
HAL Id: hal-01044938
https://hal.science/hal-01044938

Submitted on 24 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reversal Distances for Strings with Few Blocks or Small
Alphabets

Laurent Bulteau, Guillaume Fertin, Christian Komusiewicz

To cite this version:
Laurent Bulteau, Guillaume Fertin, Christian Komusiewicz. Reversal Distances for Strings with Few
Blocks or Small Alphabets. 25th Annual Symposium on Combinatorial Pattern Matching (CPM
2014), Jun 2014, Moscou, Russia. pp.50-59, �10.1007/978-3-319-07566-2_6�. �hal-01044938�

https://hal.science/hal-01044938
https://hal.archives-ouvertes.fr

Reversal Distances for Strings with Few Blocks

or Small Alphabets

Laurent Bulteau1⋆, Guillaume Fertin2, and Christian Komusiewicz2⋆⋆

1 Institut für Softwaretechnik und Theoretische Informatik, TU Berlin
{l.bulteau}@campus.tu-berlin.de

2 Université de Nantes, LINA - UMR CNRS 6241, France.
{guillaume.fertin,christian.komusiewicz}@univ-nantes.fr

Abstract. We study the String Reversal Distance problem, an ex-
tension of the well-known Sorting by Reversals problem. String Re-
versal Distance takes two strings S and T as input, and asks for a min-
imum number of reversals to obtain T from S. We consider four variants:
String Reversal Distance, String Prefix Reversal Distance (in
which any reversal must include the first letter of the string), and the
signed variants of these problems, namely Signed String Reversal
Distance and Signed String Prefix Reversal Distance. We study
algorithmic properties of these four problems, in connection with two
parameters of the input strings: the number of blocks they contain (a
block being maximal substring such that all letters in the substring are
equal), and the alphabet size Σ. For instance, we show that Signed
String Reversal Distance and Signed String Prefix Reversal
Distance are NP-hard even if the input strings have only one letter.

1 Introduction

Many problems studied in the realm of comparative genomics concern genome
rearrangements, in which, given two genomes G1 and G2 and a set S of op-
erations (called rearrangements) on genomes, the question is to compute the
smallest number of rearrangements that allows to obtain G2, starting from G1,
and using only operations from S (see for instance [8] for an extensive survey).
One of the most studied, and historically one of the firstly described [14] such
rearrangement is the reversal, which consists in taking a contiguous sequence
of a genome, reverse its order, and reincorporate it at the same location. This
gave rise to the Sorting by Reversals (SBR) (resp. Sorting by Signed
Reversals (SBSR)) problem, in which a genome is represented by a permuta-
tion (resp. signed permutation) whose elements are genes. In the signed version
of the problem each position of the permutation is additionally labeled with a
sign + or − and a reversal ρ not only reverses the order, but also inverts the
signs of all the elements involved in ρ. The main complexity results concerning

⋆ Supported by the Alexander von Humboldt Foundation
⋆⋆ Supported by a post-doctorial grant funded by the Région Pays de la Loire

these two problems are the following: SBR is NP-hard [4] and the best current
approximation ratio is 1.375 [2], while SBSR is polynomial [1]. Another variant
consists in using prefix reversals only, that is, each reversal must contain the first
letter of the string it is applied to. The unsigned (resp. signed) corresponding
problem is called SBPR (resp. SBSPR). The SBPR problem has been recently
shown to be NP-hard [3], and the best current approximation ratio is 2 [9]. On
the other hand, the complexity of SBSPR is still open.

In biological applications, however, genomes of related species often con-
tain many homologous genes. In this case, the genomes cannot be modeled by
permutations, but rather by (signed) strings [5]. Hence, a natural (and more
biologically relevant) extension of SBR is the String Reversal Distance
problem, formally defined (in its decision version) as follows:

String Reversal Distance
Input: Two strings S and T over alphabet Σ and an integer k.
Question: Can S be transformed into T by applying at most k reversals?

Besides, Signed String Reversal Distance will denote the signed version
of the above problem. If we allow prefix reversals only, the extension of SBPR
to strings is defined as follows:

String Prefix Reversal Distance
Input: Two strings S and T over alphabet Σ and an integer k.
Question: Can S be transformed into T by applying at most k prefix
reversals?

As above, Signed String Prefix Reversal Distance will denote the
signed version of the problem. Any of these four problems is only nontrivially
posed if S and T have the same letter content, that is, for each letter the number
of its occurrences in S equals the number of its occurrences in T . We call such
strings balanced. In the remainder of the paper, we assume that S and T are
balanced. A block is a maximal substring such that all letters in the substring
are equal (and have the same sign, if strings are signed). For any instance, we
use bmax to denote the maximum of the number of blocks in S and T and bmin to
denote its minimum. Unless stated otherwise, we assume that S has bmax blocks.
Note that n ≥ bmax ≥ bmin ≥ |Σ|.

In this paper, we study algorithmic and complexity issues for these four
problems, in connection with two parameters of the input strings: the maximum
number of blocks bmax they contain and the size of the alphabet Σ.

Known Results. Computing the reversal distance between binary strings is NP-
hard via reduction from 3-Partition [6, 7]. A second proof uses a reduction
from Sorting by Reversals [13]. Computing the prefix reversal distance be-
tween binary strings is NP-hard [11]. Sorting a binary string S (to 0p1n−p) is
solvable in polynomial time [6, 7]. This result was later generalized to the case
of ternary strings [13]. Hurkens et al. [11] considered the problem of “grouping”
a string by prefix reversals, that is, find a shortest sequence of reversals from

2

a string S to any string that has |Σ| blocks. Concerning the diameter, that is,
the maximum distance between any length-n strings, it was first shown that the
reversal diameter for binary strings of length n is ⌊n/2⌋ [6, 7]. Later, this result
was generalized to fixed alphabets of arbitrary size. More precisely, the reversal
diameter of strings of length n is n−maxa∈Σ #(a) where #(a) denotes the num-
ber of occurrences of letter a in either input string. Signed String Reversal
Distance has applications in the identification of orthologous genes across two
genomes [5, 10, 12]. Signed String Reversal Distance is NP-hard if each
letter occurs at most twice [5] and for binary signed strings [13].

Our Results. Our main algorithmic result is a fixed-parameter algorithm for the
four problem variants and the parameter maximum number of blocks bmax. This
result relies mainly on diameter bounds that depend only on bmax and Σ and
which we provide in Section 2. Then, in Section 3 we show the aforementioned
algorithm for the parameter bmax. In Section 4 we describe a reduction from SBR
that yields several hardness results. First, it shows that Signed String Re-
versal Distance and Signed String Prefix Reversal Distance remain
NP-hard over unary alphabet. This strengthens the previous hardness result by
Radcliffe et al. [13] who showed hardness for binary alphabets. Second, it shows
that for String Reversal Distance and String Prefix Reversal Dis-
tance we cannot make use of a bounded block length even if input strings are
binary as both problems become NP-hard for the first nontrivial case, that is,
if each 0-block has length one and each 1-block has length at most two. Finally,
we show a simple algorithm that achieves a running time of |Σ|n · poly(n) for
many string distances including the ones under consideration in this work.

Preliminaries. We denote the i-th letter of a string S by S[i]. A reversal ρ(i, j) in
a string S of length n transforms S[1] · · ·S[i− 1]S[i]S[i+1] · · ·S[j− 1]S[j]S[j+
1] · · ·S[n] into S[1] · · ·S[i− 1]S[j]S[j − 1] · · ·S[i+ 1]S[i]S[j + 1] · · ·S[n]. We de-
note the string that results from applying reversal ρ to S by S ◦ ρ. We use b(S)
to denote the number of blocks of a string S. For a (signed) string S we denote
by S the string that is obtained by the reversal ρ(1, |S|). The following simple
observation will be useful in a later part of this work.

Proposition 1. There is a shortest sequence ρ1, ρ2, . . . , ρℓ of reversals from S
to T such that the start and endpoint of each ρi have different letters.

2 Upper Bounds on the Reversal Diameter

In this section, we upper-bound the reversal diameter of balanced strings based
on the number of blocks in these strings. To this end, we first show an upper
bound on the number of reversals needed to reach an arbitrary “grouped” string,
that is, any string with |Σ| blocks.

Lemma 1. Let S be a string with b blocks over alphabet Σ. There exists a
string Sg with |Σ| blocks such that S can be transformed into Sg by at most b−|Σ|
reversals and by at most b prefix reversals.

3

Proof. The claim is obviously true if b = |Σ|. Now, assume by induction that
the claim holds for all strings S′ with b′ < b blocks. Since b > |Σ| there is one
letter a that appears in two blocks. By applying the reversal to S that starts at
the leftmost letter of the first block containing a and ends at the letter before
the second block containing a, one obtains a string S′ with b − 1 blocks. By
induction, there is a grouped string Sg such that the reversal distance from S′

to Sg is at most b− 1.
For prefix reversals, we use a similar greedy strategy. If the first letter a

appears only in this block, then reverse the complete string (which is a prefix
reversal) and remove the last block of the resulting string from the instance (or
similarly, apply the following only on the substring that excludes this block).
The removal of the last block reduces |Σ| by one since a appears only in this
block. Since a string with unary alphabet has one block, we perform this type of
reversal at most |Σ|−1 times. Note that this does not increase b−|Σ| since b also
decreases by one. If a appears in at least two blocks, then apply the prefix reversal
whose endpoint is the rightmost letter before the second block that contains a.
This prefix reversal reduces the number b of blocks by one. The overall number
of prefix reversals that are applied until a grouped string is reached is thus at
most b− |Σ|+ |Σ| − 1. ⊓⊔

We now use this upper bound to obtain an upper bound for the reversal distance
between any strings. The approach is to transform each input string into some
grouped string and then transform one grouped string into the other.

Theorem 1. Two balanced strings S and T with bmax and bmin blocks, respec-
tively, can be transformed into each other by at most bmax + bmin − |Σ| − 1
reversals and at most bmax + bmin + 2|Σ| − 3 prefix reversals.

For the reversal case, we can also obtain a bound of the type bmax +O(|Σ|2).

Theorem 2. Two balanced strings S and T each with at most bmax blocks can
be transformed into each other by at most bmax + |Σ|2 − 2|Σ| reversals.

Proof. If bmax < |Σ|2 − |Σ| + 2, then the claim is true as d(S, T) ≤ bmax +
|Σ|2 − 2|Σ| by Theorem 1. Now, assume that bmax ≥ |Σ|2 − |Σ| + 2 and that
the claim holds for all pairs of strings with b′max < bmax. We show how to apply
a constant number of reversals on S or on S and T that reduce the number of
blocks sufficiently to obtain the bound.

Case 1: bmax > bmin. Assume that S has bmax blocks. Apply any reversal
on S that reduces the number of blocks by one. Let S′ be the resulting string. By
the inductive hypothesis, d(S′, T) ≤ bmax − 1 + |Σ|2 − 2|Σ|. Since d(S, S′) = 1,
the claim holds in this case.

Case 2: bmax = bmin. Any string U with at least |Σ|2 − |Σ|+ 2 blocks has
the following property: there are two letters, say a and b, such that U contains
the substring ab twice. This can be seen by considering a directed multigraph
with the vertex set Σ in which we add an edge (u, v) for each substring uv, u 6= v
of U . Any block change corresponds to an edge in this graph. Now there are at
least |Σ|2−|Σ|+1 block changes in U . Hence, the multigraph has |Σ|2−|Σ|+1

4

edges. Since a simple directed graph can have at most |Σ|2 − |Σ| edges, there is
one pair of vertices u and v, for which the edge (u, v) is contained twice in this
multigraph.

By the above, S has two letters, say a and b, such that there are i and j > i+1
with S[i] = a, S[i + 1] = b, S[j] = a and S[j + 1] = b. The reversal ρ(i + 1, j)
produces a string S′ with bmax − 2 blocks. Similarly, there is some reversal that
transforms T into a string T ′ with bmax − 2 blocks. By the inductive hypothe-
sis, d(S′, T ′) = bmax−2+ |Σ|2−2|Σ|. Together with the two additional reversals
on S and T we obtain the bound on the number of reversals also in this case. ⊓⊔

3 An Algorithm for Strings with Few Blocks

We now show how to solve String Reversal Distance in (bmax)
O(bmax) ·

poly(n) time. Our algorithm consists of two main steps: first, “guess” between
which blocks each of the reversals takes place. These guesses fix the structure
of the reversals and we will thus call a sequence of at most k of those guesses
a scaffold. A scaffold would completely describe a sequence of reversals if one
would additionally specify the precise positions at which the reversal starts or
ends in each of the blocks. Since the blocks can be very long compared to the
number of blocks, we can not branch into all possible cases for these positions.
However, we guess whether the startpoint of the reversal is the first position of
a block and whether the endpoint of the reversal is the last position of a block.
This notion is defined as follows.

Definition 1. A reversal ρ(i, j) is called left-breaking if S[i − 1] = S[i] and
right-breaking if S[j] = S[j + 1].

We can now give a formal definition of a scaffold.

Definition 2. A scaffold ((i1, j1, B1), (i2, j2, B2), . . . , (ik, jk, Bk)) is a tuple of
triples, called reversal-triples, where iℓ, jℓ ∈ N and Bℓ ⊆ {L,R}, 1 ≤ ℓ ≤ k. A
sequence of k reversals ρ1, ρ2, . . . , ρk from string S1 to Sk+1 with Siρi = Si+1

respects a scaffold if for each ℓ, 1 ≤ ℓ ≤ k we have that

– the startpoint of ρℓ is in the iℓ-th block of Sℓ,
– the endpoint of ρℓ is in the jℓ-th block of Sℓ,
– ρℓ is left-breaking if and only if L ∈ Bℓ, and
– ρℓ is right-breaking if and only if R ∈ Bℓ.

For each possible scaffold, the algorithm now aims to compute whether one
can assign two numbers to each reversal to obtain a sequence of reversals that
respects the scaffold and transforms S into T . This is done by computing a
maximum flow on an auxiliary graph.

First, we bound the number of different scaffolds that need to be considered.
By Theorems 1 and 2, we can assume that k < bmax + bmin − |Σ| ≤ 2bmax − 2
and k ≤ bmax + |Σ|2 − 2|Σ| < bmax + |Σ|2 since otherwise the instance is a yes-
instance. Hence, every scaffold that is respected by an optimal solution has at

5

most 2bmax − 2 reversal-triples. The algorithm branches for each such reversal-
triple into the possible choices for iℓ and jℓ and whether the reversal shall be left-
or right-breaking. By the above lemma, it needs to perform at most 2bmax − 2
branchings. Furthermore, the number of blocks in any “intermediate” string is
bounded as shown below.

Lemma 2. Let S′ be a string such that there is an optimal sequence of reversals
from S to T in which S′ is one of the strings produced by this sequence. Then, S′

has at most min{2bmax + bmin − |Σ| − 1, 2bmax + |Σ|2 − 2|Σ|} blocks.

Now, the algorithm creates for increasing k′ ≤ k all possible reversal scaffolds.
By the above lemma, there are less than 3bmax choices for each iℓ and jℓ. Hence,
the overall number of reversal scaffolds that need to be considered is at most

(3bmax)
2·(2bmax−2) · 42bmax−2 = O((6bmax)

4bmax)

in the case of arbitrary alphabets. For constant-size alphabets, we can use the
bound on k given by Theorem 2 and thus the overall number of reversal scaffolds
that need to be considered in this case is less than

(3bmax)
2·(bmax+|Σ|2) · 4bmax+|Σ|2 = (6bmax)

2bmax · poly(bmax).

Consider one such scaffold, assume there is a sequence of reversals that re-
spects the scaffold, and let Si := Si−1 ◦ ρi, i ≤ k′+1, denote the string obtained
after the i-th reversal. We show that the number and order of blocks of each Si

is completely fixed by the reversal scaffold. First, consider S1 := S and let δℓ
denote the number of letters in the ℓ-th block of S1, let σi denote the letter of
the ℓ-th block and assume that S has bmax blocks. Furthermore, assume that i1
is in the i-th block of S1 and j1 is in the j-th block of S1. Then this reversal
transforms the string

S1 = (σ1)
δ1 · · · (σi)

δi(σi+1)
δi+1 · · · (σj−1)

δj−1(σj)
δj · · · (σbmax

)δbmax

into the following string (where x and y represent the number of elements to the
left of the cut in the i-th and j-th blocks):

S2 = (σ1)
δ1 · · · (σi)

x(σj)
y(σj−1)

δj−1 · · · (σi−1)
δi−1(σi)

δi−x(σj)
δj−y · · · (σbmax

)δbmax .

Recall that the scaffold fixes whether the reversal is left-breaking and whether
it is right-breaking. In other words, it is known whether x = 0 or x > 0 and
whether y < δi or y = δi. Consequently, it is fixed whether the letter preceding
the endpoint of the reversal in S2 is σi or whether this letter is σi−1. Similarly, it
is fixed whether the letter succeeding the startpoint of the reversal in S2 is σj or
whether it is σj+1. Therefore, we know whether the borders of the reversal are
start or endpoints of new blocks in S2 or whether they are “merged” with old
blocks. Consequently, the number of blocks in S2 and the letter for each block
in S2 is known. This is similarly true for S3 = S2 ◦ ρ2 up until Sk′+1 = Sk ◦ ρk.
Hence, the number of blocks, their order, and the letter that each block contains

6

is fixed in Sk′+1. Thus, if the number of blocks in T is different from the number
of blocks in Sk′+1 or if the letter of the i-th block in T is different from the letter
from the i-th block in Sk′+1, then we can discard the reversal scaffold. Thus, it
now remains to check whether the reversal scaffold can produce blocks of the
correct size.

One possible way of checking whether this is indeed true would be to in-
troduce a variable for the length of each block in each Si and then introduce
equations that model the dependencies between the blocks. For instance if the
reversal from Si to Si+1 appears after the first block, then the lengths of the
first blocks should be equal. Since the number of blocks and k′ are bounded in
functions of bmax this would yield an integer linear program whose number of
variables depends only on bmax which implies fixed-parameter tractability with
respect to bmax. In the following, we describe a more efficient approach that is
based on computing maximum value flows. For each considered reversal scaffold
we create one flow network with O((bmax)

2) vertices as follows.
Add two special vertices, the source s and the sink t. For each block i in

each intermediate string Sℓ add one vertex viℓ; we use Vℓ := {viℓ | 1 ≤ i ≤ b(Sℓ)}
to denote the vertex set corresponding to Sℓ. Now, add edges and capacities
as follows. For each vi1 add the edge (s, vi1). Set the capacity of c(s, vi1) to be
exactly the length of the i-th block in S. For each ℓ ≤ k′ introduce directed
edges between the vertices corresponding to blocks of Sℓ to those representing
blocks of Sℓ+1 as follows.

Assume that the reversal ρ is fixed to start within the i-th block of Sℓ and
end in the j-th block of Sℓ. Furthermore, let β denote the difference between
the number of blocks in Sℓ+1 and in Sℓ. Then, add the following edges, with
unbounded capacity, to G:

– for all i′ < i add the edge (vi
′

ℓ , v
i′

ℓ+1)

– for all i′ > j add the edge (vi
′

ℓ , v
β+i′

ℓ+1)
– if ρ is left-breaking:

• add the edge (viℓ, v
i
ℓ+1),

• for each i′ with i ≤ i′ ≤ j add the edges (vi
′

ℓ , v
i+1+j−i′

ℓ+1);
– if ρ is not left-breaking:

• if the endpoint of ρ and the (i− 1)-th block in Sℓ have the same letter,

then add for each i′ with i ≤ i′ ≤ j the edges (vi
′

ℓ , v
i−1+j−i′

ℓ+1),
• if they have different letters, then add for each i′ with i ≤ i′ ≤ j the

edges (vi
′

ℓ , v
i+j−i′

ℓ+1);

– if ρ is right-breaking, add the edge (vjℓ , v
j+β
ℓ+1).

Note that for the case that ρ is left-breaking, we assume by Proposition 1 that
the i-th and j-th block in Sℓ have different letters and thus the endpoint of the
reversal creates a new block in Sℓ+1. Note that for the right side of ρ we do not
check explicitly whether the startpoint of ρ and the successor of its endpoint have
the same letter, since this fact is completely determined when we know β (which
can be directly deduced from the scaffold) and whether a block is “created” or

7

“lost” at the left side of the reversal. The construction is completed by adding for
each vik′+1, the edge (vik′+1, t) and setting the capacity c(vik′+1, t) to be exactly
the length of the i-th block in T .

Lemma 3. Let N = (V,E, c, s, t) be a flow network constructed from a reversal
scaffold as described above. Then there is a sequence of reversals that trans-
forms S into T and respects the reversal scaffold if and only if N admits a flow
of value n.

Theorem 3. String Reversal Distance can be solved in (6bmax)
4bmax poly(n)

time on arbitrary strings and in (6bmax)
2bmax poly(n) time if |Σ| is constant.

One possible approach to improve the above result would be to show that
there is always an optimal sequence such that the number of blocks of every inter-
mediate string never exceeds bmax. However, the instance with S := 011100100
and T := 110001001 is a counterexample. An optimal solution contains exactly
two reversals as shown by the example 011100100 → 011100100 = 011001001 →
011001001 = 110001001. This solution creates an intermediate string with six
blocks but the input strings have only five blocks. There is also no solution that
has less than six blocks in an intermediate string which can be shown by a case
distinction. The algorithm can be adapted to work for the other problem variants
as well.

Theorem 4. String Prefix Reversal Distance can be solved in (6bmax)
4bmax ·

poly(n) time; Signed String Reversal Distance and Signed String Pre-
fix Reversal Distance can be solved in (bmax)

O(bmax) · poly(n) time.

4 Reversals on Strings with Small Alphabet

Hardness Results for Restricted Cases. We describe two reductions, one for the
signed case and one for the unsigned case, that show hardness of both the reversal
and prefix reversal problems. For reversal problems the reduction is from Sort-
ing by Reversals, for prefix reversal problems the reduction is from Sorting
by Prefix Reversals. Recall that both problems are NP-hard [3, 4].

Given an instance of SBR or SBPR, replace each permutation as follows.
Construction 1: Signed (Prefix) Reversals. For each integer i > 0, let

Si := +a(−a)i+1(+a)i+1 − a. Note that each Si has length 2i+ 4.
Construction 2: Unsigned (Prefix) Reversals. For each i > 0, let Si :=

01001(01)i+10010. Note that each Si has length 2i+ 11.
In both constructions, let S(π) := (Sπ(1))

2n(Sπ(2))
2n · · · (Sπ(n))

2n for any
permutation π. Given an input to SBR or SBPR with permutation π, the re-
duction creates the two strings S(In) and S(π) as defined above (In denotes the
identity permutation of length n).

The following observations apply to both constructions. First, the reversed
string of Si is Si itself. Further, for any i 6= j, Si is not a substring of Sj , and
the longest suffix of Si which is also prefix of Sj has length two in Construction

8

1 (it is +a − a) and length six in Construction 2 (it is 010010). In both cases,
this is strictly smaller than half the length of Si and Sj . Hence, if, for any
integers i, j1, . . . , jℓ, Si is a substring of Sj1 · Sj2 · · · · · Sjℓ , then i ∈ {j1, . . . , jℓ}.
Moreover, if Sj1 · Sj2 · · · · · Sjℓ contains substrings Si1 , Si2 ,. . . , Sih in this order,
then (i1, i2, . . . , ih) is a subsequence of (j1, j2, . . . , jℓ).

Theorem 5. Signed String [Prefix] Reversal Distance is NP-hard even
when |Σ| = 1. String [Prefix] Reversal Distance is NP-hard even when
restricted to binary strings where all 0-blocks have length at most 2 and all 1-
blocks have length 1.

Proof. Let S(In) and S(π) be constructed from a permutation π as described
above. Let kS be the [prefix] reversal distance from S(π) to S(In), and kπ be
the [prefix] reversal distance from π to In. We show that kπ = kS .

First, we show kS ≤ kπ. Consider any sequence of kπ [prefix] reversals sorting
π, we show that there exists a corresponding sequence of kπ [prefix] reversals
sorting S(π). For any [prefix] reversal ρ of the sub-permutation of π ranging
from π[i] to π[j], we reverse the substring of S(π) ranging from the first Sπ[i] to
the last Sπ[j]: the resulting string is S(ρ ◦ π). In the end, we obtain S(In) after
kπ [prefix] reversals.

We now show that kπ ≤ kS . Note that kS ≤ kπ implies that kS < n. Consider
a sequence ρ1, . . . , ρkS

of [prefix] reversals sorting S(π). For each 1 ≤ i ≤ n,
among the 2n copies of Sπ[i] in S(π), at least one does not contain an endpoint of
any reversal: we thus assign to each i an untouched copy of Sπ[i]. For each [prefix]
reversal ρr, there exists i and j such that ρr reverses a string containing the ith
to the jth untouched copies (ordered from left to right). Let ρ′r = (1, . . . , i −
1, j, j− 1, . . . , i+1, i, j+1, . . . , n). Note that if ρr is a prefix reversal, then i = 1
and ρ′r is also a prefix reversal.

Let τ = ρ′kS
◦ . . . ◦ ρ′1 ◦ π, then the final string S(In) contains the untouched

copies of S(τ [1]), S(τ [2]), . . . , S(τ [n]) as substrings in this order. By definition of
S(In) and using the property of strings Si, sequence (1, . . . , 1, 2, . . . , 2, . . . , n, . . . , n)
contains τ [1], τ [2], . . . , τ [n] as a subsequence. Since τ is a permutation, τ is the
identity In. Thus, the sequence of kS [prefix] reversals ρ′1,. . . , ρ

′
kS

transforms π
into the identity, and kπ ≤ kS . ⊓⊔

An Algorithm for Small Alphabets. So far, none of the known exact algorithms
for String Reversal Distance or Signed String Reversal Distance
achieves a singly-exponential running time of 2O(n). We show that such a run-
ning time can be achieved for constant size alphabets and a generic type of
distance measures on strings. Call a string distance d well-formed if it has the
following properties: 1) For each string S of length n, the set containing ex-
actly the strings T with d(S, T) = 1 can be computed in poly(n) time. 2) All
strings S and T with d(S, T) = 1 are balanced. 3) For any two strings S and T
with d(S, T) = k there exists a string S′ with d(S, S′) = 1 and d(S′, T) = k− 1.

Theorem 6. Let d be a well-formed string distance, and let S and T be two
strings of length n over alphabet Σ. Then d(S, T) can be computed in |Σ|n ·
poly(n) time.

9

5 Conclusion

Our work leads to several open questions. Is the reversal diameter for strings bmax−
1? If yes, this would generalize the upper bound of n−1 on the diameter for the re-
versal distance between permutations. If not, is an upper bound of bmax+O(|Σ|)
achievable? Further, does String Reversal Distance admit a polynomial
kernel for bmax, that is, can it be reduced in polynomial time to an equivalent
instance of String Reversal Distance with n ≤ poly(bmax)? Finally, can we
solve String Reversal Distance in time O((|Σ|− ǫ)n)? In particular, can we
solve String Reversal Distance on binary strings in O(cn) time for c < 2?

References

[1] V. Bafna and P. A. Pevzner. Genome rearrangements and sorting by rever-
sals. SIAM J. Comput., 25(2):272–289, 1996.

[2] P. Berman, S. Hannenhalli, and M. Karpinski. 1.375-approximation algo-
rithm for sorting by reversals. In Proc. 10th ESA, volume 2461 of LNCS,
pages 200–210. Springer, 2002.

[3] L. Bulteau, G. Fertin, and I. Rusu. Pancake flipping is hard. In Proc. 37th
MFCS, volume 7464 of LNCS, pages 247–258. Springer, 2012.

[4] A. Caprara. Sorting by reversals is difficult. In Proc. 1st RECOMB, pages
75–83, 1997.

[5] X. Chen, J. Zheng, Z. Fu, P. Nan, Y. Zhong, S. Lonardi, and T. Jiang.
Assignment of orthologous genes via genome rearrangement. IEEE/ACM
T. Comput. Bi., 2(4):302–315, 2005.

[6] D. A. Christie. Genome Rearrangement Problems. PhD thesis, University
of Glasgow, 1998.

[7] D. A. Christie and R. W. Irving. Sorting strings by reversals and by trans-
positions. SIAM J. Discrete Math., 14(2):193–206, 2001.

[8] G. Fertin, A. Labarre, I. Rusu, E. Tannier, and S. Vialette. Combinatorics
of Genome Rearrangements. Computational Molecular Biology. MIT Press,
2009.

[9] J. Fischer and S. W. Ginzinger. A 2-approximation algorithm for sorting by
prefix reversals. In Proc. 13th ESA, volume 3669 of LNCS, pages 415–425.
Springer, 2005.

[10] Z. Fu, X. Chen, V. Vacic, P. Nan, Y. Zhong, and T. Jiang. MSOAR: A high-
throughput ortholog assignment system based on genome rearrangement.
J. Comput. Biol., 14(9):1160–1175, 2007.

[11] C. A. J. Hurkens, L. van Iersel, J. Keijsper, S. Kelk, L. Stougie, and
J. Tromp. Prefix reversals on binary and ternary strings. SIAM J. Dis-
crete Math., 21(3):592–611, 2007.

[12] T. Jiang. Some algorithmic challenges in genome-wide ortholog assignment.
J. Comput. Sci. Technol., 25(1):42–52, 2010.

[13] A. Radcliffe, A. Scott, and E. Wilmer. Reversals and transpositions over
finite alphabets. SIAM J. Discrete Math., 19(1):224, 2006.

[14] G. Watterson, W. Ewens, T. Hall, and A. Morgan. The chromosome inver-
sion problem. J. Theor. Biol., 99(1):1 – 7, 1982.

10

	Reversal Distances for Strings with Few Blocks or Small Alphabets

