Thue and unit equations over totally real number fields

Yves Aubry, Dimitrios Poulakis

To cite this version:

Yves Aubry, Dimitrios Poulakis. Thue and unit equations over totally real number fields. 2014. hal-01044876v2

HAL Id: hal-01044876 https://hal.science/hal-01044876v2

Preprint submitted on 2 Sep 2014 (v2), last revised 7 Jan 2015 (v5)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

THUE AND UNIT EQUATIONS OVER TOTALLY REAL NUMBER FIELDS

YVES AUBRY AND DIMITRIOS POULAKIS

Abstract

We obtain a polynomial type upper bound for the size of the integral solutions of Thue equations $F(X, Y)=m$ defined over a totally real number field K, assuming that $F(X, 1)$ has at least a non real root and, for every couple of non real conjugate roots ($\alpha, \bar{\alpha}$) of $F(X, 1)$, the field $K(\alpha, \bar{\alpha})$ is a CM-field. In case where $F(X, 1)$ has also real roots, our approach gives polynomial type bounds that the Baker's method was not able to provide other than exponential bounds. Using this result, we derive an improved upper bound for the size of the solutions of the unit equation defined over a totally real number field, which allows us to deduce an upper bound for the size of the integral solutions of Thue equations defined over a totally real number field.

1. Introduction

Let $F(X, Y)$ be an irreducible binary form in $\mathbb{Z}[X, Y]$ with $\operatorname{deg} F \geq 3$ and $m \in \mathbb{Z} \backslash\{0\}$. In 1909, A. Thue [31] proved that the equation $F(X, Y)=m$ has only finitely many solutions $(x, y) \in \mathbb{Z}^{2}$. Thue's proof was ineffective and therefore does not provide a method to determine the integer solutions of this equation. Other non effective proofs of Thue's result can be found in [9, Chap. X] and [24, Chap. 23].

In 1968, A. Baker [2], using his results on linear forms in logarithms of algebraic numbers, computed an explicit upper bound for the size of the integer solutions of Thue equations. Baker's result were improved by several authors (see for instance [8], [13], [25]) but the bounds remain of exponential type and thus, are not useful to compute integer solutions of such equations. Nevertheless, computation techniques for the resolution of Thue equations have been developed based on the above results [1], [14], [32] and the solutions of certain parameterized families of Thue equations have been obtained [15]. Furthermore, upper bounds for the number of integral solutions of Thue equations have been given [7], [10], [6].

In the case where all roots of the polynomial $F(X, 1)$ are non real, we have a polynomial type bound provided by other methods [24, Theorem 2, page 186], [12] [26]. Győry's improvement in [12, Théorème 1] holds in the case where the splitting field of $F(X, 1)$ is a CM-field i.e., is an

[^0]imaginary quadratic extension of a totally real number field. In the same paper, Győry studied Thue equations defined over a CM-field L and also gave ([12, Théorème 2]) a polynomial upper bound for the size of their real algebraic integers solutions in L.

In this paper, we consider Thue equations $F(X, Y)=m$ defined over a totally real number field K. Following Győry's approach, we obtain (Theorem 1) polynomial type bounds for the size of their integral solutions over K, assuming that $F(X, 1)$ has at least a non real root and, for every couple of non real conjugate roots $(\alpha, \bar{\alpha})$ of $F(X, 1)$, the field $K(\alpha, \bar{\alpha})$ is a CM-field. In case where the splitting field is a CMfield we are in the situation of [12, Théorème 2]. Whenever all roots of the polynomial $F(X, 1)$ are non real and $K \neq \mathbb{Q}$, we obtain much better bounds than those already known. Moreover, whenever $F(X, 1)$ has a real and a non real root, we obtain polynomial type bounds that the Baker's method was not able to provide other than exponential bounds.

We illustrate our result by giving two examples of infinite families of Thue equations $F(X, Y)=m$ satisfying the hypothesis of Theorem 1 . In the first, we consider Thue equations over some totally real subfields K of cyclotomic fields N such that the splitting field L of $F(X, 1)$ over K is contained in N. In this case, L is an abelian extension of K. In the second, we consider some quartic Thue equations over \mathbb{Q} whose splitting field N of $F(X, 1)$ over \mathbb{Q} has dihedral Galois group.

Effective bounds have been established for the size of the solutions of elliptic, hyperelliptic, superelliptic equations, Thue equations, equations defining genus 0 and 1 algebraic curves and other classes of curves (see e.g. [18, Chapter VI]) by reduction to the problem of the computation of a bound for the solutions of a unit equation. The computation of such bounds for the unit equation, except in $[4,5]$, are based on the Baker's method and its p-adic analogue as well as certain quantitative results concerning independent units. Using Theorem 1 and [26, Theorem 2] we deduce an improved explicit upper bound for the size of solutions of the unit equation in case where it is defined over a totally real number field. This result allows the computation of explicit upper bounds for the size of the integral solutions of elliptic, hyperelliptic, superelliptic equations, Thue equations, Mordell equations ([21, Proposition 3.1]) and consequently of equations defining genus 0 and 1 algebraic curves and other classes of curves which are defined over totally real number fields, without the contribution of Baker's theory. Finally, using the classical method we derive an upper bound for the size of the integral solutions of Thue equations defined over totally real number fields.

2. NEW BOUNDS

We introduce a few notations. Let K be a number field. We consider the set of absolute values of K by extending the ordinary absolute value $|\cdot|$ of \mathbb{Q} and, for every prime p, by extending the p-adic absolute value $|\cdot|_{p}$ with $|p|_{p}=p^{-1}$. Let $M(K)$ be an indexing set of symbols v such that $|\cdot|_{v}, v \in M(K)$, are all of the above absolute values of K. Given such an absolute value $|\cdot|_{v}$ on K, we denote by d_{v} its local degree. Let $\mathbf{x}=\left(x_{0}: \ldots: x_{n}\right)$ be a point of the projective space $\mathbb{P}^{n}(K)$ over K. We define the field height $H_{K}(\mathbf{x})$ of \mathbf{x} by

$$
H_{K}(\mathbf{x})=\prod_{v \in M(K)} \max \left\{\left|x_{0}\right|_{v}, \ldots,\left|x_{n}\right|_{v}\right\}^{d_{v}} .
$$

Let d be the degree of K. We define the absolute height $H(\mathbf{x})$ by $H(\mathbf{x})=H_{K}(\mathbf{x})^{1 / d}$. For $x \in K$, we put $H_{K}(x)=H_{K}((1: x))$ and $H(x)=H((1: x))$. If $G \in K\left[X_{1}, \ldots, X_{m}\right]$, then we define the field height $H_{K}(G)$ and the absolute height $H(G)$ of G as the field height and the absolute height respectively of the point whose coordinates are the coefficients of G (in any order). For an account of the properties of heights see $[16,19,30]$. Furthermore, we denote by $O_{K}, U_{K}, D_{K}, R_{K}$ and N_{K} the ring of integers of K, the unit group of O_{K}, the discriminant of K, the regulator of K and the norm of K, respectively. Finally, for every $z \in \mathbb{C}$ we denote, as usually, by \bar{z} its complex conjugate.

We prove the following theorem:
Theorem 1. Suppose that K is a totally real number field. Let $b \in$ $O_{K} \backslash\{0\}$ and $F(X, Y) \in O_{K}[X, Y]$ be a form of degree $n \geq 2$. Suppose that $F(X, 1)$ has at least a non real root and for every couple of non real conjugate roots $(\alpha, \bar{\alpha})$ of $F(X, 1)$ the field $K(\alpha, \bar{\alpha})$ is a CM-field. Then the solutions $(x, y) \in O_{K}^{2}$ of $F(X, Y)=b$ satisfy

$$
H(x)<\Omega_{1} \text { and } H(y)<\Omega_{2}
$$

for the following values of Ω_{1} and Ω_{2}. If the coefficients of X^{n} and Y^{n} are ± 1, then

$$
\Omega_{1}=\Omega_{2}=2^{8} H(F) H(b)^{2} .
$$

If only the coefficient of X^{n} is ± 1, then

$$
\Omega_{1}=2^{12} H(F)^{2} H(b)^{4} \text { and } \Omega_{2}=2^{8} H(F) H(b)^{2}
$$

Otherwise, we have

$$
\Omega_{1}=2^{12} H(b)^{4} H(\Gamma)^{6 n-4} \text { and } \Omega_{2}=2^{8} H(b)^{2} H(\Gamma)^{3 n-2}
$$

where Γ is a point of the projective space with 1 and the coefficients of $F(X, Y)$ as coordinates.

Notice that a non real algebraic number field L is a CM-field if and only if L is closed under the operation of complex conjugation and
complex conjugation commutes with all the \mathbb{Q}-monomorphisms of L into \mathbb{C} ([3], [22, Lemma 2]).

When $K=\mathbb{Q}$ and the splitting field of $F(X, 1)$ over \mathbb{Q} is an abelian totally imaginary extension, the hypothesis on complex conjugation is obviously satisfied. If the coefficient of X^{n} is ± 1, it is interesting to notice that our bounds are independent of the degree of the form $F(X, Y)$. Thus, in case where $H(F)$ and $H(b)$ are not too large, an exhaustive search can provide the integer solutions we are looking for.

Combining Theorem 1 with [26, Theorem 2] we have the following result.

Theorem 2. Let K be a totally real number field of degree $d \geq 2$. Let $a, b, c \in O_{K} \backslash\{0\}$. Then the solutions $(u, v) \in U_{K}^{2}$ to the equation

$$
a X+b Y=c
$$

satisfy

$$
\max \{H(u), H(v)\}<(H(a) H(b) H(c))^{128} \exp \left\{\omega(d) R_{K}\right\}
$$

where

$$
\omega(d)=102795(d-1)((d-1)!)^{2} \sqrt{d-2}(\log d) 2^{2-d}
$$

As far as we know the best upper bound for the size of the solutions of the unit equation is given in [13, Theorem 1]. Theorem 2 is an improvement of this result for the case of totally real number fields. Using this result we obtain with the classical method an upper bound for the size of the integral solutions of Thue equations over totally real number field.

Corollary 1. Let K be a totally real number field of degree d. Suppose that $m \in O_{K} \backslash\{0\}$ and

$$
F(X, Y)=\left(X-\alpha_{1} Y\right)\left(X-\alpha_{2} Y\right)\left(X-\alpha_{3} Y\right) G(X, Y)
$$

where $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are distinct elements of O_{K} and $G(X, Y)$ a form of $O_{K}[X, Y]$. Then the solutions $(x, y) \in O_{K}^{2}$ to the equation $F(x, y)=m$ satisfy
$\max \{H(x), H(y)\}<2^{2313} H(F)^{1541} H(m)^{2 / n} N_{K}(m)^{784 / d} \exp \left\{\Omega_{2}(d) R_{K}\right\}$, where

$$
\Omega_{2}(d)=104320(d-1)((d-1)!)^{2} \sqrt{d-2}(\log d)
$$

3. Examples

In this section we give a few examples to illustrate our results. We denote by $F^{*}(X, Y)$ the homogenization of a polynomial $F(X) \in \mathbb{C}[X]$.

Example 1. Let p be a prime with $p \equiv 1(\bmod 4)$ and ζ_{p} a p-th primitive root of unity in \mathbb{C}. Then the quadratic field $\mathbb{Q}(\sqrt{p})$ is a subfield of $\mathbb{Q}\left(\zeta_{p}\right)$. Then $\mathbb{Q}\left(\zeta_{p}\right)$ is a cyclic extension of \mathbb{Q} with Galois group $G \simeq(\mathbb{Z} / p \mathbb{Z})^{*}$. Thus, every \mathbb{Q}-embedding of $\mathbb{Q}\left(\zeta_{p}\right)$ into \mathbb{C} defines
a \mathbb{Q}-automorphism of $\mathbb{Q}\left(\zeta_{p}\right)$ and so, it commutes with the complex conjugation.

Let $\alpha \in \mathbb{Z}\left[\zeta_{p}\right]$ be a primitive element of the extension $\mathbb{Q}(\zeta) / \mathbb{Q}(\sqrt{p})$ and $\alpha_{1}, \ldots, \alpha_{m}$, with $m=(p-1) / 2$, all the distinct conjugates of α over $\mathbb{Q}(\sqrt{p})$. The largest real field contained in $\mathbb{Q}\left(\zeta_{p}\right)$ is $K_{p}=\mathbb{Q}\left(\zeta_{p}+\bar{\zeta}_{p}\right)$ which is a totally real number field. Let $\beta \in K_{p}$ be a primitive element of the extension $K_{p} / \mathbb{Q}(\sqrt{p})$ and $\beta_{1}, \ldots, \beta_{n}$, where $n=(p-1) / 4$, all the distinct conjugates of β over $\mathbb{Q}(\sqrt{p})$. Then the polynomial

$$
F(X)=\left(X-\alpha_{1}\right) \cdots\left(X-\alpha_{m}\right)\left(X-\beta_{1}\right) \cdots\left(X-\beta_{n}\right)
$$

belongs to $\mathbb{Q}(\sqrt{p})[X]$ and have real and non real roots. Consequently, for every non zero $b \in \mathbb{Z}[(1+\sqrt{p}) / 2]$, the Thue equation $F^{*}(X, Y)=b$ satisfies the hypothesis of Theorem 1.

Furthermore, using [30, Theorem 5.9, page 211] and [30, Lemma 5.10, page 213], we obtain the following upper bound for the heights of solutions $x, y \in \mathbb{Z}[(1+\sqrt{p}) / 2]$:

$$
H(x)<2^{(3 p+17) / 4} H(\alpha)^{p-1} H(\beta)^{(p-1) / 2} H(b)^{4}
$$

and

$$
H(y)<2^{(3 p+25) / 4} H(\alpha)^{(p-1) / 2} H(\beta)^{(p-1) / 4} H(b)^{2} .
$$

If $\Phi_{p}(X)$ is the p-th cyclotomic polynomial, then [12, Section 2] implies that the maximum of the absolute values of all algebraic integers $x, y \in K_{p}$ with $\Phi_{p}^{*}(x, y)=1$ is $<2^{(p-1) / 2}$. Theorem 1 improves this result by yielding the bound 2^{8}.

If we want to apply Theorem 1 , the Galois group $\operatorname{Gal}(N / K)$, where N is the splitting field over K of the polynomial F, needs not to be abelian as shown in the following example of a dihedral extension.

Example 2. Let m and n be two non negative rational integers such that $n \geq 5$ is not a square and $m<\sqrt{n}$. Consider the irreducible polynomial

$$
F(X)=X^{4}+2 m X^{2}+m^{2}-n
$$

of $\mathbb{Q}[X]$. The roots of $F(X)$ are: $\pm i \sqrt{\sqrt{n}+m}$ and $\pm \sqrt{\sqrt{n}-m}$.
The field $L=\mathbb{Q}(i \sqrt{\sqrt{n}+m})=(\mathbb{Q}(\sqrt{n}))(i \sqrt{\sqrt{n}+m})$ is a CM-field, and so we can apply Theorem 1 to the equation $F^{*}(X, Y)=b$, where b is a non zero integer .

On the one hand, it is worth noticing that in this case we cannot apply Runge's method [11], [33]. Additionally, since the polynomial $F(X)$ has real roots, we can neither apply [24, Theorem 2, page 186], nor [26, Theorem 1] which are the only known results which can provide polynomial bounds for the size of the integer solutions. On the other hand, Baker's method renders exponential bounds on the heights of the integer solutions of such an equation (see for example [13]). Moreover, since the splitting field N of $F(X)$ is not a CM field we cannot apply [12, Théorème 2].

Theorem 1 yields the following bounds for the size of the solutions $(x, y) \in \mathbb{Z}^{2}$ of the above equation:

$$
|x|<2^{12} n^{2} b^{4}, \quad|y|<2^{8} n b^{2} .
$$

Finally, note that, by [17, Theorem 3], the Galois group $\operatorname{Gal}(N / \mathbb{Q})$ is isomorphic to the dihedral group of order 8 .

4. Proof of Theorem 1

Write

$$
F(X, Y)=a_{0}\left(X-\alpha_{1} Y\right) \cdots\left(X-\alpha_{n} Y\right)
$$

First, we consider the case where $a_{0}= \pm 1$. If $a_{0}=-1$, we replace $F(X, Y)$ by $-F(X, Y)$ and b by $-b$ and then we may suppose that $a_{0}=1$. We denote by J the set of indexes j such that $\alpha_{j} \in \mathbb{C} \backslash \mathbb{R}$. Put $t=|J|$. By our hypothesis, we have $t>0$. If $z \in \mathbb{C}$, we denote, as usual, by \bar{z} the complex conjugate of z.

Let $x, y \in O_{K}$ such that $x y \neq 0$ and $F(x, y)=b$. We set

$$
x-\alpha_{j} y=b_{j} \quad(j=1, \ldots, n)
$$

For every $j \in J$, we set $\rho_{j}=\bar{b}_{j} / b_{j}$. Since K is a totally real number field, we have

$$
x-\bar{\alpha}_{j} y=\rho_{j} b_{j} .
$$

Eliminating x and b_{j} from the above two equations, we get

$$
y=\frac{b_{j}\left(1-\rho_{j}\right)}{\bar{\alpha}_{j}-\alpha_{j}}, \quad x=y \frac{\bar{\alpha}_{j}-\alpha_{j} \rho_{j}}{1-\rho_{j}} .
$$

Let $j_{0} \in J$. For $j \notin J$, we get

$$
b_{j}=x-\alpha_{j} y=y \frac{\left(\bar{\alpha}_{j_{0}}-\alpha_{j}\right)+\rho_{j_{0}}\left(\alpha_{j}-\alpha_{j_{0}}\right)}{1-\rho_{j_{0}}}
$$

Combining the above equalities, we obtain

$$
y^{n}=b\left(1-\rho_{j_{0}}\right)^{n-t} \prod_{j \in J} \frac{1-\rho_{j}}{\bar{\alpha}_{j}-\alpha_{j}} \prod_{j \notin J} \frac{1}{\left(\bar{\alpha}_{j_{0}}-\alpha_{j}\right)+\rho_{j_{0}}\left(\alpha_{j}-\alpha_{j_{0}}\right)} .
$$

Let $K_{j}=K\left(\alpha_{j}, \bar{\alpha}_{j}\right), j \in J$. We denote by G_{j} the set of $\underline{\mathbb{Q} \text {-embedding }}$ $\sigma: K_{j} \rightarrow \mathbb{C}$. Therefore, for every $j \in J$, we have $\sigma\left(\bar{b}_{j}\right)=\overline{\sigma\left(b_{j}\right)}$, and so we get

$$
\left|\sigma\left(\rho_{j}\right)\right|=\frac{\left|\sigma\left(\bar{b}_{j}\right)\right|}{\left|\sigma\left(b_{j}\right)\right|}=\frac{\left|\overline{\sigma\left(b_{j}\right)}\right|}{\left|\sigma\left(b_{j}\right)\right|}=1
$$

The elements $\alpha_{j}, \bar{\alpha}_{j}$ are algebraic integers and so, b_{j}, \bar{b}_{j} are algebraic integers of L. Let $M_{j}(X)$ be the minimal polynomial of ρ_{j} over \mathbb{Z} and m_{j} its leading coefficient. Since ρ_{j} is a root of the polynomial

$$
\Pi_{j}(X)=\prod_{\sigma \in G_{j}} \sigma\left(b_{j}\right)\left(X-\sigma\left(\rho_{j}\right)\right)
$$

which has integer coefficients, we have that $M_{j}(X)$ divides $\Pi_{j}(X)$ and thus we deduce that m_{j} divides

$$
\prod_{\sigma \in G_{j}} \sigma\left(b_{j}\right)=N_{K_{j}}\left(b_{j}\right)
$$

where $N_{K_{j}}$ is the norm related to the extension K_{j} / \mathbb{Q}. It follows that m_{j} divides $N_{K_{j}}\left(b_{j}\right)$. As we saw above, all the conjugates of ρ_{j} are of absolute value 1 . Therefore, by [19, page 54], for every $j \in J$ we have

$$
H_{K_{j}}\left(\rho_{j}\right)=m_{j} \prod_{\sigma \in G} \max \left\{1,\left|\sigma\left(\rho_{j}\right)\right|\right\} \leq N_{K_{j}}\left(b_{j}\right)<N_{K_{j}}(b)<H_{K_{j}}(b)
$$

Further, using elementary properties of heights and the above inequality, we deduce

$$
H(y)^{n}<2^{4 n-2 t} H(b)^{2 n} H\left(\alpha_{j_{0}}\right)^{2(n-t)} \prod_{i=1}^{n} H\left(\alpha_{i}\right)^{2}
$$

By [30, Theorem 5.9, page 211], we have

$$
\prod_{i=1}^{n} H\left(\alpha_{i}\right) \leq 2^{n} H(F)
$$

For every $j \in J$, the number α_{j} is not real, hence, using [23], we deduce that $H\left(\alpha_{j}\right)<2 H(F)^{1 / 2}$. Therefore, we obtain

$$
H(y)<2^{8} H(b)^{2} H(F)
$$

And it follows that

$$
H(x) \leq 4 H(y) H\left(\alpha_{j}\right)^{2} H\left(\rho_{j}\right)^{2} \leq 16 H(y) H(F) H(b)^{2}<2^{12} H(F)^{2} H(b)^{4}
$$

Suppose now that $a_{0} \neq \pm 1$. Write $F(X, 1)=a_{0} X^{n}+a_{1} X^{n-1}+\cdots+$ a_{n}. Then $a_{0} \alpha_{i}$ is a root of $f(X)=X^{n}+a_{1} X^{n-1}+a_{2} a_{0} X^{n-2}+\cdots+$ $a_{n} a_{0}^{n-1}$ and thus $a_{0} \alpha_{i}$ is an algebraic integer. Denote by $F_{1}(X, Y)$ the homogenization of $f(X)$. If $(x, y) \in O_{K}^{2}$ is a solution to $F(X, Y)=b$, then $\left(a_{0} x, y\right)$ is a solution to $F_{1}(X, Y)=b a_{0}^{n-1}$. Denote by Γ a point in the projective space with 1 and the coefficients of F as coordinates. Then we have $H\left(F_{1}\right) \leq H(\Gamma)^{n}$ and finally, we obtain

$$
H(y)<2^{8} H(b)^{2} H(\Gamma)^{3 n-2} \text { and } H(x)<2^{12} H(b)^{4} H(\Gamma)^{6 n-4}
$$

5. Proof of Theorem 2

By [13, Lemma 2], there is a fundamental system $\left\{\epsilon_{1}, \ldots, \epsilon_{d-1}\right\}$ of units satisfying

$$
\left.\max \left\{H\left(\epsilon_{1}\right), \ldots, H\left(\epsilon_{d-1}\right)\right\}\right) \leq \exp \left\{c(d) R_{K}\right\}
$$

where

$$
c(d)=((d-1)!)^{2} 29 e \sqrt{d-2}(\log d) 2^{2-d}
$$

if $d \geq 3$ and $c(d)=1 / 2$ if $d=2$.

Let $(u, v) \in U_{K}^{2}$ be a solution to the equation

$$
a X+b Y=c
$$

Then, we write $u=u_{1} u_{2}^{4}$ and $v=v_{1} v_{2}^{4}$, where $u_{2}, v_{2} \in U_{K}$ and $u_{1}=$ $\pm \epsilon_{1}^{r_{1}} \cdots \epsilon_{d-1}^{r_{d-1}}, v_{1}= \pm \epsilon_{1}^{s_{1}} \cdots \epsilon_{d-1}^{s_{d-1}}$ with $r_{i}, s_{i} \in\{0,1,2,3\}$. It follows that $\left(u_{2}, v_{2}\right)$ is a solution to the Thue equation

$$
a u_{1} X^{4}+b v_{1} Y^{4}=c
$$

We have two cases:
(i) $b v_{1} / a u_{1}=-A$, with $A>0$. Then, the roots of $X^{4}-A$ are $\pm \sqrt[4]{A}$ and $\pm i \sqrt[4]{A}$. Further, we have $K(i \sqrt[4]{A})=K(\sqrt{A})(\sqrt{-\sqrt{A}})$. Thus, Theorem 1 implies

$$
\max \left\{H\left(u_{2}\right), H\left(v_{2}\right)\right\}<2^{12} H(c)^{4} H\left(1, a u_{1}, b v_{1}\right)^{20}
$$

whence we get

$$
\max \left\{H\left(u_{2}\right), H\left(v_{2}\right)\right\}<2^{12} H(c)^{4}(H(a) H(b))^{20} \exp \left\{120(d-1) c(d) R_{K}\right\}
$$

Therefore, we obtain

$$
\max \{H(u), H(v)\}<2^{48} H(c)^{16}(H(a) H(b))^{80} \exp \left\{483(d-1) c(d) R_{K}\right\}
$$

(ii) $b v_{1} / a u_{1}=A>0$. Then, the roots of $X^{4}+A$ are $\pm \sqrt{2}(1 \pm i) \sqrt[4]{A} / 2$ which all are not real. Thus [26, Theorem 2] yields $\max \left\{H\left(u_{2}\right), H\left(v_{2}\right)\right\}<64^{64}(H(a) H(b) H(c))^{32} \exp \left\{192(d-1) c(d) R_{K}\right\}$, whence we have
$\max \{H(u), H(v)\}<64^{256}(H(a) H(b) H(c))^{128} \exp \left\{771(d-1) c(d) R_{K}\right\}$.
The result follows.

6. Proof of Corollary 1

Suppose that $(x, y) \in O_{K}^{2}$ with $y \neq 0$ and $F(x, y)=m$. It follows that $x-\alpha_{i} y$ divides m in K and so, [13, Lemma 3] implies that there exist $\beta_{i} \in O_{L}$ and $\epsilon_{i} \in U_{L}$ such that

$$
x-\alpha_{i} y=\epsilon_{i} \beta_{i} \quad(i=1,2,3)
$$

with

$$
H\left(\beta_{i}\right) \leq N_{K}(m)^{1 / d} \exp \left\{C(d) R_{K}\right\}
$$

where $C(d)=0$ if $d=1, C(d)=1 / 2$ if $d=2$ and

$$
C(d)=29 e(d-1)(d-1)!\sqrt{d-2} \log d
$$

otherwise.
Multiplying $x-\alpha_{1} y$ by $\alpha_{2}-\alpha_{3}, x-\alpha_{2} y$ by $\alpha_{3}-\alpha_{1}, x-\alpha_{3} y$ by $\alpha_{1}-\alpha_{2}$ and adding, we obtain

$$
a u+b v=c
$$

where $u=\epsilon_{1} / \epsilon_{3}, v=\epsilon_{2} / \epsilon_{3}$ and

$$
a=\left(\alpha_{2}-\alpha_{3}\right) \beta_{1}, \quad b=\left(\alpha_{3}-\alpha_{1}\right) \beta_{2}, \quad c=\left(\alpha_{2}-\alpha_{1}\right) \beta_{3} .
$$

By [25, Lemma 4], we have $H\left(\alpha_{i}\right)<2 H(F)(i=1,2,3)$. Thus, we get

$$
H(a) \leq 2 H\left(\alpha_{2}\right) H\left(\alpha_{3}\right) H\left(\beta_{1}\right)<8 H(F)^{2} N_{K}(m)^{1 / d} \exp \left\{C(d) R_{K}\right\}
$$

Similarly, the quantities $H(b)$ and $H(c)$ satisfy the same inequality. By Theorem 2, we get

$$
\max \{H(u), H(v)\}<(H(a) H(b) H(c))^{128} \exp \left\{\omega(d) R_{d}\right\}
$$

where

$$
\omega(d)=102795(d-1)((d-1)!)^{2} \sqrt{d-2}(\log d) 2^{2-d} .
$$

Combining the above estimates, we have
$\max \{H(u), H(v)\}<\left(8 H(F)^{2} N_{K}(m)^{1 / d}\right)^{384} \exp \left\{(384 C(d)+\omega(d)) R_{K}\right\}$.
We set $\epsilon_{1}=u \epsilon_{3}$ and $\epsilon_{2}=v \epsilon_{3}$ into $x-\alpha_{i} y=\epsilon_{i} \beta_{i}(i=1,2,3)$ and eliminating ϵ_{3} we deduce

$$
\begin{aligned}
& \left(\beta_{3}-\beta_{1} u\right) x-\left(\beta_{3} \alpha_{1}-\beta_{1} u \alpha_{3}\right) y=0 \\
& \left(\beta_{3}-\beta_{2} v\right) x-\left(\beta_{3} \alpha_{2}-\beta_{2} v \alpha_{3}\right) y=0
\end{aligned}
$$

Suppose that $\beta_{3}=\beta_{1} u$. Since $y \neq 0$, we have $\beta_{3} \alpha_{1}=\beta_{1} u \alpha_{3}$. Replacing β_{3} by $\beta_{1} u$, we get $\alpha_{1}=\alpha_{3}$ which is a contradiction. Thus $\beta_{3}-\beta_{1} u \neq 0$ and so, we have $x=B y$, where

$$
B=\frac{\beta_{3} \alpha_{1}-\beta_{1} u \alpha_{3}}{\beta_{3}-\beta_{1} u}
$$

We have
$H(B) \leq H\left(\beta_{3} \alpha_{1}-\beta_{1} u \alpha_{3}\right) H\left(\beta_{3}-\beta_{1} u\right) \leq 4 H\left(\beta_{3}\right)^{2} H\left(\beta_{1}\right)^{2} H\left(\alpha_{1}\right) H\left(\alpha_{3}\right) H(u)$,
whence we get

$$
H(B)<2^{1156} H(F)^{770} N_{K}(m)^{392 / d} \exp \left\{(\omega(d)+388 C(d)) R_{K}\right\} .
$$

Since $x=B y$, we have $y^{n} F(B, 1)=m$, and so we deduce

$$
H(y)^{n} \leq H(F(B, 1)) H(m) \leq(n+1) H(F) H(B)^{n} H(m)
$$

Furthermore, we have $H(x) \leq H(B) H(x)$. Combining the above estimates we deduce the result.

Acknowledgements. This work was done during the visit of the second author at the Department of Mathematics of the University of Toulon. The second author wants to thanks this Department for its warm hospitality and fruitful collaboration.

References

[1] Y. Bilu and G. Hanrot, Solving Thue equations of high degree, J. Number Theory 60 (1996), 373-392.
[2] A. Baker, Contribution to the theory of Diophantine equations, I. On representation of integers by binary forms, Philos. Trans. Roy. Sot. London Ser. A 263 (1968), 173-191.
[3] P. E. Blanksby and J. H. Loxton, A Note on the Characterization of CM-fields, J. Austral. Math. Soc. (Series A) 26 (1978), 26-30.
[4] E. Bombieri, Effective diophantine approximation on G_{m}, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 20 (1993), 6189.
[5] E. Bombieri and P. B. Cohen, Effective Diophantine Approximation on G_{m}, II , Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24 (1997), 205225
[6] B. Brindza, Á. Pintér, A. van der Poorten and M. Waldschmidt, On the distribution of solutions of Thue's equations, Number theory in progress, Vol. 1 (Zakopane-Koscielisko, 1997), ed. K. Győry, H. Iwaniec and J. Urbanowicz, $35-46$, de Gruyter, Berlin, 1999.
[7] B. Brindza, J.-H. Evertse and K. Győry, Bounds for the solutions of some Diophantine equations in terms of discriminants, J. Austral. Math. Soc. Ser. A 51 (1991), no. 1, 826.
[8] Y. Bugeaud and K. Győry, Bounds for the solutions of Thue-Mahler equations and norm form equations, Acta Arithmetica, LXXIV. 3 (1996), 273-292.
[9] L. E. Dickson, Introduction to the Theory of Numbers, Dover, New York, 1957.
[10] J.-H. Evertse, The number of solutions of decomposable form equations, Inventione Mathematicae, 122, (1995) 559-601.
[11] A. Grytczuk and A. Schinzel, On Runge's Theorem about Diophantine Equations, Colloq. Math. Soc. J. Bolyai 60, (1992), 329-356.
[12] K. Győry, Représentation des nombres entiers par des formes binaires, Publicationes Mathematicae Debrecen, 24 (3-4) (1977), 363-375.
[13] K. Győry and K. Yu, Bounds for the solutions of S-unit equations and decomposable form equations, Acta Arithmetica, 123.1 (2006), 9-41.
[14] G. Hanrot, Solving Thue equations without the full unit group. Math. Comp., 69(229) (2000), 395-405.
[15] C. Heuberger, Parametrized Thue Equations - A survey, Proceedings of the RIMS symposium "Analytic Number Theory and Surrounding Areas", Kyoto, Oct 18-22, 2004, RIMS Kôkyûroku vol. 1511, August 2006, 82-91.
[16] M. Hindry and J. H. Silverman, Diophantine Geometry, An Introduction. Springer-Verlag 2000.
[17] L-C. Kappe and B. Warren, An elementary test for the Galois group of a quartic polynomial, The Amer. Math. Monthly, Vol. 96, No. 2 (1989), 133-137.
[18] S. Lang, Elliptic curves. Diophantine Analysis, Springer 1978.
[19] S. Lang, Fundamentals of Diophantine Geometry, Springer-Verlag, New York - Berlin, 1983.
[20] H. W. Lenstra Jr, Algorithms in Algebraic Number Theory, Bulletin of the American Mathematical Society, 26 (2) (1992), 211-244.
[21] C. Levesque and M. Waldschmidt, Some remarks on Diophantine equations and Diophantine approximation, Vietnam J. Math. 39 (2011), no. 3, 343-368.
[22] S. Louboutin, R. Okazaki and M. Olivier, The class number one problem for some non-abelian normal CM-fields, Trans. Amer. Math. Soc. 349 (1997), no. 9, 3657-3678.
[23] M. Mignotte, An inequality of the greatest roots of a polynomial, Elem. Math. 46 (1991), 85-86.
[24] L. J. Mordell, Diophantine equations, Pure and Applied Mathematics, Vol. 30, Academic Press, London-New York 1969.
[25] D. Poulakis, Integer points on algebraic curves with exceptional units, J. Austral. Math. Soc. 63 (1997), 145-164.
[26] D. Poulakis, Polynomial Bounds for the Solutions of a Class of Diophantine Equations, J. Number Theory 66, No 2, (1997), 271-281.
[27] D. Poulakis, Bounds for the minimal solution of genus zero Diophantine equations, Acta Arithm., 86, (1998), 51-90.
[28] D. Poulakis, Bounds for the size of the integral solutions to $Y^{m}=f(X)$, Proceedings of the Edinburgh Mathematical Society 42,(1999),127-141.
[29] D. Poulakis, Bounds for the size of integral points on curves of genus zero, Acta Math. Hungar. 93 (4) (2001), 327-346.
[30] J. H. Silverman, Arithmetic of Elliptic Curves, Springer Verlag 1986.
[31] A. Thue, Über Annäherungswerte algebraischer Zahlen, J. Reine Angew. Mafh. 135 (1909), 284-305.
[32] N. Tzanakis and B. M. M. de Weger, On the practical solution of the Thue equation. J. Number Theory, 31(2) (1989), 99-132.
[33] P.G. Walsh, A quantitative version of Runge's theorem on Diophantine equations, Acta Arithm. 62 (1992), 157-172.
(Y. Aubry) Institut de Mathématiques de Toulon, Université de Toulon, 83957 La Garde, France
(Y. Aubry) Institut de Mathématiques de Marseille, Aix-Marseille Université, CNRS-UMR 7373, Luminy, 13288 Marseille, France
(D. Poulakis) Department of Mathematics, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece

E-mail address: yves.aubry@univ-tln.fr
E-mail address: poulakis@math.auth.gr

[^0]: 2000 Mathematics Subject Classification. 11D59, 11G30, 11G50, 14H25.
 Key words and phrases. Thue equations, integer points, unit equations.

