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THUE EQUATIONS AND CM-FIELDS

YVES AUBRY AND DIMITRIOS POULAKIS

Abstract. We obtain a polynomial type upper bound for the size of
the integral solutions of Thue equations F (X,Y ) = b defined over a
totally real number field K, assuming that F (X, 1) has a root α such
that K(α) is a CM-field. Furthermore, we give an algorithm for the
computation of the integral solutions of such an equation.
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1. Introduction

Let F (X,Y ) be an irreducible binary form in Z[X,Y ] with degF ≥ 3 and
b ∈ Z \ {0}. In 1909, Thue [27] proved that the equation F (X,Y ) = b has

only finitely many solutions (x, y) ∈ Z2. Thue’s proof was ineffective and
therefore does not provide a method to determine the integer solutions of
this equation. Other non effective proofs of Thue’s result can be found in
[7, Chap. X] and [21, Chap. 23].

In 1968, Baker [2], using his results on linear forms in logarithms of alge-
braic numbers, computed an explicit upper bound for the size of the integer
solutions of Thue equations. Baker’s result were improved by several au-
thors (see for instance [6], [11], [23]) but the bounds remain of exponential
type and thus, are not useful to compute integer solutions of such equations.
Nevertheless, computation techniques for the resolution of Thue equations
have been developed based on the above results [1], [13], [22], [28] and the
solutions of certain parameterized families of Thue equations have been ob-
tained [14]. Furthermore, upper bounds for the number of integral solutions
of Thue equations have been given [5], [9], [4].

In the case where all roots of the polynomial F (X, 1) are non real, we
have a polynomial type bound provided by other methods [21, Theorem
2, page 186], [10] [24]. Győry’s improvement in [10, Théorème 1] holds in
the case where the splitting field of F (X, 1) is a CM-field i.e., is a totally
imaginary quadratic extension of a totally real number field. In the same
paper, Győry studied Thue equations defined over a CM-field L and also
gave ([10, Théorème 2]) a polynomial upper bound for the size of their real
algebraic integers solutions in L.

In this paper, we consider Thue equations F (X,Y ) = b defined over
a totally real number field K. Simplifying Győry’s approach, we obtain
(Theorem 1) polynomial type bounds for the size of their integral solutions
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2 YVES AUBRY AND DIMITRIOS POULAKIS

over K, assuming that F (X, 1) has a root α such that the field K(α) is
a CM-field. In case where the splitting field is a CM-field we are in the
situation of [10, Théorème 2]. Whenever all roots of the polynomial F (X, 1)
are non real and K 6= Q, we obtain much better bounds than those already
known [24]. Moreover, whenever F (X, 1) has a real and a non real root,
we obtain polynomial type bounds that the Baker’s method was not able
to provide other than exponential bounds. Furthermore, the method of the
proof of Theorem 1 provides us with an algorithm for the determination of
the solutions of such equations.

We illustrate our result by giving two examples of infinite families of
Thue equations F (X,Y ) = b satisfying the hypothesis of Theorem 1. First
we consider Thue equations over some totally real subfields K of cyclotomic
fieldsN such that the splitting field L of F (X, 1) overK is contained inN . In
this case, L is an abelian extension of K. Next, we give a family of equations
F (X,Y ) = b such that F (X, 1) has a root α for which K(α) is a biquadratic
CM-field. These families contain equations such that F (X, 1) has also real
roots and so the only method for having upper bound for the size of theirs
solutions is Baker’s method which provide only bounds of exponential type.
Finally, we give two examples of determination of solutions of equations
satisfying the hypothesis of Theorem 1, by using our algorithm.

2. New bounds

We introduce a few notations. Let K be a number field. We consider
the set of absolute values of K by extending the ordinary absolute value | · |
of Q and, for every prime p, by extending the p-adic absolute value | · |p
with |p|p = p−1. Let M(K) be an indexing set of symbols v such that | · |v,
v ∈ M(K), are all of the above absolute values of K. Given such an absolute
value | · |v on K, we denote by dv its local degree. Let x = (x0 : . . . : xn)
be a point of the projective space Pn(K) over K. We define the field height
HK(x) of x by

HK(x) =
∏

v∈M(K)

max{|x0|v, . . . , |xn|v}dv .

Let d be the degree of K. We define the absolute height H(x) by H(x) =
HK(x)1/d. For x ∈ K, we put HK(x) = HK((1 : x)) and H(x) = H((1 :
x)). If G ∈ K[X1, . . . ,Xm], then we define the field height HK(G) and
the absolute height H(G) of G as the field height and the absolute height
respectively of the point whose coordinates are the coefficients of G (in
any order). For an account of the properties of heights see [15, 17, 26].
Furthermore, we denote by OK and NK the ring of integers of K and the
norm relative to the extension K/Q, respectively. Finally, for every z ∈ C
we denote, as usually, by z̄ its complex conjugate.

We prove the following theorem:
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Theorem 1. Let K be a totally real number field of degree d. Let b ∈
OK \ {0} and F (X,Y ) ∈ OK [X,Y ] be a form of degree n ≥ 2. Suppose

that F (X, 1) has a root α such that K(α) is a CM-field. Then the solutions

(x, y) ∈ O2
K of F (X,Y ) = b satisfy

H(x) < Ω1 and H(y) < Ω2

for the following values of Ω1 and Ω2. If the coefficients of Xn and Y n are

±1, then

Ω1 = Ω2 = 32H(b)1/nH(F )1+1/nNK(b)2/d.

If only the coefficient of Xn is ±1, then

Ω1 = 29H(b)1/nH(F )2+1/nNK(b)4/d and Ω2 = 32H(b)1/nH(F )1+1/nNK(b)2/d.

If both the coefficients of Xn and Y n are 6= ±1, then

Ω1 = 29H(b)1/nH(Γ)2n+1NK(b)4/dH(a0)
n−1NK(a0)

2(n−1)/d

and

Ω2 = 32H(b)1/nH(Γ)n+1NK(b)2/dH(a0)
n−1NK(a0)

2(n−1)/d,

where a0 is the coefficient of Xn and Γ a point of the projective space with

1 and the coefficients of F (X,Y ) as coordinates. Furthermore, the number

of integral solutions to the equation F (X,Y ) = b is at most

72 · 4dnNK(b)2n.

In case where b is a unit of OK , this number is at most 2wn, where w is the

number of the roots of unity in K(α).

The proof of this result is relied on the following property of CM-fields. A
non real algebraic number field L is a CM-field if and only if L is closed under
the operation of complex conjugation and complex conjugation commutes
with all the Q-monomorphisms of L into C ([3], [12, Théorème 1], [18,
Lemma 2]).

WhenK = Q and the splitting field of F (X, 1) over Q is an abelian totally
imaginary extension, the hypothesis on complex conjugation is obviously
satisfied. If the coefficient of Xn is ±1, it is interesting to notice that our
bounds are essentially independent of the degree of the form F (X,Y ). Thus,
in case where H(F ) and H(b) are not too large, an exhaustive search can
provide the integer solutions we are looking for.

Finally, it should be noticed that in case where F (X,Y ) is irreducible we
are in the situation of [10]. For K = Q, [10, Théorème 1] provides a better
upper bound than Theorem 1 and for K 6= Q, [10, Théorème 2] gives similar
upper bounds to Theorem 1. Suppose F (X,Y ) is reducible. If K = Q and
F1(X,Y ) is a non trivial irreducible factor of F (X,Y ) over Z such that the
splitting field of F1(X, 1) is of CM-type, then each integer solution (x, y)
of F (X,Y ) = b satisfies F1(x, y) = b1, for some divisor b1 of b. Thus, [10,
Théorème 1] applies to this equation and gives better explicit bound for |x|
and |y| than Theorem 1. Finally, let K 6= Q and F1(X,Y ) be a non trivial
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irreducible factor of F (X,Y ) over OK of degree ν such that the splitting field
of F1(X, 1) is of CM-type. Then each solution (x, y) ∈ O2

K of F (X,Y ) = b
satisfies F1(x, y) = b1, for some divisor b1 of b. Note that we do not know
the height of b1. For this we use [11, Lemma 3] which yields a unit ǫ ∈ Ok

having

H(b1ǫ
ν) ≤ NK(b1)

1/d exp{cνRK},
where c is an explicit constant and RK the regulator of K. Thus, we have
F1(ǫx, ǫy) = b1ǫ

ν and so, using [10, Théorème 2], we obtain an upper bound
for H(x) and H(y) with an extra factor which is exponential in terms RK

and hence it is clearly worse than that of Theorem 1.

3. Examples

In this section we give two examples in order to illustrate our result. We
denote by F ∗(X,Y ) the homogenization of a polynomial F (X) ∈ C[X].

Example 1. Let p be a prime with p ≡ 1 (mod 4) and ζp a p-th primitive
root of unity in C. Then the quadratic field Q(

√
p) is a subfield of Q(ζp).

The field Q(ζp) is a cyclic extension of Q with Galois group Gal(Q(ζp)/Q) ≃
(Z/pZ)∗.

Let α ∈ Z[ζp] be a primitive element of the extension Q(ζ)/Q(
√
p) and

α1, . . . , αm, with m = (p−1)/2, all the distinct conjugates of α over Q(
√
p).

The largest real field contained in Q(ζp) is Kp = Q(ζp + ζ̄p) which is a
totally real number field. Let β ∈ Kp be a primitive element of the extension
Kp/Q(

√
p) and β1, . . . , βn, where n = (p − 1)/4, all the distinct conjugates

of β over Q(
√
p). Then the polynomial

F (X) = (X − α1) · · · (X − αm)(X − β1) · · · (X − βn)

belongs to Q(
√
p)[X] and has real and non real roots. Furthermore, we have

Q(
√
p)(ai) = Q(ζp) which is a CM-field. Consequently, for every non zero

b ∈ Z[(1 +
√
p)/2], the Thue equation F ∗(X,Y ) = b satisfies the hypothesis

of Theorem 1. Note that this equation satisfies also the hypothesis of [10,
Théorème 2].

Then, using [26, Theorem 5.9, page 211] and [26, Lemma 5.10, page 213],
Theorem 1 gives the following upper bound for the heights of solutions
x, y ∈ Z[(1 +

√
p)/2]:

H(x) < 2(3p+17)/4(H(α)2H(β))(3p+1)/6H(b)4/3(p−1)NQ(
√
p)(b)

and

H(y) < 2(3p+13)/2(H(α)2H(β))5(p−1)/6H(b)4/3(p−1)NQ(
√
p)(b)

2.

If we consider the particular case where Φp(X) is the p-th cyclotomic polyno-
mial, then [10, Section 2] implies that the maximum of the absolute heights

of all algebraic integers x, y ∈ Kp with Φ∗
p(x, y) = 1 is < 2(p−1)/2. Theorem

1 improves this result by yielding the bound 32.
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Example 2. Let d be a positive integer ≥ 2 and r = m+n
√
d, where m, n

are integers such that m > 0 and m2 − n2d > 0. The minimal polynomial
of r over Q is

M(X) = X2 − 2mX +m2 − dn2.

Then, the polynomial

P (X) = M(−X2) = X4 + 2mX2 +m2 − dn2

is the minimal polynomial of
√
−r over Q. Since m > 0 and m2 − n2d > 0,

their roots are not real and so, Q(
√
d,
√
−r) is a CM-field. If Q(X) ∈

Z[
√
d][X] \Z, then we put

F (X) = (X2 + (m+ n
√
d)Y 2)Q(X).

Then for every nonzero b ∈ Z[
√
d], the Thue equation F ∗(X,Y ) = b over

K = Q(
√
d) satisfies the hypothesis of Theorem 1. Suppose that Q(X) is

monic and degQ = q > 0. By [15, Remark B.7.4], we have

H(F ) ≤ 4H(m+ n
√
d)H(Q).

Thus Theorem 1 yields the following upper bounds for the height of integral
solutions of the above equations over K:

H(x) < 213+1/qH(b)1/2q(H(m+ n
√
d)H(Q))2+1/qNK(b)2,

H(y) < 27+1/qH(b)1/2q(H(m+ n
√
d)H(Q))1+1/qNK(b).

Note that in case where the splitting field of F (X) is not a CM-field, [10,
Théorème 2] cannot be applied. Furthermore, Baker’s method can provide
only bounds of exponential type.

4. Proof of Theorem 1

Write

F (X,Y ) = a0(X − α1Y ) · · · (X − αnY ).

First, we consider the case where a0 = ±1. If a0 = −1, we replace F (X,Y )
by −F (X,Y ) and b by −b and then we may suppose that a0 = 1. By our
hypothesis, there is j such that Kj = K(αj) is a CM-field.

Let x, y ∈ OK such that xy 6= 0 and F (x, y) = b. We set bj := x − αjy.
Since K is a totally real number field, we have x − ᾱjy = b̄j. Setting
b̄j = ρjbj, we obtain the system

x− αjy = bj, x− ᾱjy = ρjbj .

Eliminating bj from the above two equations, we get

x = y
ᾱj − αjρj
1− ρj

.

Set

A =
ᾱj − αjρj
1− ρj

.
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We have

H(A) ≤ H(ᾱj − αjρj)H(1− ρj) ≤ 4H(αj)
2H(ρj)

2.

Since αj is not real, using [19], we deduce H(αj) < 2H(F )1/2. It follows
that

H(A) ≤ 16H(F )H(ρj)
2.

Substituting in the equation F (x, y) = b we deduce that

ynF (A, 1) = b,

and thus

H(y)n ≤ H(F (A, 1))H(b) ≤ (n+ 1)H(F )H(A)nH(b).

Using the bound for H(A) we obtain

H(y)n ≤ (n+ 1)16nH(b)H(F )n+1H(ρj)
2n.(1)

Next, we shall compute a bound for the height of ρj. We denote by Gj the
set of Q-embeddings σ : Kj → C. Since Kj is a CM-field, [12, Théorème 1]
yields that the complex conjugation commutes with all the elements of Gj .
Further, Kj is closed under the operation of complex conjugation whence we

get ᾱj ∈ Kj and so b̄j ∈ Kj . Thus, for every σ ∈ Gj , we have σ(b̄j) = σ(bj).
It follows that

|σ(ρj)| =
|σ(b̄j)|
|σ(bj)|

=
|σ(bj)|
|σ(bj)|

= 1.

Let Mj(X) be the minimal polynomial of ρj over Z and mj its leading
coefficient. The elements αj , ᾱj are algebraic integers of Kj and so, bj , b̄j
are algebraic integers of Kj. It follows that the polynomial

Πj(X) =
∏

σ∈Gj

σ(bj)(X − σ(ρj))

has integer coefficients. Since ρj is a root of Πj(X), we have that Mj(X)
divides Πj(X) and thus we deduce that mj divides

∏

σ∈Gj

σ(bj) = NKj
(bj),

where NKj
is the norm relative to the extension Kj/Q. It follows that mj

divides NKj
(bj). As we saw above, all the conjugates ρj1, . . . , ρjµ (µ ≤ dn),

of ρj are of absolute value 1. By [17, page 54], we have

HKj
(ρj) = mj

µ
∏

i=1

max{1, |ρji|} = mj.

Since mj divides NKj
(bj), we have that mj divides NKj

(b). Thus

HKj
(ρj) ≤ NKj

(b).(2)

Combining the inequalities (1) and (2), we get

H(y) ≤ 32H(b)1/nH(F )1+1/nNK(b)2/d.
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We have

H(x) ≤ H(A)H(y) ≤ 16H(F )H(ρj)
2H(y)

whence we obtain

H(x) ≤ 29H(b)1/nH(F )2+1/nNK(b)4/d.

Suppose now that a0 6= ±1. Write F (X, 1) = a0X
n + a1X

n−1 + · · ·+ an.
Then a0αi is a root of f(X) = Xn+a1X

n−1+a2a0X
n−2+ · · ·+ana

n−1
0 and

thus a0αi is an algebraic integer. Denote by F1(X,Y ) the homogenization of
f(X). If (x, y) ∈ O2

K is a solution to F (X,Y ) = b, then (a0x, y) is a solution

to F1(X,Y ) = ban−1
0 . Denote by Γ a point in the projective space with 1

and the coefficients of F as coordinates. Then we have H(F1) ≤ H(Γ)n and
finally, we obtain

H(y) ≤ 32H(b)1/nH(Γ)n+1NK(b)2/dH(a0)
n−1NK(a0)

2(n−1)/d

and

H(x) ≤ 29H(b)1/nH(Γ)2n+1NK(b)4/dH(a0)
n−1NK(a0)

2(n−1)/d.

Now suppose that b is a unit in OK . Then inequality (2) implies that
H(ρj) = 1 and so Kronecker’s theorem yields that ρj is a root of unity. Let
w be the number of the roots of unity in Kj . Then we have w choices for A
(for the roots of unity 6= ±1) and, since y is real, the equation ynF (A, 1) = b
gives us at most 2w choices for y. Considering also the solutions of the
equation with xy = 0, we deduce that the number of integral solutions to
the equation F (X,Y ) = b is at most 2wn. Finally, suppose that b is not a
unit in OK . Using [25, Lemma 8B], we obtain that the number of elements

ρj ∈ Kj with H(ρj) ≤ NK(b)1/d is bounded by

36 · 4dnNK(b)2n

and so the result follows.

5. An Algorithm

In this section we give an algorithm for the computation of the integral
solutions to F (X,Y ) = b based on the proof of Theorem 1.

SOLVE-THUE-1
Input: A totally real number field K, a form F (X,Y ) ∈ OK [X,Y ] with
F (X, 1) monic, b ∈ OK \ {0} and α a root of F (X, 1) such that K(α) is a
CM-field.
Output: The integral solutions of F (X,Y ) = b over K.

(1) Compute the set Λ of all the elements ρ ∈ K(α)\K having the abso-
lute values of all theirs conjugates equal to 1 and HK(α)(ρ)|NK(α)(b).
If b is a unit of OK , then the set Λ consist of all the roots of unity
of K(α) which does not belong to K.
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(2) Compute the set Ξ of elements ξ of K of the form:

ξ =
ᾱ− αρ

1− ρ
,

where ρ ∈ Λ.
(3) Compute the set S of elements y ∈ OK such that there is ξ ∈ Ξ ∪

{(ᾱ + α)/2} with

ynF (ξ, 1) = b.

(4) Output the solutions (x, y) ∈ O2
K to F (X,Y ) = b with y ∈ S and

the solutions (x, y) ∈ O2
K with xy = 0.

Proof of Correctness. Let (x, y) ∈ O2
K be a solution to F (X,Y ) = b with

xy 6= 0. We set x− αy = β and ρ = β̄/β. From the proof of Theorem 1 we
have x = yA, where

A =
ᾱ− αρ

1− ρ
,

and so ynF (A, 1) = b. Since x, y ∈ K, we get A ∈ K. Further, HK(α)(ρ)
divides NK(α)(b). Let β = β1 + β2i, with β1, β2 ∈ R. Suppose that ρ ∈ K.

Then ρ ∈ R and β̄ = ρβ = ρβ1 + ρβ2i, whence we have ρβ1 = β1 and
ρβ2 = −β2. If β1 6= 0, then ρ = 1 and so β̄ = β which is a contradiction
(since α is not real because K(α) is CM). If β1 = 0, then ρ = −1. In this
case we have A = (ᾱ + α)/2. Finally, if b is a unit, then we have that
H(ρ) = 1 and so ρ is a root of unity in K(α).

Note that there are algorithms for the computation of the elements of a
number field of bounded height [8] and for the computation of roots of unity
in a number field [20, Annexe C]. As far we know there are not implemen-
tations for such algorithms. The other computations can be carry out by a
computational system such as MAGMA or MAPLE.

Remark 1. By [17, page 54], the leading coefficient m of the minimal
polynomial of ρ is equal to HK(α)(ρ). Thus, mρ ∈ OK .

Finally, we give two examples of Thue equations that satisfy the hypoth-
esis of Theorem 1 for which we use the previous algorithm to determine all
the integral solutions, the first one having a right-hand side a unit but not
the second one.

Example 3. The only solution of the equation

(X2 + Y 2)(X2 −
√
2XY + Y 2) = 1

over Z[
√
2] are (X,Y ) = (±1, 0), (0,±1).

Proof. The complex number i is a root of X2 + 1 and K = Q(
√
2, i) is a

CM-field. The roots of unity lying in K \Q(
√
2) are ±i. Next, we compute

ξ± =
−i− i(±i)

1− (±i)
= ±1.
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Thus we have the equations y42(2±
√
2) = 1. If there is y ∈ Z[

√
2] satisfying

one of these equations, then 2 is a unit in Z[
√
2], which is a contradiction

since its norm is not equal to ±1. Furthermore, the solutions (x, y) ∈ O2
K

with xy = 0 are (±1, 0) and (0,±1).

Example 4. Consider the form

F (X,Y ) = (X2 + (3− 2
√
2)Y 2)(X2 − 4XY +

√
2Y 2) ∈ Z[

√
2][X,Y ].

Then the only solutions of the equation F (X,Y ) = 3
√
2− 4 over Z[

√
2] are

(X,Y ) = (0,±1).

Proof. The given equation belongs to the family of equations of Example
2. Thus, we shall use the above algorithm for the determination of their
solutions. First, we remark that the equation F (X, 0) = 3

√
2 − 4 has no

solution over Z[
√
2] and the only solutions of F (0, Y ) = 3

√
2− 4 over Z[

√
2]

are Y = ±1.
Set y = i

√

3− 2
√
2 and K = Q(y). We have NK(6 − 4

√
2) = 16. We

shall compute all the elements ρ ∈ K \ Q(
√
2) with HK(ρ)|16 and having

all the absolute values of theirs conjugates equal to 1.
If HK(ρ) = 1, then ρ is a root of unity in K \Q(

√
2). Since there are not

other roots of unity in K than ±1, we consider the case where HK(ρ) > 1.
Let HK(ρ) = 2ǫ, where ǫ = 1, 2. By Remark 1, we have ρ = α/2ǫ, where
α ∈ OK . Using MAGMA, we get the following integral base for K:

ω0 = 1, ω1 = y, ω2 =
1

2
(y2 − 1), ω3 =

1

4
(y3 + y2 − y − 1).

Since all the conjugates of ρ have absolute value 1, we obtain the two
equalities

((a0 − 2a1) + a1
√
2)2 + (2−

√
2)((a2 − 2a3) + a3

√
2)2 = 22ǫ,

and

((a0 − 2a1)− a1
√
2)2 + (2 +

√
2)((a2 − 2a3)− a3

√
2)2 = 22ǫ.

It follows that

(a0 − 2a2)
2 + 2a22 + 2(a1 − 3a3)

2 + 2a23 = 22ǫ(3)

and

2a0a2 − 4a22 + 8a1a3 − 14a23 − a21 = 0.(4)

From (3) and (4) we deduce that a0, a1, a2 and a3 are even. Furthermore,
we have: 4|a1.

Suppose that ǫ = 1. If a2 or a3 is not zero, then the left-hand side of (3)
is > 4 which is a contradiction. Hence a2 = a3 = 0. Similarly, we deduce
that a1 = 0. Then a0 = ±2 and so ρ ∈ Q which is not the case.

Suppose next that ǫ = 2. Putting ai = a′i (i = 0, 1, 2, 3) we have

(a′0 − 2a′2)
2 + 2a′2

2
+ 2(a′1 − 3a′3)

2 + 2a′3
2
= 4.(5)
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If a′0 − 2a′2 6= 0, then (5) implies that a′1 = a′2 = a′3 = 0 and so ρ ∈ Q
which is a contradiction. Then a′0 = 2a′2. If a′3 = 0, then (5) implies that
a′1 = ±1 and so a1 = ±2. Since 4|a1 we obtain a contradiction. Thus
a′3 = ±1. If a′1− 3a′3 = 0, then a1 = ±6 and so 4 does not divide a1 which is
a contradiction. Finally suppose that a′2 = 0. It follows that a′1− 3a′3 = ±1.
Thus we have

(a0, a1, a2, a3) = (0, 8, 0, 2), (0,−8, 0,−2), (0, 4, 0,−2), (0,−4, 0, 2).

We see that these values do not satisfy (4). Finally, we have (ȳ + y)/2 = 0
and we see that the equation Y 4F (0, 1) = 3

√
2−4 has no solution in Q(

√
2).

The result follows.
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licationae Mathematicae, 22, (1975), 151-175.
[13] G. Hanrot, Solving Thue equations without the full unit group. Math. Comp., 69(229)

(2000), 395-405.



THUE EQUATIONS AND CM-FIELDS 11

[14] C. Heuberger, Parametrized Thue Equations - A survey, Proceedings of the RIMS
symposium “Analytic Number Theory and Surrounding Areas”, Kyoto, Oct 18-22,
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