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Abstract. In this paper, we are interested in extending the classical Kolmogorov-

Smirnov homogeneity test to compare two samples of interval-valued observed

measurements. In such a case, the test result is interval-valued, and one major

difficulty is to find the bounds of this set. We propose a very efficient computa-

tional method for approximating these bounds by using a p-box (pairs of upper

and lower cumulative distributions) representation of the samples.
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1 Introduction

In many applications, the precise value of data may only be known up to some precision,

that is it may be interval-valued. Common examples are censored data (e.g., censor

limitations) or digital data. When performing statistical tests, ignoring this imprecision

may lead to unreliable decisions. For instance, in the case of digital data, quantization

can hide the information contained in the data and provide unstable decision.

It is therefore advisable to acknowledge this imprecision in statistical tests, if only

to provide results robust to this imprecision. By robust, we understand tests that will

remain cautious (i.e., will abstain to say something about the null hypothesis) if not

enough information is available. However, treating this imprecision usually leads to an

increased computational costs, as shown by various authors in the past [6,7,3]. This

means that developing efficient methods to compute statistics with interval data is a

critical issue.

In this paper, we explore the extension of the Kolmogorov-Smirnov (KS) homo-

geneity test to interval data, and more precisely its computational aspects. To our knowl-

edge, this aspect has not been considered in the past, even if some but not much works

on the KS test with interval or fuzzy data exist [4,5]. Approximate and exact bounds that

are straightforward to compute are provided in Section 3, while notations and reminders

are given in Section 2.

In Section 4, we illustrate our results on a image based medical diagnosis problem.

Indeed, in such problems a common task is to detect whether two regions of a quantized

image have similar pixel distributions.
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2 Preliminary material

Komogorov-Smirnov (KS) homogeneity test [1] is commonly used to compare two

samples A= {ai|i = 1, . . . ,n,ai ∈ R} and B= {bi|i = 1, . . . ,m,bi ∈ R} of measurements

to determine whether or not they follow the same probability distribution. Those sam-

ples are supposed to be independently drawn from a continuous one-dimensional real-

valued probability distributions.

If FA (FB) denote the empirical cumulative distributions built from A (B), that is if

FA(x) =
#{a ∈ A|a ≤ x}

n
(1)

with #E the cardinal of a set E, then the KS test statistic KS is defined by:

KS(A,B) = sup
x∈R

|FA(x)−FB(x)|

Under the null hypothesis H0 that the two-samples are drawn from the same dis-

tribution, the statistic β (n,m)KS(A,B) converges to the Kolmogorov distribution, with

β (n,m) =
√

1
n
+ 1

m
. Using the critical values of the Kolmogorov distribution, the null

hypothesis can be rejected at level α if KS(A,B) > β (n,m)κα . One common value of

this rejection threshold is κ0.05 = 1.36.

As this test makes very few assumptions about the samples (i.e., it is non-parametric)

and aims at testing a complex hypothesis (with respect to, e.g., comparing two means),

it requires in practice relatively large samples to properly reject the null hypothesis.

In this paper, we explore the case where observations are interval-valued, i.e., they

correspond to two sets [A] = {[ai,ai]|i = 1, . . . ,n} and [B] = {[bi,bi]|i = 1, . . . ,m} of

real-valued intervals. As recalled in the introduction and further explored in Section 4,

such imprecision may be the result of some quantization process.

In the next section, we study the interval-valued statistic resulting from such data,

and in particular provide efficient approximative (and sometimes exact) bounds for it,

using the notion of p-box.

3 Kolmogorov-Smirnov Test with interval-valued data

Let us first introduce some notations. We will call selection of [A] a set S[A] of values

S[A] := {ai|i = 1, . . . ,n,ai ∈ [ai,ai]} where each ai is picked inside the interval [ai,ai],
i = 1, . . . ,n. We will denote by S ([A]) the set of all selections of [A]. To a selection

S[A] corresponds an empirical cumulative distribution FS[A]
obtained by Eq. (1), and we

denote by F ([A]) the (non-convex) set of such empirical cumulative distributions.

Given this, the imprecise Kolmogorov-Smirnov Test

[KS]([A], [B]) = [KS([A], [B]),KS([A], [B])]
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is an interval such that

KS([A], [B]) = inf
S[A]∈S ([A]),

S[B]∈S ([B])

sup
x∈R

|FS[A]
(x)−FS[B]

(x)|, (2)

KS([A], [B]) = sup
S[A]∈S ([A]),

S[B]∈S ([B])

sup
x∈R

|FS[A]
(x)−FS[B]

(x)|. (3)

Computing such values is not, a priori, a trivial task since the number of possible se-

lections for both sets of intervals [A] and [B] are usually infinite. It should however be

noted that, as the empirical cumulative distributions can only take a finite number of

values (i.e., {0, 1/n, 2/n, . . . ,1} for [A]), so does the test. Yet, we are only interested in the

extreme values it can take.

In the sequel, we propose to use the formalism of p-boxes to approximate those

bounds KS([A], [B]) and KS([A], [B])

3.1 Approximating p-box

A p-box [2] [F ,F ] is a pair of cumulative distributions such that F(x) ≤ F(x) for any

x ∈ R. The usual notion of cumulative distribution is retrieved when F = F , and a p-

box usually describes an ill-known cumulative distribution that is known to lie between

F and F . That is, to a p-box [F ,F ] we can associate a set Φ([F ,F ]) of cumulative

distributions such that

Φ([F ,F ]) = {F |∀x ∈ R,F(x)≤ F(x)≤ F(x)}.

Here, we will use it as an approximating tool.

For a set of intervals [A], let us denote by Sa and Sa the particular selections Sa =
{ai|i = 1, . . . ,n} and Sa = {ai|i = 1, . . . ,n}. Then, we define the p-box [F [A],F [A]] ap-

proximating [A] as

F [A] := FSa
and F [A] := FSa .

We have the following property

Proposition 1. Given a set of intervals [A], we have F ([A])⊆ Φ([F [A],F [A]])

Proof. Consider a given selection SA. For every ai in this selection, we have

ai ≤ ai ≤ ai.

Since this is true for every i = 1, . . . ,n, this means that FSA
is stochastically dominated3

by FS
A

and stochastically dominates FSA
, i.e.

FSa
(x)≤ FSA

(x)≤ FSa(x),∀x ∈ R

and as this is true for every selection SA, we have F ([A])⊆ Φ([F [A],F [A]]). To see that

the inclusion is strict, simply note that FSA
can only take a finite number of values, while

cumulative distributions in Φ([F [A],F [A]]) can be strictly monotonous.

3 Recall that F1 stochastically dominates F2 if F1 ≤ F2.
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This shows that the associated (convex) set Φ([F [A],F [A]]) is actually a conservative

approximation of F ([A]). The next example illustrates both the p-box [F [A],F [A]] and

Proposition 1.

Example 1. Consider the case where we have 3 sampled intervals, with the three fol-

lowing intervals:

[a1,a1] = [2,7]
[a2,a2] = [6,12]
[a3,a3] = [10,16]

Figure 1 illustrates the obtained p-box and one cumulative distribution (F̂) included

in Φ([F [A],F [A]]). However, F̂ is not in F ([A]), since any empirical cumulative dis-

tribution obtained from a selection on 3 intervals can only takes its values in the set

{0, 1/3, 2/3,1}.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

1/3

1/2

2/3

1

x values

F
(x

)

F [A]

F [A]

F̂

Fig. 1. P-box of Example 1

3.2 Approximating KS([A], [B]) and KS([A], [B])

Consider two samples [A] and [B] and the associated p-boxes [F [A],F [A]] and [F [B],F [B]].

We can now introduce the approximated imprecise KS Test [̃KS] = [KS
˜

, K̃S] such that:

K̃S([A], [B]) = sup
x∈R

max{|F [A](x)−F [B](x)|, |F [A](x)−F [B](x)|}, (4)

KS

˜
([A], [B]) = sup

x∈R
D[A],[B](x), (5)

with

D[A],[B](x) =





0 if [F [A](x),F [A](x)]∩ [F [B](x),F [B](x)] 6= /0

min{|F [A](x)−F [B](x)|, |F [A](x)−F [B](x)|} otherwise



Kolmogorov-Smirnov test for interval data 5

These approximations are straightforward to compute (if n+m intervals are ob-

served, at worst they require 2n+2m computations once the p-boxes are built). We also

have the following properties:

Proposition 2. Given a set of intervals [A] and [B], we have K̃S([A], [B]) = KS([A], [B])

Proof. The value K̃S([A], [B]) is reached on x either for a pair {F [A],F [B]} or {F [A],F [B]}.

As any pair F1,F2 with F1 ∈ Φ([F [A],F [A]]) and F2 ∈ Φ([F [B],F [B]]) would have a KS

statistic lower than K̃S([A], [B]), and given the inclusion of Proposition 1, this means

that KS([A], [B]) ≤ K̃S([A], [B]). To show that they coincide, it is sufficient to note that

all distributions F [A],F [A],F [B],F [B] can be obtained by specific selections (i.e., the one

used to build the p-boxes).

�

This shows that the upper bound is exact. Concerning the lower bound, we only

have the following inequality:

Proposition 3. Given a set of intervals [A] and [B], we have KS
˜

([A], [B])≤ KS([A], [B])

Proof. Immediate, given the inclusion of Proposition 1 and the fact that KS
˜

([A], [B]) is

the minimal KS statistics reached by a couple of cumulative distributions respectively

in [F [A],F [A]] and [F [B],F [B]]

�

And unfortunately this inequality will usually be strict, as shows the next example.

Example 2. Consider the case where n= 2, m= 3 and where
⋂n

i=1[ai,ai] = /0,
⋂m

i=1[bi,bi] =
/0. This means that, for every selection S[A] ∈ S ([A]) and S[B] ∈ S ([B]), we have that

the empirical cumulative distributions FS[A]
and FS[B]

respectively takes at least one value

in {1/2} and in {1/3, 2/3}. This means that KS([A], [B]) 6= 0 (as every cumulative distribu-

tions coming from selections will assume different values), while it is possible in such

a situation to have KS
˜

([A], [B]) = 0.

Consider the following example:

[a1,a1] = [1,8]
[
b1,b1

]
= [2,7]

[a2,a2] = [9,15]
[
b2,b2

]
= [6,12][

b3,b3

]
= [10,16]

A simple look at Figure 2 allows us to see that KS
˜

([A], [B]) = 0 in this case.

The inequality between KS
˜

([A], [B]) and KS([A], [B]) can also be strict when KS
˜

([A], [B]) 6=
0. It should be noted that the discrepancy between KS

˜
([A], [B]) and KS([A], [B]) will

decrease as the number of sampled intervals increases. Finally, a noticeable situation

where KS
˜

([A], [B]) will be an exact bound (KS
˜

([A], [B]) =KS([A], [B])) is when [F [A],F [A]]

and [F [B],F [B]] are disjoint, that is either F([A])> F([B]) or F([A])< F([B]).
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

1/3

2/3
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F [A]

F [B]

F [B]

Fig. 2. P-boxes of Example 2

3.3 Decision making using an imprecise-valued test

One of the main features of this extension is that it provides a pair of (conservative)

bounds KS
˜

([A], [B]) and K̃S([A], [B]) rather than a precise value KS(A,B). In contrast

with usual tests that either reject or do not reject an hypothesis, this leads to three pos-

sible decisions: the answer to the test can be yes, no or unknown, the last one occurring

when available information is insufficient.

In fact, interpreting this test is straightforward. Let γ = β (n,m)κα be the signifi-

cance level.

– If KS
˜

([A], [B]) > γ then we can conclude that there is no possible selections S[A]
of [A] and S[B] of [B] such that KS(S[A],S[B]) ≤ γ and thus the hypothesis that the

two-samples are drawn from the same distribution can be rejected at a level α .

– On the contrary, if K̃S([A], [B]) < γ then there is no possible selections S[A] of [A]
and S[B] of [B] such that KS(S[A],S[B]) ≥ γ and thus the hypothesis that the two-

samples are drawn from the same distribution cannot be rejected at a level α .

– Otherwise, we will conclude that our information is too imprecise to lead to a clear

decision about rejection.

This new test will therefore point out those cases where the data imprecision is too

important to lead to a clear decision. As we shall see in the next section, it allows one to

deal with quantization in a new way, namely it can detect when the disturbance or loss of

information induced by the quantization makes the test inconclusive. It should be noted

that, as K̃S([A], [B]) is an approximated lower bound, indecision may also be due to this

approximation, yet experiments of the next section indicate that this approximation is

reasonable.

4 Experimentation

The experimentation we propose is based on a set of medical images acquired by a

gamma camera. In such applications, statistical hypothesis testing is often used to de-

termine whether pixels distribution in two different regions of an image are similar or
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not. Physicians usually try to control the probability of making a decision leading to

harmful consequences, and make it as low as possible (usually 0.05).

The advantage of using a KS test in this case is that it makes very few assumption

about the distribution. However, in such applications, it is quite common to deal with

quantized information, i.e., real-valued information constrained to belong to a small

subset of (integer) values. Since the KS test is designed to compare pairs of continuous

distributions, it is necessary to ensure that the statistical test is robust with respect to the

data model. Indeed, the value of the statistic computed from quantized data may differ

markedly from the calculation based on original (non-quantized) but unavailable data.

Physicians would usually try to avoid a wrong decision, and prefer to acquire addi-

tional data when the actual data are not fully reliable. Thus, knowing that no decision

can be taken based on the current set of data is a valuable piece of information.

We illustrate this weakness of the usual KS test with a set of medical images ac-

quired by a gamma camera (nuclear medicine images) whose values are quantified on a

restricted number of values. This experiment also highlights the ability of the extended

KS test to avoid wrong decisions induced by quantization. It aims at mimicking real

medical situations where the nuclear physician has to compare the distribution of val-

ues in two regions of interest in order to decide whether or not a patient has a specific

disease.

The set of images is made of 1000 planar acquisitions of a Hoffman 2-D brain

phantom (acquisition time: 1 second; average count per image 1.5 kcounts, 128× 128

images to satisfy the Shannon condition), representing 1000 measures of a random 2D

image (see Figure (3)). Due to the fact that nuclear images are obtained by counting the

photons that have been emitted in a particular direction, pixel values in a nuclear image

can be supposed to be contaminated by Poisson distributed noise. Due to the very short

acquisition time, the images were very noisy, i.e. the signal to noise ratio was very low.

More precisely, the average pixel value in the brain corresponded to a 69% coefficient

of variation of the Poisson noise. Moreover, the number of different possible values to

be assigned to a pixel was low and thus, within those images, the impact of quantization

was high: pixel possible values were {0,256,512,768,1024,1280,1536,1792,2048}.

To obtain less noisy and less quantized images, we summed the raw images (see

e.g. Figure (4)). The higher the number of summed images, the higher the average pixel

value, and thus the higher the signal to noise ratio and the higher is the number of

possible values for each pixel. When summing the 1000 raw images, we obtained the

high dynamic resolution and high signal to noise ratio image depicted in Figure (5).a.

We use the KS test to decide whether the two regions depicted in Figures (5).b and

(5).c can be considered as being similar or not (the null hypothesis). Considering the

number of pixels in each region (n = 183, m = 226), the significance level for a p-value

α = 0.05 is γ ≈ 0.1910. Testing the two regions with the reference image (Figure (5).a)

provides the following values: KS(A,B)≈ 0.2549, KS
˜

([A], [B])≈ 0.2505 K̃S([A], [B])≈
0.2549, leading to conclude that the similarity of regions A and B should be rejected at

a level 0.05, which can be considered as our ground truth.

We use the KS test for comparing the same regions but with 300 pairs of images that

have been randomly selected in the set of 1000 original images. In that case, the classical

test accepts the similarity of the two regions, while the imprecise test is inconclusive
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for each pairs: KS
˜

([A], [B]) < γ < K̃S([A], [B]). We now do the same test with images

having a higher dynamic obtained by summing p = 2,3, . . . ,40 images. For each value

of p, we count the number of times the classical test provides the right answer, i.e.

reject the null hypothesis at level 0.05 (γ ≤ KS(A,B)). We then compute the ratio of

this count over 300. For the extended KS test, we compute two ratios: the ratio of times

when γ ≤ KS
˜

([A], [B]), i.e. we must reject the null hypothesis at level 0.05, and the ratio

of times when γ ≤ K̃S([A], [B]), i.e. we can reject the null hypothesis at level 0.05. We

also compute the number of times where the test is inconclusive, i.e. KS
˜

([A], [B])< γ <

K̃S([A], [B]).

Figure (6) plots these ratio versus p, the number of summed images. On one hand,

concerning the classical KS test, it can be noticed that depending on the quantification

level, the answer to the test differs. In fact, when the number of pixel’s possible val-

ues is low, the test concludes that H0 cannot be rejected most of the time, leading to

a decision that the two distributions are similar even though they are not. When p in-

creases, so increases pixel’s possible values and increases the ratio of correct answer.

Thus, quantization has a high impact on the conclusions of a classical KS test.

On the other hand, concerning the extended KS test, it can be noticed that the null

hypothesis can always be rejected. The impact of the quantization only affects the ratio

of times when the null hypothesis must be rejected. Thus the impact of quantization

here is much more sensible, in the sense that when quantization is too severe (informa-

tion is too poor), the test abstains to make a decision. Also, in all cases, the test is either

inconclusive or provides the right answer, and is therefore never wrong, which is what

we could expect from a robust test.

Fig. 3. 6 acquisitions of the Hoffman 2-D brain phantom

Fig. 4. 6 images obtained by summing up 10 raw acquisitions of the Hoffman 2-D brain phantom
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a) b) c)

Fig. 5. Reference image obtained by summing the 1000 raw images (a), region A (b) and region

B (c) selected on the reference image.
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Fig. 6. Correct decision ratio with the classical test (black) and with the extended test (blue for

can be rejected, red for must be rejected), superimposed with the proportion of times extended

test is inconclusive (green).
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5 Conclusions

In this paper, we have introduced efficient methods to approximate the bounds of the

KS test with interval-valued data. We have demonstrated that the upper bound is exact

while the lower bound is, in general, only a lower approximation. However, the exper-

iments have shown that this is not too conservative approximation and still allows to

take decision when enough information is available.

The obvious advantages of this paper proposal is its efficiency (computational time

is almost linear in the number of sampled intervals), however we may search in the fu-

ture for exact rather than approximated lower bounds. Since KS test result only depends

on the ordering (i.e., ranking) of sampled elements between them, a solution would be

to explore the number of possible orderings among elements of [A] and [B], or to iden-

tify the orderings for which the lower bound is obtained (the number of such orderings,

while finite, may be huge).

Finally, it would also be interesting to investigate other non-parametric homoge-

neous tests, such as the Cramer-Von Mises one.
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