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Abstract

We consider in this paper two graph orientation problems. The input of both problems
is (i) a mixed graph G whose vertex set is V and edge set (resp. arc set) is E (resp. A)
and (ii) a set P ⊆ V × V of source-target pairs. The first problem, called S-GO, is a
decision problem introduced by Hassin and Megiddo (Linear Algebra and its Applica-
tions 114 (1989): 589-602) and defined as follows: is it possible to find an orientation
of G that replaces each edge (u, v) ∈ E by a single arc (either uv or vu) in such a way
that, for each (s, t) ∈ P , there exists a directed path from s to t ? Our second problem,
called MIN-D-GO, is a minimization problem that can be seen as a variant of S-GO,
in which we allow some edges (u, v) ∈ E to be doubly oriented. The goal is then to
find an orientation of G that replaces each edge (u, v) ∈ E by uv and/or vu in such
a way that (i) there exists a directed path from s to t for each (s, t) ∈ P and (ii) the
number of doubly oriented edges is minimized. We investigate the complexity of S-
GO and MIN-D-GO by considering some restrictions on the input instances (such as
the maximum degree of G or the cardinality of P). We provide several polynomial
time algorithms, hardness and inapproximability results that together give an extensive
picture of tractable and intractable instances for both problems.

Keywords: algorithmic complexity, graph orientation, mixed graphs, biological
networks

1. Introduction

A mixed graph is a triple G = (V,E,A) that consists of a set V of n vertices,
a set E of edges and a set A of arcs. The orientation of mixed graphs (possibly with
A = ∅) has applications in the design of urban networks [18, 8, 12] and communication
networks [1]. Orienting these networks consists in the assignment of directions to edges
in order to fulfill a given set of reachability or communication requests.

Recently, the orientation of mixed graphs found applications in biology, more
specifically in the study of physical networks [21], which are mixed graphs represent-
ing functional relationships between proteins. External cellular events are transmitted
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into the nucleus via cascades of activation/deactivation of proteins, that correspond to
paths in the physical network from a source protein (cause) to a target protein (effect).
A key problem in biology is to infer the direction of these paths by combining causal
information on cellular events [14, 19].

Let G = (V,E,A) be a mixed graph and P ⊆ V × V be a set of source-target ver-
tices. We first consider the problem that we call here SIMPLE GRAPH ORIENTATION
(abbreviated S-GO), introduced by Hassin and Megiddo [12]. The S-GO problem is
the following: given G and P , is it possible to replace each edge in G by a single arc
in such a way that all the pairs in P are connected by a directed path ? When it is not
possible to find such an orientation, one can try to satisfy a maximum number of pairs.
This variant leads to the MAXIMUM GRAPH ORIENTATION problem (M-GO), see for
instance [14, 19]: given G = (V,E,A) and P , replace each edge (u, v) ∈ E by a
single arc, so that in the new graph, there exists a directed path for a maximum number
of source-target pairs.

The M-GO variant is not adequate when all the pairs in P are known to be relevant,
and consequently each of them should be satisfied. In order to deal with this situation,
we introduce and study the complexity of a minimization problem, called MIN-D-GO,
that – unlike the M-GO problem – aims at satisfying all the pairs by allowing some
edges of G to be doubly oriented (i.e., replaced by two arcs in opposite directions).
However, the number of such edges has to be as small as possible, for the following
reasons. In communication networks, a doubly oriented edge means the creation of
a two-directional link that allows communication in both directions, simultaneously.
This type of links is costly, because it needs the allocation of two different frequencies:
transmitting on one frequency and receiving on another [9]. In the context of biology,
a doubly oriented edge reflects the presence of a reversible reaction. Furthermore, in a
dynamic biological system, most reactions tend to be irreversible [13]. Following these
motivations, MIN-D-GO asks that the number of doubly oriented edges be minimized.

The S-GO problem has been shown to be polynomial-time solvable on undirected
graphs [12] and when the number of pairs is constant [5]. In contrast, Arkin and Has-
sin [2] showed that the problem becomes NP-complete when G is a general mixed
graph.

The M-GO problem is polynomially solvable when G is a path, but NP-complete
even when G is a star (that is, a tree whose number of vertices with degree 2 or more
is exactly one) [14]. See [10, 19] and [6] for recent approximation and parameterized
complexity results for M-GO, respectively.

In this paper, we focus on the problems S-GO and MIN-D-GO, in which all the
pairs in P must be satisfied. We study their complexity by considering some restric-
tions on the input instances (e.g., maximum degree of G or |P|).

Our paper is organized as follows. We first formulate the S-GO and the MIN-D-
GO problems in Section 2. Then, we show in Section 3 that for both problems we can
always assume, without loss of generality, that G is a Mixed Acyclic Graph (MAG). In
Section 4, we provide complexity results for S-GO. We study the complexity of MIN-
D-GO in Section 5. Section 6 is the conclusion, together with several open questions.
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2. Problems and Results

Throughout this paper, G = (V,E,A) denotes a mixed graph without loops and
with simple edges and arcs, where V (G) (resp. E(G), A(G)) is the vertex set (resp.
edge set, arc set) of G. An edge between two vertices u and v is noted by (u, v),
and an arc from u to v is noted by uv. The underlying graph of G, denoted G∗, is a
simple undirected graph defined as follows: V (G∗) = V (G) and E(G∗) = E(G) ∪
{(u, v) : uv ∈ A(G)}. Finally, ∆(G∗) is the maximum degree over all vertices in G∗.

A path P in G = (V,E,A) from vertex v1 to vertex vm is a subgraph P =
v1v2 . . . vm−1vm induced in G by the set of vertices vi ∈ V , where all the vis are
pairwise distinct, and where for all 1 ≤ i ≤ m − 1, (vi, vi+1) ∈ E or vivi+1 ∈ A. A
cycle C in G is a path v1v2 . . . vm−1vm such that v1 = vm. A circuit in G is a special
case of cycle v1v2 . . . vm−1v1 where vivi+1 ∈ A for all 1 ≤ i ≤ m − 1. A Mixed
Acyclic Graph [19] (or MAG) is a mixed graph that contains no cycle (and therefore no
circuit).

An orientation G′ of G is a directed graph G′ obtained from G by replacing each
edge (u, v) ∈ E by an arc uv, or an arc vu, or by uv and vu simultaneously. An edge
(u, v) replaced by both arcs uv and vu is called a doubly oriented edge. Any orientation
G′ of G that contains no doubly oriented edge will be called a simple orientation. A
pair of vertices (u, v) ∈ V ×V is said to be satisfied by the orientation G′ of G if there
is a (directed) path from u to v in G′. Let P = v1v2 . . . vm−1vm be a path in G. In the
following, we will often write the orientation of P from v1 towards vm to refer to the
orientation that replaces every edge of the form (vi, vi+1), 1 ≤ i ≤ m − 1, by the arc
vivi+1.

Definition 1. [2] Let G = (V,E,A) be a mixed graph and let P ⊆ V × V be a
set of source-target pairs of vertices. The graph G is said to be P-connected if for all
(u, v) ∈ P , there is a path in G from u to v.

Definition 2. [2] Let G = (V,E,A) be a mixed graph and let P ⊆ V × V s.t. G
is P-connected. A P-orientation G′ of G is a simple orientation of G that satisfies all
pairs in P .

We call S-GO the problem of deciding whether a graph G admits a P-orientation.

S-GO [12, 2]
Instance : A mixed graph G = (V,E,A) and P ⊆ V × V s.t. G is P-connected.
Question: Does G admit a P-orientation ?

Analogously to a P-orientation, we define a (P, k)-D-orientation as follows.

Definition 3. Let G = (V,E,A) be a mixed graph and let P ⊆ V × V s.t. G is
P-connected. Let k ≥ 0 be an integer. A (P, k)-D-orientation G′ of G satisfies the
two following conditions: (i) G′ is an orientation of G satisfying all the pairs in P and
(ii) G′ contains exactly k doubly oriented edges.

We are now able to formulate the MIN-D-GO problem.
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∆(G∗) = 2 ∆(G∗) = 3
B = 2 B = 3 B unbounded

S-GO P [Cor. 2] P [Th. 1] NPC [Th. 4] NPC [Th. 4]
MIN-D-GO P [Th. 5] APX-h [Th. 11] NPC [Cor. 8],

Non-
approx. [Cor. 9]

NPC [Cor. 8],
Non-approx. [Cor. 9],
W[1]-h [Th. 10]

Table 1: Complexity of S-GO and MIN-D-GO when G is a MAG and G∗ is a bounded degree graph.
Recall that B = max{ni, 1 ≤ i ≤ |P|}, where ni is the number of distinct paths in G from si to ti. Note
also that the result provided in Theorem 1 remains valid even when ∆(G∗) is unbounded.

MIN-D-GO
Instance : A mixed graph G = (V,E,A), P ⊆ V × V s.t. G is P-connected.
Question: Find a (P, k)-D-orientation of G that minimizes k.

In this paper, we investigate MIN-D-GO (Section 4) and S-GO (Section 5), thus
proposing several results that are summarized below. In order to simplify the approach,
it is not only possible (as shown in the next section) but also suitable to assume that
for any instance (G,P) of MIN-D-GO (resp. S-GO), G = (V,E,A) is a MAG and
G is P-connected. Note that we can also assume G∗ to be connected. Otherwise, we
can consider separately each graph G1, G2, . . . , Gr induced, in G, by the vertices of
the connected components of G∗.

Therefore, let G = (V,E,A) be a MAG and P = {(si, ti) ∈ V × V : 1 ≤ i ≤ m}
be a set of pairs of vertices. For each i, 1 ≤ i ≤ m, we denote by ni the number of
distinct paths in G from si to ti. Throughout this paper, the integer B is defined as
B = max{ni : 1 ≤ i ≤ m}. As it will be seen, B defines the border between easy and
difficult instances of S-GO. As a consequence, we study the complexity of S-GO and
MIN-D-GO by considering different constraints on the three following parameters:
∆(G∗), B and |P|.

Remark that when B = 1 we can easily solve the S-GO and MIN-D-GO prob-
lems. Indeed, G is P-connected and G∗ is connected, thus if in addition we have
B = 1, then for each pair (si, ti) ∈ P there is a unique path Pi in G from si to ti.
Consequently, in order to satisfy the pair (si, ti) we must orient Pi from si towards ti.
Then, we orient each remaining edge (u, v) inG following an arbitrarily direction. Ob-
viously, in this orientation we create a minimum number of doubly oriented edges, and
thus MIN-D-GO is optimally solved. If there is no doubly oriented edge at the end of
the process, then we obtain a P-orientation of G. Otherwise, G has no P-orientation.
The case ∆(G∗) = 1 is obvious too.

The complexity results, when B ≥ 2 and ∆(G∗) ≥ 2, are summarized in Tables 1
and 2. Interestingly, Table 1 shows that parameter B defines the border between easy
(B = 2) and difficult (B = 3) instances of S-GO, even when G∗ is of small maxi-
mum degree (∆(G∗) = 3). We also note that the parameter ∆(G∗) defines the border
between easy (∆(G∗) = 2) and difficult (∆(G∗) = 3) instances of MIN-D-GO, even
when B = 2. In Table 2, we show the complexity of both problems considering differ-
ent values of |P|. It should also be noted that, in the particular case where P is the set
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of all possible pairs of vertices of G (noted as |P| = n2 in Table 2 for simplicity), S-
GO and MIN-D-GO are in P. These results come from Boesch and Tindell [4], who
proved that a mixed graph G is strongly connected iff G∗ has no bridge. Concerning
MIN-D-GO, it can be easily seen that since G is, by hypothesis, P-connected, then
each bridge inG∗ must be an (undirected) edge, and consequently the sought minimum
number of doubly oriented edges is exactly the number of bridges in G∗.

|P| ≤ 2 |P| ≥ 3 (and |P| = O(1)) |P| unbounded |P| = n2

B = O(1) B unbounded B ≥ 3

S-GO P [2] P(∗) [Th. 3] P [5] NPC [2] P [4]
MIN-D-GO P [Th. 6] P(∗) [Th. 7] Open Non-approx. [Cor. 9] P [4]

Table 2: Complexity of S-GO and MIN-D-GO for different values of |P| when G is a MAG. (*) The
problem is FPT parameterized by B and |P|.

3. Reduction to Mixed Acyclic Graphs

It has been shown in [19] that starting with any instance (G1,P1) of the M-GO
problem (defined in Section 1), one can construct an equivalent instance (G2,P2) s.t.
G2 is a MAG.

Property 1. [19] LetG1 = (V1, E1, A1) be a mixed graph and let P1 ⊆ V1×V1. One
can construct a MAG G2 = (V2, E2, A2) and a set P2 ⊆ V2× V2 with |P2| = |P1| s.t.
for every integer r ≥ 0, there exists a simple orientation of G1 satisfying r pairs in P1

iff there exists a simple orientation of G2 satisfying r pairs in P2.

Applying Property 1 with r = |P1|, we obtain that G1 admits a P1-orientation
iff G2 admits a P2-orientation. Hence, in the S-GO problem, wlog we can always
consider the input mixed graph to be a MAG.

We say that two instances (G1,P1) and (G2,P2) of MIN-D-GO are equivalent
if there exists an optimal solution of (G1,P1) that creates k doubly oriented edges iff
there exists an optimal solution of (G2,P2) that creates k doubly oriented edges.

We will show that, in the MIN-D-GO problem, wlog we can always consider the
input mixed graph to be a MAG. We first show in Property 2 that, for any P-connected
mixed graph G and for any cycle C in G, we can find an optimal solution for MIN-D-
GO, with inputs G and P , in which C becomes a circuit. We then show in Property 4
that the vertices of any circuit can be contracted into a single vertex without changing
the nature of the problem. This proof closely follows the one in [19].

Property 2 (Orientation of cycles). Let G = (V,E,A) be a mixed graph and let
P ⊆ V × V . Assume that G is P-connected. Let C be a cycle in G. Let G′ be the
mixed graph obtained from G by orienting all the edges in C in the same direction
(such a direction is arbitrarily chosen when A(C) = ∅) to obtain a circuit C ′. The
instances (G,P) and (G′,P), of the MIN-D-GO problem, are equivalent.

Proof. We show the direct implication in the equivalence, the indirect one can be
shown easily in the same way.
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Figure 1: (a) (G,P) is an instance of MIN-D-GO with P = {(12, 17), (18, 19)}, C is a cycle in G with
vertex set {1, 2, . . . , 11} (b) G′ is a mixed graph obtained from G by orienting the edges of the cycle C
in the same direction to obtain a circuit (c) H is an optimal solution of the instance (G,P) that creates one
doubly oriented edge. (d) H′ is an optimal solution of the instance (G′,P) that creates also one doubly
oriented edge. Gray vertices in H (resp. H′) induce a path satisfying the pair (12, 17).

First, since G is P-connected, there must exist an optimal solution H for the in-
stance (G,P). Let H ′ be an orientation of G′ s.t. the edges in E(G′)\E(C) are
replaced by the same arcs as in H (see Figure 1 for an illustration). We now show that
H ′ is an optimal solution for the instance (G′,P) that has the same number of doubly
oriented edges as H . Let (u, v) ∈ P . If u, v ∈ V (C) then obviously the pair (u, v)
is satisfied in H ′ by a path in C ′. If u /∈ V (C) or v /∈ V (C), then let us consider
a path P = a1a2 . . . am in H , from u to v (u = a1 and v = am), that satisfies the
pair (u, v). Let x = min{i : ai ∈ V (C)} and let y = max{i : ai ∈ V (C)}. Then
the pair (u, v) is satisfied in H ′ by the path a1a2 . . . ax−1Qay+1ay+2 . . . am s.t. Q is
the subpath in C ′ going from ax to ay (see for example Figure 1, in which ax = 3
and ay = 1). Let k (resp. k′) denote the number of doubly oriented edges in H (resp.
in H ′). Clearly k′ ≤ k, because the circuit C ′ contains no doubly oriented edge and
A(H ′) \ A(C ′) ⊂ A(H). Now, because any orientation of G′ is also an orientation of
G, the optimality of k implies that k′ = k and that H ′ is also an optimal solution of the
instance (G′,P).
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Let G = (V,E,A) be a mixed graph and let P ⊆ V × V . Let G1 = (V1, E1, A1)
be the mixed graph obtained from G by the following procedure.

1. G1 := G.
2. While (there is a cycle C in G1) do

• Replace the edges in C by arcs s.t. C becomes a circuit.

• Call G1 the resulting graph.

According to Property 2, (G,P) and (G1,P) are equivalent for all graphs G built
during the procedure, including the final one. Let also P1 denote the set obtained from
P by removing each pair (u, v) ∈ P s.t. there is a directed path in G1 from u to v. In
that case, the instance (G1,P1) of MIN-D-GO obtained from (G,P) will be called a
reduced instance. Clearly, (G1,P1) and (G1,P) are equivalent, and thus the following
property holds.

Property 3 (Reduced instances). Let (G1,P1) be a reduced instance of MIN-D-GO
obtained from instance (G,P). Then (G,P) and (G1,P1) are equivalent.

Property 4 (Contraction of circuits). Let (G1,P1) be a reduced instance of MIN-D-
GO, and letC ′ be a circuit inG1. Let (G2,P2) be the instance of MIN-D-GO defined
as follows: (i) P2 = P1 and (ii) G2 is the graph obtained from G1 by contracting the
vertices of C ′ into a single vertex x0. Then, (G1,P1) and (G2,P2) are equivalent.

Proof. Suppose that G1 = (V1, E1, A1) and G2 = (V2, E2, A2). Let us show that the
two instances (G1,P1) and (G2,P2) are equivalent. Let G′1 = (V1, A

′
1) be an optimal

solution of the instance (G1,P1) that creates k1 doubly oriented edges. We construct
an orientation G′2 of G2 as follows. Let (u, v) ∈ E2. If u 6= x0 and v 6= x0, then
(u, v) is oriented in G′2 as in G′1. If u = x0 (or similarly when v = x0), then there
is a vertex w ∈ V (C ′) s.t. (w, v) ∈ E1. If wv ∈ A′1 (resp. vw ∈ A′1) we replace in
G2 the edge (x0, v) by the arc x0v (resp. vx0). Let k2 denote the number of doubly
oriented edges in G′2. Clearly, k1 = k2, because the circuit C ′ contains no doubly
oriented edge. Let (u, v) ∈ P1 and let P ′1 = a1a2 . . . am be a directed path in G′1 from
u to v (u = a1 and v = am) satisfying the pair (u, v). Let α = min{i : ai ∈ V (C ′)}
and let β = max{i : ai ∈ V (C ′)}. Then the pair (u, v) is satisfied in G′2 by the
path a1a2 . . . aα−1x0aβ+1 . . . am. Conversely, starting with any optimal solution of
the instance (G2,P2), in the same way, one can construct an optimal solution of the
instance (G1,P1) that creates the same number of doubly oriented edges. Hence, the
property follows.

Now, using the previous properties, we are able to show that for MIN-D-GO we
may, wlog, assume that the input mixed graph is a MAG.

Property 5 (Reduction to a MAG). Let (G,P) be an instance of the MIN-D-GO
problem. Then there exists an equivalent instance (GM ,PM ) of MIN-D-GO s.t. GM
is a MAG.

Proof. We construct the graph GM and the set PM by applying the following process:

1. Construct the reduced instance (G1,P1) obtained from (G,P).
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2. Construct the graphG2, obtained by contracting inG1, every circuit into a single
vertex.

3. If G2 is a MAG then set GM = G2 and PM = P1. Otherwise, set G = G2 and
P = P1, and return to step 1.

Properties 3 and 4 ensure that (GM ,PM ) is equivalent to (G,P), which proves the
property.

Therefore, we will always assume, in the remainder of the paper, that for any in-
stance (G,P) of MIN-D-GO (resp. S-GO), G = (V,E,A) is a MAG and G is P-
connected. Recall that we can also assume G∗ to be connected.

4. Complexity of the S-GO problem

In this section, we investigate the complexity of the S-GO problem for MAGs with
bounded ∆(G∗) and/or bounded B (see Table 1), and for bounded |P| (see Table 2).

4.1. Easy cases
Theorem 1. The S-GO problem is polynomial-time solvable when G is a MAG and
B = 2.

Proof. For each pair (si, ti) ∈ P there are at most two paths from si to ti in G, and
such paths can be computed in polynomial time [11].

If for a pair (si, ti) ∈ P , there is only one path from si to ti, then we orient it from
si towards ti and we remove the pair (si, ti) from the set P . We continue this process
until (1)G is no longer P-connected or (2) P = ∅ or (3) for each pair (si, ti) ∈ P there
are exactly two paths from si to ti. The first case implies that G has no P-orientation.
In the second case we arbitrarily orient each edge, in the resulting graph, in a unique
direction to obtain a P-orientation. Finally, in the last case we have an instance of
the S-GO problem in which there are in G exactly two paths from si to ti for all
(si, ti) ∈ P .

We denote by Xi1 and Xi2 the two paths in G from si to ti. Given i, j in the set
{1, 2, . . . |P|}, i 6= j, and a, b ∈ {1, 2}, we say that the two paths Xia and Xjb are in
conflict if orientingXia from si towards ti andXjb from sj towards tj , creates a doubly
oriented edge. Now, we construct an instance (X , C) of the problem 2-SAT as follows.
Let X = {xi1, xi2 : 1 ≤ i ≤ |P|} be the variable set. For all i ∈ {1, 2, . . . , |P|}, we
add the clause ci = (xi1 ∨ xi2). For all i, j ∈ {1, 2, . . . , |P|}, i 6= j, and a, b ∈ {1, 2},
we add the clause (xia ∨ xjb) if paths Xia and Xjb are in conflict.

Let us show that there is an assignment of the variables in X that satisfies all the
clauses in C iff G has a P-orientation.

Consider a truth assignment of clauses in C and let xihi , 1 ≤ hi ≤ 2, be a true literal
of clause ci, 1 ≤ i ≤ |P|. We orient in G the path Xihi from si towards ti, for all
i, 1 ≤ i ≤ |P|. This orientation cannot create any doubly oriented edges. Otherwise,
there are i, j ∈ {1, 2, . . . |P|}, i 6= j such that the paths Xihi and Xjhj are in conflict,
implying that the clause (xihi ∨ xjhj ) is unsatisfied. To complete the orientation of
G, we orient arbitrarily the remaining edges in G without creating any doubly oriented
edge.
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Next we show the reverse implication. We consider the set {Y1h1 , Y2h2 , . . . , Y|P|h|P|}
s.t. Yihi is a directed path from si to ti, in a P-orientation of G. Each path Yihi is
the orientation (from the source towards the target vertex) of a mixed path Xihi =
G[V (Yihi)], hi ∈ {1, 2}, for all 1 ≤ i ≤ |P|. We set to true the variable set
{xihi : 1 ≤ i ≤ |P|} and we set to false the remaining variables. Obviously,
this assignment satisfies the clause set {ci : 1 ≤ i ≤ |P|}. For the sake of contra-
diction, assume now that some clause (xia ∨ xjb) is not satisfied. Then xia = true
and xjb = true. Consequently, in the resulting P-orientation of G, the path Xia (resp.
Xjb) is oriented from si towards ti (resp. from sj towards tj). This leads to a a con-
tradiction, because a P-orientation cannot use, simultaneously, two paths that are in
conflict.

As the problem 2-SAT is polynomial-time solvable [3], we deduce that one can
solve in polynomial-time the S-GO problem when graph G is a MAG s.t. there are in
G at most two paths from si to ti, for all (si, ti) ∈ P .

Corollary 2. The S-GO problem is polynomial-time solvable when G is a MAG and
∆(G∗) = 2.

Proof. The graph G∗ is connected. Thus when ∆(G∗) = 2, the graph G∗ must be a
path or a cycle, and consequently B ≤ 2. If B = 1 the S-GO problem is trivial. If
B = 2, we deduce from the previous result (Theorem 1) that the S-GO problem is
polynomial-time solvable.

Now, we first show that the S-GO problem is FPT parameterized by B and |P|
when G is a MAG. Then, one can deduce that the problem is polynomial-time solvable
when both parameters B and |P| are bounded.

Theorem 3. The S-GO problem is FPT parameterized by B and |P| when G is a
MAG.

Proof. Let G = (V,E,A) with n = |V |, and let P = {(si, ti), 1 ≤ i ≤ m}. Recall
that for each pair (si, ti) ∈ P there are at mostB paths from si to ti inG. Let χi denote
the set of paths inG going from si to ti. One can compute the set χi in polynomial time.
Indeed, we first create a directed graph G′ from G by replacing each edge (u, v) ∈ E
by the two arcs uv and vu, and then we compute the set χ′i of the B shortest simple
paths in G′ from si to ti (this can be done in O(B(n(|E| + |A|) + n2 log log n))
time [11]). Finally, the set χi is obtained from χ′i by replacing, in each directed path
P ′ ∈ χ′i, any arc uv ∈ A(P ′)\A by the edge (u, v).

Moreover, to satisfy the pair (si, ti) we must choose a path Pi ∈ χi and orient
its edges to create a directed path from si to ti. The orientation of Pi can be done in
O(n+ |E|+ |A|) time. Since |χi| ≤ B, we can consider all the possible combinations
(we choose one path per pair) inO(Bm) time. Then we orient (from the source towards
the target vertex) the m obtained paths in O(m(n+ |E|+ |A|)) time. Thus the choice
of paths and their orientations can be done in O(Bm × m(n + |E| + |A|)) time. If
at least one of these orientations has no doubly oriented edge, then such an orientation
can be completed, by orienting each remaining edge in an arbitrary single direction,
to obtain a P-orientation of G. Otherwise, G has no P-orientation. Thus the running
time of our algorithm is f(B, |P|) · nO(1), where f is a function depending only on B
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and |P|. Hence, the S-GO problem is FPT parameterized by B and |P| when G is a
MAG.

4.2. Difficult cases

We showed in Theorem 1 that the S-GO problem is easy when B = 2. However,
in the following theorem, we show that when B = 3 the problem S-GO becomes
difficult.

Theorem 4. The S-GO problem is NP-complete even when the graph G is a MAG,
∆(G∗) = 3 and B = 3.

Proof. Arkin and Hassin [2] provided an NP-completeness proof for the S-GO prob-
lem on general MAGs. Their proof is based on a reduction from the Satisfiability prob-
lem (SAT). Here, we modify the MAG G constructed from their reduction to ensure
that ∆(G∗) = 3. Following these motivations, we perform a reduction from the NP-
complete problem 3-SAT-4 [20]: Given a collection Cm = {c1, . . . cm} of m clauses,
where each clause consists of a set of three literals over a finite set of n boolean vari-
ables Vn = {x1, . . . xn} s.t. each variable appears in at most four clauses, is there a
truth assignment of the variable in Vn that satisfies all the clauses in Cm ?

Let (Cm,Vn) be an instance of 3-SAT-4. For all j, 1 ≤ j ≤ n, the variable xj
satisfies the following condition: (1) xj and xj appear at most in four clauses. In ad-
dition, one may assume wlog that (2) for each variable xj , there is at least one clause
that contains xj and at least one clause that contains xj . Otherwise, the variable xj
can be arbitrarily fixed to true or false. Now, let us construct an instance (G,P) of
the S-GO problem (see Figure 2 for an illustration). For each clause ci, we create
two vertices si and ti, 1 ≤ i ≤ m. For each variable xj , we create these 14 vertices:
{uj , vj} ∪ {ajk, bjk, a′jk, b′jk}1≤k≤3. Then, we add an edge (uj , vj) and the four fol-
lowing directed paths: aj1aj2aj3uj , vjbj3bj2bj1, a′j1a

′
j2a
′
j3vj and finally ujb′j3b

′
j2b
′
j1,

for all 1 ≤ j ≤ n. For each variable xj , there are kj clauses containing xj and
k′j clauses containing xj s.t. 1 ≤ kj ≤ 3, 1 ≤ k′j ≤ 3 and kj + k′j ≤ 4. Let
{ci1 , ci2 , . . . , cikj } (resp. {ci′1 , ci′2 , . . . , ci′k′

j

}) be the set of clauses that contain xj (resp.

xj). We add an arc siαajα and an arc bjαtiα , for all α ∈ {1, 2, . . . kj}. Also, we add
an arc si′βa

′
jβ and an arc b′jβti′β , for all β ∈ {1, 2, . . . k′j}. To finish our construction,

we set P = {(si, ti), 1 ≤ i ≤ m}.
According to conditions (1) and (2), one can easily show that ∆(G∗) = 3. In

addition, for each pair (si, ti) there are exactly three paths in G from si to ti, because
each clause in Cm contains exactly three literals. Thus B = 3.

We claim that there is an assignment satisfying all the clauses in Cm if and only
if there exists a P-orientation of G. Indeed, consider an assignment satisfying all the
clauses in Cm. Similar to the proof presented in [2], if xj = true (resp. xj = false)
then we orient the edge (uj , vj) from uj to vj (resp. from vj to uj). Let li be a true
literal of clause ci. Then, there is a variable xj s.t. li = xj or li = xj . If li = xj
(resp. li = xj) then there is an integer ki, 1 ≤ ki ≤ 3, such that siajki , bjkiti ∈
A(G) (resp. sia′jki , b

′
jki
ti ∈ A(G)). Thus, the pair (si, ti) is satisfied by the path

siajkiaj(ki+1) . . . ujvjbj3 . . . bjkiti (resp. sia′jkia
′
j(ki+1) . . . vjujb

′
j3 . . . b

′
jki
ti).
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s1 s2 s3

t1 t2 t3

t4

s4

a11 a12 a13 u1 b′13 b′12 b′11

b11 b12 b13 v1 a′13 a′12 a′11

Figure 2: Construction of an instance (G,P) of the S-GO problem, from an instance of 3-SAT (called 3-
SAT-4) in which each variable appears at most in four clauses. Here, the variable set isV = {xj , 1 ≤ j ≤ 6}
and the clause set is C = {ci, 1 ≤ i ≤ 4} s.t. c1 = (x1∨x2∨x3), c2 = (x1∨x4∨x5), c3 = (x1∨x4∨x6)
and c4 = (x1 ∨ x5 ∨ x6). The set vertex pairs is P = {(si, ti), 1 ≤ i ≤ 4}. In this figure, we show only
the subgraph corresponding to variable x1.

Now, let us prove the reverse implication. Given a P-orientation G′ of G, we set
the variable xj to true (resp. to false) if the arc ujvj ∈ A(G′) (resp. vjuj ∈ A(G′)).
Let ci be a clause in Cm. Then the pair (si, ti) is satisfied by a directed path P in G′,
from si to ti, going through an arc ujvj or an arc vjuj . If P contains the arc ujvj then
the clause ci must contain the literal xj and thus ci is satisfied. If P contains the arc
vjuj (consequently xj = false) then the clause ci must contain the literal xj and thus
ci is also satisfied.

5. Complexity of MIN-D-GO

The MIN-D-GO problem can be seen as a variant of the S-GO problem, investi-
gated in the previous section (Section 4), in which we allow some edges to be doubly
oriented. Hence, each P-orientation of G is a solution of MIN-D-GO. However, if
there is no P-orientation of G, then we conclude just that at least one edge must be
doubly oriented in a solution of MIN-D-GO, but in general that gives no information
about the number of edges to be doubly oriented to solve the MIN-D-GO problem.

In this section, we study the complexity of MIN-D-GO when the input graph is
a MAG (see Table 1 and Table 2). As in the previous section, we suppose that G
is a P-connected MAG. In the following, D-GO denotes the decision version of the
minimization problem MIN-D-GO.

5.1. Easy cases
We first show that when G∗ is a cycle (and thus ∆(G∗) = 2 and B ≤ 2), the MIN-

D-GO problem is polynomial-time solvable. This result is interesting since it allows to
define a border (with respect to the parameter ∆(G∗)) between the easy and the difficult
instances of the MIN-D-GO problem. Indeed, in the next subsection (Corollaries 8
and 9), we will show that MIN-D-GO is difficult even when ∆(G∗) = 3.

Let G be a MAG such that G∗ is a cycle. Let P ′ ⊆ P be the set of pairs for
which there is a unique path from the source to the target vertex in G. Let also P ′′
denote the set of pairs for which there are exactly two paths from the source to the
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Figure 3: Problem MIN-D-GO when G∗ is a cycle. (a) The set of hatched (resp. full) vertices is the set P ′
(resp. P ′′) of pairs (s, t) s.t. G contains exactly one (resp. two) path(s) from s to t. The rectangle ABCD
is the P ′′-representation of G. The full path (resp. dotted path) is the path G[s6, t6]+ (resp. G[s6, t6]−)
(b) The graph G′ obtained from G after orienting the unique path from s to t for all (s, t) ∈ P ′. Orienting
the three subgraphs G′[s6, t6]− (dotted line), G′[s5, t5]+ and G′[s2, t2]+, from the source towards the
target vertex, results a feasible orientation.

target vertex in G. Let sr(P ′′) denote the set of source vertices in P ′′, i.e., sr(P ′′) =
{s : ∃t s.t. (s, t) ∈ P ′′}. Similarly, we denote by tr(P ′′) the set of the target vertices
in P ′′. Let m′ = |P ′| and m′′ = |P ′′|. In the following we consider that m′′ ≥ 2
(when m′′ = 1, the problem is trivial).

Property 6. Let (G,P) be an instance of MIN-D-GO such that G∗ is a cycle. Then
G is necessarily composed of the following four subgraphs:

1. An undirected path P1 = si1X1si2X2 . . . X(m′′−1)sim′′ s.t.
{si1 , si2 , . . . , sim′′} = sr(P ′′) and for all k, 1 ≤ k < m′′, Xk is an
undirected path in G;

2. An undirected path P2 = tj1Y1tj2Y2 . . . Y(m′′−1)tjm′′ s.t. {tj1 , tj2 , . . . , tjm′′} =
tr(P ′′) and for all k, 1 ≤ k < m′′, Yk is an undirected path in G;

3. A path P3 going from si1 to tj1 , with A(P3) 6= ∅;
4. A path P4 going from sim′′ to tjm′′ , with A(P4) 6= ∅.

We may also consider wlog that j1 = 1, j2 = 2, . . . , jm′′ = m′′ (see Fig. 3 (a) in
which m′ = 2, m′′ = 11, i1 = 6 and i11 = 10).

Proof. Let (s1, t1) ∈ P ′′. Let p1 = u1u2 . . . uk1 and p2 = v1v2 . . . vk2 denote the
two distinct paths in G from s1 to t1. The graph G∗ is a cycle, thus G is formed by
the two paths p1 and p2, i.e., V (G) = V (p1) ∪ V (p2), E(G) = E(p1) ∪ E(p2) and
A(G) = A(p1)∪A(p2). SinceG is a MAG, there exists an integer i ∈ {1, . . . , k1−1}
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and an integer j ∈ {1, . . . , k2 − 1} s.t. uiui+1 ∈ A(p1) and vjvj+1 ∈ A(p2). Let
α1 (resp. β1) be the minimum (resp. maximum) integer for which uα1uα1+1 ∈ A(p1)
(resp. uβ1

uβ1+1 ∈ A(p1)). Let also α2 (resp. β2) be the minimum (resp. maximum)
integer for which vα2

vα2+1 ∈ A(p2) (resp. vβ2
vβ2+1 ∈ A(p2)). Every vertex si ∈

sr(P ′′) must belong to the undirected path X in G going from uα1
to vα2

. Otherwise,
due to the two arcs uα1uα1+1 and vα2vα2+1, the graph G could not contain two paths
from si to ti. Similarly, every vertex ti ∈ tr(P ′′) must belong to the undirected path
Y in G going from uβ1+1 to vβ2+1.

Suppose that the path X (resp. Y ) is written X = a1a2 . . . a|X| (resp. Y =
b1b2 . . . b|Y |) s.t. a1 = uα1

and a|X| = vα2
(resp. b1 = uβ1+1 and b|X| = vβ2+1).

Let q1 (resp. r1) be the minimum (resp. maximum) integer s.t. aq1 ∈ V (X) ∩ sr(P ′′)
(resp. ar1 ∈ V (X) ∩ sr(P ′′)). Similarly, let q2 (resp. r2) be the minimum (resp.
maximum) integer s.t. bq2 ∈ V (Y ) ∩ tr(P ′′) (resp. br2 ∈ V (X) ∩ tr(P ′′)).

Let P1 (resp. P2) be the subpath of X (resp. Y ) going from aq1 (resp. bq2 ) to
ar1 (resp. br2 ). The graph G is thus composed of (1) the path P1 whose vertices in
sr(P ′′) may be numbered from si1 to sim′′ s.t. sr(P ′′) = {si1 , si2 , . . . , sim′′ }, (2) the
path P2 whose vertices in tr(P ′′) may be numbered from tj1 to tjm′′ s.t. tr(P ′′) =
{tj1 , tj2 , . . . , tjm′′}, (3) the path P3 going from si1 to tj1 and (4) the path P4 going
from sim′′ to tjm′′ .

Property 6 leads us to the following definition:

Definition 4. Let G be a MAG such that G∗ is a cycle, and let P be the set of (source,
target)-pairs of vertices. The P ′′-representation of G is a plane representation of G in
the form of a rectangleABCD with vertical segmentsAB andDC (from top to bottom),
s.t. the pairs in P ′′ are renumbered in such a way that:

(i) the source vertices in P ′′ lie on the pathAB ofG∗ in the orderA = si1 , si2 , . . . ,
sim′′ = B.

(ii) the target vertices in P ′′ lie on the path DC of G∗ in the order D = t1, t2, . . . ,
tm′′ = C.

For each (u, v) ∈ sr(P ′′)× tr(P ′′), the graph G (and similarly any orientation of
G) can be decomposed into two subgraphs. The first (resp. second) one is composed
of the vertices that lie on the vertical segment uA, the horizontal segment AD and the
vertical segment Dv (resp. uB, BC and Cv). We denote by G[u, v]+ (resp. G[u, v]−)
the first subgraph (resp. the second subgraph). See an illustration in Fig. 3.

For each pair (si, ti) ∈ P ′, there is a unique path Pi from si to ti in G. In order
to satisfy all the pairs in P ′, we must orient Pi from si towards ti. In the following,
we denote by G′ the graph obtained from G after all such paths have been oriented as
described above.

Consider the P ′′-representation of G, and let (si, ti) ∈ P ′′. Remark that although
G[si, ti]

+ and G[si, ti]
− are paths in G, the subgraphs G′[si, ti]+ and G′[si, ti]− are

not necessarily paths. However, in order to satisfy the pair (si, ti), we must orient at
least one of them to obtain a directed path from si to ti. Suppose that G′[si, ti]+ =
u1u2 . . . uk1 s.t. u1 = si, uk1 = ti and (uj , uj+1) ∈ E(G′) or ujuj+1 ∈ A(G′)
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or uj+1uj ∈ A(G′), for all j ∈ {1, 2, . . . , k1 − 1}. We will write the orientation of
G′[si, ti]

+ (or similarly of G′[si, ti]−) from si towards ti when we refer to the follow-
ing orientation: if (uj , uj+1) ∈ E(G′) then (uj , uj+1) is replaced by the arc ujuj+1;
if uj+1uj ∈ A(G′) and ujuj+1 /∈ A(G′) then we add, in G′, the arc ujuj+1 (i.e.,
we create a doubly oriented edge). We call a partial orientation of G′ a mixed graph
obtained from G′ by orienting, for some pair (si, ti) ∈ P ′′, the subgraph G′[si, ti]−

and/or G′[si, ti]+ from si towards ti.
For the ease of presentation we consider that all the source pairs in P ′′ are distinct,

and also that all the target pairs in P ′′ are distinct. Such an hypothesis can be made
without loss of generality.

LetH be a partial orientation ofG′. The graphH is called a feasible orientation if,
for each (si, ti) ∈ P , there is a directed path from si to ti in H . The graph H is called
an optimal orientation if it solves the MIN-D-GO problem. A feasible orientation is
given in Fig. 3 (b).

Based on the P ′′-representation of G, we propose a simple polynomial time al-
gorithm (Algorithm MIN-CYCLE-ORIENTATION (MCO)) that optimally solves the
MIN-D-GO problem when G is a MAG and G∗ is a cycle. In MCO, we orient a path
“-” and a path “+”, form the source towards the target vertex, in such a way that all the
source vertices and all the target vertices in P ′′ are covered. We vary the beginning and
the end of each one of these paths considering all possible cases, and finally we keep
the feasible orientation that creates a minimum number of doubly oriented edges.

Theorem 5. Algorithm MCO solves the MIN-D-GO problem when G is a MAG and
G∗ is a cycle.

Proof. Let Gres be the output of Algorithm MCO. Let Gopt be an optimal orientation
of G. We denote by nres (resp. nopt) the number of doubly oriented edges in Gres
(resp. in Gopt). We will show that nres = nopt.

One can easily check that the graphs G1 (at line 5), G2 (at line 6) and G3 (at line
11) are feasible orientations. Since the graph Gres is updated only at these lines, we
deduce that Gres is also a feasible orientation. Now, let us show that nres ≤ nopt (and
consequently nres = nopt). First of all, we identify the two following cases :

• Gopt[si1 , t1]− is an oriented path going from si1 to t1. In this case, A(G1) ⊆
A(Gopt), where G1 is the graph obtained at line 5.

• Gopt[sim′′ , tm′′ ]+ is a directed path going from sim′′ to tm′′ . In this case,
A(G2) ⊆ A(Gopt), where G2 is the graph obtained at line 6.

Furthermore, G1 and G2 are feasible orientations, and the arbitrary orientation of
edges at line 15 does not increase the number of doubly oriented edges. Consequently,
if one of the above two cases occurs, then we have nres ≤ nopt.

Now, we suppose that none of the subgraphs Gopt[si1 , t1]− or Gopt[sim′′ , tm′′ ]+

is a directed path. Let (w, y) be the pair of integers such that Gopt[siw , ty]+ is the
longest directed path, in the “+” direction, going from a source to a target vertex. Let
also (x, z) be the pair of integers such that Gopt[six , tz]

− is the longest directed path,
in the “-” direction, going from a source to a target vertex. Necessarily, the following
inequalities hold: w ≥ x−1 et y ≥ z−1. Indeed, for example suppose by contradiction
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Algorithm 1 MCO (G = (V,E,A),P ⊆ V × V )
Require: A MAG G = (V,A,E) s.t. G∗ is a cycle, a set of pairs P ⊆ V × V .
Ensure: Find an optimal orientation of G.

1: /* Update(Gres, Gi) : if the number of doubly oriented edges of a feasible orientation Gi
is strictly less than that of Gres then Gres := Gi
Orient(sα, tβ ,+, Gi) : orientation of Gi[sα, tβ ]+ form sα towards tβ
Orient(sα, tβ ,−, Gi) : orientation of Gi[sα, tβ ]− form sα towards tβ */

2: Let P ′ (resp. P ′′) be the set of pairs (s, t) s.t. there is in G exactly one (resp. two)
path(s) from s to t.

3: Let G′ be the graph obtained form G by orienting for each (s, t) ∈ P ′, the unique
path between s and t, from s towards t.

4: Gres := G′; Represent(P ′′, G′); /* construct the P ′′-representation ABCD (Def. 4)
*/

5: G1 := G′; Orient(si1 , t1,−, G1); Update(Gres, G1);
6: G2 := G′; Orient(sim′′ , tm′′ ,+, G2); Update(Gres, G2);
7: for all (g, j) with 1 ≤ g,j ≤ m′′ and g ≥ j − 1 do
8: for all (k, l) with 1 ≤ k,l ≤ m′′ and k ≥ l − 1 do
9: G3 := G′; Orient(sig , tk,+, G3); Orient(sij , tl,−, G3);

10: if (G3 is a feasible orientation) then
11: Update(Gres, G3);
12: end if
13: end for
14: end for
15: Replace each edge (u, v) ∈ E(Gres) by the arc uv. /* arbitrary orientation of the

remaining edges in Gres */
16: return Gres

thatw ≤ x−2. In this case, the pair (si(w+1)
, t(w+1)) cannot be satisfied inGopt neither

by a “+” path (due to the maximality of Gopt[siw , ty]+) nor by a “-” path (due to the
maximality of the path Gopt[six , tz]

−). Thus, we obtain a contradiction because Gopt
is a feasible orientation.

The maximality of the paths Gopt[siw , ty]+ and Gopt[six , tz]
− implies that the

graph H obtained from G′ (in its value at line 3) by orienting G′[siw , ty]+ and
G′[six , tz]

− from the source towards the target vertex, is a feasible orientation veri-
fying : A(H) ⊆ A(Gopt). The graph H corresponds to the graph G3 calculated by the
algorithm at line 9 for g = w, j = x, k = y and l = z. As the orientation at line 15
does not increase the number of doubly oriented edges, we deduce that nres ≤ nopt.

Let n = |V (G)|,m′ = |P ′|,m′′ = |P ′′| andm = m′+m′′. It is easy to check that
the overall complexity of Algorithm MCO has an upper bound of O((m′ + m′′

5
) · n).

A more elaborated algorithm that achieves an upper bound of O((m′ + m′′
3
) · n) is

presented in [15].

In the following theorem we show that, similar to the S-GO problem (proof by
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Arkin and Hassin [2]), the MIN-D-GO problem is polynomial-time solvable for gen-
eral MAGs when |P| ≤ 2.

Theorem 6. The MIN-D-GO problem is polynomial-time solvable whenG is a MAG
and |P| ≤ 2.

Proof. Remark that the case |P| = 1 is obvious. Let G = (V,E,A) be a MAG and
P = {(s1, t1), (s2, t2) ∈ V × V }.

A P-essential edge is an edge e ∈ E, with e = (u, v) s.t. if we orient e in a single
direction (either from u to v or from v to u), the graph G is no longer P-connected.
One can compute the P-essential edges in polynomial-time [2].

Let Eess (resp. Emin) be the set of P-essential edges (resp. the set of doubly ori-
ented edges in a solution of the MIN-D-GO problem).

We show that Emin = Eess. Let e ∈ Eess, with e = (u, v). If we orient e
in a unique direction (from u to v or from v to u) then, by definition of P-essential
edges, there is an integer i, 1 ≤ i ≤ 2, s.t. there is no path in G from si to ti. Thus,
whatever the orientation of edges in E − {e}, the pair (si, ti) would not be satisfied.
Hence, we must replace in G each edge e ∈ Eess by a a doubly oriented one, which
implies that Eess ⊆ Emin. Conversely, let G′ = (V,E′, A′) denote the mixed graph
obtained fromG after replacing eachP-essential edge (u, v) by the arcs uv and vu, i.e.,
V (G′) = V (G), E(G′) = E(G)\Eess and A′ = A ∪ {uv, vu : (u, v) ∈ Eess}. For
this, Arkin and Hassin [2] showed that a mixed graph has P-orientation iff it has no P-
essential edge. Thus the graph G′ has a P-orientation G′′. Hence, G′′ is an orientation
of G that satisfies all the pairs in P and creates |Eess| doubly oriented edges, which
implies that |Eess| ≥ |Emin|. Since we have already shown that Eess ⊆ Emin, we
conclude that Emin = Eess.

Now, to solve the MIN-D-GO problem when |P| = 2, we apply the following
process.

1. Compute the P-essential edges of G using the polynomial-time algorithm pre-
sented in [2].

2. Construct a mixed graph G′ by replacing each P-essential edge (u, v) in G by
two arcs uv and vu.

3. Apply the polynomial-time algorithm presented in [2] in order to compute a P-
orientation of G′.

As in the S-GO problem, we show that the MIN-D-GO problem is FPT param-
eterized by B and |P| when G is a MAG. Then, one can deduce that the problem is
polynomial-time solvable when both parameters |P| and |B| are bounded.

Theorem 7. The MIN-D-GO problem is FPT parameterized by B and |P| when G
is a MAG.

Proof. Let G = (V,E,A) and let P = {(si, ti), 1 ≤ i ≤ m}. The proof is similar
to that of Theorem 3. We consider all the possible combinations of paths to satisfy all
the pairs in P (we choose one path per pair and we orient it from the source towards
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the target vertex), that leads to at most Bm combinations. Then, we keep the graph
resulting from the orientation that creates a minimum number of doubly oriented edges.
We complete the orientation of the obtained graph by arbitrarily orienting, in a single
direction, each remaining edge.

5.2. Difficult cases
Recall that a (P, k)-D-orientation is an orientation that satisfies all the pairs in

P and creates exactly k doubly oriented edges. Thus a (P, 0)-D-orientation is a P-
orientation. In addition, we showed in Theorem 4 that the S-GO problem is NP-
complete even when the graph G is a MAG, ∆(G∗) = 3 and B = 3. Hence, we may
immediately deduce the following corollaries:

Corollary 8. The problem D-GO is NP-complete when G is a MAG and |P| is un-
bounded even when ∆(G∗) = 3 and B = 3.

Corollary 9. Unless P = NP, the MIN-D-GO problem is non-approximable when
the graph G is a MAG and |P| is unbounded even when ∆(G∗) = 3 and B = 3.

Moreover, we show in the following theorem that MIN-D-GO is also W[1]-hard
when |P| and B are unbounded even when ∆(G∗) = 3.

Theorem 10. The MIN-D-GO problem is W[1]-hard (parametrized by the number of
doubly oriented edges) when G is a MAG and |P| and B are unbounded, even when
∆(G∗) = 3.

Proof. We propose a reduction from the problem MINIMUM SET COVER: given a set
X = {X1, . . . , Xn} and a collection of sets C = {S1, . . . , Sm} s.t. Si ∈ 2X , for
all 1 ≤ i ≤ m, the goal is to find a minimum set cover C′, i.e., a set C′ ⊆ C s.t.
C =

⋃
Si∈C′ Si and |C′| is minimum.

We denote by αj , 1 ≤ j ≤ n, the number of sets in C containing Xj . Let us con-
struct an instance (G,P) of the MIN-D-GO problem. For each Xj ∈ X , we add the
vertex set {xj} ∪ {xkj , 1 ≤ k ≤ αj}, then we create the directed path x1jx

2
j . . . x

αj
j xj .

For each Si, we add the vertex set {si, s′i} ∪ {s
j
i , 1 ≤ j ≤ |Si|}, and we add an edge

(s′i, si) and a directed path sis1i s
2
i . . . s

|Si|
i .

Let Xl ∈ X be the j−th element in a set Si. We add an arc from sji towards one
vertex in the set {xkl , 1 ≤ k ≤ αl}. Such a vertex is chosen in such a way that the
indegree of each vertex xkl be exactly two, for all 2 ≤ k ≤ αl, and 1 for k = 1. To
finish the construction of G, we add a vertex r1 connected by two arcs going from r1
to the vertices s′1 and s′2. Then, we add a new vertex r2 connected by two arcs going
from r2 to the vertices r1 and s′3. We continue the creation of vertices ri connected
by arcs going from ri to ri−1 and s′i+1, for all 3 ≤ i ≤ m − 1. The set of pairs to
satisfy is P = {(rm−1, xj), 1 ≤ j ≤ n} ∪ {(si, s′i), 1 ≤ i ≤ m} with m = |C|. An
example of construction is illustrated in Figure 4. The degree of each vertex ri in G is
at most three and also each vertex sji is connected to exactly one vertex xj

′

i′ . Thus, one
can easily check that ∆(G∗) = 3.

We claim that, for every integer k ≥ 0, there is a set cover of C of cardinality k if
and only if there is a (P, k)-D-orientation of G.
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Figure 4: (a) Construction of an instance (G,P) of the MIN-D-GO problem from an instance of MINIMUM
SET COVER problem. Here, X = {X1, X2, X3, X4, X5, X6} and C = {S1, S2, S3, S4} s.t. S1 =
{X1, X3}, S2 = {X2, X3, X5}, S3 = {X1, X4, X6} and S4 = {X1, X5}. The set of pairs is P =
{(s1, s′1), (s2, s′2), (s3, s′3), (s4, s′4), (r3, x1), (r3, x2), (r3, x3), (r3, x4), (r3, x5), (r3, x6)}. (b) The
graph G′ is a (P, 2)-D-orientation of G corresponding to the set cover C′ = {S2, S3}.

⇒: Given a set cover {Si1 , Si2 , . . . , Sik}, we doubly orient the edge (sij , s
′
ij

),
for all 1 ≤ j ≤ k. Then, we replace each edge (si, s

′
i) by the arc sis′i, for all i ∈

{1, 2, . . . ,m}\{i1, i2, . . . , ik}.
⇐: Let ED be the set of doubly oriented edges in a (P, k)-D-orientation. Let

C′ = {Si : (si, s
′
i) ∈ ED}. Thus, |C′| ≤ k. We will show that the set C′ is a set cover

of C. Suppose that there is Xj ∈ X s.t. Xj /∈ Si for all Si ∈ C′. Let Cj denote the
collection of the sets containing Xj , i.e., Cj = {S ∈ C : Xj ∈ S}. The graph G is
constructed in such a way that, to satisfy any pair (rm−1, xj), we must add at least one
arc s′isi s.t. Si ∈ Cj . On the other hand, we have to orient each edge (s′i, si), from
si towards s′i, to satisfy the pair (si, s

′
i) ∈ P . Then the edge (s′i, si) must be doubly

oriented, which implies that Si ∈ C′. This is a contradiction, because C′ ∩ Cj = ∅.
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Moreover, |C′| ≤ k. If |C′| 6= k, then we add to |C′| a convenient number of arbitrarily
sets from C to ensure that |C′| = k (C′ remains a set cover of C).

The above reduction preserves the parameter k (the cardinality of the set cover and
the number of doubly oriented edges). Since the problem MINIMUM SET COVER is
W[1]-hard when parametrized by k [17, 7], the MIN-D-GO problem is also W[1]-hard
when parametrized by the number of doubly oriented edges.

Now let us show that, unlike the S-GO problem, the MIN-D-GO problem remains
difficult even when B = 2.

Theorem 11. The problem MIN-D-GO is APX-hard when G is a MAG and |P| is
unbounded, even when ∆(G∗) = 3 and B = 2.

Proof. Again, we use the previous reduction (proof of Theorem 10), but we consider
the variant MINIMUM SET COVER-2 of the MINIMUM SET COVER problem in which
each Xj ∈ X appears in exactly two sets in C. For each pair of vertices (si, s

′
i) ∈ P

there is a unique path in G, from si to s′i (that is the edge (si, s
′
i)), for all 1 ≤ i ≤ m.

In addition, the fact that each Xj ∈ X appears in exactly two sets in C, implies that
for each pair (rm−1, xi) there are, in G, two paths from rm−1 to si, for all 1 ≤ i ≤ n.
Thus B = 2 and also the graph G is constructed so that we have ∆(G∗) = 3.

As the proposed reduction is an L-reduction and the problem MINIMUM SET
COVER-K is APX-hard [16], we conclude that MIN-D-GO is APX-hard when G
is a MAG s.t. ∆(G∗) = 3 and |P| is unbounded, even when B = 2.

6. Conclusion

In this work, we considered two problems that concern the orientation of mixed
graphs, both motivated, among others, by urban and communication network design
and also by biological applications. We studied the complexity of both problems, and
in particular we provided polynomial-time algorithms for some restricted instances, as
well as hardness and inapproximability results. However, some interesting problems
remain open so far, such as the following ones. First, since we showed that MIN-
D-GO is easy when |P| ≤ 2, and difficult when |P| is unbounded, it is interesting
to study the complexity of such a problem when |P| = 3 (or more generally when
|P| is a constant greater than or equal to 3), in order to identify the border (according
to |P|) between tractable and intractable instances. Investigating the complexity of
S-GO and MIN-D-GO in terms of approximability (on specific graph classes) and
fixed-parameterized tractable (FPT) algorithms is another interesting goal.
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