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Analysis of heterogeneous structures described by the two-temperature

model

Stefano Giordano ⇑, Fabio Manca

Joint International Laboratory LIA LEMAC/LICS, Institute of Electronics, Microelectronic and Nanotechnology (UMR CNRS 8520), PRES University North of France, Ecole Centrale de

Lille, Avenue Poincaré, CS 60069, 59652 Villeneuve d’Ascq Cedex, France

We consider the homogenization problem for composite structures described by the two-temperature model of heat conduction. Our theory is based on 
the most general solutions of the standard two-temper-ature equations for the spherical geometry. This methodology allows us to thoroughly analyse 
different configurations. In particular, we prove two equivalence theorems for homogeneous and composite (core–shell structure) two-temperature 
spheres, which paradigmatically represent particles dispersed in standard particulate materials. As a matter of fact, the core–shell structure is essential to 
model inter-face deficiencies such as mixing phenomena and imperfect transport conditions at the particle–matrix contact surface. Then, we take into 
consideration a dispersion of particles and we examine the effects of the interfaces characterized by mixing and imperfect transport phenomena. We also 
discuss in detail the scale effects in heterogeneous systems composed of two-temperature components. The results here established can be used for 
designing and improving materials or, conversely, for interpreting experimental data in terms of the thermal behavior of their constituents.

1. Introduction

The determination of the effective properties of heterogeneous

media is an important active field in material science with relevant

applications in modern technology [1,2]. Many exact and approxi-

mated methodologies have been developed and used to under-

stand the electric, magnetic, thermal and elastic response of

composite systems and structures [3,4].

From the historical point of view, the seminal work of Maxwell

represents the first attempt to analyse the electric conductivity

of dilute dispersions of spheres embedded in a different matrix

[5]. Subsequently, the dielectric properties of dispersions of ellip-

soids were studied by Fricke [6] in order to model the response

of some biological tissues. Further, several generalizations, e.g. to

non-dilute configurations, were obtained through the differential

method [7,8] and the multipole technique [9,10]. Also the nonlin-

ear case has been largely analysed. Such studies find important

applications in the intrinsic optical bistability [11], in the second

and third harmonic generation [12] and in the mechanical charac-

terization of nanocomposites [13]. Homogenization techniques

have been proposed for populations of nonlinear particles embed-

ded in a linear matrix as well [14,15].

An interesting approach, based on the equivalent inclusion

method, has been developed in the framework of the steady-state

thermal conduction [16]. This technique has been successfully

used to determine the effective thermal conductivity of misori-

ented short fiber composites [17] and coated filler composites

[18]. Further, the physical characterization of several complex

materials has been performed by means of the so-called depolar-

ization tensor [19–21]. More recently, a full anisotropic analysis

has been conducted for elliptic [22] and ellipsoidal [23] particles

and for parallel or random dispersions of cracks [24]. Current

results concern anisotropic layered media with microinclusions

[25], networks of uniform cylindrical particles [26], and the

dynamic analysis of thermoelastic composites [27].

An important point in any effective medium theory concerns

the presence of imperfect interfaces between the constituents of

composite materials. Indeed, in many real cases of technological

interest (especially at the nanoscale), the specific properties of real

contacts among different phases play a crucial role, being often at

the origin of the scale effects [28]. In recent literature two interface

models have been proposed for describing two different limiting

situations. The first zero thickness model is called low conducting

interface and it is based on the so-called Kapitza resistance [29].

On the other hand, the second model, called high conducting inter-

face, concerns the case of an interphase of very high conductivity

with vanishing thickness. Several investigations on heterogeneous
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materials with low [30–39] or high [33,37,39–42] conducting

interfaces can be found in literature. Recent results concern the

integration of the low and high interface paradigms in more gen-

eral models based on the T and P lattice structures [43,44] and

theories for composites with curvilinearly anisotropic coated

inclusions [45].

An aspect rarely taken into consideration in the analyses of het-

erogeneous materials is the two-temperature (or double-conduc-

tivity) behavior of components. For example, to model the

thermal transport in metals this technique is largely utilised. In

order to conveniently include the electron–phonon coupling, it is

useful to designate electrons and phonons as two interacting sub-

systems with two different temperatures. This approach has been

introduced and validated by observing the electron–phonon relax-

ation in metals after short laser pulses, used as ultrafast heating

sources [46–49]. Further, this method has been applied to analyse

the coupling properties of electrons and phonons at metal–

dielectric interfaces [50,51] and efficiently implemented within

two-temperature molecular dynamics simulations [52,53].

The same approach is usually applied to model the heat transfer

in porous media [54]. The two constituents (solid porous structure

and filling fluid) are described through two temperature fields, per-

tinent to a couple of effective macroscopic continua. Their interac-

tion is often introduced by means of a linear term proportional to

the temperature difference. This model can be directly introduced

through phenomenological arguments, or it can be derived from

coarse-graining or homogenization procedures of the real micro-

structure [55,56]. Anyway, the consideration of two different tem-

perature fields is crucial for situations where the local thermal

equilibrium is not valid. This corresponds to the so-called local

thermal non-equilibrium assumption (LTNE). The methodology

has been largely applied to different situations ranging from

impulsive conduction in porous media [57] to fluid-porous inter-

faces [58]. Recently, a detailed analysis of the correspondence

between one- and two-equation models for transport in heteroge-

neous porous media has been performed [59]. Here, a time non-

local two-equation model, a time local two-equation model and

one-equation time-asymptotic formulation have been thoroughly

compared. It is interesting to observe that the thermal behavior

of metals (electrons + phonons) and trabecular or porous materials

(solid + fluid) can be modeled with the same formalism although

the underlying physical phenomena take place at completely

different length-scales.

Some studies have been recently published concerning the effec-

tive behavior of heterogeneous systems with phases described by

the two-temperature model. The effects of the double-conductivity

behavior have been elucidated in metal–nonmetal multilayers [60]

and inmetallic bilayers [61]. Moreover, an effectivemedium theory,

consisting in a generalization of theMaxwell approach [5], has been

presented for a dispersion of two-temperature particles embedded

in a single-temperature matrix [62]. However, this problem has

been investigated only under specific conditions. In particular, the

combination of the mixing between the two conduction processes

at the interface and the imperfect transport properties of the same

interfacehasbeenneglected. In this paper,weapproach theproblem

of homogenizing composite structures with two-temperature com-

ponents (e.g. metals or porous materials) by taking into account all

these complex interfacephenomena. Todo this,we start our analysis

in Section 2 by obtaining the most general solutions of the standard

double-conductivity equations for an arbitrary spherical geometry.

These solutions allow us to analyse several configurations. In Sec-

tion 3,we consider the behavior of a spherical two-temperature par-

ticle embedded in a different two-temperature matrix. We suppose

to apply auniformheat flowandwedetermine the temperature per-

turbationsboth inside andoutside theparticle.We therefore explain

the non-uniformity of the temperature gradientswithin the particle

andwedescribe the scale effects underlying the behavior of this sys-

tem. In Section 4, we prove a first equivalence theorem concerning a

homogeneous two-temperature particle embedded in a standard

single-temperature matrix. In Section 5, we prove a second equiva-

lence theorem dealing with an heterogeneous particle composed of

a two-temperature core and a two-temperature external shell. This

structure is essential to model the mixing phenomena and the

imperfect transport at any interface. In fact, the external shell may

be considered as a thin coating mimicking all the interface proper-

ties. Importantly enough, this approach can be also iteratively

applied to homogenize a multi-coated particles composed of an

arbitrary number of two-temperature layers. Finally, in Section 6,

we take into consideration a dispersion of particles and we thor-

oughly examine the effects of the interfaces characterized by the

above discussed defects (arbitrary mixing and imperfect transport).

Furthermore, we also obtain and discuss the scale effects in hetero-

geneous systems composed of two-temperature components.

2. Formalism

We introduce the concept of the two-temperature model for the

thermal conduction in metals and in trabecular or porous struc-

tures, the corresponding equations and the general solution for

the spherical geometry. In these systems, two temperature fields

are considered to describe the conduction phenomena within

two different phases a and b (electrons and phonons in metals or

the two constituents in saturated/stagnant porous media). The

necessity of a double description is related to the possible lack of

thermal equilibrium between the phases. Therefore, we define

two thermal fluxes~Ja and~Jb in the two-temperature material. We

underline that, also in stationary conditions, the local thermal

non-equilibrium can be verified due to the heterogeneity of the

system (presence of interfaces), described by specific boundary

conditions. Transient processes and source terms, generating local

thermal non-equilibrium as well, are not considered in this work.

Moreover, it has been proved that upscaling in porous media yields

Nomenclature

a and b phases of the two-temperature model
~Ja and~Jb heat fluxes in phases a and b
Va and Vb temperatures in phases a and b
k coupling coefficient

ra and rb thermal conductivities in phases a and b

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k 1=ra þ 1=rbð Þ
p

modified coupling parameter

1=h coupling length

Ynmð#;uÞ spherical harmonics

Pm
n ðnÞ associated Legendre polynomials

inðzÞand knðzÞ modified spherical Bessel functions

ImðzÞ and KmðzÞ modified cylindrical Bessel functions
Ra;Rb; and Rab equivalent conductivities

ra;eff ;rb;eff ; and keff effective parameters

c ¼ R3
2=R

3
1 volume fraction of the core in the composite

sphere

R1 and R2 shell and core radii

/ volume fraction of the dispersed particles
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advective terms at the macroscale even when there is no advection

at the microscale [56]. However, we also neglect here all transport

phenomena described by advective terms. Anyway, in stationary

conditions and without coupling between the conduction pro-

cesses in a and b we would have ~r �~Ja ¼ 0 and ~r �~Jb ¼ 0, stating

the energy conservation in each independent phase. In our model

we introduce a local heat transfer between the constituents a

and b controlled by a coupling coefficient k (see Fig. 1 where a

porous microstructure is shown). We can therefore write

~r �~Ja � kðVb � VaÞ ¼ 0; ð1Þ
~r �~Jb � kðVa � VbÞ ¼ 0; ð2Þ

where Va and Vb represent the temperatures of phases a and b,

respectively (in general, they are the potentials of the transport

process). The overall energy conservation is now confirmed by

the relation ~r � ð~Ja þ~JbÞ ¼ 0 (stationary regime). Moreover, we

assume two linear constitutive equations~Ja ¼ ra
~Ea ¼ �ra

~rVa and

~Jb ¼ rb
~Eb ¼ �rb

~rVb for the phases and, therefore, we obtain the

couple of equations

rar2Va þ kðVb � VaÞ ¼ 0; ð3Þ
rbr2Vb þ kðVa � VbÞ ¼ 0: ð4Þ

We remark that the parameters ra;rb and k have been taken into

account as known quantities in this context and, therefore, we have

not considered their dependence on the actual volume fractions and

microstructure of the phases a and b. However, the problem of link-

ing the axiomatic two-temperature formalism with realistic two-

phase assemblages has been largely approached in literature and

the expressions of the three parameters ra;rb and k in terms of

the microstructure description and the volume fraction values have

been provided in several forms (see e.g. [55,56]).

By combining Eqs. (3) and (4) we have the uncoupled results

r2r2Va � k
1

ra

þ 1

rb

� �

r2Va ¼ 0; ð5Þ

r2r2Vb � k
1

ra

þ 1

rb

� �

r2Vb ¼ 0: ð6Þ

It means that the functions r2Va � h
2
Va and r2Vb � h

2
Vb are har-

monic everywhere, where we have defined the parameter

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k 1=ra þ 1=rbð Þ
p

. We remark that the transformation of two-

temperature models into two uncoupled equations has been per-

formed in previous works. For instance, Vadasz [63] proposed and

resolved a paradox concerning heat conduction in porous media

subject to lack of thermal equilibrium by means of this technique.

Moreover, he worked with the complete time varying equations.

It is also interesting to point-out that the two-temperature model

(taking into account non-stationary processes) is mathematically

equivalent to the dual-phase-lagging model, as shown in Ref. [64].

The authors, to prove this equivalence, introduce uncoupled equa-

tions similar to Eqs. (5) and (6). This is a relevant result since all

analytical solutions, obtained for the dual-phase-lagging model

[65], can be directly applied to study two-phase systems, and

vice-versa.

We search now for the general solution of Eqs. (3) and (4) for

systems that can be described by spherical coordinates. To begin,

we determine the first potential Va. So, by using the general form

of an harmonic function in standard spherical coordinates

ðr; #;uÞ, we must consider the following nonhomogeneous equa-

tion (r2Va � h
2
Va is harmonic as stated in Eq. (5))

r2Va � h
2
Va ¼

X

1

n¼0

X

þn

m¼�n

Bnmr
n þ Cnm

rnþ1

� �

Ynmð#;uÞ; ð7Þ

where the spherical harmonics Ynmð#;uÞ are defined (for

nP 0;�n 6 m 6 n) as [66–68]

Ynmð#;uÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2nþ 1

4p
ðn�mÞ!
ðnþmÞ!

s

Pm
n ðcos#Þeimu; ð8Þ

and where Pm
n ðnÞ are the associated Legendre polynomials [66–68]

Pm
n ðnÞ ¼ ð�1Þm 1� n2

� �

m
2

1

2nn!

d
nþm

dnnþm n2 � 1
� �n

: ð9Þ

Eq. (7) is nonhomogeneous with the source term on the right

hand side that is a linear combination of spherical harmonics.

Therefore, we try to find a solution of the form Va ¼
P1

n¼0

Pþn
m¼�n

VnmðrÞYnmð#;uÞ. From now on we use the implicit notation for

sums:
P1

n¼0

Pþn
m¼�n is understood for repeated indices n and m. We

can determine the Laplacian of Va as

r2Va ¼
1

r2
@

@r
r2

@Vnm

@r

� �

Ynm þ 1

r2
Vnmr2

sYnm; ð10Þ

where r2
s is the surface Laplacian operator for the unit sphere

r2
s f ¼

1

sin#

@

@#
sin#

@f

@#

� �

þ 1

sin
2
#

@2f

@u2
: ð11Þ

We can use the following property

r2
s Ynm ¼ �nðnþ 1ÞYnm; ð12Þ

stating that the spherical harmonics Ynm are eigenfunctions of the

surface Laplacian operator with eigenvalues �nðnþ 1Þ [66]. We

finally obtain the explicit form of the Laplacian of Va as

r2Va ¼
1

r2
@

@r
r2

@Vnm

@r

� �

Ynm � nðnþ 1Þ
r2

VnmYnm: ð13Þ

Since the set of spherical harmonics represents a basis for the scalar

functions defined on a spherical surface, from Eq. (7) we obtain an

ordinary differential equation for the coefficients Vnm

1

r2
d

dr
r2

dVnm

dr

� �

� nðnþ 1Þ
r2

Vnm � h
2
Vnm ¼ Bnmr

n þ Cnm

rnþ1
; ð14Þ

or, equivalently,

d
2
Vnm

dr2
þ 2

r

dVnm

dr
� nðnþ 1Þ þ r2h

2
h iVnm

r2
¼ Bnmr

n þ Cnm

rnþ1
: ð15Þ

We remark that in Eqs. (14) and (15) no implicit sums must be

taken into account. The associated homogeneous equation (with

Bnm ¼ 0 and Cnm ¼ 0) is directly solved by the modified spherical

Bessel functions inðzÞ and knðzÞ. They can be defined through the

modified cylindrical Bessel functions ImðzÞ and KmðzÞ [69]

inðzÞ ¼
ffiffiffiffiffi

p
2z

r

Inþ1
2
ðzÞ; knðzÞ ¼

ffiffiffiffiffi

p
2z

r

Knþ1
2
ðzÞ; ð16Þ

Fig. 1. Example or trabecular or porous structure composed of two distinct media

with conductivities ra and rb connected with a coupling coefficient k. The thermal

behavior is described by Eqs. (3) and (4).
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or directly in terms of elementary functions [69]

inðzÞ ¼ zn
1

z

d

dz

� �n
sinh z

z
; ð17Þ

knðzÞ ¼ ð�1Þn p
2
zn

1

z

d

dz

� �n
expð�zÞ

z
: ð18Þ

Anyway, the solution of the homogeneous equation associated to

Eq. (15) is given by

Vh
nm ¼ anminðhrÞ þ bnmknðhrÞ; ð19Þ

where anm and bnm are coefficients to be determined. In Appendix A

we prove that the following expression represents a particular solu-

tion for the nonhomogeneous version of Eq. (15)

Vp
nm ¼ � 1

h
2

Bnmr
n þ Cnm

rnþ1

� �

: ð20Þ

Hence, the general solution is given by

Vnm ¼ Vh
nm þ Vp

nm

¼ anminðhrÞ þ bnmknðhrÞ �
1

h
2

Bnmr
n þ Cnm

rnþ1

� �

: ð21Þ

In order to write the final solutions for Va and Vb in a symmetrical

form it is convenient to define anm ¼ raanm;bnm ¼ rabnm; cnm ¼
� 1

h2
Bnm and dnm ¼ � 1

h2
Cnm. These four sets of coefficients must be

determined with the boundary conditions pertinent to the specific

problem under consideration. We simply obtain

Vaðr;#;uÞ¼ 1

ra

anminðhrÞþ
1

ra

bnmknðhrÞþcnmr
nþ dnm

rnþ1

� �

Ynmð#;uÞ; ð22Þ

Vbðr;#;uÞ¼ � 1

rb

anminðhrÞ�
1

rb

bnmknðhrÞþcnmr
nþ dnm

rnþ1

� �

Ynmð#;uÞ: ð23Þ

These expressions represent the most general solution of Eqs. (3)

and (4) in spherical coordinates. While the first expression has been

determined by solving directly Eq. (5), the second one has been eas-

ily found through Eq. (3) solved for Vb. Eqs. (22) and (23) can be

used to represent the general solution in a region comprised

between two spherical surfaces (a spherical shell). For obtaining

the regular solution inside a sphere we have to set bnm ¼ 0 and

dnm ¼ 0 (the functions knðhrÞ and 1
rnþ1 being singular for r ¼ 0). On

the other hand, for obtaining the regular solution outside a sphere

we have to set anm ¼ 0 and cnm ¼ 0 (the functions inðhrÞ and rn being

singular at infinity). In the following Sections we adopt these solu-

tions to analyse some heterogeneous structures.

Some comments follow about the possible generalization of our

technique to more refined models. It is possible to consider the

transient behavior of the system by strongly complicating the

mathematics of the problem. Indeed, if we take into account the

transient terms of the heat equation with a permanent sinusoidal

regime, the coefficient k in Eqs. (3) and (4) is transformed in a 2

by 2 matrix with complex entries. Then, we can envisage a similar

development, but the arguments of the pertinent special functions

become complex, involving several complications. Moreover, the

consideration of advection or source terms is not possible with this

formalism. Also the contemplation of nonlinear behaviors is pro-

hibitive. As discussed in next sections, the temperature gradient

inside two-temperature spherical particles is typically non uni-

form, making very difficult any nonlinear generalization. Only

when the internal gradients are uniform (or quite uniform), the lin-

ear homogenization procedures can be generalized with nonlinear

constitutive equations (see, e.g. [14,23,70]).

3. Spherical defect in a uniform heat flow

We consider an homogeneous material described by the two-

temperature model with parameters ra;rb and k. If we take into

consideration the simple case with~Ja and~Jb uniform and both par-

allel to the z-axis (uniform fluxes imposed in the whole considered

space), we must have Va ¼ �ðJa=raÞz and Vb ¼ �ðJb=rbÞz. These
expressions can be easily derived from the linear constitutive

equations ~Ja ¼ �ra
~rVa and ~Jb ¼ �rb

~rVb. Since we also have

r2Va ¼ 0 and r2Vb ¼ 0 (the Laplacian of linear functions of x; y

and z is always zero), we gather from Eqs. (3) and (4) that

Va ¼ Vb or, equivalently that Ja=ra ¼ Jb=rb. It means that, if we

impose uniform fluxes in the whole three-dimensional space, the

stationary and homogeneous two temperature model forces the

relation Ja=ra ¼ Jb=rb between the fluxes to be self-consistent. In

this case we also observe that the total thermal flux~J is given by

~J ¼ �ðra þ rbÞ~rV (where V ¼ Va ¼ Vb): it means that the total

conductivity of a homogeneous bulk material is given by the sum

of the two conductivities of the constituents. It is a well known

result for a metallic material where the total conductivity can be

obtained by adding the conductivity of the phonons and that of

the electrons.

We consider now a spherical defect embedded in a matrix where

a uniform flux is present. We consider a two-temperature sphere

with radius R and parameters ra2;rb2 and k2 embedded in a matrix

with parameters ra1;rb1 and k1 (see Fig. 2 for details). As before, for

both constituents we define hi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ki 1=rai þ 1=rbið Þ
p

. The remote

fields, corresponding to the uniform flux, will be described by

Va1 ¼ Vb1 ¼ �Ez ¼ �Er cos# where E ¼ Ja1=ra1 ¼ Jb1=rb1 is the

applied temperature gradient. Since the remote potentials have

the form �Er cos#, the general solutions given in Eqs. (22) and

(23) must be used only with the terms corresponding to

Y10ð#;uÞ ¼
ffiffiffiffi

3
4p

q

cos#. We finally assume these mathematical forms

for the potentials:

Va2 ¼ a
ra2

i1ðh2rÞ þ cr

� �

cos#; ð24Þ

Vb2 ¼ � a
rb2

i1ðh2rÞ þ cr

� �

cos#; ð25Þ

inside the spherical particle and

Va1 ¼ b

ra1

k1ðh1rÞ þ
d

r2
� Er

� �

cos#; ð26Þ

Vb1 ¼ � b

rb1

k1ðh1rÞ þ
d

r2
� Er

� �

cos#; ð27Þ

outside it. To begin we consider the simplest boundary conditions

for r ¼ R, corresponding to the case without mixing of the fluxes
~Ja and~Jb at the interface. Later on, we will discuss more complicated

structures mimicking the mixing phenomena at the interface. So,

Fig. 2. Scheme of a spherical inhomogeneity of radius R embedded in a different

matrix. Both phases are described by the two-temperature model.
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we have Va1 ¼ Va2;Vb1 ¼ Vb2;ra1@Va1=@r ¼ ra2@Va2=@r and

rb1@Vb1=@r ¼ rb2@Vb2=@r for r ¼ R. These four conditions allow for

the determination of the unknown coefficients a;b; d and c defined

in Eqs. (24)–(27). After a very long but straightforward calculation

we get

a ¼ ra2rb2ðrb1ra2 � ra1rb2Þ
ðra2 þ rb2Þ2

1

Di1ðh2RÞ
3E

1þ 2F þ 2Q ;

b ¼ ra1rb1ðrb1ra2 � ra1rb2Þ
ðra1 þ rb1Þðra2 þ rb2Þ

1

Dk1ðh1RÞ
3E

1þ 2F þ 2Q ;

d ¼ ER3 1� F �Q
1þ 2F þ 2Q ;

c ¼ �E
3F

1þ 2F þ 2Q ; ð28Þ

where

D ¼ k2
h2

i
0
1ðh2RÞ
i1ðh2RÞ

� k1
h1

k
0
1ðh1RÞ
k1ðh1RÞ

;

F ¼ ra1 þ rb1

ra2 þ rb2

;

Q ¼ 1

RD
ðrb1ra2 � ra1rb2Þ2

ðra1 þ rb1Þðra2 þ rb2Þ2
: ð29Þ

It is interesting to remark two important limiting cases of the

above general solution: if k1 ¼ k2 ¼ 0 there is no thermal coupling

between a and b, both inside and outside the particle. Therefore,

the two phases are independent and the inclusion behavior is

described by the well-known Lorentz field for a spherical particle

[5,8], i.e. by

Va2 ¼ � 3ra1

2ra1 þ ra2

Er cos#; ð30Þ

Vb2 ¼ � 3rb1

2rb1 þ rb2

Er cos#; ð31Þ

representing uniform temperature gradients inside the particle, and

by

Va1 ¼ � 1þ ra1 � ra2

2ra1 þ ra2

R

r

� �3
" #

Er cos#; ð32Þ

Vb1 ¼ � 1þ rb1 � rb2

2rb1 þ rb2

R

r

� �3
" #

Er cos#; ð33Þ

representing the classical dipolar behavior outside it. Moreover,

for k1 ! 1 or k2 ! 1 there is the strongest interaction between

the phases and, accordingly, they exhibit the same behavior (ther-

mal equilibrium), described by a particle of conductivity rt2 ¼
ra2 þ rb2 embedded in a matrix of conductivity rt1 ¼ ra1 þ rb1.

The resulting temperature profiles are therefore given by

Va2 ¼ Vb2 ¼ � 3rt1

2rt1 þ rt2

Er cos#; ð34Þ

inside the particle, and by

Va1 ¼ Vb1 ¼ � 1þ rt1 � rt2

2rt1 þ rt2

R

r

� �3
" #

Er cos#; ð35Þ

outside it. Previous limits have been verified both theoretically,

starting from Eqs. (24)–(27), and numerically, by plotting the tem-

perature profiles, as shown in Fig. 3. Here, we considered the per-

turbations induced to the pre-existing linear temperature profile

Va1 ¼ Vb1 ¼ �Er cos#, generated by the embedding of the particle;

they are defined as

DVa ¼
Va2 þ Er cos# if 0 6 r < 1;

Va1 þ Er cos# if r P 1;

	

ð36Þ

and

DVb ¼
Vb2 þ Er cos# if 0 6 r < 1;

Vb1 þ Er cos# if r P 1:

	

ð37Þ

In Fig. 3 the limiting cases are represented as follows: Eqs. (30) and

(32) correspond to the heavy cyan curves, Eqs. (31) and (33) to the

heavy violet curves and, finally, Eqs. (34) and (35) to the heavy

green curves. It is interesting to observe that for h1R � 1 and

h2R � 1 we have a weak interaction between a and b or, equiva-

lently, a small radius of the particle (nanoscale). In this case, we

are far from the thermal equilibrium between the phases and we

observe possible large deviations between Va and Vb: the extreme

situation corresponds to the couple of different Lorentz field given

in Eqs. (30) and (31). On the other hand, if h1R � 1 or h2R � 1 we

have a strong interaction between a and b or, equivalently, a large

radius of the particle (macroscale). In this case, we are near the

thermal equilibrium between the phases and therefore we have

Va � Vb: the extreme situation corresponds to the Lorentz field

given in Eq. (34). It means that the parameters hiR play a central role

in assessing the scale effects in systems with spherical particles

exhibiting the two-temperature behavior. In particular, it is impor-

tant to remark that the local thermal equilibrium can be easily lost

at the nanoscale, making crucial the use of the two-temperature

model for modeling composite structures with small particles.

Interestingly enough, we deduce, from Fig. 3a that for small values

of k1 (weak interaction in the matrix) we have strongly non-uni-

form temperature gradients within the particle. Similarly, we

observe from Fig. 3b that small values of k2 lead to quite uniform

temperature gradients within the particle; this latter result is

expected since negligible values of k2 allow us to use standard solu-

tions for a single-temperature particle, which are indeed character-

ized by linear temperature profiles. To conclude, from the

comparison of Fig. 3a and b and Fig. 3c we draw the following

result: to obtain the same Lorentz behavior for the two phases, as

given in Eqs. (34) and(35) (strong coupling), it is sufficient to have

only one of the two parameters k1 and k2 approaching infinity; on

the contrary, for observing the separated and independent Lorentz

curves given by Eqs. (30), (32) and (31), (33) we must impose both

interaction coefficients to zero.

4. Equivalent conductivities of a homogeneous two-

temperature sphere

We consider a homogeneous sphere described by the two-tem-

perature model (parameters ra;rb; k and radius R). We suppose to

embed this particle in a standard material having a single temper-

ature description. To do this, we take into account three configura-

tions characterized by three different boundary conditions. In the

first case the external material is directly connected only to the

phase a of the sphere (Fig. 4a), in the second case to the phase b

(Fig. 4b) and, finally, in the third case to both phases a and b

(Fig. 4c). For convenience, the conductivity of the matrix is named

ra0 in the first case, rb0 in the second case and r0 in the third

one.

In any case the solutions within the spherical particle are given

by

Va ¼
a
ra

i1ðhrÞ þ cr

� �

cos#; ð38Þ

Vb ¼ � a
rb

i1ðhrÞ þ cr

� �

cos#; ð39Þ

and the external potential (purely harmonic) is

Vext ¼ �E0r þ
n

r2

� �

cos#; ð40Þ
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where E0 represents the remotely applied temperature gradient.

The boundary conditions follow:

VajR ¼ V extjR; ra
@Va

@r













R

¼ ra0
@V ext

@r













R

;
@Vb

@r













R

¼ 0 ð41Þ

for the first case,

VbjR ¼ V extjR; rb

@Vb

@r













R

¼ rb0

@V ext

@r













R

;
@Va

@r













R

¼ 0 ð42Þ

for the second case and, finally,

VajR ¼ V extjR; VbjR ¼ V extjR;

ra
@Va

@r













R

þ rb

@Vb

@r













R

¼ r0

@V ext

@r













R

ð43Þ

for the third one. For the three configurations we can straightfor-

wardly find the unknown coefficients a; c and n, by solving the cor-

responding linear system.

We have now to compare these results with the behavior of a sin-

gle-temperature particle embedded in a single-temperature matrix.

To do this, we consider a sphere with conductivity R embedded in

a matrix with conductivity rm, and subjected to a uniform negative

temperature gradient E0 along the z-axis. Since the remote temper-

ature has the form �E0r cos#, the internal and external harmonic

temperature perturbations V int þ E0r cos# ¼ P

n

P

mBnmrnYnm ð#;uÞ
and V ext þ E0r cos# ¼ P

n

P

mCnmr�n�1Ynmð#;uÞ must contain only

the terms proportional to Y10ð#;uÞ ¼
ffiffiffiffi

3
4p

q

cos#. We therefore search

the solutions in the form

V int ¼ �E0r þ gr½ � cos#; ð44Þ

Vext ¼ �E0r þ
n

r2

� �

cos#; ð45Þ

where g and n are unknowns coefficients and we impose the

boundary conditions forcing the continuity of the temperature

V intjR ¼ VextjR and of the heat flux R
@V int

@r







R
¼ rm

@Vext

@r







R
. Hence, we can

easily solve the corresponding system of equations in the unknown

coefficients g and n, eventually obtaining

g ¼ R� rm

Rþ 2rm

E0; ð46Þ

n ¼ R� rm

Rþ 2rm

E0R
3: ð47Þ

Interestingly enough, the internal negative temperature gradient is

given by E0 � g ¼ 3rmE0=ðRþ 2rmÞ, which is the classical Lorentz

field largely used in the electrostatic counterpart [5,8].

Since a homogeneous single temperature sphere with conduc-

tivity R embedded in a matrix with conductivity rm generates an

external field (dipolar behavior) described by Eqs. (45) and (47),

we simply obtain the exact equivalent conductivity of the two-

temperature particle via the equation (inverse of Eq. (47)),

R ¼ E0R
3 þ 2n

E0R
3 � n

rm; ð48Þ

where n is the solution of one of the three sets of conditions given in

Eqs. (41)–(43) rm is given by ra0;rb0 or r0 depending on the config-

uration considered. This procedure eventually leads to the following

equivalent conductivities

Ra ¼ ra

1þ ra

rb

1
hR

i1ðhRÞ
i
0
1
ðhRÞ þ ra

rb

; ð49Þ

Rb ¼ rb

1þ rb

ra

1
hR

i1ðhRÞ
i
0
1
ðhRÞ þ

rb

ra

; ð50Þ

Rab ¼ ra þ rb: ð51Þ

We have therefore proved the first theorem of equivalence: a two-

temperature sphere embedded in a single-temperature matrix can

be substituted by an ad-hoc single-temperature particle having

the conductivity given by Eqs. (49), (50) or (51), depending on the

Fig. 3. Temperature perturbations DVa and DVb (evaluated on the z axis) induced by the introduction of the spherical defect: in the first case (a) we fixed k1 ¼ 0:1 and we

varied k2; in the second case (b) we considered k2 ¼ 0:1 and we varied k1; finally, in the third case (c) we varied both constants, by maintaining k1 ¼ k2 . The varying quantities

(arrows) always assume 15 equispaced values (in logarithmic scale) in the range ð100;105Þ. We considered everywhere the parameters

R ¼ 1; E ¼ 1;ra1 ¼ 10;ra2 ¼ 35;rb1 ¼ 45 and rb2 ¼ 5 (in a.u.).
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configuration considered. It is interesting to note the scale effects

induced in Ra and Rb, represented by the explicit dependence on

the particle radius R (through the dimensionless factor hR, already

discussed in the previous Section). On the contrary, Rab is simply

given by the sum of the partial conductivities for the homogeneous

particle. A more complex behavior will be studied for the heteroge-

neous particle in the next Section. An important point related to

previous expressions is the following: the knowledge of the three

equivalent conductivities Ra;Rb and Rab is necessary and sufficient

to have a complete characterization of the two-temperature particle

response. To prove this statement we show that there is a biunivo-

cal correspondence between (Ra;Rb;Rab) and (ra;rb; k). To this aim,

we define the following quantities

Xa ¼
Rab

Ra

; Xb ¼
Rab

Rb

; x ¼ 1

hR

i1ðhRÞ
i
0
1ðhRÞ

; ð52Þ

and we invert the system given in Eqs. (49)–(51), by obtaining

ra;rb and x

ra ¼ Rab

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xa � 1
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xb � 1
p

X a � Xb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xb � 1
p

; ð53Þ

rb ¼ Rab

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xa � 1
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xb � 1
p

X a � Xb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xa � 1
p

; ð54Þ

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xa � 1
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xb � 1
p

: ð55Þ

Moreover, we observe that the quantity x is directly related to the

coupling coefficient k (or, equivalently, to h). Indeed, if we define

the function

f ðzÞ ¼ 1

z

i1ðzÞ
i
0
1ðzÞ

¼ z cosh z� sinh z

ðz2 þ 2Þ sinh z� 2z cosh z
; ð56Þ

which is monotonically decreasing from 1 to 0 for z > 0, then we

can find by inversion hR ¼ f�1ðxÞ and, since h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k 1=ra þ 1=rbð Þ
p

,

we can also obtain the coupling coefficient

k ¼ 1

R2

1
1
ra
þ 1

rb

f�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xa � 1
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X b � 1
p

� �h i2

: ð57Þ

We remark that f�1 can not be written in closed form but it can be

straightforwardly evaluated numerically. We have therefore proved

the following statement: the knowledge of the three observable

quantities Ra;Rb and Rab is completely equivalent to the knowledge

of the two-temperature model parameters ra;rb and k. This

conclusion will be very useful to homogenize the composite sphere

structure in the following Section.

5. Effective conductivities of a composite two-temperature

sphere

We consider a composite sphere constituted by a core of radius

R2 and a shell of radius R1, both described by the two-temperature

model. We suppose to have the parameters ra2;rb2 and k2 inside

the core and ra1;rb1 and k1 within the external shell. The aim of

this section is to obtain an exact homogenization technique for this

structure, leading to a two-temperature effective behavior of the

composite sphere described by three parameters ra;eff ;rb;eff and

keff . As already discussed in the Introduction, this model is useful

to describe at least two important situations: (i) the external shell,

if considered as a thin interphase, is able to take into consideration

both the mixing processes between the two independent conduc-

tion phenomena (e.g. electrons and phonons in metals) at the

interface (controlled by k1) and the possible imperfect transport

properties at the same interface (controlled by ra1 and rb1) [50–

52]; in this case the thin shell may represent the low conductivity

model (Kapitza like) or the high conductivity model largely used

for mimicking the lack of thermal continuity between particle

and matrix [33,37]; (ii) an interesting application of such homoge-

nization procedures concerns multi-shelled (or multi-coated) and

graded two-temperature particles; by means of an iterative proce-

dure we may recursively homogenize the whole structure allowing

the substitution of a very complex double-conductivity system

with a simpler homogeneous one.

In order to homogenize the composite particle, we determine

the quantities Ra;Rb and Rab, defined in previous Section, and then

we use Eqs. (53), (54) and (57) to obtain the effective properties. As

before, we suppose to embed the particle in a (single temperature)

matrix with three different boundary conditions. In the first case

the matrix is directly connected only to the phase a of the external

shell (Fig. 5a), in the second case to the phase b of the external shell

(Fig. 5b) and, finally, in the third case to both phases of the external

shell (Fig. 5c). In any case the solutions inside the spherical core are

given by

Va2 ¼ a
ra2

i1ðh2rÞ þ cr

� �

cos#; ð58Þ

Vb2 ¼ � a
rb2

i1ðh2rÞ þ cr

� �

cos#; ð59Þ

within the external shell can be written as

Va1 ¼ s
ra1

i1ðh1rÞ þ
b

ra1

k1ðh1rÞ þ qr þ d

r2

� �

cos#; ð60Þ

Vb1 ¼ � s
rb1

i1ðh1rÞ �
b

rb1

k1ðh1rÞ þ qr þ d

r2

� �

cos#; ð61Þ

and the external potential (purely harmonic) is

Vext ¼ �E0r þ
n

r2

� �

cos#: ð62Þ

Fig. 4. Homogeneous two-temperature particle embedded in a single-temperature

matrix. Three configurations correspond to the external material directly connected

to the phase a of the sphere (a), to the phase b (b) and, finally, to both phases (c).
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The boundary conditions follow:

Va2jR2 ¼ Va1jR2 ; ra2
@Va2

@r













R2

¼ ra1
@Va1

@r













R2

;

Vb2jR2 ¼ Vb1jR2 ; rb2

@Vb2

@r













R2

¼ rb1

@Vb1

@r













R2

;

Va1jR1 ¼ VextjR1 ; ra1

@Va1

@r













R1

¼ ra0

@V ext

@r













R1

;

@Vb1

@r













R1

¼ 0 ð63Þ

for the first case,

Va2jR2 ¼ Va1jR2 ; ra2
@Va2

@r













R2

¼ ra1
@Va1

@r













R2

;

Vb2jR2 ¼ Vb1jR2 ; rb2

@Vb2

@r













R2

¼ rb1

@Vb1

@r













R2

;

Vb1jR1 ¼ VextjR1 ; rb1

@Vb1

@r













R1

¼ rb0

@V ext

@r













R1

;

@Va1

@r













R1

¼ 0 ð64Þ

for the second case and, finally,

Va2jR2 ¼ Va1jR2 ;ra2
@Va2

@r













R2

¼ ra1
@Va1

@r













R2

;

Vb2jR2 ¼ Vb1jR2 ;rb2

@Vb2

@r













R2

¼ rb1

@Vb1

@r













R2

;

Va1jR1 ¼ V extjR1 ;Vb1jR1 ¼ V extjR1 ;

ra1
@Va1

@r













R1

þ rb1

@Vb1

@r













R1

¼ r0

@V ext

@r













R1

ð65Þ

for the third one. Each of the systems defined in Eqs. (63)–(65)

allows for the determination of the seven unknowns a; c; s; b;q; d
and n, defined in Eqs. (58)–(62). It can be done numerically or ana-

lytically, depending on the aim of the analysis conducted. Moreover,

the three equivalent conductivities Ra;Rb and Rab can be directly

calculated through Eq. (48), where n is one of the parameters

obtained from Eqs. (63)–(65) for the three configurations shown

in Fig. 5, respectively. The explicit expressions for Ra;Rb and Rab

are very complicated and they do not provide further understand-

ing beyond the numerical results described below. Hence, for the

sake of brevity, these expressions are not reported here. In addition

to the values Ra;Rb and Rab, as above said, we can also numerically

determine ra;eff ;rb;eff and keff through Eqs. (53), (54) and (57). In

Fig. 6 we show the results for k1 ¼ 0 and k2 – 0. Similarly, in Fig.7

we show the results for k2 ¼ 0 and k1 – 0. In both cases we show

the conductivities versus the volume fraction c ¼ R3
2=R

3
1 of the core

in the entire range ð0;1Þ. Moreover, in Fig. 8 we considered the

effective conductivities in terms of k1 – 0 and k2 – 0 for a fixed vol-

ume fraction c ¼ 0:4. In all numerical calculations we assumed the

parameters R1 ¼ 1;ra1 ¼ 10;ra2 ¼ 35;rb1 ¼ 45 and rb2 ¼ 5 in arbi-

trary units. In contrast with the previous Section, Eq. (51), we

underline that the results for Rab are now not trivial because of

the heterogeneous structure of the particle.

It is interesting to observe that, for k1 ¼ 0 and k2 ¼ 0, the quan-

tities Ra and ra;eff converge to the Maxwell mixing rule [5]

rMax;a ¼ ra1

2ra1 þ ra2 � 2cðra1 � ra2Þ
2ra1 þ ra2 þ cðra1 � ra2Þ

; ð66Þ

represented by the heavy cyan curve in Figs. 6 and 7 (plots a and b).

In the same way, always for k1 ¼ 0 and k2 ¼ 0, the quantities Rb and

rb;eff converge to the Maxwell mixing rule

rMax;b ¼ rb1

2rb1 þ rb2 � 2cðrb1 � rb2Þ
2rb1 þ rb2 þ cðrb1 � rb2Þ

ð67Þ

represented by the heavy violet curve in Figs. 6 and 7 (plots a and

b). The link between our results and the Maxwell mixing rule can

be further explained as follows. If we consider a structured sphere

composed of a one-temperature core of conductivity r2 and a

one-temperature shell of conductivity r1, embedded in a matrix

of conductivity rm, and subjected to a uniform temperature gradi-

ent E0, we can use the solutions

V int ¼ �E0r þ gr½ � cos# ð0 < r < R2Þ; ð68Þ

V shell ¼ �E0r þ qr þ d

r2

� �

cos# ðR2 < r < R1Þ; ð69Þ

Vext ¼ �E0r þ
n

r2

� �

cos# ðR1 < r < þ1Þ; ð70Þ

to represent the temperature behavior in the whole space. By using

the classical boundary conditions imposing the continuity of the

temperature and the continuity of the heat flux over the spherical

surface of radius R1 and R2, it is straightforward to determine the

unknown coefficient g;q; d and n. Thus, the knowledge of n, corre-

sponding to the external response of the overall composite particle,

allows us to obtain the effective conductivity of the particle via the

expression rMax ¼ E0R
3
1þ2n

E0R
3
1�n

rm (see Eq. (48)). After simple but long cal-

culations we can obtain the result

Fig. 5. Composite (core of radius R2 in a shell of radius R1) two-temperature particle

embedded in a single-temperature matrix. Three configurations correspond to the

matrix directly connected to the phase a of the external shell (a), to the phase b of

the external shell (b) and, finally, to both phases of the shell (c).
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rMax ¼ r1

2r1 þ r2 � 2cðr1 � r2Þ
2r1 þ r2 þ cðr1 � r2Þ

ð71Þ

where c ¼ R3
2=R

3
1, as before. This expression represents the exact

effective Maxwell conductivity for a composite sphere with

single-temperature behavior [5,8]. It is easy to realize that the

structure of this expression is identical to Eqs. (66) and (67), indeed

representing composite spheres where the coupling effects between

the phases is removed, i.e. k1 ¼ 0 and k2 ¼ 0.

On the other hand, for k1 or k2 approaching infinity we observe

a response defined by the Maxwell rule between two media having

conductivities rt1 ¼ ra1 þ rb1 and rt2 ¼ ra2 þ rb2,

Fig. 6. Results for the composite sphere concerning the case with k1 ¼ 0 and k2 – 0. We used 20 equispaced (in logarithmic scale) values of k2 in the range

�1:5 < log10k2 < 4:5. We represented Ra;Rb and Rab (a), ra;eff and rb;eff (b), and keff (c) versus c ¼ R3
2=R

3
1 .

Fig. 7. Results for the composite sphere concerning the case with k1 – 0 and k2 ¼ 0. We used 20 equispaced (in logarithmic scale) values of k1 in the range

�1:5 < log10k1 < 4:5. We represented Ra;Rb and Rab (a), ra;eff and rb;eff (b), and keff (c) versus c ¼ R2
2=R

3
1 .
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rMax;ab ¼ rt1

2rt1 þ rt2 � 2cðrt1 � rt2Þ
2rt1 þ rt2 þ cðrt1 � rt2Þ

; ð72Þ

represented by the heavy green curve in Figs. 6a and 7a. If k2 ! 1
we have Rab converging to the value rMax;ab while Ra and Rb con-

verge to different curves not represented by any Maxwell rule

(see Fig. 6a). Moreover, if k1 ! 1 all the three conductivities

Rab;Ra and Rb converge to the Maxwell value rMax;ab (see Fig. 7a).

It means that the condition k1 ! 1; k2 ¼ 0 is stronger than

k2 ! 1; k1 ¼ 0, forcing all the three equivalent conductivities to

be equal to the Maxwell value rMax;ab. The same behavior can be

observed in Fig. 8a. We remark that the Maxwell relationships used

in this discussion are exact for any value of the volume fraction c in

the entire range (0,1). This is true because of the simple geometry

here considered, consisting in two concentric spheres. On the con-

trary, the original Maxwell rule is valid for small value of c, being

conceived for a random dispersion of particles [5,8].

The results of the present Section can be summarized by stating

the second theorem of equivalence: if we take into consideration a

composite sphere formed by a two-temperature core and a two-tem-

perature shell (i.e. described by six parameters ra2;rb2; k2;ra1;rb1

and k1) and embedded in an arbitrary two-temperature medium,

then we can substitute the composite sphere with an homogeneous

two-temperature sphere with parameters ra;eff ;rb;eff and keff , defined

by the outlined procedure. It means that the thermal fields existing

within the arbitrary two-temperature matrix (around the composite

particle) are exactly the same before and after the formal substitution

above introduced. The proof of this property can be sketched as fol-

lows. We consider these two different configurations:

� a composite sphere embedded in a given matrix, i.e. a system

composed of three two-temperature materials subjected to a

remotely applied temperature gradient. The problem can be easily

solved (e.g., numerically or in a mathematical symbolic environ-

ment) by exploiting the general solution presented in Section 2;

� an homogeneous sphere embedded in a given matrix, i.e. a sys-

tem composed of two phases subjected to a remotely applied

temperature gradient. Of course, this homogeneous sphere is

considered with the effective parameters discussed in the pres-

ent Section, homogenizing the composite particle of the previ-

ous point. Such a problem has been exactly solved in Section 3.

We proved analytically and numerically that the external fields,

for both situations, are exactly the same, thus confirming the above

statement. We do not report here all the details of this calculation,

which is very long but quite straightforward. Of course, as particu-

lar case we can consider a single-temperature description for the

matrix, e. g. allowing the analysis of coated metal particles embed-

ded in a dielectric matrix (see next Section). Importantly, as above

said, the coating should be used to introduce the concepts of

imperfect interface and mixing between electrons and phonons

at the interface. To conclude, we also note that the above theorem

of equivalence can be used iteratively for homogenizing an arbi-

trarily multi-coated two-temperature sphere (starting from the

core and arriving at the most external shell). We remark that this

iterative procedure is extremely more efficient than the standard

one based on (i) considering the general solution given in Eqs.

(22) and (23) for each phase and (ii) solving a very large system

of equations for all the unknown coefficients. This point allows

us to use such a methodology for graded structures, where it is

important to consider a large number of shells to conveniently rep-

resent the continuously varying physical properties.

6. Dispersions of particles homogenization

In this Section, we consider a dispersion of identical double-

conductivity particles dispersed in a single-temperature matrix.

The aim is that of analysing the effects generated by a thin inter-

phase between particles and matrix, mimicking the mixing

phenomena and the imperfect transport properties. To do this,

Fig. 8. Behavior of the composite sphere in terms of the coupling coefficients k1 and k2 , for a fixed value of the volume fraction c ¼ 0:4. The equivalent conductivities Ra;Rb

and Rab (a), the effective conductivities ra;eff and rb;eff (b), and the effective coupling parameter keff (c) are plotted versus k1 and parametrized by k2 (the circles correspond to

the lowest value). We used 20 equispaced (in logarithmic scale) values of k2 in the range 0 < log10k2 < 5.
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the interphase will be considered as a two-temperature medium.

Therefore, we adopt the model for two-temperature composite

spheres introduced in Section 5. We suppose that the matrix med-

ium is directly connected only to the phase a of the interphase.

Hence, the particle (interphase + core) response is described by

the equivalent thermal conductivity Ra, easily computable through

Eq. (48), where n is obtained from Eq. (63). As a result, for a dilute

mixture, we can apply the Maxwell [5] expression

reff ¼ rm

2rm þ Ra � 2/ðrm � RaÞ
2rm þ Ra þ /ðrm � RaÞ

; ð73Þ

where rm is the conductivity of the matrix, / is the volume fraction

of the particles and Ra is their equivalent conductivity, which can be

written in terms of the parameters describing the interphase/core

thermal response

Ra ¼ Ra ra2;rb2; k2;R2;ra1;rb1; k1;R1ð Þ: ð74Þ

Here, the radii R1 and R2 certainly fulfill the expression R2 ¼ c1=3R1,

where c is the volume fraction of the corewithin the composite particle.

We remark that we used the Maxwell approach [5] (dilute

limit) in order to obtain simple results and to directly analyse

the effects induced by the two-temperature behavior and the

imperfect interphases. Nevertheless, the quantity Ra discussed in

Section 5 can be easily exploited to implement other homogeniza-

tion techniques such as the differential method [8,24,71], the self

consistent scheme [72–74], the generalized-self-consistent model

[75] or the strong-property-fluctuation theory [21].

Anyway, here we study the system described by the combina-

tion of Eqs. (73) and (74). In Fig. 9 we analyse the effects of the

imperfect contacts by plotting the overall effective conductivity

reff in terms of the interphase conductivity (for the sake of simplic-

ity, we used ra1 ¼ rb1 , r1) and of the mixing parameter k1. First

of all, we clarify the limits of the effective conductivity for very

small and very large values of r1. To do this, we define the conduc-

tivity r0, which represents the value of the Maxwell expression

given in Eq. (73) for Ra ! 0 (dispersion of voids), and the conduc-

tivity r1, which characterizes a Maxwell dispersion for Ra ! 1
(dispersion of superconducting particles),

r0

rm

¼ 2ð1� /Þ
2þ /

;
r1
rm

¼ 1þ 2/

1� /
: ð75Þ

Of course, we have that Ra ! 0 if r1 ! 0 and Ra ! 1 if r1 ! 1;

therefore, the searched limiting behaviors are given by

lim
r1!0

reff ¼ r0 ¼ rm
2ð1� /Þ
2þ /

; ð76Þ

lim
r1!1

reff ¼ r1 ¼ rm

1þ 2/

1� /
: ð77Þ

It is not difficult to verify that these limits are in perfect agreement

with the asymptotic behavior of any curve represented in Fig. 9

(dashed straight lines for r1 ! 1 and dotted straight lines for

r1 ! 0 in the left panel). In the left panel of Fig. 9 we show the

behavior of reff versus the properties of the interphase (r1 and k1)

for different values of / and with a fixed value of c. Similarly, in

the right panel, we show the same results with a varying c and a

fixed /. We have explored all the possible values of r1 ranging

between the low and the high conducting interface model

[33,37,39,43]. As a general conclusion, we observe that the effects

induced by r1 (imperfect transport at the interfaces) are stronger

than those generated by k1 (mixing at the interfaces). Nevertheless,

both aspect are important to define the overall behavior of the com-

posite system: we remark that our procedure, based on the exact

definition of Ra, is properly suited to consider an arbitrary two-tem-

perature response for core and shell phases and, therefore, we can

explore all the features of this heterogeneous structure. From

Fig. 9 we also deduce that the volume fraction / of the particles

in the matrix strongly modifies the limits of reff for small and large

values of r1: see also Eqs. (76) and (77). On the other hand, the vol-

ume fraction c of the core within each particle does not modify

these limits, while it slightly affects the threshold of r1 needed to

obtain a given conductivity reff .

To conclude this discussion, we show in Fig. 10 some results

concerning the scale effects in heterogeneous two-temperature

materials. In the left panel of Fig. 10 one can find the behavior of

a dispersion of homogeneous double-conductivity spheres

(without interphases, R1 ¼ R2). It means that these results can be

obtained through the combination of Eq. (73) with Eq. (49). The

effective conductivity reff is plotted versus the radius R1 of the

particles for different values of the coupling coefficients k2. It is

interesting to observe that reff is an increasing function of R1 and

k2. This behavior can be explained by observing that a larger

particle allows to better exploit the conductivity of the phase b

(disconnected from the matrix) through the parameter k2 (note

that no scale effects are present for k2 ¼ 0). In the right panel of

Fig. 10 some scale effects are presented for a dispersion of compos-

ite particles (with interphase, R1 – R2). In this case Eqs. (73) and

(74) have been utilised with varying R1 and k1, being fixed all the

other parameters. Also this configuration exhibits an effective con-

ductivity reff that depends on R1 (via an increasing function), with

fixed values of c and /, confirming the existence of relevant scale

effects also in this case.

The proposed technique can be adopted to study complex por-

ous media constituted by the following structure: we can consider

a dispersion of particle composed of an arbitrary number of shell

with a void or empty core. In this case we have a population of

voids with an arbitrarily complicated two-temperature behavior

Fig. 9. Effective conductivity of a dispersion of two-temperature composite particles in terms of the conductivity of the interphase r1 ¼ ra1 ¼ rb1 and the mixing parameter

k1 . Left panel: four values of / ¼ 0:1; 0:2; 0:3;0:4 have been considered with a fixed c ¼ 0:75. Right panel: three values of c ¼ 0:1; 0:5; 0:9 were used with a fixed / ¼ 0:4. In any

family of curves we used 20 equispaced (in logarithmic scale) values of k1 in the range �4 < log10k1 < 4 (the circles correspond to the lowest value).
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of the interphase between the pore and the matrix. However, the

matrix must be considered with a single-temperature behavior in

order to apply the proposed methodology. The case of saturated

pores can be envisaged as well, with an arbitrary two-temperature

behavior of the core. We can affirm that the consideration of a sin-

gle-temperature behavior for the matrix is not a strong limitation

since the more interesting and complicated effects occur in prox-

imity of the heterogeneity of the system, the region that can be

easily described by the two-temperature model. However, as

above discussed, the limitations of our approach are mainly

induced by the difficulties in treating transient, advection, source

and non-linear terms.

7. Conclusions

In this paper we analysed heterogeneous materials or structures

composed of phases described by the two-temperature model of

heat conduction. More precisely, we considered and discussed

some properties of the following configurations:

� we determined the behavior of a two-temperature sphere

embedded in a two-temperature matrix: we pointed out that

the scale effects depend on the relative size of the particle

radius with respect to the parameters 1=hi defined in Sections

2 and 3 (note that in the framework of the metal thermal con-

duction 1=hi is named electron–phonon coupling length);

� we proved that a two-temperature sphere embedded in a sin-

gle-temperature matrix can be substituted by an equivalent sin-

gle-temperature particle having the conductivity obtained in

Section 4. Moreover, we also showed that the knowledge of

the three equivalent conductivities, obtained with the three dif-

ferent contact conditions between particles and matrix, is nec-

essary and sufficient to have a complete characterization of

the two-temperature particle response. This point is crucial

for developing the following property;

� a composite sphere formed by a two-temperature core and a

two-temperature shell, embedded in an arbitrary medium, can

be substituted with an homogeneous two-temperature sphere

with parameters defined by the procedure outlined in Section 5.

This is an important feature for modeling complex interfaces

(with mixing phenomena and imperfect transport) and graded

or multi-coated structures.

Previous properties have been used to determine the effective

behavior of a dilute dispersion of particles with complex interfaces.

In particular, we firstly analysed the effects of geometrical aspects:

(i) the thickness of the external layer mimicking the behavior of

the interfaces (or, equivalently, the volume fraction c of the core

within the shell) and (ii) the volume fraction / of the particle dis-

persed in the matrix. Moreover, we investigated the influence of

the physical interface features, i.e. (iii) the parameter k1 describing

the mixing phenomena between the phases a and b and (iv) the

parameter r1 modulating the imperfect transport across the inter-

face (exploring all the possibilities between the low and the high

conducting interface). Although both physical parameters play an

important role in defining the overall properties of the composite

material, we observed that the effects induced by imperfect trans-

port are generally stronger than those generated by the mixing at

the interfaces. To conclude, we also remarked that the presence of

two-temperature components induces relevant scale effects also in

dispersions of particles. In this case, the overall response of the

structure is characterized by well defined values of conductivities

for very small or very large values of the particles radius, precisely

identifying the nano- and the micro/macro-scale behaviors.
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Appendix A. On the particular solution of the nonhomogeneous

modified spherical Bessel equation

We search for the particular solution of the following nonhomo-

geneous differential equation

d
2
Vnm

dr2
þ 2

r

dVnm

dr
� nðnþ 1Þ þ r2h

2
h iVnm

r2
¼ fnm; ðA:1Þ

where fnm ¼ Bnmrn þ Cnm

rnþ1 is the source term (see Eq. (15)). We apply

the method of undetermined coefficients and we search Vp
nm in the

form

Vp
nm ¼ C i

nmðrÞinðhrÞ þ Ck

nmðrÞknðhrÞ: ðA:2Þ

This technique, as well known [76], simply leads to the following

system for the unknown coefficients

dC i

nmðrÞ
dr

inðhrÞ þ
dCk

nmðrÞ
dr

knðhrÞ ¼ 0; ðA:3Þ

dC i

nmðrÞ
dr

i
0
nðhrÞ þ

dCk

nmðrÞ
dr

k
0
nðhrÞ ¼

1

h
fnm; ðA:4Þ

where i
0
nðzÞ ¼ d

dz
inðzÞ and k

0
nðzÞ ¼ d

dz
knðzÞ. Since the Wronskian deter-

minant of inðzÞ and knðzÞ is given by [69]

Wðin; knÞ ¼ inðzÞk0nðzÞ � i
0
nðzÞknðzÞ ¼ � p

2z2
; ðA:5Þ

Fig. 10. Scale effects in a dispersion of homogeneous spheres (left) and composite spheres (right). In the left panel we have R1 ¼ R2 (particle without interphase) and the

effective conductivity reff is represented versus R1 and k2 (�2 < log10k2 < 2;ra2 ¼ 35;rb2 ¼ 5;rm ¼ 1;/ ¼ 0:3). In the right panel we have R1 – R2 (particle with interphase)

and the effective conductivity reff is represented versus R1 and k1 (�2 < log10k1 < 5; k2 ¼ 1;ra1 ¼ 10;ra2 ¼ 35;rb1 ¼ 45 and rb2 ¼ 5;rm ¼ 1;/ ¼ 0:3; c ¼ 0:75).
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we simply obtain

Vp
nm ¼ 2h

p

Z

r2knðhrÞfnmðrÞdrinðhrÞ �
Z

r2inðhrÞfnmðrÞdrknðhrÞ
� �

:

ðA:6Þ

Moreover, since fnm ¼ Bnmrn þ Cnm

rnþ1 we analyse separately the two

cases f ð1Þnm ¼ rn and f ð2Þnm ¼ 1
rnþ1. By using Eq. (16) we can write the first

particular solution as

Vpð1Þ
nm ¼ 1

r
1
2h

nþ5
2

Z

wnþ3
2Knþ1

2
ðwÞdwInþ1

2
ðhrÞ �

Z

wnþ3
2Inþ1

2
ðwÞdwKnþ1

2
ðhrÞ

� �

;

ðA:7Þ

where we introduced the variablew ¼ hr. We use the standard inte-

grals [67]
Z

wmþ1KmðwÞdw ¼ �wmþ1Kmþ1ðwÞ þ C;
Z

wmþ1ImðwÞdw ¼ wmþ1Imþ1ðwÞ þ C; ðA:8Þ

and the following property of the Wronskian determinant for the

modified cylindrical Bessel functions [69]

WðIm;KmÞ ¼ ImðzÞKmþ1ðzÞ þ Imþ1ðzÞKmðzÞ ¼
1

z
ðA:9Þ

for eventually obtaining

Vpð1Þ
nm ¼ � rn

h
2
: ðA:10Þ

Similarly, the second particular solution is given by

Vpð2Þ
nm ¼ 1

r
1
2h

3
2
�n

Z

w
1
2
�nKnþ1

2
ðwÞdwInþ1

2
ðhrÞ �

Z

w
1
2
�nInþ1

2
ðwÞdwKnþ1

2
ðhrÞ

� �

ðA:11Þ

where, as before, we have w ¼ hr. We use now these standard inte-

grals [67]
Z

w1�mKmðwÞdw ¼ �w1�mKm�1ðwÞ þ C;
Z

w1�mImðwÞdw ¼ w1�mIm�1ðwÞ þ C; ðA:12Þ

and Eq. (A.9) to obtain the second result

Vpð2Þ
nm ¼ � 1

h
2
rnþ1

: ðA:13Þ

To conclude, we can use Eqs. (A.10) and (A.13) in order to prove Eq.

(20), representing the particular solution of the modified spherical

Bessel equation.
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