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Abstract

Let X = {xi : 1 ≤ i ≤ n} ⊂ N
+, and h ∈ N

+. The h-iterated sumset of X,
denoted hX, is the set {x1 + x2 + . . . + xh : x1, x2, . . . , xh ∈ X}, and the [h]-

sumset of X, denoted [h]X, is the set
⋃h

i=1 iX. A [h]-sumset cover of S ⊂ N
+ is

a setX ⊂ N
+ such that S ⊆ [h]X. In this paper, we focus on the case h = 2, and

study the APX-hard problem of computing a minimum cardinality [2]-sumset
cover X of S (i.e. computing a minimum cardinality set X ⊂ N

+ such that
every element of S is either an element of X, or the sum of two - non-necessarily
distinct - elements of X). We propose two new algorithmic results. First, we
give a fixed-parameter tractable (FPT) algorithm that decides the existence of
a [2]-sumset cover of size at most k of a given set S. Our algorithm runs in

O
(

2(3 log k−1.4)k poly(k)
)

time, and thus outperforms the O
(

5
k
2(k+3)

2 k2 log(k)
)

time FPT result presented in [Fagnot, Fertin and Vialette, On Finding Small
2-Generating Sets, COCOON 2009, Lecture Notes in Computer Science, Vol.
5609 ]. Second, we show that deciding whether a set S has a smaller [2]-sumset
cover than itself is NP-hard.

1. Introduction

Write N
+ = {1, 2, . . .} for the set of all natural numbers excluding 0. Let

X = {xi : 1 ≤ i ≤ n} ⊂ N
+ and h ∈ N

+. The h-iterated sumset of X, denoted
hX, is the set {x1 + x2 + . . .+ xh : x1, x2, . . . , xh ∈ X}, while the [h]-sumset of

X, denoted [h]X, is defined as the set
⋃h

i=1 iX. A [h]-sumset cover of S ⊂ N
+

is a set X ⊂ N
+ such that S ⊆ [h]X. (Notice that we do not require the reverse

direction [h]X ⊆ S.) The [h]-sumset rank of a set S ⊂ N
+ is defined to be the

smallest cardinality of a [h]-sumset cover of S. Notice that any set S ⊂ N
+

is a [h]-sumset cover of itself for any h ∈ N
+, and hence, in particular, S has
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[2]-sumset rank at most |S|. A set S ⊂ N
+ is said to be [h]-simplifiable if it has

a smaller [h]-sumset cover than itself.

Example1. Let S = {1, 2, . . . , 11}. A [2]-sumset cover of S is given by X =
{1, 3, 5, 6} with [2]X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} ⊇ S, and hence S is [2]-
simplifiable since |X| < |S|. Furthermore, as there does not exist a smaller
[2]-sumset cover of S, the [2]-sumset rank of S is |X| = 4. (Notice that, in
this particular example, X is the unique [2]-sumset cover of S of size 4. This
is however not a general rule as the set S = {1, 2, . . . , 10} has 8 minimum
cardinality [2]-sumset covers.)

Example2. Let S = {4, 7, 10}. It can be easily checked that S does not have
a smaller [2]-sumset cover than itself, and hence that S is not [2]-simplifiable.

In this paper, we focus on the case h = 2, and thus study the problem of
[2]-sumset covering a set S ⊂ N

+ with a minimum cardinality set X ⊂ N
+,

such that every element of S is either an element of X, or the sum of two -
non-necessarily distinct - elements of X. Observe that, in general, a minimum
cardinality [2]-sumset cover X does not have to be a subset of S nor intersect
it, as shown by the following example: S = {4, 5, 6}, whose unique minimum
cardinality [2]-sumset cover is X = {2, 3}.

Computing a minimum cardinality [2]-sumset cover of a set of integers is
a simple restriction of a natural problem in (algorithmic) number theory [3]
which is defined as follows: Given S ⊂ N

+, find a minimum cardinality set
X of integers such that every element of S is the sum of a subset of X. This
problem has been shown to be NP-hard [3], and is related, among other things,
to planning radiation therapy (in this setting, elements of S represent radiation
dosages required at various points, while an element of X represents a dose
delivered simultaneously to multiple points). Other variants, namely the cases
in which the elements ofX can be negative or fractional, are considered in [4, 11].

Computing a minimum cardinality [2]-sumset cover of {1, 2, . . . , n} turns
out to be a special case of the Postage Stamp problem [1, 17]. The Postage

Stamp problem is defined as follows: for fixed positive integers h, k ∈ N
+, find

the largest n for which a [h]-sumset cover X of {1, 2, . . . , n} of size k exists;
this largest n is usually denoted N(h, k). It is easily seen that N(1, k) = k
(for X = {1, 2, . . . , k}) and N(h, 1) = h (for X = {1}). Stöhr [13, 14] proved
that N(h, 2) =

⌊

(h2 + 6h+ 1)/4
⌋

(Tripathi gives an alternate proof in [17]).
Surprisingly enough, no other closed-form expression is known for any other pair
(h, k) where one of h and k is fixed [17]. Computing a closed-form expression for
N(2, k) (or, going back to our vocabulary, computing a minimum cardinality
[2]-sumset cover of {1, 2, . . . , n}) remains a challenging open problem ; note
that an asymptotic bound for N(2, k) is given in [10] (we also refer the reader
to Section 4 and Table 1 for a brief discussion on this particular topic).

Computing a minimum cardinality [2]-sumset cover of a set of integers is also
related to ℓ-covering a set of strings S with a (small) set C of substrings in S,
where C is said to ℓ-cover S if every string in S can be written as a concatenation
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of at most ℓ substrings in C (see [5] and references therein for a short discussion
of applications that arise in the context of computational biology and formal
language theory). This string problem is intractable if ℓ = 2 and the set of
strings S is defined over some binary alphabet. In case S is defined over some
unary alphabet with unary notation, the two problems coincide. (Determining
the complexity of ℓ-covering a set of strings S defined over some unary alphabet
with unary notation is, however, open. See Section 4.)

Strongly related to our work are minimum sum covers of finite Abelian
groups as investigated in [7, 8] (a subset X of an Abelian group G is a sum
cover of G if {xi + xi : xi, xj ∈ X} = G). Swanson [15] (see also [9]) gives
some constructions and computational results for maximum difference packings
of cyclic groups (a subset X of an Abelian group G is a difference packing
of G if |X|(|X| − 1) = |{gi − gj : gi, gj ∈ G} \ {0}| ). Haanpää, Huima, and

Österg̊ard compute some maximum sum and strict sum packings of cyclic groups
are given in [9] (a subset X of an Abelian group G is a sum packing of G if
{xi+xi : xi, xj ∈ X ∧ xi 6= xj} = G). Fitch and Jamison [7] give minimum sum
and strict sum covers of small cyclic groups, and Wiedemann [18] determines
minimum difference covers for cyclic groups of order at most 133 (a subset X
of an Abelian group G is a difference cover of G if {xi − xi : xi, xj ∈ X} = G).
The best general references are [12] and [16].

Two of the present authors have shown in [6] that computing a minimum
cardinality [2]-sumset cover of a set of integers is APX-hard. In the same paper,
a representation lemma was given, which implies a fixed-parameter tractable

(FPT) algorithm running in O
(

5
k
2(k+3)

2 k2 log(k)
)

time for deciding whether

there exists a [2]-sumset cover of cardinality at most k of a set of positive
integers S. In this paper, we first improve this latter result by providing a new
FPT algorithm, whose running time is O

(

2(3 log k−1.4)k poly(k)
)

(Section 2). We
also prove that deciding whether a set S is [2]-simplifiable (i.e., whether S has
a smaller [2]-sumset cover than itself), is NP-hard (Section 3).

2. A faster FPT algorithm for the [2]-sumset cover problem

In this section, we give an FPT algorithm for deciding whether there exists
a [2]-sumset cover of cardinality at most k of a set of positive integers S. Its
complexity outperforms the one of [6].

We consider graphs that allow for multiple edges ; given a graph G = (V,E),
we write NG(u) the (multi-)set of neighbors of vertex u ∈ V . By extension, for
any V ′ ⊆ V , NG(V

′) denotes the (multi-)set of neighbors of vertices in V ′. Let
S = {si : 1 ≤ i ≤ n} ⊆ N

+, and let X = {xi : 1 ≤ i ≤ k} be a [2]-sumset cover of
S. Define an X-realization of S to be a bipartite graph B = (U, V,E) equipped
with two bijections σ : U → S and χ : V → X such that dB(u) ∈ {1, 2} for
all u ∈ U (where dB(u) stands for the degree of u in B), and if dB(u) = 1,
say {u, v} ∈ E, then σ(u) = χ(v), and if dB(u) = 2, say {u, v}, {u, v′} ∈ E
(possibly with v = v′ in case of double edges), then σ(u) = χ(v) + χ(v′). A
X-realization B = (U, V,E) of some S ⊂ N

+ is said to be minimal if X is a
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minimum cardinality [2]-sumset cover of S, i.e., S has [2]-sumset rank |X|. The
following lemma (see [6], Lemma 10) shows important properties of minimal
X-realizations in terms of degree and cycle constraints.

Lemma 1 ([6]). Let B = (U, V,E) be a minimal X-realization of some S ⊂
N

+. Then, each connected component of B contains a degree-1 vertex u ∈ U ,
and/or a simple cycle of length 4ℓ+ 2 for some ℓ ≥ 0.

To shorten the exposition, we introduce a last definition. A bipartite graph
B = (U, V,E) is said to be k-reduced if (1) |U | = |V | = k, (2) every vertex u ∈ U
has degree 1 or 2, (3) B contains a perfect matching, and (4) each connected
component of B contains a degree-1 vertex u ∈ U , and/or a simple cycle of
length 4ℓ+ 2 for some ℓ ≥ 0.

Lemma 2. Let B = (U, V,E) be a k-reduced bipartite graph, and σ : U → N
+

be an injective mapping. Then there exists at most one mapping χ : V → N
+

such that σ(u) =
∑

v∈N(u) χ(v) holds for any u ∈ U , and this mapping can be
computed in polynomial-time if it exists.

Proof. We first compute χ(v+) for exactly one vertex v+ ∈ V in each con-
nected component of B. Let Bi = (Ui, Vi, Ei) be any connected component of
B. If there exists a degree-1 vertex u ∈ Ui, let v+ be the (only) neighbor of u
and set χ(v+) = σ(u). Otherwise, according to Lemma 1, Bi contains a simple
cycle of length 4ℓ+2 for some ℓ ≥ 0. Let (u1, v

+, u2, v2, . . . , u2ℓ+1, v2ℓ+1) be any

such cycle, and set χ(v+) =
∑2ℓ+1

i=1 1/2(−1)i−1σ(ui). Clearly, having disposed
of this first step, in any connected component Bi = (Ui, Vi, Ei) of B there exists
exactly one vertex v+ ∈ V for which χ(v+) has been set. Next, for any vertex
v ∈ V for which χ(v) has not been set, consider any path of length 2p leading
v to the vertex v+ ∈ V for which χ(v+) has been set during the first step, say
(v, u1, v1, . . . , vp−1, up, v

+), and set χ(v) = (−1)pχ(v+)+∑p
i=1(−1)i−1σ(ui). It

is now a routine calculation to verify that σ(u) =
∑

v∈N(u) χ(v) for any u ∈ U .
Clearly, the above procedure runs in polynomial-time. If χ has positive,

integral values, this is the desired mapping χ : V → N
+. Furthermore, by

construction, χ is the only mapping satisfying
∑

v∈N(u) χ(v) = σ(u) for any
u ∈ U . �

Lemma 3. Let S = {si : 1 ≤ i ≤ n} ⊂ N
+ be a set with [2]-sumset rank k, X be

a size-k [2]-sumset cover of S, and B = (U, V,E) be a minimal X-realization of
S. Then there exists a subset U ′ ⊆ U of size k such that B[U ′, V ] is k-reduced.

Proof. The proof is constructive: we build a set U ′ as the disjoint union
of two sets U0 and U1 created in the following two steps. In a first step,
we start with U0 = ∅, and we consider in turn each connected component
Bi = (Ui, Vi, Ei) of B. If Bi contains a degree-1 vertex u ∈ Ui, add u to U0.
Otherwise, according to Lemma 1, Bi contains a simple cycle of size 4ℓ+ 2 for
some ℓ ≥ 0, say (u1, v1, u2, v2, . . . , u2ℓ+1, v2ℓ+1). For every 1 ≤ i ≤ 2ℓ + 1, add
ui to U0. Since any vertex u ∈ U has degree 1 or 2, at the end of this first step
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Algorithm 1:

Data: S ⊂ N
+ and k ∈ N

+

Result: a [2]-sumset cover of S of size k if it exists and none otherwise

for all k-reduced bipartite graphs B = (U, V,E) do
for all subsets S′ ⊆ S of size k do

for all bijective mappings σ : U → S′ do
compute χ : V → Z

+ according to Lemma 2 (if it exists)
X ← {χ(v) : v ∈ V }
if X is a [2]-sumset cover of S then return X

return none

the induced subgraph B[U0, V ] has a perfect matching and NB(U
0) ∩ Vi 6= ∅

for each connected component Bi = (Ui, Vi, Ei) of B.
For the second step, we again consider in turn each connected component

Bi = (Ui, Vi, Ei) of B, starting with U1 = ∅. If Vi ⊆ NB(U
0) we are done.

Otherwise, let Ti be any spanning tree of Bi rooted at any vertex of NB(U
0)∩Vi

(such a vertex does exist sinceNB(U
0)∩Vi 6= ∅). For any vertex v ∈ Vi\NB(U

0),
let u ∈ Ui be its parent in Ti, and add u to U1 (u exists since v is not the root
of Ti, and u /∈ U0). Notice that we cannot add twice the same vertex u to U1:
this follows from the fact that Ti is rooted at some vertex from V and each
vertex u ∈ U has degree at most 2. Then it follows that U0 ∩ U1 = ∅, and
|U0 ∪ U1| = |V |. It is now a simple matter to check that B[U0 ∪ U1, V ] is a
k-reduced graph. �

Corollary 4. Let S ⊂ N
+ with [2]-sumset rank k. Then there exists a subset

S′ ⊆ S of size k of which a X-realization is k-reduced.

Algorithm 1 is the proposed procedure for finding a minimum [2]-sumset
cover of a set S ⊂ N

+ with [2]-sumset rank k. Correctness of Algorithm 1
follows from Lemma 2 and Corollary 4. We now turn to evaluating the time
complexity of Algorithm 1.

We first focus on the time complexity for enumerating all k-reduced graphs.
Let Nk be the number of k-reduced graphs. Recall that every k-reduced graph
B = (U, V,E) has a perfect matching, and each vertex of U has degree 1 or 2.
It is thus enough to start with a perfect matching of size k and “guess” some
degree-2-vertices of U . Our approach relies on the following easy lemma.

Lemma 5. Let B = (U, V,E) be a k-reduced graph. Up to a relabeling of U =
{ui : 1 ≤ i ≤ k} and V = {vi : 1 ≤ i ≤ k}, the following properties hold for all
1 ≤ i, j ≤ n: (1) {ui, vi} ∈ E, (2) for any two ui, uj ∈ U , if dB(ui) < dB(uj)
then i < j, and (3) for any {ui, vj} ∈ E, j ≤ i+ 1.

Let p, 0 ≤ p ≤ k, stand for the number of degree-1 vertices in U . According
to the above lemma, for each i, p < i < k, it is enough to guess the second
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edge of vertex ui among i + 1 possibilities (another edge connecting ui to vj
with j ≤ i+ 1). The number of guesses reduces to k for i = k. Then it follows

that Nk ≤
∑k

p=0

(

∏k−1
i=p+1 i+ 1

)

k =
∑k

p=0
k!

(p+1)!k ≤ k!ek since e =
∑

∞

p=0
1
p! .

Using the Stirling formula to substitute factorial yields Nk = O
(

k
√
k
(

k
e

)k
)

,

and hence Nk = O
(

k3/2+ke−k
)

.
We are now ready to give the total time complexity of Algorithm 1. There

are
(

n
k

)

k-subsets S′ of S (|S| = n), and for each k-subset S′ there are k! distinct
bijective mappings σ : U → S′. As for the computation of the mapping χ : V →
X, this is a poly(k) time procedure (Lemma 2). Besides, checking that solution
X is indeed a [2]-sumset cover of S is also a poly(k) time procedure. Combining

everything, we obtain O
(

Nk

(

n
k

)

k! poly(k)
)

= O
(

k3/2+k e−k n!
(n−k)! poly(k)

)

=

O
(

kk e−k nk poly(k)
)

. Now remark that, by definition, k = Ω(
√
n) (since oth-

erwise X could not be a [2]-sumset cover of S), that is n = O(k2). Hence the
overall complexity of Algorithm 1 can be written O

(

kk e−kk2k poly(k)
)

, that

is O
(

2(3 log k−1.4)k poly(k)
)

.

3. Intractability for [2]-simplification procedures

Recall that a set S ⊂ N
+ is said to be [h]-simplifiable if it has a smaller [h]-

sumset cover than itself. It is known that computing the smallest cardinality of
a [2]-sumset cover of a set S ⊂ N

+ (i.e., computing the [2]-sumset rank of S) is
an APX-hard problem [6].

It is a simple matter to see that deciding whether a set S ⊂ N
+ is [h]-

simplifiable is solvable in O((n − 1)h+1 mn−1) time, where n = |S| and m =
max(S), where max(S) = max{s : s ∈ S}. Indeed, this follows from the easy
fact that any superset of a [h]-sumset cover of S is also an [h]-sumset cover of S.
Therefore, it is enough to check that there exists an (n− 1)-subset of [m] (there
are

(

m
n−1

)

= O(mn−1) such subsets) that is a [h]-sumset cover of S, an easy

O((n− 1)h+1) time procedure. This is of course a broad estimation. However,
we now prove intractability for any [2]-simplification testing procedure. (In
other words, deciding whether the [2]-sumset rank of S is strictly less than |S|
is intractable.)

Proposition 6. Deciding whether a set S ⊂ N
+ is [2]-simplifiable is NP-hard.

Proof. The reduction is from the Equal Sum Subset of Equal Cardi-

nality problem: given a set T ⊂ N
+, are there two disjoint nonempty subsets

A,B ⊆ T with |A| = |B| such that
∑

a∈A a =
∑

b∈B b ? The Equal Sum

Subset of Equal Cardinality problem has been shown to be NP-complete
in [2].

Let T = {t1, t2, . . . tn} ⊂ N
+ be an arbitrary instance of the Equal Sum

Subset of Equal Cardinality problem. We take a rather big positive in-
teger B (B = 1 +

∑n
i=1 ti is actually large enough) and define the set S =

{s0, s1, . . . , sn} ⊂ N
+ by s0 = 1 and si = 2(ti + B) + 1, 1 ≤ i ≤ n. We claim
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that S is [2]-simplifiable iff the original set T has two disjoint subsets of equal
sum and cardinality.

Assume for simplicity that t1+t3+ . . .+t2k−1 = t2+t4+ . . .+t2k for some k.
This is clearly equivalent to assuming that s1+s3+. . .+s2k−1 = s2+s4+. . .+s2k.
Assume further that t2i−1 ≤ t2j−1 and t2i ≥ t2j for all 1 ≤ i < j ≤ k. This
can be safely assumed through a relabeling of the indices of t1, t3, . . . , t2k−1

(and of s1, s3, . . . , s2k−1) and a relabeling of the indices of t2, t4, . . . , t2k (and of
s2, s4, . . . , s2k). Now, we have that s1 + s3 + . . .+ s2q−1 ≤ s2 + s4 + . . .+ s2q (†)
for every 1 ≤ q ≤ k. Consider now the 2k naturals d0, d1, d2, . . . , d2k−1 defined
by d0 = 1 and di = si − di−1 for 1 ≤ i ≤ 2k − 1. We claim that each di,
1 ≤ i ≤ 2k − 1, is a positive integer. Indeed, for 1 ≤ i ≤ k − 1, we have
d2i+1 = s2i+1 − d2i = (s1 + s3 + . . . + s2i+1) − s0 − (s2 + s4 + . . . + s2i) =
2(t1+ t2+ . . .+ t2i+1)+2B(i+1)+(i+1)−s0−2(t2+ t4+ . . .+ t2i)−2Bi− i =
2(t1 + t2 + . . .+ t2i+1)− 2(t2 + t4 + . . .+ t2i)+ 2B+2 > 0 for B >

∑n
i=1 ti, and

d2i = s2i − d2i−1 = (s2 + s4 + . . .+ s2i) + s0 − (s1 + s3 + . . .+ s2i−1) ≥ s0 = 1
by (†). Notice that it follows from the above that d2k−1 = (s1 + s3 + . . . +
s2k−1) − s0 − (s2 + s4 + . . . + s2k−2). Combining this with our hypothesis
s2k = (s1 + s3 + . . .+ s2k−1)− (s2 + s4 + . . .+ sk−2) yields s2k = d2k−1 + s0 =
d2k−1+d0, and hence si = di−1+di mod 2k holds for 1 ≤ i ≤ 2k. Then it follows
that X = {di : 0 ≤ i ≤ 2k − 1} ∪ {si : 2k + 1 ≤ i ≤ n} is a [2]-sumset cover of
S. But |X| = n− 1 < n = |S|, and hence S is 2-simplifiable.

For the other direction, assume the set S = {s0, s1, . . . sn} is 2-simplifiable
and let D = {d1, d2, . . . , dk}, k ≤ n, be a [2]-sumset cover of S. Let us represent
this situation with a graph G (this graph may have loops). The graph G has
k + 1 vertices labeled 0, d1, . . . dk. As for the edges, for every 0 ≤ i ≤ n, we
have an edge labeled si between two vertices dp and dq such that si = dp + dq
(if there exists several possibilities for [2]-sumset covering si with D, we choose
one arbitrarily). Notice that we have a loop labeled si if si = dp + dp for
some dp ∈ D, and an edge labeled si with an endpoint labeled 0 allows us
to conveniently represent the case si = dp as si = dp + 0, dp ∈ D. Since G
has k + 1 ≤ n + 1 vertices and n + 1 edges, then G must contain some cycle
C. Furthermore, the sum of the labels on the edges of C is twice the sum of
the labels on the nodes of C, and must therefore be an even number. Now,
remembering that the si’s are all odd (by construction from the ti’s) it follows
that C is an even cycle, and that the edges of C can be partitioned into two
matchingsM1 andM2. Notice now that the sum of the labels on the edges of
M1 equals the sum of the labels on the edges ofM2. From this, and since we
chose B big enough, we can exclude the possibility that one edge of C is labeled
with s0 = 1. Then it follows that the edges of M1 and the edges of M2 give
two disjoint subsets of T = {t1, t2, . . . , tn} with equal sum and cardinality. �

4. Conclusion and Open Problems

In this paper, we have studied further the problem of computing a minimum
cardinality [2]-sumset cover X of a set S of positive integers. We have provided
two new algorithmic results. First, we have proposed an FPT algorithm for
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n [2]-sumset rank of {1,2, . . .}
1, 2 1
3, 4 2

5, 6, 7, 8 3
9, 10, 11, 12 4
13, 14, 15, 16 5
17, 18, 19, 20 6
21, 22, . . . , 26 7
27, 28, . . . , 32 8
33, 34, . . . , 40 9
41, 42, . . . , 46 10
47, 48, . . . , 54 11
55, 56, . . . , 64 12
65, 66, . . . , 72 13

Table 1: [2]-sumset rank of S = {1, 2 . . . n} for 1 ≤ n ≤ 72.

determining whether a set S has a [2]-sumset cover X of cardinality at most k
whose complexity outperforms the FPT algorithm from [6]. Second, we have
proved that determining whether a set S is [2]-simplifiable is NP-hard.

Though simple to express, the [2]-sumset cover problem is surprisingly hard
to tackle. Hence, many open questions remain. We would like to end this paper
by mentioning two of them we believe to be the most relevant for algorithmic
issues.

First, is the problem of computing the [2]-sumset rank strongly NP-hard ?
As mentioned in the introduction, this question is related (and actually was our
initial motivation for studying [2]-sumset ranks) to ℓ-covering a set of strings
S with a (small) set C of substrings in S, where C is said to ℓ-cover S if every
string in S can be written as a concatenation of at most ℓ substrings in C. This
problem is intractable if ℓ = 2 and the set of strings S is defined over some
binary alphabet. Proving strongly NP-hardness for computing the [2]-sumset
rank of a set of integers would imply intractability if ℓ = 2 and the set of strings
S is defined over some unary alphabet.

Second, focusing on the particular case where S = {1, 2, . . . , n}, what can be
said about minimum [2]-sumset covers of such sets (e.g., in terms of cardinal-
ity and structure) ? With practical issues in mind, some experimental results
(briefly displayed in Table 1) lead us to formulate the following conjecture:

Conjecture 7. For any positive integer n ≥ 1, there exists a minimum cardi-
nality [2]-sumset cover X of {1, 2, . . . , n} whose maximum element xM satisfies
xM ≤ ⌈n/2⌉+ 1.

By computer simulations, we know this conjecture to be true for any 1 ≤ n ≤
80. Moreover, for any n ≤ 80 with n 6∈ {45, 46, 61, 62}, there exists a minimum
[2]-sumset cover X of S = {1, 2 . . . n} whose maximum element xM satisfies
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xM ≤ ⌈n/2⌉. Only in the cases n ∈ {45, 46, 61, 62} do we have xM > ⌈n/2⌉
for any minimum [2]-sumset cover. In each of these four cases, however, there
exists a minimum [2]-sumset cover X of S such that xM = ⌈n/2⌉+1, hence our
above conjecture.
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[8] H. Haanpää. Minimum sum and difference covers of abelian groups. J. of
Integer Seq., 7(2):Article 04.2.6, 2004.
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