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A Note on Learning Dependence Under Severe

Uncertainty
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Abstract. We propose two models, one continuous and one categor-
ical, to learn about dependence between two random variables, given
only limited joint observations, but assuming that the marginals are pre-
cisely known. The continuous model focuses on the Gaussian case, while
the categorical model is generic. We illustrate the resulting statistical
inferences on a simple example concerning the body mass index. Both
methods can be extended easily to three or more random variables.
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1 Introduction

Sklar’s theorem [10] states that any multivariate distribution of k variables can
be expressed through a density on [0, 1]k with uniform marginals—this density
is called a copula—and the marginal distributions of each of the variables. For
this reason, copulas [7] have become an indispensible tool to model and learn
statistical dependence in multivariate models: they allow of estimation of the
dependence structure, separately from the marginal structure.

Estimating dependence requires joint observations, which in many cases are
only available in small amounts, while substantial amounts of marginal data may
be available. For example, when studying the reliability of a system, it is common
to have good information about the reliability of each system component, yet
to have only little information about joint failures [11]. Imprecise probabilities
provide one possible theoretical basis for dealing with small sample sizes, by
representing knowledge as a set of distributions [3, 13, 1], rather than a single
distribution necessarily based on somewhat arbitrary assumptions [6].

Copulas and imprecise probabilities have been studied in the literature by
various researchers. The Fréchet–Hoeffding copula bounds, which represent com-
pletely unknown dependence, are used for instance in probabilistic arithmetic [16]
and p-boxes [4, 12]. One theoretical difficulty is that there is no straightforward
imprecise equivalent of Sklar’s theorem, say, expressing any set of joint distribu-
tions as a sets of copulas along with a set of marginal distributions [8]: it appears
that, when working with sets of distributions, separating the dependence struc-
ture from the marginal structure is a lot more difficult in general.
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In this paper, we propose and investigate a few statistical models for ro-
bust dependence learning from limited data. We state an imprecise version of
Sklar’s theorem when marginal distributions are fully known, separating pre-
cise marginals from the imprecise dependence structure. We propose a range of
parametric models for the bivariate categorical case. Finally, demonstrate our
findings on a toy example: estimating the body mass index from height and mass
data.

Section 2 explores a continuous model, focusing on the multivariate normal
model, while section 3 provides a first exploration of a generic categorical model.

2 Robust Bayesian Correlation Learning for Bivariate

Normal Sampling

We start with revising a simple and well-studied model: sampling from the bi-
variate normal distribution. We will derive some new results that are relevant to
dependence learning. Our analysis starts from Quaeghebeur and De Cooman’s
robust Bayesian framework for sampling from the exponential family [9].

2.1 Inference with known Mean and Unknown Covariance Matrix

Let Zi := (Zi1, . . . , Zik) be a multivariate normally distributed random variable
with known mean—which we can assume to be zero without loss of generality
through translation of the data—but unknown covariance matrix Σ ∈ R

k×k. A
particular realisation of Zi is denoted by a lower case letter zi := (zi1, . . . , zik) ∈
R

k. The likelihood of an i.i.d. sample z1, . . . , zn is:

f (z1, . . . , zn | Σ) ∝ |Σ|−n/2
n
∏

i=1

exp

(

−
1

2
zTi Σ

−1zi

)

(1)

= |Σ|−n/2 exp

[
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1

2

n
∑

i=1

tr
(

ziz
T
i Σ

−1
)

]

(2)

where the data zi ∈ R
k are organised as row vectors, so ziz

T
i is the matrix

containing ziℓziℓ′ in row ℓ and column ℓ′.
A family of conjugate priors for this density is the family of inverse Wishart

distributions with hyperparameters ν0 > 0 and Ψ0 ∈ R
k×k positive definite [2]:

f (Σ | ν0, Ψ0) ∝ |Σ|−
ν0+k+1

2 exp

[

−
1

2
tr
(

Ψ0Σ
−1

)

]

(3)

The posterior distribution is obtained by updating the hyperparameters through:

νn = ν0 + n Ψn = Ψ0 +

n
∑

i=1

ziz
T
i (4)
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The prior expected covariance matrix is given by

E (Σ | ν0, Ψ0) =
Ψ0

ν0 − k − 1
=: Σ0 (5)

and therefore, through conjugacy, the posterior expected covariance matrix is

E (Σ | z1, . . . , zn, ν0, Ψ0) = E (Σ | νn, Ψn) =
Ψn

νn − k − 1
(6)

=
Ψ0 +

∑n
i=1

ziz
T
i

ν0 + n− k − 1
(7)

=
(ν0 − k − 1)Σ0 +

∑n
i=1

ziz
T
i

ν0 + n− k − 1
=: Σn (8)

For robust Bayesian analysis aiming to learn about the dependence between
two random variables, we now need to identify a reasonable set of prior distribu-
tions, or, in our conjugate setting, a reasonable set of hyperparameters ν0 and
Ψ0.

The formula for the posterior expected covariance matrix shows that ν0 de-
termines our learning speed, that is, how many observations n we need before
starting to move towards our data. So, ν0 is similar to the s value in the im-
precise Dirichlet model [14]. Here too, we will simply assume ν0 to be fixed to
whatever value is judged to lead to a reasonable learning speed. For fixed ν0,
any particular choice of Ψ0 corresponds to a prior covariance matrix Σ0.

Let us now study the bivariate case (k = 2) in more detail. We will write Xi

for Zi1 and Yi for Zi2. We would choose

Ψ0 = (ν0 − 3)

[

σ2

X ρ0σXσY

ρ0σXσY σ2

Y

]

(9)

if we had prior variances σX > 0 and σY > 0 for the two components, as
well as the prior correlation coefficient ρ0 ∈ [−1, 1]. For this paper focusing
on dependence, we are mostly interested in cases where the marginals are well
known, i.e. well known prior σX and σY , but unknown prior correlation ρ0. We
will therefore study the set of priors with all parameters fixed, except for ρ0,
which we assume to be vacuous a priori. Without loss of generality, by rescaling,
we can assume that σX = σY = 1, leaving us with just two hyperparameters:
ν0 > 0 and ρ0 ∈ [−1, 1].

The posterior covariance matrix becomes:

Σn =
1

ν′
0
+ n

[

ν′
0
+

∑n
i=1

x2

i ν′
0
ρ0 +

∑n
i=1

xiyi
ν′
0
ρ0 +

∑n
i=1

xiyi ν′
0
+
∑n

i=1
y2i

]

(10)

where ν′
0
= ν0−k−1 = ν0−3. Provided that the sample variance is approximately

equal to the prior variance, i.e.

n
∑

i=1

x2

i ≈ nσ2

X = n

n
∑

i=1

y2i ≈ nσ2

Y = n (11)
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our expression for Σn becomes:
[

1 ρn
ρn 1

]

(12)

where

ρn =
ν′
0
ρ0 +

∑n
i=1

xiyi
ν′
0
+ n

. (13)

Equation (12) is the covariance matrix of a bivariate normal with unit marginal
variances and correlation coefficient ρn. For vacuous prior correlation, ρ0 ∈
[−1, 1], we thus get the following posterior bounds on the correlation:

ρ
n
=

−ν′
0
+
∑n

i=1
xiyi

ν′
0
+ n

(14)

ρn =
ν′
0
+
∑n

i=1
xiyi

ν′
0
+ n

(15)

provided that our observations, and our prior, have unit variance and zero mean
(which we can achieve by linear transformation without loss of generality).

This analysis generalises almost trivially to cases with more than two vari-
ables, k > 2—we leave this to the reader.

2.2 Application to body mass index example

We now illustrate our model on the evaluation of the body mass index R =
X/Y 2, where X is a person’s weight in kilograms and Y is his/her height in
meters. The body mass index is commonly used to detect under- and over-
weight. We aim (1) to assess the dependence between X and Y in a particular
population, and (2) to extract a robust inference about R in this population.

We consider 30 paired observations of heights and weights of 11 years old
girls [5, p. 75]. The weight X has sample mean x̄ = 36.2, sample standard
deviation sX = 7.7, with no strong evidence against normality (p-value3 0.017).
The height Y has sample mean ȳ = 1.448, sample standard deviation sY = 0.077,
with no evidence against normality whatsoever (p-value 0.711). We will assume
that X and Y have known means, equal to x̄ and ȳ. We also assume that, a
priori, σX = 7.7 and σY = 0.077 in eq. (9), but we are vacuous about the prior
correlation. For reference, it may be useful to note that the sample correlation
between X and Y is in fact 0.742. For the sake the example, we assume that
the sample is drawn from a bivariate normal distribution, although there is
reasonably strong evidence against joint normality (p-value 0.00388).

Figure 1 shows the bounds on the correlation of the posterior covariance ma-
trix in eq. (10) with ν′

0
= 2 and ρ0 ∈ [−1, 1]. The two values converge steadily

with a final interval [ρ
30
, ρ

30
] = [0.630, 0.759]. The expectation of R is bounded

by E(R) = 17.10 and E(R) = 17.16. Similarly, we may wonder about the prob-
ability of R to be in a “healthy” range, which is about A = [14, 19.5] for girls
aged 11. We obtain bounds P (R ∈ A) = 0.66 and P (R ∈ A) = 0.71.

3 Throughout, we test for normality using the Shapiro-Wilk test.
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Fig. 1. Lower and upper correlation estimates ρ
n

and ρ
n
as a function of the sample

size n, with ν
′

0 = 2. The solid horizontal line denotes the sample correlation for n = 30.

3 Robust Bayesian Dependence Learning for Bivariate

Categorical Data

3.1 The Model

Consider a bivariate categorical random quantity Z := (X,Y ) with X taking
values in a finite set X = {1, . . . ,mX}, and Y taking values in a finite set Y =
{1, . . . ,mY }. The parameters θx and φy determine the marginal distributions:

p (x | θ) = θx, p (y | φ) = φy. (16)

We assume that mX ≥ 2, mY ≥ 2, θx > 0 and φy > 0.

We are interested in learning the dependence structure of X and Y . One
very general way to express the full joint distribution of (X,Y ) is by introducing
parameters wxy such that

p (x, y | θ, φ, w) = wxyθxφy (17)

subject to the constraints

∑

x∈X

∑

y∈Y

wxyθxφy = 1 (18)

∑

x∈X

wxyθx = 1 (19)

∑

y∈Y

wxyφy = 1 (20)
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Equations (19) and (20) simply follow from
∑

x∈X

wxyθxφy =
∑

x∈X

p (x, y | θ, φ, w) = p (y | θ, φ, w) = φy (21)

∑

y∈Y

wxyθxφy =
∑

y∈Y

p (x, y | θ, φ, w) = p (x | θ, φ, w) = θx (22)

respectively. This model specification is over-parametrized, but it allows us to
model the marginal distributions and the dependence structure separately, where
the matrix w plays precisely a similar role as a copula in general bivariate models
for (usually) continuous random quantities. However, a key difference and major
difficulty with the above model is that the constraints on w depend on θ and
φ: the separation is thus not as complete as with copulas, where dependence
structure is parametrised independently of the marginals. For this reason, it
seems most natural to consider a two-stage situation where we first learn about
the marginal parameters θ and φ, followed by learning about the dependence
structure w conditional on what we learnt about θ and φ.

3.2 Inference for Known Marginals

For this reason, as a stepping stone towards general inference about θ, φ, and
w, here we consider a scenario where the marginal distributions are already
fully known, and we only aim at inference about w. While this may appear
somewhat restrictive, and perhaps even artificial, there are practical scenarios
where one has very substantial information about the probability distributions
for the random quantities X and Y separately, but relatively little information
about their joint distribution.

There are (mX − 1)(mY − 1) degrees of freedom for the components of w.
In case data is limited, to enable sufficiently useful inference, it seems natural
to assume a reduced-dimensional parametric form for w, which may naturally
correspond to an (assumed) ordering of the categories, as we will illustrate in
section 3.3. Let nxy denote the number of observations of (X,Y ) = (x, y), with
total number of observations n =

∑

x∈X

∑

y∈Y
nxy and row and column totals

denoted by nx∗ =
∑

y∈Y
nxy and n∗y =

∑

x∈X
nxy, respectively. So, there are

nx∗ observations of X = x and n∗y observations of Y = y.
Without further restrictions on w, it seems tempting to fit the model to

match the non-parametric maximum likelihood estimate

p̂ (x, y | w) =
nxy

n
(23)

by setting

ŵxy =
nxy

nθxφy
. (24)

A problem is that this estimate will usually violate eqs. (19) and (20). For
instance,

∑

x∈X

ŵxyθx =
∑

x∈X

nxy

nθxφy
θx =

n∗y

nφy
6= 1 (25)



A Note on Learning Dependence Under Severe Uncertainty 7

as soon as
n∗y

n 6= φy. A proper maximum likelihood estimate would maximize
the likelihood subject to all constraints embodied by eqs. (18) to (20). Solving
this optimisation problem poses an interesting challenge.

Bayesian inference for w will face a similar challenge: w lives in a convex
subspace of RmX×mY determined by eqs. (18) to (20). Application of Bayes’s
theorem requires integrating (or simulating) over this space. Nevertheless, the
basic principles behind Bayesian inference for w are simple, and sensitivity anal-
ysis is similar to the imprecise Dirichlet model [14]. Specific dimension-reduced
models, where we have a much better handle on the parameter space, will be
illustrated in more detail in section 3.3.

The likelihood is given by
∏

x∈X

∏

y∈Y

(wxyθxφy)
nxy (26)

so as conjugate prior we can choose

f (w | α0) ∝ g(w)
∏

x∈X

∏

y∈Y

(wxyθxφy)
α0xy (27)

where α0xy > 0 and g is some arbitrary non-negative function (as long as the
right hand side integrates to a finite value). With ν0 :=

∑

xy α0xy, this prior
distribution can be interpreted as reflecting prior information equivalent to ν0
observations of which α0xy were (X,Y ) = (x, y). The corresponding posterior
distribution is clearly f (w | αn) with αnxy = α0xy + nxy.

Sensitivity analysis on this model could then follow an approach similar to
Walley’s imprecise Dirichlet model [14], by taking the set of all prior distributions
for a fixed value of ν0. In case of an informative set of prior distributions, one
may also allow the value of ν0 to vary within a set to allow prior-data conflict
modelling [15].

As already mentioned, the remaining key difficulty is to integrate the conju-
gate density over the parameter space. For this reason, in the next section, we
consider a reduced model.

3.3 Reduced Model

As a first and basic example of a reduced parametric form, consider the case
X = Y = {1, 2, 3} with known θx = φy = 1/3 for all x and y ∈ {1, 2, 3}. If the
categories are ordered in some natural manner, then it might be quite reasonable
to specify

w =





1 + 2α 1− α 1− α
1− α 1 + 2α 1− α
1− α 1− α 1 + 2α



 (28)

with α ∈ [0, 1]. It is easily verified that this model satisfies eqs. (18) to (20): the
full matrix sums to 9, and each of the rows and colums sum to 3.

Note that there is no logical requirement to avoid α ∈ [−1/2, 0), we just
use this small example as an illustration. In this model, α = 0 corresponds
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to full independence between X and Y , whereas α = 1 corresponds to perfect
correlation X = Y . Therefore, this corresponds to a scenario where we may
suspect positive correlation between X and Y , but we are unsure about the
strength of correlation. Note that the actual model reduction is achieved by
additionally assuming that X = Y = x has the same probability for all x ∈
{1, 2, 3}, and similar for X = x ∩ Y = y for all x 6= y.

With these assumptions, statistical inference is concerned with learning about
the parameter α ∈ [0, 1]. The likelihood function is

(1 + 2α)t(1− α)n−t (29)

with t = n11 + n22 + n33 and n =
∑

xy nxy as before. The maximum likelihood
estimate is

α̂ =

{

3t−n
2n if 3t ≥ n,

0 otherwise.
(30)

For a Bayesian approach to inference for this model, we can define a conjugate
prior

f (α | ν0, τ0) ∝ (1 + 2α)τ0(1− α)ν0−τ0 (31)

with τ0 ∈ [0, ν0], with the possible interpretation as reflecting prior information
which is equivalent to ν0 observations of which τ0 have X = Y .

The posterior distribution is simply f (α | ν0 + n, τ0 + t) . Sensitivity analysis
is again straightforward by taking the set of prior distributions consisting of all
with for example τ0 ∈ [0, ν0] for a fixed ν0. For instance, we would get the
following robust estimate for the posterior mode of α:

α̂n =

[

3t− ν0 − n

2(ν0 + n)
,
3t+ 2ν0 − n

2(ν0 + n)

]

(32)

when 3t ≥ ν0 + n, with similar formulas when 3t < ν0 + n (truncating negative
values to zero).

3.4 Application to body mass index example

To apply the categorical model to our data, we must first discretize them, with
the ordering of the categories following the ordering of natural numbers. To
obtain three categories with uniform marginals, we simply discretized the 99%
prediction intervals of each Gaussian marginals of section 2.2, obtaining X =
{[17, 32], [32, 39], [39, 56]} and Y = {[1.24, 1.41], [1.41, 1.47], [1.47, 1.64]}.

Figure 2 shows the bounds on the posterior mode α̂n in eq. (32), with ν0 = 2.
The results are similar to those obtained in section 2.2, showing that even this
very simple discretized model can capture the correlation between X and Y ,
with the bounds on α̂30 being [0.56, 0.66]. From these values and the bounds of
the categories, we can easily obtain bounds on the expectation of R: E(R) = 12.9
and E(R) = 22.4, which gives a much wider interval than in section 2.2. This is
due to the very rough discretization: a finer discretization would likely provide
a narrower interval. The lower and upper probabilities of A = [14, 19.5] are this
time P (R ∈ A) = 0 and P (R ∈ A) = 0.96, which are almost vacuous and again
show that to have meaningful inferences, a finer discretization is needed.
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Fig. 2. Bounds on α̂n as a function of the sample size n, with ν0 = 2.

4 Conclusion

In this paper, we have introduced two preliminary models—a continuous one and
a discrete one—to model dependence when joint data is limited, but assuming
that the marginals are precisely known. The continuous model focused on the
very special multivariate normal case. However, already in our simple example,
we have seen that joint normality is rarely satisfied in practice. A major chal-
lenge is to provide methods for dependence modelling, that are both flexible and
computationally tractable, whilst still producing useful inferences.

Even though the models and example studied are very preliminary, we feel
that extensions of the discrete model could provide more flexibility, whilst still
being easy to learn and to compute with. We see it as a promising path to learn
dependency structures with imprecise probabilistic models. In particular, it can
be seen as a way to approximate a continuous model, as we did in the example.
In the future we plan to work on such extensions and on the identification of
parametric matrices of weights more flexible than the reduced one presented
here.

Finally, an obvious extension to the present work would be to relax the
assumption that marginals are precisely identified, and to work with sets of
marginals instead. However, this raises challenging theoretical issues, as defin-
ing a well-founded extension or equivalent formulation of Sklar’s theorem for
imprecise models is far from trivial.
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