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Abstract. In this paper, we study how multilabel predictions can be obtained

when our uncertainty is described by a convex set of probabilities. Such predic-

tions, typically consisting of a set of potentially optimal decisions, are hard to

make in large decision spaces such as the one considered in multilabel problems.

However, we show that when considering the Hamming loss, an approximate pre-

diction can be efficiently computed from label-wise information, as in the precise

case. We also perform some first experiments showing the interest of performing

partial predictions in the multilabel case.

Keywords: Credal sets, multilabel, indeterminate classification, k-nn, binary rel-

evance

1 Introduction

The problem of multi-label classification, which generalizes the traditional (single la-

bel) classification setting by allowing multiple labels to belong simultaneously to an in-

stance, has recently attracted a lot of attention. Such a setting indeed appears in a lot of

cases: a film can belong to multiple categories, a music can stir multiple emotions [12],

proteins can possess multiple functions [14], etc. In such problems, obtaining a com-

plete ground truth (sets of relevant labels) for the training data and making accurate

predictions is more complex than in traditional classification, in which the aim is to

predict a single label.

In such a setting the appearance of incomplete observations, i.e., instances for which

we do not know whether some labels are relevant, is much more likely. For example,

a user may be able to tag a movie as a comedy and not as a science-fiction movie, but

may hesitate about whether it should be tagged as a drama. Other examples include

cases with high number of labels and where an expert cannot be expected to provide all

relevant ones. Such partial labels are commonly called weak labels [9] and are common

in problems such as image annotation [10] or protein function prediction [14].

Even when considering weak labels, all multilabel methods we are aware of still

produce complete predictions as outputs. However, given the complexity of the predic-

tions to make and the likely presence of missing data, it may be sensible to look for

means to do cautious yet more trustful predictions. That is it may be interesting for the

learner to abstain to make a prediction about a label whose relevance is too uncertain,

so that the final prediction is partial but more accurate. Such an approach can be seen



2 Sebastien Destercke

as an extension of the reject option implemented in learning problems [1] or of the

fact of making partial predictions [4], and has been recently investigated for the related

problem of label ranking [3,2].

In this paper, we consider the problem of making partial predictions in the mul-

tilabel setting using convex sets of probabilities, or credal sets [8], as our predictive

model. Indeed, making partial predictions is one central feature of approaches using

credal sets [4], and these approaches are also well-designed to cope with the problem of

missing or incomplete data [15]. However, making partial predictions with credal sets

in large decision space such as the one considered in mutlilabel is usually difficult.

In Section 3, we nevertheless demonstrate that when focusing on the Hamming

loss, obtaining approximate partial predictions can be done in a quite efficient way by

focusing on label-wise information. We then perform (Section 4) some experiments to

demonstrate the interest of making partial predictions in the multilabel setting. Section 2

presents necessary background material.

2 Preliminary material

In this section, we introduce the multilabel setting as well as basic notions needed to

deal with sets of probabilities.

2.1 Multilabel problem setting

The usual goal of classification problems is to associate an instance x coming from an

instance space X to a single (preferred) label of the space Λ = {λ1, . . . ,λm} of possible

classes. In a multilabel setting, an instance x is associated to a subset Lx ⊂ Λ of labels,

often called the subset of relevant labels while its complement Λ \ Lx is considered

as irrelevant. We denote by Y = {0,1}m the set of m-dimensional binary vectors, and

identify a set L of relevant labels with a binary vector y = (y1, . . . ,ym) ∈ Y such that

yi = 1 if and only if λi ∈ L. As there is a one-to-one mapping between subsets L of Λ
and Y , we will indifferently work with one or the other.

The task in a multilabel problem is the same as in usual classification: to use the

training instances (x j,y j), j = 1, . . . ,n to estimate the theoretical conditional probabil-

ity measure Px : 2Y → [0,1] associated to an instance x ∈ X . Ideally, observed outputs

y j should be completely specified vectors , however it may be the case that the value

for some component y
j
i is unknown, which will be denoted by y

j
i = ∗. We will denote

incomplete vectors by capital Y . Alternatively, an incomplete vector Y can be charac-

terized by two sets L ⊆ L ⊆ Λ of necessarily and possible relevant labels, defined as

L := {λi|yi = 1} and L := {λi|yi = 1∨ yi = ∗} respectively. An incomplete vector Y de-

scribes a corresponding set of complete vectors, obtained by replacing each yi = ∗ either

by 1 or 0, or equivalently by considering any subset L such that L ⊆ L ⊆ L. To simplify

notations, in the sequel we will use the same notation for an incomplete vector and its

associated set of complete vectors.

Example 1. Table 1 provides an example of a multilabel data set with Λ = {λ1,λ2,λ3}.

Y 3 = [∗ 1 0] is an incomplete observed instance with L3 = {λ2} and L
3
= {λ1,λ2}. Its

corresponding set of complete vectors is {[0 1 0], [1 1 0]}
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X1 X2 X3 X4 y1 y2 y3

107.1 25 Blue 60 1 0 0

−50 10 Red 40 1 0 1

200.6 30 Blue 58 ∗ 1 0

107.1 5 Green 33 0 1 ∗
. . . . . . . . . . . . . . . . . . . . .

Table 1. Multilabel data set example

In multilabel problems the size of the prediction space increases exponentially with

m (|Y | = 32768 for m = 15), meaning that estimating directly Px will be intractable

even for limited sizes of Λ . As a means to solve this issue, different authors have

proposed so-called transformation techniques [13] that reduce the initial problem (in

which 2m parameters have to be estimated) into a set of simpler problems. For instance

Binary Relevance (BR) consists in predicting relevance label-wise, solving an indepen-

dent binary problem for each label. It therefore comes down to estimate m parameters

Px(yi), i = 1, . . . ,m and to predict ŷi = 1 if Px(yi = 1) ≥ 1/2. A common critic of the

BR approach is that it does not take account of label dependencies, however it has been

shown that this approach is theoretically optimal for the Hamming loss, on which this

paper focuses [5]. Other reduction approaches include, for instance, Calibrated Ranking

(CR) [7] that focuses on pairwise comparisons.

Another issue is that making a precise and accurate estimation of Px is an extremely

difficult problem given the number 2m of alternatives and the possible presence of miss-

ing data. This problem is even more severe if little data are available, and this is why

making cautious inferences (i.e., partial predictions) using as model a (convex) set Px

of probability distributions may be interesting in the multilabel setting.

2.2 Notions about probability sets

We assume that our uncertainty is described by a convex set of probabilities Px defined

over Y rather than by a precise probability measure Px. Such a set is usually defined

either by a collection of linear constraints on the probability masses or by a set of

extreme probabilities. Given such a set, we can define for any event A ⊆ Y the notions

of lower and upper probabilities Px(A) and Px(A), respectively defined as

Px(A) = inf
Px∈Px

Px(A) and Px(A) = sup
Px∈Px

Px(A).

Lower and upper probabilities are dual, in the sense that P(A) = 1−P(Ac). Similarly,

if we consider a real-valued bounded function f : Y → R, the lower and upper expec-

tations Ex( f ) and Ex( f ) are defined as

Ex( f ) = inf
Px∈Px

Ex( f ) and Ex( f ) = sup
Px∈Px

Ex( f ),

where Ex( f ) is the expectation of f w.r.t. P. Lower and upper expectations are also

dual, in the sense that E( f ) =−E(− f ). They are also scale and translation invariant in

the sense that given two numbers α ∈ R
+,β ∈ R, we have E(α f +β ) = αE( f )+β
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In the next sections, we explore how the multilabel problem can be solved with such

credal estimates. We discuss the problem, usually computationally intensive, of making

partial decision and show that it can be simplified when considering the Hamming loss

as our loss function. Using these results, we then perform some experiment based on

label-wise decomposition and k-nn algorithms to assess the interest of making partial

predictions based on credal sets.

3 Credal multilabel predictions with Hamming loss

In this section, we first recall the principle of credal predictions, before proceeding to

show that in the case of Hamming loss, such predictions can be efficiently approximated

by an outer-approximation.

3.1 Credal predictions

Once a space Y of possible observations is defined, selecting a prediction, or equiva-

lently making a decision, requires to define:

– a space A = {a1, . . . ,ad} of possible actions (sometimes equal to Y , but not nec-

essarily);

– a loss function ℓ : A ×Y → R such that ℓ(a,y) is the loss associated to action a

when y is the ground-truth.

Given an instance x and a precise estimate P̂x, a decision a will be preferred to a

decision a′ under loss function ℓ, denote a ≻ℓ a′, if

Ex

(

ℓ(a′, ·)− ℓ(a, ·)
)

= ∑
y∈Y

P̂x(y)
(

ℓ(a′,y)− ℓ(a,y)
)

> 0, (1)

where Ex is the expectation w.r.t. P̂x. This equation means that exchanging a′ for a

would incur a positive expected loss, therefore a should be preferred to a′. In the case

of a precise estimate P̂x, ≻ℓ is a complete pre-order and the prediction comes down to

take the maximal element of this pre-order, i.e.,

âℓ = arg min
a∈A

Ex (ℓ(a, ·)) = arg min
a∈A

∑
y∈Y

P̂x(y)ℓ(a,y) (2)

that is to minimize the expected loss (ties can be broken arbitrarily, as they will lead

to the same expected loss). This means that finding the best action (or prediction) will

therefore requires d computations of expectations.

When considering a set Px as cautious estimate, there are many ways [11] to extend

Eq. (1), but the most well-founded is the maximality criterion, which states that a ≻ℓ a′,

if

Ex

(

ℓ(a′, ·)− ℓ(a, ·)
)

> 0, (3)

that is if exchanging a′ for a is guaranteed to give a positive expected loss. In such a

case, the relation ≻ℓ will be a partial order, and the maximal set Âℓ of alternatives will

be chosen as a prediction, that is

Âℓ = {a ∈ A | 6 ∃a′ ∈ A s.t. a′ ≻ℓ a}. (4)
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Computing Âℓ requires at worst d(d − 1) computations, a quadratic number of com-

parisons with respect to the number of alternatives. Also notes that evaluating Eq. (3)

usually requires solving a linear programming problem, a computationally more inten-

sive task than evaluating Eq. (1). Âℓ is a cautious prediction, since it considers a set of

potential optimal solutions.

Multilabel loss functions usually considers the set A = Y as possible actions, or

even bigger sets (for example the ranking loss considers as actions the set of complete

orders over Λ ). This means that getting âℓ is already quite hard in the general case,

hence computing Âℓ will be intractable in most cases, as the worst number of computa-

tion will then be 22m (m = 15 labels means at worst ∼ 109 comparisons).

In the next subsection, we show that for the Hamming loss ℓH , we can get an outer

approximation of Âℓ at an affordable computational cost. Offering such efficient way

to make cautious predictions based on Px is essential to be able to use such kind of

models in complex problems.

3.2 The Hamming loss

Let the set of alternatives be A = Y . Given an observation y and a prediction ŷ, Ham-

ming loss ℓH reads

ℓH(ŷ,y) =
1

m

m

∑
i=1

1(ŷi 6=yi) . (5)

It counts the number of labels for which our prediction is wrong, and normalizes it.

When the estimate P̂x is precise, it is known [5] that the optimal decision is the vector

ŷ such that ŷ j = 1 if P̂x(y j = 1)≥ 1/2 and ŷ j = 0 else. In particular, this means that the

optimal decision can be derived from the sole knowledge of the marginals P̂x(y j = 1),
j = 1, . . . ,n, provided they are good estimates of Px.

Given a probability set Px, let ŶℓH
be the maximal set of vectors that would be

obtained using Eq. (4). The next proposition shows that ŶℓH
can be outer-approximated

using the marginals of the cautious estimate Px, in contrast with the precise case.

Proposition 1. Let Px be our estimate, then the imprecise vector Ŷ ∗ such that

Ŷ ∗
j =











1 if P(y j = 1)> 1/2

0 if P(y j = 0)> 1/2

∗ else, i.e. P(y j = 1)≤ 1/2 ≤ P(y j = 1)

for j = 1, . . . ,m

is an outer approximation of ŶℓH
, in the sense that ŶℓH

⊆ Ŷ ∗.

Proof. Consider a given j ∈ {1, . . . ,m} and two alternatives ŷ and ŷ′ such that ŷ j = 1 6=
ŷ′j and ŷi = ŷ′i for any i 6= j. Then for any y such that y j = 1 we have

ℓH(ŷ
′,y)− ℓH(ŷ,y) =

(

∑
k 6= j

1(ŷ′
k
6=yk)

+1(ŷ′j 6=y j)

)

−

(

∑
k 6= j

1(ŷk 6=yk) +1(ŷ j 6=y j)

)

= 1(ŷ′j=0) −1(ŷ j=0) = 1,
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and for any y such that y j = 0 we have

ℓH(ŷ
′,y)− ℓH(ŷ,y) =

(

∑
k 6= j

1(ŷ′
k
6=yk)

+1(ŷ′j 6=y j)

)

−

(

∑
k 6= j

1(ŷk 6=yk) +1(ŷ j 6=y j)

)

= 1(ŷ′j=1) −1(ŷ j=0) =−1.

We therefore have (ℓH (ŷ′,·)−ℓH (ŷ,·)+1)/2 = 1(y j=1) , hence

P(y j = 1) = E

(

ℓH(ŷ
′, ·)− ℓH(ŷ, ·)+1

2

)

=
1

2
E
(

ℓH(ŷ
′, ·)− ℓH(ŷ, ·)

)

+
1

2

the last equality coming from scale and translation invariance. Hence E(ℓH(ŷ
′, ·)−

ℓH(ŷ, ·)) > 0 if and only if P(y j = 1) > 1/2. This means that, if P(y j = 1) > 1/2, any

vector ŷ′ with ŷ′ j = 0 is dominated (in the sense of Eq. (3)) by the vector ŷ where only

the j-th element is modified, hence no vector with ŷ′ j = 0 is in the maximal set ŶℓH
. The

proof showing that if P(y j = 0)> 1/2, then no vector with ŷ′ j = 1 is in the maximal set

is similar. �

We now provide an example showing that the inclusion can be strict in general.

Example 2. Consider the 2 label case Λ = {λ1,λ2} with the following constraints:

0.4 ≤ P(y1 = 1) = P({[1 0]})+P({[1 1]})≤ 0.6

0.9(P({[1 0]})+P({[1 1]})) = P({[1 0]})

0.84(P({[0 1]})+P({[0 0]})) = P({[0 1]})

These constraints describe a convex set P , whose extreme points (obtained by sat-

urating the first inequality one way or another) are summarized in Table 2. The first

constraints induces that P(y1 = 1) = 0.4 and P(y1 = 0) = 0.6, while the bounds P(y2 =
1) = 0.396,P(y2 = 1) = 0.544, are reached by the extreme distributions P([1 1]) =
0.06, P([0 1]) = 0.336 and P([1 1]) = 0.04, P([0 1]) = 0.504, respectively. Given these

bounds, we have that Ŷ ∗ = [∗ ∗] corresponds to the complete space Y (i.e., the empty

prediction). Yet we have that

E(ℓH([1 1], ·)− ℓH([0 0], ·)) = 0.0008 ≥ 0

also obtained with the distribution P([1 1]) = 0.06, P([0 0]) = 0.064. This means that

the vector [0 0] is not in the maximal set ŶℓH
, while it is included in Ŷ ∗.

Proposition 1 shows that we can rely on marginal information to provide an outer-

approximation of ŶℓH
that is efficient to compute, as it requires to compute 2m values,

which are to be compared to the 22m usually required to assess ŶℓH
. It also indicates

that extensions of the binary relevance approach are well adapted to provide partial

predictions from credal sets when considering the Hamming loss, and that in this case

global models integrating label dependencies are not necessary, thus saving a lot of

heavy computations.
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P({[0 0]}) P({[1 0]}) P({[0 1]}) P({[1 1]})

0.096 0.36 0.504 0.04

0.064 0.54 0.336 0.06

Table 2. Extreme points of P of Example 2

4 First experimentations

In this section, we provide first experimentations illustrating the effect of making partial

predictions with a decreasing amount of information. These experiments illustrate that

such partial predictions may indeed improve the correctness of predictions.

4.1 Evaluation

Usual loss functions such as Eq. (5) are based on complete predictions. When mak-

ing partial predictions, such loss functions need to be adapted. This can be done, for

instance, by decomposing it into two components [3], one measuring the accuracy or

correctness of the made prediction, the other measuring its completeness.

If the partial prediction is an incomplete vector such as Ŷ ∗, then Hamming loss can

be easily split into these two components. Given the prediction Ŷ ∗ characterized by

subsets L,L, let us denote Q = Λ \ (L∩L) the set of predicted labels (i.e., labels such

that Ŷ ∗
j = 1 or Ŷ ∗

j = 0). Then, if the observed set is y, we define correctness (CR) and

completeness (CP) as

CR(Ŷ ∗,y) =
1

|Q| ∑
λi∈Q

1(ŷi 6=yi) ; (6)

CP(Ŷ ∗,y) =
|Q|

m
. (7)

when predicting complete vectors, then CP = 1 and CR equals the Hamming loss (5).

When predicting the empty vector, then CP = 0 and by convention CR = 1.

4.2 Method

The method we used was to apply, label-wise, the k-nn method using lower probabilities

introduced in [6] (in which details can be found). This means that from an initial training

data set D , m data sets D j corresponding to binary classification problems are built, this

decomposition being illustrated in Figure 1. Given an instance x, the result of the k-nn

method on data set D j provides an estimate of [P(y j = 1),P(y j = 1)] and by duality an

estimate of P(y j = 0) = 1−P(y j = 1) and P(y j = 0) = 1−P(y j = 1).

The method also automatically takes account of missing label information, and treat

such missing data in a conservative way, considering them as completely vacuous in-

formation (that is, we treat them as non-MAR variables [16]).
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X1 X2 X3 X4 y1 y2 y3

107.1 25 Blue 60 1 0 0

−50 10 Red 40 1 0 1

200.6 30 Blue 58 ∗ 1 0

. . . . . . . . . . . . . . . . . . . . .

data set D1

X1 . . . X4 y1

107.1 60 1

−50 40 1

200.6 58 ∗
. . . . . . . . .

data set D2

X1 . . . X4 y2

107.1 60 0

−50 40 0

200.6 58 1

. . . . . . . . .

data set D3

X1 . . . X4 y3

107.1 60 0

−50 40 1

200.6 58 0

. . . . . . . . .

Fig. 1. Label-wise decomposition of data set D

4.3 Results

In the experiments, the parameters of the k-nn algorithm were set to β = 0.75 and

ε0 = 0.99, so that results obtained when fixing the number k of neighbors to 1 display

a sufficient completeness. ε0 settles the initial imprecision, while β determines how

much imprecision increases with distance (details about the role of these parameters

can be found in [6]). We ran experiments on well-known multilabel data sets having

real-valued features. Their characteristics are summarized in Table 3. For each of them,

we ran a 10-fold cross validation with the number k of neighbors varying from 1 to 5,

and with various percentages of missing labels in the training data set (0%, 20% and

40%). Varying k in the algorithm allows us to control the completeness of the prediction:

the higher k is, the more imprecise become the estimations.

Name # Features # Labels # Instances

emotion 72 6 593

scene 294 6 2407

yeast 103 14 2417

CAL500 68 174 502

Table 3. Multilabel data sets summary

The results of the experiment are displayed in Figure 2. From this figure, two main

conclusions can be drawn: on the used data sets, allowing for partial predictions (here,

by increasing the number k of neighbours) systematically improve the correctness, and

missing labels only influence the completeness of the predictions, not the correctness

of the results. This latter fact, however, may be due to the learning method. How fast
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Fig. 2. Experimental results

completeness decreases with the number of neighbors, however, clearly depends on the

data set.

5 Conclusions

Producing sets of optimal predictions in the multilabel setting when uncertainty is mod-

eled by convex probability sets is computationally hard. The main contribution of this

paper was to show that when using the Hamming loss, such sets can be easily outer-

approximated by focusing only on the marginal probability bounds of each label being

relevant. This makes both computation and learning issues easier, as one can focus on

estimating such marginals (instead of the whole joint model). We can consider that as

an important result, as it shows that imprecise probabilistic approaches are computa-

tionally affordable (at least under some conditions).

We also made some first preliminary experiments indicating the interest of pro-

ducing such partial predictions, showing that making more cautious predictions lead

to more correct predictions. In the future, we intend to make similar studies for other

well-known loss functions, such as the ranking loss. We also intend to make further the

experiments, i.e., to compare this approach with other methods, or to empirically assess

(for small values of m) the quality of the made approximation.
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