research. In the following subsections,
we give without proof several bidimensional examples. We only consider the Euclidean
norm.

5.1 Generalized spherical distributions

Assume that X = T (cosΘ, sinΘ) where T and Θ are independent and the support of
the distribution of Θ is [0, θ0], θ0 ∈ (0, 2π]. In this case, it holds that ‖X‖ = T and as
previously, we denote the quantile of order 1− 1/n of ‖X‖ by an and define bn = ψT (an).

The main question in this case is the existence of nearly diametrically opposed vectors in
the sample cloud. If θ0 < π, then there will be none, and therefore the diameter cannot
behave like twice the norm.

The case 0 < θ0 ≤ π/3 is trivial since ‖X1−X2‖ ≤ ‖X1‖∨‖X2‖ if the angle between X1 and
X2 is less than π/3. In concrete terms, the distance between two points whose angle is less

than π/3 is always smaller than their norms. This implies that M
(2)
n (X) ≤Mn(X). Define

mn(X) = min1≤i≤n ‖Xi‖ and let X̂n and X̌n be points in the sample such that ‖X̂n‖ = Mn

and ‖X̌n‖ = mn. Then, by the triangle inequality

M (2)
n (X) ≥ d(X̂n, X̌n) ≥Mn(X)−mn(X) .
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Therefore we conclude that (Mn(X)−M
(2)
n (X))/mn(X) →P 1 and

lim
n→∞

P(M (2)
n (X) ≤ an + bnx) = e−e

−x

. (5.1)

If θ0 ∈ (π/3, π), then there will be no vectors nearly diametrically opposed, but this case
will differ from the case θ0 ∈ [π, 2π] only by constants. As can be seen from the proof
of Theorem 3.2 and [JJ12, Theorem 1.1], if θ0 ≥ π, the asymptotic distribution of the
diameter is determined by the behavior of cos(Θ1 − Θ2) at -1. If θ0 ∈ (π/3, π), then it
is determined by the behavior of cos(Θ1 − Θ2) when the angle between Θ1 and Θ2 is the
largest, here θ0. Apart from this difference, the proof of [JJ12, Theorem 1.1] can be copied
line by line to obtain the following result.

Proposition 5.1. Let {Xi, i ≥ 1} be a sequence i.i.d. random vectors whose distribution
can be expressed as T (cosΘ, sinΘ), where T and Θ are independent, T satisfies Assump-
tion 3.1 and Θ satisfies

P(cos(Θ1 −Θ2)− cos(θ0 ∧ π) < ǫ) = C0 ǫ
γ + o

(
ǫγ
)
,

where Θ1,Θ2 are i.i.d. with the same distribution as Θ. Then

lim
n→∞

P

(
M

(2)
n − κ0an
2bn/κ0

+ γ log
an
bn

− log log
an
bn

− logCγ,κ0 ≤ x

)
= e−e

−x

, (5.2)

with

κ0 =
√

2(1− cos(θ0 ∧ π)) ∈ (1, 2] , Cγ,θ0 = C0κ
−1
0 2γγΓ(γ + 1) .

Let us give an example. Assume that the distribution of Θ has a density fΘ on [0, π]
defined by fΘ(x) = (6/π3)x(π − x)✶[0,π](x). We obtain

P(1 + cos(Θ1 −Θ2) < ǫ) =
12

π4
ǫ2 + o(ǫ2) .

Thus (5.2) holds with κ0 = 2, C0 = 12π−4 and γ = 2.

5.2 Generalized elliptical distributions

Let u, v be two continuous functions defined on [0, 1] such that u(0) = u(1) and v(0) = v(1)
and such that the curve γ(s) = (u(s), v(s)) is simple. Define a bivariate random vector X
by

X = T (u(S), v(S)) ,
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where T and S are independent and S is uniformly on [0, 1]. We call such a vector a
generalized elliptical vector since elliptical vectors are obtained by choosing u(s) = cos(2πs)
and v(s) = cos(2πs− U0).

Define ℓ(s) =
√
u2(s) + v2(s) and assume that s has exactly q maxima 0 < s1, . . . , sq < 1

which are isolated points, i.e. sups∈[0,1] ℓ(s) = maxi=1,...,q ℓ(si) and for each i = 1, . . . , q,
there exists ǫ > 0 such that ℓ(s) < ℓ(si) for all s ∈ (si− ǫ, si+ ǫ), s 6= si. Assume moreover
that ℓ is twice differentiable, and that ℓ′′(si) < 0 for i = 1, . . . , q. Let 0 = t0 < t1 < · · · <
tq = 1 define a partition of [0, 1] such that si ∈ (ti−1, ti), i = 1, . . . , q.

Define φ(x) =
√
ψT (x)/x and for i = 1, . . . q, mi = ℓ(si) and τ

2
i = −mi/ℓ

′′(si). Adapting
the proof of Theorem 2.1, we obtain

lim
x→∞

P(‖X‖/mi > x+ ψT (x)z , S ≤ si + φ(x)u, S ∈ (ti−1, ti))√
2πτ 2i φ(x)P(T > x)

= e−zΦτi(u) .

The large observations are localized around the directions of the points γ(si), i = 1, . . . , q.
Definem = maxi=1,...,qmi and τ =

∑
i:mi=m

τi. Noting that P(T > x/mi) = o(P(T > x/m))
if mi < m, the previous expansion yields

P(‖X‖ > x) ∼
√
2πτ 2

√
ψT (x/m)

x/m
P(T > x/m) .

This implies that an auxiliary function for ‖X‖ is mψT (x/m).

We expect the diameter of the cloud to be achieved by pairs of points with large norms and
which are nearly in the directions of the points γ(si) and γ(sj) with maximum distance.
We have obtained the limiting distribution of the diameter only when the two points with
maximum distance are diametrically opposed.

Assume that γ(s1) and γ(s2) are diametrically opposed and that

‖γ(s1)− γ(s2)‖ = max
1≤i<j≤q

‖γ(si)− γ(sj)‖ .

Assume for simplicity that this maximum is achieved only once. Let an be the 1 − 1/n
quantile of ‖X‖/m and bn = ψT (an). Adapting the proof of Theorem 3.1, we obtain

M
(2)
n (X)− (m1 +m2)an

bn

(d)−→ max
i,j≥1

{
m1Γ

+
i +m2Γ

−
j − m1m2

2(m1+m2)

(
v′(s1)
ℓ′′(s1)

G+
i − v′(s2)

ℓ′′(s2)
G−j

)2}
,

where {Γ+
i , i ≥ 1} and {Γ−i , i ≥ 1} are the points of two independent Poisson point

processes with mean measure 1
q
e−x dx, independent of the i.i.d. standard Gaussian random

variables G+
i , G

−
j , i, j ≥ 1.

The problem when the points γ(si), γ(sj) which achieve the maximum distance are not
diametrically opposed is that the rate at which the vector with large norms concentrate
to the directions of the points γ(si) and γ(sj) is not fast enough to apply the arguments
of the proof of Theorem 3.1. We leave this problem and higher dimensional extensions to
future research.
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5.3 Different rates of localization

The rate of localization of the vectors around the direction where the norm can be large is√
an/bn in the previous examples. This is due to the regularity of the curve γ. Different

rates may be obtained if the norm is not twice differentiable at its maxima but has some
regular variation property. Consequently, different limiting distributions are also obtained.
We give one example.

Let U be uniformly distributed on [0, 2π], q ∈ (1/2, 1), a > 1 and T independent of U .
Define

X = T (a cos(|U |q), sin(|U |q)sign(U)) .

The maximum of the function a2 cos2(|θ|q) + sin2(|θ|q) is achieved when θ = 0 or θ = π.

Define ψa(x) = aψT (x/a) and φa,q(x) = {ψa(x)/x}1/(2q). Let Zq be a random variable whose

distribution admits the density q2−1/(2q)Γ−1(1/(2q))e−
1
2
|x|2q with respect to Lebesgue’s mea-

sure on R and let E be an exponential random variable with mean 1. Then, conditionally
on ‖X‖ > x and cosU > 0,

(‖X‖ − x

ψa(x)
,

U

φa,q(x)

)
(d)−→

(
E,
(

a2

a2−1

) 1
2q
Zq

)

converges weakly to the vector with independent components (E,Zq). A similar conver-
gence holds conditionally on cosU < 0. This implies that ψa is an auxiliary function of
‖X‖. This yields an analogue of Theorem 3.1 where the distribution Zq plays the role of the
standard Gaussian distribution. Let an be the 1−1/n quantile of ‖X‖ and let bn = ψa(an).
Then,

M
(2)
n − 2an
bn

(d)−→ max
i,j≥1

{
Γ+
i + Γ−j − a1−1/q

4(a2 − 1)1/(2q)
(Z+

i − Z−j )
2

}
,

where {Γ±i , i ≥ 1} are the points of two independent Poisson point processes with mean
measure 1

2
e−x dx and Z±i are i.i.d. random variables with the same distribution as Z, and

independent of the point processes.

6 Proof of Lemmas 2.4 and 3.3

Proof of Lemma 2.4. It is known that W is uniformly distributed on Sd−1 if and only if
W = ‖X‖−1X where X is a d-dimensional standard Gaussian vector. Equivalently, W is
uniformly distributed on Sd−1 if and only if RW is a d-dimensional standard Gaussian
vector, where R2 has a χ2

d distribution and is independent of W. Let R be such a random
variable and define X = RW. The coordinates X1, . . . , Xd of X are i.i.d. standard Gaussian
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random variables. It is then easily seen that

W
(k) =

(X1, . . . , Xk)

‖(X1, . . . , Xk)‖
,

hence W(k) is uniformly distributed on Sk. Moreover, Rk = ‖(X1, . . . , Xk)‖ is independent
of W̃k. Noting that

(Wk+1, . . . ,Wd) =
(Xk+1, . . . , Xd)√

R2
k +X2

k+1 + · · ·+X2
d

(6.1)

and that W
(k) is independent of Xk+1, . . . , Xd, we obtain the independence of W(k) and

(Wk+1, . . . ,Wd).

Let f be compactly supported on R
d and g be the density of (Wk+1, . . . ,Wd). Since W

(k)

is independent of (Wk+1, . . . ,Wd), it holds that

sk E[f(W1, . . . ,Wk, sWk+1, . . . , sWd)]

= sk E
[
f
(√

1−W 2
k+1 − · · · −W 2

d W
(k), sWk+1, . . . , sWd

)]

= sk
∫

[−1,1]d−k
E

[
f
(√

1− u2k+1 − · · · − u2dW
(k), suk+1, . . . , sud

)]
g(uk+1, . . . , ud)duk+1 . . . dud

=

∫

[−s,s]d−k
E

[
f
(√

1− s−2(u2k+1 + · · ·+ u2d)W
(k), uk+1, . . . , ud

)]
g
(uk+1

s
, . . . , ud

s

)
duk+1 . . . dud

→ g(0)

∫

Rk

E[f(W(k), uk+1, . . . , ud)] duk+1 . . . dud .

Let us now compute g(0). Using the representation (6.1), we have, for any bounded
measurable function f on R

d−k,

E[f(Wk+1, . . . ,Wd)]

=

∫ ∞

0

∫

Rd−k

f

(
(uk+1,...,ud)√
r+u2k+1+···+u2d

)
e−

1
2
(u2k+1+···+u2d)r

k
2
−1e−r/2

drduk+1 . . . dud
2k/2Γ(k/2) (2π)(d−k)/2

=

∫

[−1,1]d−k
f(wk+1, . . . , wd)g(wk+1, . . . , wd)dwk+1 . . . dwd ,

with

g(wk+1, . . . , wd) =
1

2d/2π(d−k)/2Γ(k/2)

∫ ∞

0

J(r, wk+1, . . . , wd)r
k
2
−1e−r/2dr

and J(r, wk+1, . . . , wd) is the Jacobian determinant of the change of variable

(r, uk+1, . . . , ud) → (r, wk+1, . . . , wd) =

(
r, (uk+1,...,ud)√

r+u2k+1+···+u2d

)
.
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It is readily checked that J(r, 0, . . . , 0) = r(d−k)/2, hence

g(0) =
1

2d/2π(d−k)/2Γ(k/2)

∫ ∞

0

r
d
2
−1e−r/2dr =

Γ(d
2
)

π(d−k)/2Γ(k/2)
.

This yields the constant in (2.8).

Proof of Lemma 3.3

We need several preliminary results.

For i = 1, 2, define U
(k)
i =

√
1−∑d

q=k+1W
2
i,q. Then (Wi,1, . . . ,Wi,k) = U

(k)
i W

(k)
i where

W
(k)
i is uniformly distributed on Sk−1 and

Yi = Ti(
√
λ1U

(k)
i W

(k)
i ,
√
λk+1Wi,k+1, . . . ,

√
λdWi,d) .

Write

‖Y1 − Y2‖ =
√
λ1(T1 + T2)−

√
λ1b

T
nAn

with An = hn(1 + 〈W(k)
1 ,W

(k)
2 〉,W1,k+1, . . . ,W1,d,W2,k+1, . . . ,W2,d),

hn(s, u, v) =
T1 + T2
bTn

{1−
√

1− (cTn )
2gn(s, u, v)} ,

gn(s, u, v) =
2aTnT1T2

bTn (T2 + T2)2



1− (1− s)

√√√√1−
d∑

q=k+1

u2q

√√√√1−
d∑

q=k+1

v2q +
d∑

q=k+1

λq
λ1
uqvq





+
T 2
1

(T1 + T2)2

d∑

q=k+1

λ1 − λq
λ1

u2q +
T 2
2

(T1 + T2)2

d∑

q=k+1

λ1 − λq
λ1

v2q ,

where (u, v) = (uk+1, . . . , ud, vk+1, . . . , vd) ∈ R
2(d−k) and cTn =

√
bTn/a

T
n . The following

Lemma gives the limit of the suitably rescaled functions gn and hn. The proof is elementary
and is omitted.

Lemma 6.1. Let {ωn} be a sequence of positive numbers such that ωn = O(log(aTn/b
T
n ))

and set sn = logωn. Define the event Tn = {aTn −bTn (ωn+sn) ≤ T1, T2 ≤ aTn +b
T
nsn}. Then,

almost surely,

lim
n→∞

hn((c
T
n )

2s, cTnu, c
T
nv)✶Tn = lim

n→∞
gn((c

T
n )

2s, cTnu, c
T
nv)✶Tn = g(s, u, v) ,

locally uniformly, with

g(s, u, v) =
1

2
s+

1

2

d∑

q=k+1

u2q − 2ρquqvq + v2q
̟2
q(1− ρ2q)

, ρq =
λq

2λ1 − λq
, ̟2

q =
2λ1 − λq
2λ1 − 2λq

. (6.2)
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Moreover, there exists a constant c > 0 such that

hn((c
T
n )

2s, cTnu, c
T
nv)✶Tn ≥ c

{
s+

d∑

q=k+1

(u2q + v2q )

}
(6.3)

Lemma 6.2. Under Assumption 3.1, for any sequence {ωn} such that ωn = O(log(aTn/b
T
n )),

for all z ∈ R,

lim
n→∞

ne−ωnP(T > aTn − bTnωn + bTnz) = e−z . (6.4)

Proof. Denote ãn = aTn − bTnωn and b̃n = ψT (ãn). For any sequence {rn} that tends to
infinity, the convergence P(T > rn + ψ(rn)z)/P(T > rn) is locally uniform with respect
to z ∈ R. Under Assumption 3.1, it holds that b̃n/bn → 1. Thus,

P(T > ãn + bTnz)

P(T > ãn)
=

P(T > ãn + b̃n
bTn
b̃n
z)

P(T > ãn)
→ e−z .

Let us now prove that

lim
n→∞

ne−ωnP(T > ãn) = 1 . (6.5)

Using the representation of P(T > x) in (2.5), we have

e−ωn
P(T > ãn)

P(T > aTn )
=
ϑ(ãn)

ϑ(aTn )
exp

∫ ωn

0

(
bn

ψ(an − bns)
− 1

)
ds .

Since ωn = O(log(aTn/b
T
n )), the bound (3.4) in Assumption 3.1 implies that

∫ ωn

0

∣∣∣∣
bn

ψ(an − bns)
− 1

∣∣∣∣ ds ≤ ωn sup
|s|≤ωn

∣∣∣∣
bn

ψ(an − bns)
− 1

∣∣∣∣→ 0 .

Since the function ϑ has a positive finite limit at infinity, this yields (6.5).

For any sequence {ωn}, define sn = 1
2
logωn, the event Tn = {aTn − bTn (ωn + sn) ≤ T1, T2 ≤

aTn + bTnsn} and for z ∈ R,

Kn(z) =
n2e−ωn

ωn
P(T1 + T2 > 2aTn − bTnωn + bTnz ; Tn) . (6.6)

Lemma 6.3. If Assumption 3.1 holds, then, for any sequence {ωn} such that ωn → ∞
and ωn = O(log(an/bn)), and for all z ∈ R,

lim
n→∞

Kn(z) = e−z . (6.7)
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Proof. The proof of the convergence (6.7) is a consequence of Lemmas 3.5 to 3.9 in [JJ12]
under (6.4) as an assumption.

Lemma 6.4. If Assumption 3.1 holds, then for each p > 0, each sequence {ωn} such that
ωn = O(log(bTn/a

T
n ), there exists a constant C such that, for large enough n and all y ≥ 0,

sup
u∈(−ωn,ωn)

P(T > aTn + bTn (u+ y))

P(T > aTn + bTnu)
≤ C(1 + y)−p . (6.8)

For all p > 0 and z ∈ R, there exists a constant C such that, for large enough n and all
y ≥ 0,

sup
u∈(−ωn,ωn)

Kn(u+ y + z) ≤ C(1 + y)−p . (6.9)

Proof. Recall the representation (2.5). The function ϑ is upper and lower bounded, so

P(T > aTn + bTn (u+ y))

P(T > aTn + bTnu)
=
ϑ(aTn + bTn (u+ y))

ϑ(aTn + bTnu)
exp

(
−
∫ y

0

ψ(aTn + bTnu)

ψ(aTn + bTnu+ bTns)
ds

)

≤ C exp

(
−
∫ y

0

1

1 + ψ′(ζn)
bTn

ψ(aTn+b
T
nu)

s
ds

)
,

where ζn ∈ (aTn + bTnu, a
T
n + bTnu + bTns). Since lims→∞ ψ

′(s) = 0, and by Assumption 3.1
ψ(aTn + bTnu)/b

T
n converges uniformly to 1 with respect to u ∈ (−ωn, ωn), so, for ǫ > 0, and

large enough n, it holds that

exp

(
−
∫ y

0

1

1 + ψ′(ζn)
bTn

ψ(aTn+b
T
nu)

s
ds

)
≤ exp

(
−
∫ y

0

1

1 + ǫ s
ds

)
= (1 + ǫy)−1/ǫ .

This proves (6.8). To prove (6.9), define Hn(u) = ne−ωnP(T ≤ aTn − bTnωn + bTnu). Then,
for any fixed z ∈ R and y ≥ 0,

Kn(u+ y + z) =
n

ωn

∫ ωn+sn

−sn
P(T > aTn + bTn (u+ y + z))Hn(du)

≤ n

ωn

∫ ωn+sn

−sn

P(T > aTn + bTn (u+ y + z))

P(T > aTn + bTn (u+ z))
P(T > aTn + bTn (u+ z))Hn(du)

≤ sup
|u|≤ωn

P(T > aTn + bTn (u+ y + z))

P(T > aTn + bTn (u+ z))
Kn(z) .

Since Kn(z) is a convergent sequence for each z ∈ R, it is bounded with respect to n. This
yields (6.9).

Define cTn =
√
bTn/a

T
n and dTn = 1

2
(2d− k − 1) log(aTn/b

T
n )− log log(aTn/b

T
n ).
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Lemma 6.5. For all z ∈ R, s ≥ 0, ui,q ∈ R, i = 1, 2, q = k + 1, . . . , d,

lim
n→∞

n2
P

(
‖Y1−Y2‖−2

√
λ1aTn√

λ1bTn
+ dTn > z ,

1+〈W(k)
1 ,W

(k)
2 〉

(cTn )
2 ≤ s ,

Wi,q

cTn
≤ ui,q , i = 1, 2, q = k + 1, . . . , d ; Tn

)

= C ′k e
−z

P(Rk−1 ≤ s)
d∏

q=k+1

P(U1,q ≤ u1,q ;U2,q ≤ u2,q) , (6.10)

where Rk−1 has a χ2
k−1 distribution, (U1,q, U2,q) are independent Gaussian random vectors

with marginal variance ̟2
q and correlation ρq defined in (6.2), independent of Rk−1 and

C ′k =
2d−3(2d− k − 1)Γ2(d

2
)

Γ(k
2
)
√
π

(
d∏

q=k+1

λ1
λ1 − λq

)1/2

. (6.11)

As a consequence, we have

lim
n→∞

n2
P

(‖Y1 − Y2‖ − 2
√
λ1a

T
n√

λ1bTn
+ dTn − logC ′k > z ; Tn

)
= e−z . (6.12)

Proof. Define Ck = 〈W(k)
1 ,W

(k)
2 〉. Let f be a continuous function with compact support in

[0,∞)× R
2(d−k). The first step is to obtain a limit for

E(f, z) = n2
E

[
f
(

1+Ck
(cTn )

2 ,
(W1,k+1,...,W1,d)

cTn
,
(W2,k+1,...,W2,d)

cTn

)
; ‖Y1−Y2‖ > 2aTn−bTndTn+bTnz ; Tn

]
.

Since W
(k)
1 and W

(k)
2 are independent and uniformly distributed on Sk−1, the density of

the distribution of 〈W(k)
1 ,W

(k)
2 〉 is β−1k (1− s2)(k−3)/2 on [−1, 1] with

βk =
Γ((k − 1)/2)Γ(1/2)

Γ(k/2)
.

Let g be the density of (Wk+1, . . . ,Wd) and define

K̃n(y) = n2(cTn )
2d−k−1

P(T1 + T2 > 2aTn − bTnd
T
n + bTny ; Tn) .

By Lemmas 6.1 and 6.3, limn→∞ K̃n(y) =
1
2
(2d− k− 1)e−y, locally uniformly with respect
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to y ∈ R. This yields

E(f, z) = (cTn )
−2d+k+1 1

βk

∫ 1

−1

∫

R2(d−k)

f

(
1+
√

1−‖u‖2
√

1−‖v‖2s
(cTn )

2 , u
cTn
, v
cTn

)

× K̃n(z + hn(1 + s, u, v))(1− s2)(k−3)/2g(u)g(v) ds du dv

=
1

βk

∫ ∞

0

∫

R2(d−k)

f

(
1+
√

1−(cTn )2‖u‖2
√

1−(cTn )2‖v‖2(−1+(cTn )
2t)

(cTn )
2 , u, v

)

× K̃n(z + hn((c
T
n )

2t, cTnu, c
T
nv) (2t− (cTn )

2t2)(k−3)/2g(cTnu)g(c
T
nv) dt du dv

→ 2(k−3)/2g2(0)(2d− k − 1)

2βk

∫ ∞

0

∫

R2(d−k)

f(t, u, v)e−z−g(t,u,v) t(k−3)/2 dt du dv

=
2(k−3)/2g2(0)(2d− k − 1)

2βk
C ′′ke

−zf(Rk−1, U1,k+1, . . . , U1,d, U2,k+1, . . . , U2,d) ,

where Rk−1 has a χ2
k−1 distribution and is independent of the jointly Gaussian random

variables Ui,q, i = 1, 2, q = k + 1 =, . . . , d which are as defined in the lemma, and

C ′′k = 2(k−1)/2Γ
(
k−1
2

)
(2π)d−k

(
d∏

q=k+1

λ1
λ1 − λq

)1/2

.

Provided we extend this convergence to bounded continuous functions, this yields (6.10)
with C ′k as in (6.11). By Lemmas 6.1 and 6.4, we have, for p > 0 and z ∈ R, there exists
a constant C such that

K̃n(z + hn((c
T
n )

2t, cTnw1, c
T
nw2)) ≤ C

(
1 + t+

d∑

q=k+1

(w2
1,q + w2

2,q)

)−p

is integrable (for p large) with respect to Lebesgue’s measure on [0,∞)×R
2(d−k). Therefore,

arguing as in the proof of Theorem 2.1 shows that the convergence holds for all bounded
continuous functions f . This proves (6.10) by the Portmanteau theorem.

We are now in a position to prove Lemma 3.3.

Proof of (3.9). Let Ck be as in (3.7). Then logCk = logC ′k − 2 logDk − log 2. Plug these
values and the expression of an in terms of aTn and bTn obtained in (3.6) into (6.12) and note
that log(an/bn) = log(aTn/b

T
n ) + o(1).

Proof of (3.10). For yi = ti(
√
λ1wi,1, . . . ,

√
λdwi,d), i = 1, 2 and z ∈ R, define

fn(y1, y2) = ✶{‖y1−y2‖>2an−bndn+bnz}✶{t1∨t2≤aTn+bTn sn} .

Then

E[fn(Y1,Y2)fn(Y1,Y3)] = o(n−3) . (6.13)
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Using the notation of Lemma 6.5, we have, for some constant C > 0,

E[fn(Y1,Y2)fn(Y1,Y3)] = E

[(
E[fn(Y1,Y2) | Y1]

)2]

≤ Cn−4(cTn )
k−d
∫

Rd−k

(∫ ∞

0

{∫

Rd−k

K̃n(z + hn{(cTn )2t, cTnu, cTnv})

× t(k−3)/2g(cTnu)du
}
dt
)2

× g(cTnv) dv .

By the same arguments as in the proof of Lemma 6.5, the integral converges to a constant
times

∫

Rd−k

(∫ ∞

0

∫

Rd−k

e−z−g(t,u,v)t(k−3)/2dtduk+1 . . . dud

)2

dvk+1 . . . dvd .

This yields that n3
E[fn(Y1,Y2)fn(Y1,Y3)] = O((cTn )

k−d/n) = o(1) since aTn/b
T
n is always a

slowly varying sequence which implies that (aTn/b
T
n )

p = o(n) for any p > 0. Indeed, define
χ(x) = { F←

ψ◦F←}(1 − 1/x). We can assume that ψ is differentiable with ψ′(x) → 0. Then

it suffices to prove that limx→∞ xχ
′(x)/χ(x) = 0. An elementary computation yields, with

y = F←(1− 1/x),

xχ′(x)

χ(x)
=
ψ(y)

y
− ψ′(y) → 0 ,

as x, hence y, tends to infinity. Thus χ is slowly varying at infinity.
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