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THUE AND UNIT EQUATIONS OVER TOTALLY

REAL NUMBER FIELDS

YVES AUBRY AND DIMITRIOS POULAKIS

Abstract. We obtain a polynomial type upper bound for the size
of the integral solutions of Thue equations F (X,Y ) = m defined
over a totally real number field K, assuming that F (X, 1) has at
least a non real root and, for every couple of non real conjugate
roots (α, ᾱ) of F (X, 1), the field K(α, ᾱ) is a CM-field. In case
where F (X, 1) has also real roots, our approach gives polynomial
type bounds that the Baker’s method was not able to provide other
than exponential bounds. Using this result, we derive an improved
upper bound for the size of the solutions of the unit equation de-
fined over a totally real number field, which allows us to deduce an
upper bound for the size of the integral solutions of Thue equations
defined over a totally real number field.

1. Introduction

Let F (X, Y ) be an irreducible binary form in Z[X, Y ] with degF ≥ 3
and m ∈ Z \ {0}. In 1909, A. Thue [31] proved that the equation
F (X, Y ) = m has only finitely many solutions (x, y) ∈ Z2. Thue’s proof
was ineffective and therefore does not provide a method to determine
the integer solutions of this equation. Other non effective proofs of
Thue’s result can be found in [9, Chap. X] and [24, Chap. 23].

In 1968, A. Baker [2], using his results on linear forms in logarithms
of algebraic numbers, computed an explicit upper bound for the size of
the integer solutions of Thue equations. Baker’s result were improved
by several authors (see for instance [8], [13], [25]) but the bounds re-
main of exponential type and thus, are not useful to compute integer
solutions of such equations. Nevertheless, computation techniques for
the resolution of Thue equations have been developed based on the
above results [1], [14], [32] and the solutions of certain parameterized
families of Thue equations have been obtained [15]. Furthermore, up-
per bounds for the number of integral solutions of Thue equations have
been given [7], [10], [6].

In the case where all roots of the polynomial F (X, 1) are non real, we
have a polynomial type bound provided by other methods [24, Theorem
2, page 186], [12] [26]. Győry’s improvement in [12, Théorème 1] holds
in the case where the splitting field of F (X, 1) is a CM-field i.e., is an
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2 TOULON,MARSEILLE AND THESSALONIKI

imaginary quadratic extension of a totally real number field. In the
same paper, Győry studied Thue equations defined over a CM-field L
and also gave ([12, Théorème 2]) a polynomial upper bound for the size
of their real algebraic integers solutions in L.

In this paper, we consider Thue equations F (X, Y ) = m defined
over a totally real number field K. Following Győry’s approach, we
obtain (Theorem 1) polynomial type bounds for the size of their integral
solutions over K, assuming that F (X, 1) has at least a non real root
and, for every couple of non real conjugate roots (α, ᾱ) of F (X, 1), the
field K(α, ᾱ) is a CM-field. In case where the splitting field is a CM-
field we are in the situation of [12, Théorème 2]. Whenever all roots
of the polynomial F (X, 1) are non real and K 6= Q, we obtain much
better bounds than those already known. Moreover, whenever F (X, 1)
has a real and a non real root, we obtain polynomial type bounds that
the Baker’s method was not able to provide other than exponential
bounds.

We illustrate our result by giving two examples of infinite families of
Thue equations F (X, Y ) = m satisfying the hypothesis of Theorem 1.
In the first, we consider Thue equations over some totally real subfields
K of cyclotomic fields N such that the splitting field L of F (X, 1) over
K is contained in N . In this case, L is an abelian extension of K. In
the second , we consider some quartic Thue equations over Q whose
splitting field N of F (X, 1) over Q has dihedral Galois group.

Effective bounds have been established for the size of the solutions
of elliptic, hyperelliptic, superelliptic equations, Thue equations, equa-
tions defining genus 0 and 1 algebraic curves and other classes of curves
(see e.g. [18, Chapter VI]) by reduction to the problem of the computa-
tion of a bound for the solutions of a unit equation. The computation
of such bounds for the unit equation, except in [4, 5], are based on
the Baker’s method and its p-adic analogue as well as certain quan-
titative results concerning independent units. Using Theorem 1 and
[26, Theorem 2] we deduce an improved explicit upper bound for the
size of solutions of the unit equation in case where it is defined over a
totally real number field. This result allows the computation of explicit
upper bounds for the size of the integral solutions of elliptic, hyperel-
liptic, superelliptic equations, Thue equations, Mordell equations ([21,
Proposition 3.1]) and consequently of equations defining genus 0 and
1 algebraic curves and other classes of curves which are defined over
totally real number fields, without the contribution of Baker’s theory.
Finally, using the classical method we derive an upper bound for the
size of the integral solutions of Thue equations defined over totally real
number fields.
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2. New bounds

We introduce a few notations. Let K be a number field. We consider
the set of absolute values ofK by extending the ordinary absolute value
| · | of Q and, for every prime p, by extending the p-adic absolute value
| · |p with |p|p = p−1. Let M(K) be an indexing set of symbols v such
that | · |v, v ∈ M(K), are all of the above absolute values of K. Given
such an absolute value | · |v on K, we denote by dv its local degree. Let
x = (x0 : . . . : xn) be a point of the projective space Pn(K) over K.
We define the field height HK(x) of x by

HK(x) =
∏

v∈M(K)

max{|x0|v, . . . , |xn|v}dv .

Let d be the degree of K. We define the absolute height H(x) by
H(x) = HK(x)

1/d. For x ∈ K, we put HK(x) = HK((1 : x)) and
H(x) = H((1 : x)). If G ∈ K[X1, . . . , Xm], then we define the field
height HK(G) and the absolute height H(G) of G as the field height
and the absolute height respectively of the point whose coordinates are
the coefficients of G (in any order). For an account of the properties of
heights see [16, 19, 30]. Furthermore, we denote by OK , UK , DK , RK

andNK the ring of integers ofK, the unit group ofOK , the discriminant
of K, the regulator of K and the norm of K, respectively. Finally, for
every z ∈ C we denote, as usually, by z̄ its complex conjugate.

We prove the following theorem:

Theorem 1. Suppose that K is a totally real number field. Let b ∈
OK \ {0} and F (X, Y ) ∈ OK[X, Y ] be a form of degree n ≥ 2. Suppose
that F (X, 1) has at least a non real root and for every couple of non

real conjugate roots (α, ᾱ) of F (X, 1) the field K(α, ᾱ) is a CM-field.

Then the solutions (x, y) ∈ O2
K of F (X, Y ) = b satisfy

H(x) < Ω1 and H(y) < Ω2

for the following values of Ω1 and Ω2. If the coefficients of Xn and Y n

are ±1, then

Ω1 = Ω2 = 28H(F )H(b)2.

If only the coefficient of Xn is ±1, then

Ω1 = 212H(F )2H(b)4 and Ω2 = 28H(F )H(b)2.

Otherwise, we have

Ω1 = 212H(b)4H(Γ)6n−4 and Ω2 = 28H(b)2H(Γ)3n−2,

where Γ is a point of the projective space with 1 and the coefficients of

F (X, Y ) as coordinates.

Notice that a non real algebraic number field L is a CM-field if and
only if L is closed under the operation of complex conjugation and
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complex conjugation commutes with all the Q -monomorphisms of L
into C ([3], [22, Lemma 2]).

When K = Q and the splitting field of F (X, 1) over Q is an abelian
totally imaginary extension, the hypothesis on complex conjugation
is obviously satisfied. If the coefficient of Xn is ±1, it is interesting
to notice that our bounds are independent of the degree of the form
F (X, Y ). Thus, in case where H(F ) and H(b) are not too large, an
exhaustive search can provide the integer solutions we are looking for.

Combining Theorem 1 with [26, Theorem 2] we have the following
result.

Theorem 2. Let K be a totally real number field of degree d ≥ 2. Let
a, b, c ∈ OK \ {0}. Then the solutions (u, v) ∈ U2

K to the equation

aX + bY = c

satisfy

max{H(u), H(v)} < (H(a)H(b)H(c))128 exp{ω(d)RK}
where

ω(d) = 102795(d− 1)((d− 1)!)2
√
d− 2(log d)22−d.

As far as we know the best upper bound for the size of the solutions
of the unit equation is given in [13, Theorem 1]. Theorem 2 is an
improvement of this result for the case of totally real number fields.
Using this result we obtain with the classical method an upper bound
for the size of the integral solutions of Thue equations over totally real
number field.

Corollary 1. Let K be a totally real number field of degree d. Suppose
that m ∈ OK \ {0} and

F (X, Y ) = (X − α1Y )(X − α2Y )(X − α3Y )G(X, Y ),

where α1, α2, α3 are distinct elements of OK and G(X, Y ) a form of

OK [X, Y ]. Then the solutions (x, y) ∈ O2
K to the equation F (x, y) = m

satisfy

max{H(x), H(y)} < 22313H(F )1541H(m)2/nNK(m)784/d exp{Ω2(d)RK},
where

Ω2(d) = 104320(d− 1)((d− 1)!)2
√
d− 2(log d).

3. Examples

In this section we give a few examples to illustrate our results. We
denote by F ∗(X, Y ) the homogenization of a polynomial F (X) ∈ C[X ].

Example 1. Let p be a prime with p ≡ 1 (mod4) and ζp a p-th
primitive root of unity in C. Then the quadratic field Q(

√
p) is a

subfield of Q(ζp). Then Q(ζp) is a cyclic extension of Q with Galois
group G ≃ (Z/pZ)∗. Thus, every Q-embedding of Q(ζp) into C defines
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a Q-automorphism of Q(ζp) and so, it commutes with the complex
conjugation.

Let α ∈ Z[ζp] be a primitive element of the extension Q(ζ)/Q(
√
p)

and α1, . . . , αm, with m = (p − 1)/2, all the distinct conjugates of α
over Q(

√
p). The largest real field contained in Q(ζp) isKp = Q(ζp+ζ̄p)

which is a totally real number field. Let β ∈ Kp be a primitive element
of the extension Kp/Q(

√
p) and β1, . . . , βn, where n = (p − 1)/4, all

the distinct conjugates of β over Q(
√
p). Then the polynomial

F (X) = (X − α1) · · · (X − αm)(X − β1) · · · (X − βn)

belongs to Q(
√
p)[X ] and have real and non real roots. Consequently,

for every non zero b ∈ Z[(1 +
√
p)/2], the Thue equation F ∗(X, Y ) = b

satisfies the hypothesis of Theorem 1.
Furthermore, using [30, Theorem 5.9, page 211] and [30, Lemma

5.10, page 213], we obtain the following upper bound for the heights of
solutions x, y ∈ Z[(1 +

√
p)/2]:

H(x) < 2(3p+17)/4H(α)p−1H(β)(p−1)/2H(b)4

and
H(y) < 2(3p+25)/4H(α)(p−1)/2H(β)(p−1)/4H(b)2.

If Φp(X) is the p-th cyclotomic polynomial, then [12, Section 2] im-
plies that the maximum of the absolute values of all algebraic integers
x, y ∈ Kp with Φ∗

p(x, y) = 1 is < 2(p−1)/2. Theorem 1 improves this

result by yielding the bound 28.

If we want to apply Theorem 1, the Galois group Gal(N/K), where
N is the splitting field over K of the polynomial F , needs not to be
abelian as shown in the following example of a dihedral extension.

Example 2. Let m and n be two non negative rational integers such
that n ≥ 5 is not a square and m <

√
n. Consider the irreducible

polynomial
F (X) = X4 + 2mX2 +m2 − n

of Q[X ]. The roots of F (X) are: ±i
√√

n+m and ±
√√

n−m.

The field L = Q(i
√√

n+m) = (Q(
√
n))(i

√√
n +m) is a CM-field,

and so we can apply Theorem 1 to the equation F ∗(X, Y ) = b, where
b is a non zero integer .

On the one hand, it is worth noticing that in this case we cannot
apply Runge’s method [11], [33]. Additionally, since the polynomial
F (X) has real roots, we can neither apply [24, Theorem 2, page 186],
nor [26, Theorem 1] which are the only known results which can provide
polynomial bounds for the size of the integer solutions. On the other
hand, Baker’s method renders exponential bounds on the heights of the
integer solutions of such an equation (see for example [13]). Moreover,
since the splitting field N of F (X) is not a CM field we cannot apply
[12, Théorème 2].
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Theorem 1 yields the following bounds for the size of the solutions
(x, y) ∈ Z2 of the above equation:

|x| < 212n2b4, |y| < 28nb2.

Finally, note that, by [17, Theorem 3], the Galois group Gal(N/Q)
is isomorphic to the dihedral group of order 8.

4. Proof of Theorem 1

Write

F (X, Y ) = a0(X − α1Y ) · · · (X − αnY ).

First, we consider the case where a0 = ±1. If a0 = −1, we replace
F (X, Y ) by −F (X, Y ) and b by −b and then we may suppose that
a0 = 1. We denote by J the set of indexes j such that αj ∈ C \R. Put
t = |J |. By our hypothesis, we have t > 0. If z ∈ C, we denote, as
usual, by z̄ the complex conjugate of z.

Let x, y ∈ OK such that xy 6= 0 and F (x, y) = b. We set

x− αjy = bj (j = 1, . . . , n).

For every j ∈ J , we set ρj = b̄j/bj . Since K is a totally real number
field, we have

x− ᾱjy = ρjbj .

Eliminating x and bj from the above two equations, we get

y =
bj(1− ρj)

ᾱj − αj
, x = y

ᾱj − αjρj
1− ρj

.

Let j0 ∈ J . For j 6∈ J , we get

bj = x− αjy = y
(ᾱj0 − αj) + ρj0(αj − αj0)

1− ρj0
.

Combining the above equalities, we obtain

yn = b(1− ρj0)
n−t

∏

j∈J

1− ρj
ᾱj − αj

∏

j 6∈J

1

(ᾱj0 − αj) + ρj0(αj − αj0)
.

Let Kj = K(αj , ᾱj), j ∈ J . We denote by Gj the set of Q-embedding

σ : Kj → C. Therefore, for every j ∈ J , we have σ(b̄j) = σ(bj), and so
we get

|σ(ρj)| =
|σ(b̄j)|
|σ(bj)|

=
|σ(bj)|
|σ(bj)|

= 1.

The elements αj , ᾱj are algebraic integers and so, bj , b̄j are algebraic
integers of L. Let Mj(X) be the minimal polynomial of ρj over Z and
mj its leading coefficient. Since ρj is a root of the polynomial

Πj(X) =
∏

σ∈Gj

σ(bj)(X − σ(ρj)),
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which has integer coefficients, we have that Mj(X) divides Πj(X) and
thus we deduce that mj divides

∏

σ∈Gj

σ(bj) = NKj
(bj),

where NKj
is the norm related to the extension Kj/Q. It follows that

mj divides NKj
(bj). As we saw above, all the conjugates of ρj are of

absolute value 1. Therefore, by [19, page 54], for every j ∈ J we have

HKj
(ρj) = mj

∏

σ∈G

max{1, |σ(ρj)|} ≤ NKj
(bj) < NKj

(b) < HKj
(b).

Further, using elementary properties of heights and the above in-
equality, we deduce

H(y)n < 24n−2tH(b)2nH(αj0)
2(n−t)

n
∏

i=1

H(αi)
2.

By [30, Theorem 5.9, page 211], we have
n
∏

i=1

H(αi) ≤ 2nH(F ).

For every j ∈ J , the number αj is not real, hence, using [23], we deduce
that H(αj) < 2H(F )1/2. Therefore, we obtain

H(y) < 28H(b)2H(F ).

And it follows that

H(x) ≤ 4H(y)H(αj)
2H(ρj)

2 ≤ 16H(y)H(F )H(b)2 < 212H(F )2H(b)4.

Suppose now that a0 6= ±1. Write F (X, 1) = a0X
n+a1X

n−1+ · · ·+
an. Then a0αi is a root of f(X) = Xn + a1X

n−1 + a2a0X
n−2 + · · · +

ana
n−1
0 and thus a0αi is an algebraic integer. Denote by F1(X, Y ) the

homogenization of f(X). If (x, y) ∈ O2
K is a solution to F (X, Y ) = b,

then (a0x, y) is a solution to F1(X, Y ) = ban−1
0 . Denote by Γ a point

in the projective space with 1 and the coefficients of F as coordinates.
Then we have H(F1) ≤ H(Γ)n and finally, we obtain

H(y) < 28H(b)2H(Γ)3n−2 and H(x) < 212H(b)4H(Γ)6n−4.

5. Proof of Theorem 2

By [13, Lemma 2], there is a fundamental system {ǫ1, . . . , ǫd−1} of
units satisfying

max{H(ǫ1), . . . , H(ǫd−1)}) ≤ exp{c(d)RK},
where

c(d) = ((d− 1)!)229e
√
d− 2(log d)22−d

if d ≥ 3 and c(d) = 1/2 if d = 2.
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Let (u, v) ∈ U2
K be a solution to the equation

aX + bY = c.

Then, we write u = u1u
4
2 and v = v1v

4
2, where u2, v2 ∈ UK and u1 =

±ǫr11 · · · ǫrd−1

d−1 , v1 = ±ǫs11 · · · ǫsd−1

d−1 with ri, si ∈ {0, 1, 2, 3}. It follows that
(u2, v2) is a solution to the Thue equation

au1X
4 + bv1Y

4 = c.

We have two cases:
(i) bv1/au1 = −A, with A > 0. Then, the roots of X4 −A are ± 4

√
A

and ±i 4
√
A. Further, we have K(i 4

√
A) = K(

√
A)(

√

−
√
A). Thus,

Theorem 1 implies

max{H(u2), H(v2)} < 212H(c)4H(1, au1, bv1)
20,

whence we get

max{H(u2), H(v2)} < 212H(c)4(H(a)H(b))20 exp{120(d− 1)c(d)RK}.
Therefore, we obtain

max{H(u), H(v)} < 248H(c)16(H(a)H(b))80 exp{483(d− 1)c(d)RK}.
(ii) bv1/au1 = A > 0. Then, the roots ofX4+A are ±

√
2(1±i) 4

√
A/2

which all are not real. Thus [26, Theorem 2] yields

max{H(u2), H(v2)} < 6464(H(a)H(b)H(c))32 exp{192(d− 1)c(d)RK},
whence we have

max{H(u), H(v)} < 64256(H(a)H(b)H(c))128 exp{771(d− 1)c(d)RK}.
The result follows.

6. Proof of Corollary 1

Suppose that (x, y) ∈ O2
K with y 6= 0 and F (x, y) = m. It follows

that x− αiy divides m in K and so, [13, Lemma 3] implies that there
exist βi ∈ OL and ǫi ∈ UL such that

x− αiy = ǫiβi (i = 1, 2, 3)

with
H(βi) ≤ NK(m)1/d exp{C(d)RK},

where C(d) = 0 if d = 1, C(d) = 1/2 if d = 2 and

C(d) = 29e(d− 1)(d− 1)!
√
d− 2 log d

otherwise.
Multiplying x − α1y by α2 − α3, x − α2y by α3 − α1, x − α3y by

α1 − α2 and adding, we obtain

au+ bv = c,

where u = ǫ1/ǫ3, v = ǫ2/ǫ3 and

a = (α2 − α3)β1, b = (α3 − α1)β2, c = (α2 − α1)β3.
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By [25, Lemma 4], we have H(αi) < 2H(F ) (i = 1, 2, 3). Thus, we get

H(a) ≤ 2H(α2)H(α3)H(β1) < 8H(F )2NK(m)1/d exp{C(d)RK}.

Similarly, the quantities H(b) and H(c) satisfy the same inequality. By
Theorem 2, we get

max{H(u), H(v)} < (H(a)H(b)H(c))128 exp{ω(d)Rd}

where

ω(d) = 102795(d− 1)((d− 1)!)2
√
d− 2(log d)22−d.

Combining the above estimates, we have

max{H(u), H(v)} < (8H(F )2NK(m)1/d)384 exp{(384C(d)+ω(d))RK}.

We set ǫ1 = uǫ3 and ǫ2 = vǫ3 into x − αiy = ǫiβi (i = 1, 2, 3) and
eliminating ǫ3 we deduce

(β3 − β1u)x− (β3α1 − β1uα3)y = 0,

(β3 − β2v)x− (β3α2 − β2vα3)y = 0.

Suppose that β3 = β1u. Since y 6= 0, we have β3α1 = β1uα3. Replacing
β3 by β1u, we get α1 = α3 which is a contradiction. Thus β3−β1u 6= 0
and so, we have x = By, where

B =
β3α1 − β1uα3

β3 − β1u
.

We have

H(B) ≤ H(β3α1−β1uα3)H(β3−β1u) ≤ 4H(β3)
2H(β1)

2H(α1)H(α3)H(u),

whence we get

H(B) < 21156H(F )770NK(m)392/d exp{(ω(d) + 388C(d))RK}.

Since x = By, we have ynF (B, 1) = m, and so we deduce

H(y)n ≤ H(F (B, 1))H(m) ≤ (n+ 1)H(F )H(B)nH(m).

Furthermore, we have H(x) ≤ H(B)H(x). Combining the above esti-
mates we deduce the result.
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