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, so that existing results on density estimation can be adapted to the present setting. We apply the general theorem to some prior models including Dirichlet process mixtures of uniform densities to estimate monotone nonincreasing intensities and log-splines.

Introduction

Estimation of the intensity function of a point process is an important statistical problem with a long history. Most methods were initially employed for estimating intensities assumed to be of parametric or nonparametric form in Poisson point processes. However, in many fields such as genetics, seismology and neuroscience, the probability of observing a new occurrence of the studied temporal process may depend on covariates and, in this case, the intensity of the process is random so that such a feature is not captured by a classical Poisson model. Aalen models constitute a natural extension of Poisson models that allow taking into account this aspect. [START_REF] Aalen | Nonparametric inference for a family of counting processes[END_REF] revolutionized point processes analysis developing a unified theory for frequentist nonparametric inference of multiplicative intensity models which, besides the Poisson model and other classical models such as right-censoring and Markov processes with finite state space, described in Section 1.1, encompass birth and death processes as well as branching processes. We refer the reader to [START_REF] Andersen | Statistical models based on counting processes[END_REF] for a presentation of Aalen processes including various other illustrative examples. Classical probabilistic and statistical results about Aalen processes can be found in [START_REF] Karr | Point processes and their statistical inference[END_REF], [START_REF] Andersen | Statistical models based on counting processes[END_REF], Daley andVere-Jones (2003, 2008). Recent nonparametric frequentist methodologies based on penalized least-squares contrasts have been proposed by Brunel andComte (2005, 2008), [START_REF] Comte | Adaptive estimation of the conditional intensity of marker-dependent counting processes Ann[END_REF] and [START_REF] Reynaud-Bouret | Penalized projection estimators of the Aalen multiplicative intensity[END_REF]. In the high-dimensional setting, more specific results have been established by [START_REF] Gaïffas | High-dimensional additive hazards models and the Lasso[END_REF] and [START_REF] Hansen | Lasso and probabilistic inequalities for multivariate point processes[END_REF] who consider Lasso-type procedures.

Bayesian nonparametric inference for inhomogeneous Poisson point processes has been considered by [START_REF] Lo | Bayesian nonparametric statistical inference for Poisson point processes[END_REF] who develops a prior-to-posterior analysis for weighted gamma process priors to model intensity functions. In the same spirit, [START_REF] Kuo | Bayesian nonparametric inference for nonhomogeneous Poisson processes[END_REF] employ several classes of nonparametric priors, including the gamma, the beta and the extended gamma processes. Extension to multiplicative counting processes has been treated in [START_REF] Lo | On a class of Bayesian nonparametric estimates: II. Hazard rate estimates[END_REF], who model intensities as kernel mixtures with mixing measure distributed according to a weighted gamma measure on the real line. Along the same lines, [START_REF] Ishwaran | Computational methods for multiplicative intensity models using weighted gamma processes: proportional hazards, marked point processes, and panel count data[END_REF] develop computational procedures for Bayesian non-and semi-parametric multiplicative intensity models using kernel mixtures of weighted gamma measures. Other papers have mainly focussed on exploring prior distributions on intensity functions with the aim of showing that Bayesian nonparametric inference for inhomogeneous Poisson processes can give satisfactory results in applications, see, e.g., [START_REF] Kottas | Bayesian mixture modeling for spatial Poisson process intensities, with applications to extreme value analysis[END_REF].

Surprisingly, leaving aside the recent work of [START_REF] Belitser | Rate optimal Bayesian intensity smoothing for inhomogeneous Poisson processes[END_REF], which deals with optimal convergence rates for estimating intensities in inhomogeneous Poisson processes, there are no results in the literature concerning aspects of the frequentist asymptotic behaviour of posterior distributions, like consistency and rates of convergence, for intensity estimation of general Aalen models. In this paper, we extend their results to general Aalen multiplicative intensity models. Quoting [START_REF] Lo | On a class of Bayesian nonparametric estimates: II. Hazard rate estimates[END_REF], "the idea of our approach is that estimating a density and estimating a hazard rate are analogous affairs, and a successful attempt of one generally leads to a feasible approach for the other". Thus, in deriving general sufficient conditions for assessing posterior contraction rates in Theorem 2.1 of Section 2, we attempt at giving conditions which resemble those proposed by [START_REF] Ghosal | Convergence rates of posterior distributions[END_REF] for density estimation with independent and identically distributed (i.i.d.) observations. This allows us to then derive in Section 3 posterior contraction rates for different families of prior distributions, such as Dirichlet mixtures of uniform densities to estimate monotone non-increasing intensities and logsplines, by an adaptation of existing results on density estimation. Detailed proofs of the main results are reported in Section 4. Auxiliary results concerning the control of the Kullback-Leibler divergence for intensities in Aalen models and existence of tests, which, to the best of our knowledge, are derived here for the first time and can also be of independent interest, are presented in Section 5 and in Section 6.

Notation and set-up

We observe a counting process N and denote by (G t ) t its adapted filtration. Let Λ be the compensator of N . We assume it satisfies the condition Λ t < ∞ almost surely for every t. Recall that (N t -Λ t ) t is a zero-mean (G t ) t -martingale. We assume that N obeys the Aalen multiplicative intensity model

dΛ t = Y t λ(t)dt,
where λ is a non-negative deterministic function called intensity function in the sequel and (Y t ) t is a non-negative predictable process. Informally,

P[N [t, t + dt] ≥ 1 | G t -] = Y t λ(t)dt, (1.1)
see [START_REF] Andersen | Statistical models based on counting processes[END_REF], Chapter III. In this paper, we are interested in asymptotic results: both N and Y depend on an integer n and we study estimation of λ (not depending on n) when T is kept fixed and n → ∞. The following special cases motivate the interest in this model.

Inhomogeneous Poisson processes

We observe n independent Poisson processes with common intensity λ. This model is equivalent to the model where we observe a Poisson process with intensity n × λ, so it corresponds to the case Y t ≡ n.

Survival analysis with right-censoring

This model is popular in biomedical problems. We have n patients and, for each patient i, we observe (Z i , δ i ), with Z i = min{X i , C i }, where X i represents the lifetime of the patient, C i is the independent censoring time and δ i = 1 Xi≤Ci . In this case, we set

N i t = δ i × 1 Zi≤t , Y i t = 1 Zi≥t and λ is the hazard rate of the X i 's: if f is the density of X 1 , then λ(t) = f (t)/P(X 1 ≥ t). Thus, N (respectively Y ) is obtained by aggregating the n independent processes N i 's (respectively the Y i 's): for any t ∈ [0, T ], N t = n i=1 N i t and Y t = n i=1 Y i t .

Finite state Markov processes

Let X = (X(t)) t be a Markov process with finite state space S and right-continuous sample paths. We assume the existence of integrable transition intensities λ hj from state h to state j for h = j. We assume we are given n independent copies of the process X, denoted by X 1 , . . . , X n . For any i ∈ {1, . . . , n}, let N ihj t be the number of direct transitions for X i from h to j in [0, t], for h = j. Then, the intensity of the multivariate counting process

N i = (N ihj ) h =j is (λ hj Y ih ) h =j , with Y ih t = 1 {X i (t -)=h} .
As before, we can consider N (respectively Y h ) by aggregating the processes N i (respectively the Y ih 's):

N t = n i=1 N i t , Y h t = n i=1 Y ih t and t ∈ [0, T ]. The intensity of each component (N hj t ) t of (N t ) t is then (λ hj (t)Y h t ) t .
We refer the reader to [START_REF] Andersen | Statistical models based on counting processes[END_REF], p. 126, for more details. In this case, N is either one of the N hj 's or the aggregation of some processes for which the λ hj 's are equal.

We now state some conditions concerning the asymptotic behavior of Y t under the true intensity function λ 0 . Define µ n (t) := E (n) λ0 [Y t ] and μn (t) := n -1 µ n (t). We assume the existence of a non-random set Ω ⊆ [0, T ] such that there are constants m 1 and m 2 satisfying

m 1 ≤ inf t∈Ω μn (t) ≤ sup t∈Ω μn (t) ≤ m 2 for every n large enough, (1.2)
and there exists α ∈ (0, 1) such that, if

Γ n := {sup t∈Ω |n -1 Y t -μn (t)| ≤ αm 1 } ∩ {sup t∈Ω c Y t = 0}, where Ω c is the complement of Ω in [0, T ], then lim n→∞ P (n) λ0 (Γ n ) = 1. (1.3)
We only consider estimation over Ω (N is almost surely empty on Ω c ) and define the parameter space as

F = {λ : Ω → R + | Ω λ(t)dt < ∞}. Let λ 0 ∈ F.
For inhomogeneous Poisson processes, conditions (1.2) and (1.3) are trivially satisfied for Ω = [0, T ] since Y t ≡ µ n (t) ≡ n. For right-censoring models, with Y i t = 1 Zi≥t , i = 1, . . . , n, we denote by Ω the support of the Z i 's and by M Ω = max Ω ∈ R + . Then, (1.2) and (1.3) are satisfied if M Ω > T or M Ω ≤ T and P(Z 1 = M Ω ) > 0 (the concentration inequality is implied by an application of the DKW inequality).

We denote by

• 1 the L 1 -norm over F : for all λ, λ ′ ∈ F, λ -λ ′ 1 = Ω |λ(t) - λ ′ (t)|dt.

Posterior contraction rates for Aalen counting processes

In this section, we present the main result providing general sufficient conditions for assessing concentration rates of posterior distributions of intensities in general Aalen models. Before stating the theorem, we need to introduce some more notation.

For any λ ∈ F, we introduce the following parametrization λ = M λ × λ, where M λ = Ω λ(t)dt and λ ∈ F 1 , with F 1 = {λ ∈ F : Ω λ(t)dt = 1}. For the sake of simplicity, in this paper we restrict attention to the case where M λ and λ are a priori independent so that the prior probability measure π on F is the product measure π 1 ⊗ π M , where π 1 is a probability measure on F 1 and π M is a probability measure on R + . Let v n be a positive sequence such that v n → 0 and nv 2 n → ∞. For every j ∈ N, we define Sn

,j = λ ∈ F 1 : λ -λ0 1 ≤ 2(j + 1)v n /M λ0 ,
where M λ0 = Ω λ 0 (t)dt and λ0 = M -1 λ0 λ 0 . For H > 0 and

k ≥ 2, if k [2] = min{2 ℓ : ℓ ∈ N, 2 ℓ ≥ k}, we define Bk,n ( λ0 ; v n , H) = λ ∈ F 1 : h 2 ( λ0 , λ) ≤ v 2 n /(1 + log λ0 / λ ∞ ), max 2≤j≤k [2] E j ( λ0 ; λ) ≤ v 2 n , λ0 / λ ∞ ≤ n H , λ ∞ ≤ H ,
where h 2 ( λ0 , λ) = Ω ( λ0 (t) -λ(t)) 2 dt is the squared Hellinger distance between λ0 and λ, • ∞ stands for the sup-norm and E j ( λ0 ; λ) :

= Ω λ0 (t)| log λ0 (t) -log λ(t)| j dt.
In what follows, for any set Θ equipped with a semi-metric d and any real number ǫ > 0, we denote by D(ǫ, Θ, d) the ǫ-packing number of Θ, that is, the maximal number of points in Θ such that the d-distance between every pair is at least ǫ. Since D(ǫ, Θ, d) is bounded above by the (ǫ/2)-covering number, namely, the minimal number of balls of d-radius ǫ/2 needed to cover Θ, with abuse of language, we will just speak of covering numbers. We denote by π(• | N ) the posterior distribution of the intensity function λ, given the observations of the process N .

Theorem 2.1. Assume that conditions (1.2) and (1.3) are satisfied and that, for some k ≥ 2, there exists a constant C 1k > 0 such that

E (n) λ0 Ω [Y t -µ n (t)] 2 dt k ≤ C 1k n k . (2.1)
Assume that the prior π M on the mass M is absolutely continuous with respect to Lebesgue measure and has positive and continuous density on R + , while the prior π 1 on λ satisfies the following conditions for some constant H > 0:

(i) there exists

F n ⊆ F 1 such that, for a positive sequence v n = o(1) and v 2 n ≥ (n/ log n) -1 , π 1 (F c n ) ≤ e -(κ0+2)nv 2 n π 1 ( Bk,n ( λ0 ; v n , H)), with κ 0 = m 2 2 M λ0 4 m 1 1 + log m 2 m 1 1 + m 2 2 m 2 1 + m 2 (2M λ0 + 1) 2 m 2 1 M 2 λ0 , (2.2)
and, for any ξ, δ > 0, log D(ξ, F n , • 1 ) ≤ nδ for all n large enough;

(ii) for all ζ, δ > 0, there exists J 0 > 0 such that, for every j ≥ J 0 ,

π 1 ( Sn,j ) π 1 ( Bk,n ( λ0 ; v n , H)) ≤ e δ(j+1) 2 nv 2 n and log D(ζjv n , Sn,j ∩ F n , • 1 ) ≤ δ(j + 1) 2 nv 2 n .
Then, there exists a constant J 1 > 0 such that

E (n) λ0 [π(λ : λ -λ 0 1 > J 1 v n | N )] = O((nv 2 n ) -k/2 ).
The proof of Theorem 2.1 is reported in Section 4. To the best of our knowledge, the only other paper dealing with posterior concentration rates in related models is that of [START_REF] Belitser | Rate optimal Bayesian intensity smoothing for inhomogeneous Poisson processes[END_REF], where inhomogeneous Poisson processes are considered. Theorem 2.1 differs in two aspects from their Theorem 1. Firstly, we do not confine ourselves to inhomogeneous Poisson processes. Secondly and more importantly, our conditions are different: we do not assume that λ 0 is bounded below away from zero and we do not need to bound from below the prior mass in neighborhoods of λ 0 for the sup-norm, rather the prior mass in neighborhoods of λ 0 for the Hellinger distance, as in Theorem 2.2 of [START_REF] Ghosal | Convergence rates of posterior distributions[END_REF]. In Theorem 2.1, our aim is to propose conditions to assess posterior concentration rates for intensity functions resembling those used in the density model obtained by parameterizing λ as λ = M λ × λ, with λ a probability density on Ω.

Remark 2.1. If λ ∈ B2,n ( λ0 ; v n , H) then, for every integer j > 2, E j ( λ0 ; λ) ≤ H j-2 v 2
n (log n) j-2 so that, using Proposition 4.1, if we replace Bk,n ( λ0 ; v n , H) with B2,n ( λ0 ; v n , H) in the assumptions of Theorem 2.1, we obtain the same type of conclusion: for any k ≥ 2 such that condition (2.1) is satisfied, we have

E (n) λ0 [π(λ : λ -λ 0 1 > J 1 v n | N )] = O((nv 2 n ) -k/2 (log n) k(k [2] -2)/2
), with an extra (log n)-term on the right-hand side of the above equality.

Remark 2.2. Condition (2.1) is satisfied for the above considered examples: it is verified for inhomogeneous Poisson processes since Y t = n for every t. For the censoring model,

Y t = n i=1 1 Zi≥t . For every i = 1, . . . , n, we set V i = 1 Zi≥t -P(Z 1 ≥ t). Then, for k ≥ 2, E (n) λ0 Ω [Y t -µ n (t)] 2 dt k = E (n) λ0      T 0 n i=1 V i 2 dt   k    T 0 E (n) λ0   n i=1 V i 2k   dt T 0   n i=1 E (n) λ0 [V 2k i ] + n i=1 E (n) λ0 [V 2 i ] k   dt n k
by Hölder and Rosenthal inequalities (see, for instance, Theorem C.2 of [START_REF] Härdle | Wavelets, approximation, and statistical applications[END_REF]). Under mild conditions, similar computations can be performed for finite state Markov processes.

Conditions of Theorem 2.1 are very similar to those considered for density estimation in the case of i.i.d. observations. In particular,

Bn = λ : h 2 ( λ0 , λ) λ0 λ ∞ ≤ v 2 n , λ0 λ ∞ ≤ n H , λ ∞ ≤ H is included in Bk,n λ0 ; v n (log n) 1/2
, H as a consequence of Theorem 5.1 of [START_REF] Wong | Probability inequalities for likelihood ratios and convergence rates of sieve MLEs[END_REF]. Apart from the mild constraints λ0 / λ ∞ ≤ n H and λ ∞ ≤ H, the set Bn is the same as the one considered in Theorem 2.2 of [START_REF] Ghosal | Convergence rates of posterior distributions[END_REF]. The other conditions are essentially those of Theorem 2.1 in [START_REF] Ghosal | Convergence rates of posterior distributions[END_REF].

Illustrations with different families of priors

As discussed in Section 2, the conditions of Theorem 2.1 to derive posterior contraction rates are very similar to those considered in the literature for density estimation so that existing results involving different families of prior distributions can be adapted to Aalen multiplicative intensity models. Some applications are presented below.

Monotone non-increasing intensity functions

In this section, we deal with estimation of monotone non-increasing intensity functions, which is equivalent to considering monotone non-increasing density functions λ in the above described parametrization. To construct a prior on the set of monotone non-increasing densities over [0, T ], we use their representation as mixtures of uniform densities as in [START_REF] Williamson | Multiply monotone functions and their Laplace transforms[END_REF] and consider a Dirichlet process as a prior on the mixing distribution:

λ(•) = ∞ 0 1 (0, θ) (•) θ dP (θ), P | A, G ∼ DP(AG), (3.1)
where G is a distribution on [0, T ] having density g with respect to Lebesgue measure. This prior has been studied by [START_REF] Salomond | Concentration rate and consistency of the posterior under monotonicity constraints[END_REF] for estimating monotone non-increasing densities. Here, we extend his results to the case of monotone non-increasing intensity functions of Aalen processes. We consider the same assumption on G as in Salomond ( 2013): there exist a 1 , a 2 > 0 such that θ a1 g(θ) θ a2 for all θ in a neighbourhood of 0.

(3.

2)

The following result holds.

Corollary 3.1. Assume that the counting process N verifies conditions (1.2) and (1.3) and that inequality (2.1) is satisfied for some k ≥ 2. Consider a prior π 1 on λ satisfying conditions (3.1) and (3.2) and a prior π M on M λ that is absolutely continuous with respect to Lebesgue measure with positive and continuous density on R + . Suppose that λ 0 is monotone non-increasing and bounded on R + . Let ǭn = (n/ log n) -1/3 . Then, there exists a constant J 1 > 0 such that

E (n) λ0 [π(λ : λ -λ 0 1 > J 1 ǭn | N )] = O((nǭ 2 n ) -k/2 (log n) k(k [2] -2)/2 ).
The proof is reported in Section 4.

Log-spline and log-linear priors on λ

For simplicity of presentation, we set T = 1. We consider a log-spline prior of order q as in Section 4 of [START_REF] Ghosal | Convergence rates of posterior distributions[END_REF]. In other words, λ is parameterized as

log λθ (•) = θ t B J (•) -c(θ), with exp (c(θ)) = 1 0 e θ t B J (x) dx,
where B J = (B 1 , . . . , B J ) is the q-th order B-spline defined in de Boor (1978) associated with K fixed knots, so that J = K + q -1, see [START_REF] Ghosal | Convergence rates of posterior distributions[END_REF] for more details. Consider a prior on θ in the form J = J n = ⌊n 1/(2α+1) ⌋, α ∈ [1/2, q] and, conditionally on J, the prior is absolutely continuous with respect to Lebesgue measure on [-M, M ] J with density bounded from below and above by c J and C J , respectively. Consider an absolutely continuous prior with positive and continuous density on R + on M λ . We then have the following posterior concentration result.

Corollary 3.2. For the above prior, if log λ 0 ∞ < ∞ and λ 0 is Hölder with regularity α ∈ [1/2, q], then under condition (2.1), there exists a constant J 1 > 0 so that 2α+1) . Using Lemma 4.1, there exists θ 0 ∈ R J such that h( λθ0 , λ0 ) log λθ0 -log λ0 ∞ J -α , which combined with Lemma 4.4 leads to

E (n) λ0 [π(λ : λ -λ 0 1 > J 1 n -α/(2α+1) | N )] = O(n -k/(4α+2) (log n) k(k [2] -2)/2 ). Proof. Set ǫ n = n -α/(
π 1 ( Bk,n ( λ0 ; ǫ n , H) ≥ e -C1nǫ 2 n .
Lemma 4.5 together with Theorem 4.5 of [START_REF] Ghosal | Convergence rates of posterior distributions[END_REF] controls the entropy of Sn,j and its prior mass for j larger than some fixed constant J 0 .

With such families of priors, it is more interesting to work with non-normalized λ θ . We can write

λ A,θ (•) = A exp θ t B J (•) , A > 0,
so that a prior on λ is defined as a prior on A, say π A absolutely continuous with respect to Lebesgue measure having positive and continuous density and the same type of prior prior on θ as above. The same result then holds. It is not a direct consequence of Theorem 2.1, since M λ A,θ = A exp(c(θ)) is not a priori independent of λA,θ . However, introducing A allows to adapt Theorem 2.1 to this case. The practical advantage of the latter representation is that it avoids computing the normalizing constant c(θ).

In a similar manner, we can replace spline basis with other orthonormal bases, as considered in [START_REF] Rivoirard | Posterior concentration rates for infinite dimensional exponential families[END_REF], leading to the same posterior concentration rates as in density estimation. More precisely, consider intensities parameterized as λθ (

•) = e J j=1 θj φj (•)-c(θ) , e c(θ) = R J e J j=1 θj φj (x) dx,
where (φ j ) ∞ j=1 is an orthonormal basis of L 2 ([0, 1]), with φ 1 = 1. Write η = (A, θ), with A > 0, and

λ η (•) = Ae J j=1 θj φj (•) = Ae c(θ) λθ (•).
Let A ∼ π A and consider the same family of priors as in [START_REF] Rivoirard | Posterior concentration rates for infinite dimensional exponential families[END_REF]:

J ∼ π J , j β θ j /τ 0 ind ∼ g, j ≤ J, and 
θ j = 0, ∀ j > J,
where g is a positive and continuous density on R and there exist s ≥ 0 and p > 0 such that log π J (J) ≍ -J(log J) s , log g(x) ≍ -|x| p , s = 0, 1, when J and |x| are large. [START_REF] Rivoirard | Posterior concentration rates for infinite dimensional exponential families[END_REF] prove that this prior leads to minimax adaptive posterior concentration rates over collections of positive and Hölder classes of densities in the density model. Their proof easily extends to prove assumptions (i) and (ii) of Theorem 2.1.

Corollary 3.3. Consider the above described prior on an intensity function λ on [0, 1].

Assume that λ 0 is positive and belongs to a Sobolev class with smoothness α > 1/2. Under condition (2.1), if β < 1/2 + α, there exists a constant J 1 > so that

E (n) λ0 [π(λ : λ -λ 0 1 > J 1 (n/ log n) -α/(2α+1) (log n) (1-s)/2 | N )] = O(n -k/(4α+2) (log n) k(k [2] -2)/2 ).
Note that the constraint β < α + 1/2 is satisfied for all α > 1/2 as soon as β < 1 and, as in [START_REF] Rivoirard | Posterior concentration rates for infinite dimensional exponential families[END_REF], the prior leads to adaptive minimax posterior concentration rates over collections of Sobolev balls.

Proofs

To prove Theorem 2.1, we use the following intermediate results whose proofs are postponed to Section 5. The first one controls the Kullback-Leibler divergence and absolute moments of ℓ n (λ 0 ) -ℓ n (λ), where ℓ n (λ) is the log-likelihood for Aalen processes evaluated at λ, whose expression is given by

ℓ n (λ) = T 0 log(λ(t))dN t - T 0 λ(t)Y t dt,
see [START_REF] Andersen | Statistical models based on counting processes[END_REF].

Proposition 4.1. Let v n be a positive sequence such that v n → 0 and nv 2 n → ∞. For any k ≥ 2 and H > 0, define the set

B k,n (λ 0 ; v n , H) = {λ : λ ∈ Bk,n ( λ0 ; v n , H), |M λ -M λ0 | ≤ v n }.
Under assumptions (1.2) and (2.1), for all λ ∈ B k,n (λ 0 ; v n , H), we have

KL(λ 0 ; λ) ≤ κ 0 nv 2 n and V k (λ 0 ; λ) ≤ κ(nv 2 n ) k/2 ,
where κ 0 , κ depend only on k, C 1k , H, λ 0 , m 1 and m 2 . An expression of κ 0 is given in (2.2).

The second result establishes the existence of tests that are used to control the numerator of posterior distributions. We use that, under assumption (1.2), on the set Γ n ,

∀ t ∈ Ω, (1 -α)μ n (t) ≤ Y t n ≤ (1 + α)μ n (t). (4.1)
Proposition 4.2. Assume that conditions (i) and (ii) of Theorem 2.1 are satisfied. For any j ∈ N, define

S n,j (v n ) = {λ : λ ∈ F n and jv n < λ -λ 0 1 ≤ (j + 1)v n }.
Then, under assumption (1.2), there are constants J 0 , ρ, c > 0 such that, for every integer j ≥ J 0 , there exists a test φ n,j so that, for a positive constant C,

E (n) λ0 [1 Γn φ n,j ] ≤ Ce -cnj 2 v 2 n , sup λ∈Sn,j (vn) E λ [1 Γn (1 -φ n,j )] ≤ Ce -cnj 2 v 2 n , J 0 ≤ j ≤ ρ v n ,
and

E (n) λ0 [1 Γn φ n,j ] ≤ Ce -cnjvn , sup λ∈Sn,j (vn) E λ [1 Γn (1 -φ n,j )] ≤ Ce -cnjvn , j > ρ v n .
In what follows, the symbols " " and " " are used to denote inequalities valid up to constants that are universal or fixed throughout.

Proof of Theorem 2.1. Given Proposition 4.1 and Proposition 4.2, the proof of Theorem 2.1 is similar to that of Theorem 1 in [START_REF] Ghosal | Convergence rates of posterior distributions for noniid observations[END_REF]

. Let U n = {λ : λ -λ 0 1 > J 1 v n }. Write π(U n | N ) = Un e ℓn(λ)-ℓn(λ0) dπ(λ) F e ℓn(λ)-ℓn(λ0) dπ(λ) = N n D n .
We have

P (n) λ0 D n ≤ e -(κ0+1)nv 2 n π 1 ( Bk,n ( λ0 ; v n , H)) ≤ P (n) λ0 B k,n (λ0; vn, H) exp{ℓ n (λ) -ℓ n (λ 0 )} π(B k,n (λ 0 ; v n , H)) dπ(λ) ≤ -(κ 0 + 1)nv 2 n + log π 1 ( Bk,n ( λ0 ; v n , H)) π(B k,n (λ 0 ; v n , H)) .
By the assumption on the positivity and continuity of the Lebesgue density of the prior π M and the requirement that

v 2 n ≥ (n/ log n) -1 , π(B k,n (λ 0 ; v n , H)) π 1 ( Bk,n ( λ0 ; v n , H))v n π 1 ( Bk,n ( λ0 ; v n , H
))e -nv 2 n /2 , so that, using Proposition 4.1 and Markov's inequality,

P (n) λ0 D n ≤ e -(κ0+1)nv 2 n π 1 ( Bk,n ( λ0 ; v n , H)) (nv 2 n ) -k/2 .
Note that inequality (5.6) implies that π(S n,j (v n )) ≤ π 1 ( Sn,j ). Using tests φ n,j of Proposition 4.2, mimicking the proof of Theorem 1 of Ghosal and van der Vaart (2007), we have that for J 1 ≥ J 0 ,

E (n) λ0 [1 Γn π (λ : λ -λ 0 1 > J 1 v n | N )] ≤ j≥J1 E (n) λ0 [1 Γn φ n,j ] + ⌊ρ/vn⌋ j=⌈J1⌉ e (κ0+1)nv 2 n π 1 ( Sn,j )e -cnj 2 v 2 n π 1 ( Bk,n ( λ0 ; v n , H)) + j>ρ/vn e (κ0+1)nv 2 n π 1 ( Sn,j )e -cnjvn π 1 ( Bk,n ( λ0 ; v n , H)) + e (κ0+1)nv 2 n π 1 (F c n ) π 1 ( Bk,n ( λ0 ; v n , H)) + P (n) λ0 (D n ≤ e -(κ0+1)nv 2 n π 1 ( Bk,n ( λ0 ; v n , H))) (nv 2 n ) -k/2 ,
which proves the result since

P (n) λ0 (Γ c n ) = o(1).
Proof of Corollary 3.1. Without loss of generality, we can assume that Ω = [0, T ]. At several places, using (1.1) and (4.1), we have that, under

P (n) λ (• | Γ n ),
for any interval I, the number of points of N falling in I is controlled by the number of points of a Poisson process with intensity n(1 + α)m 2 λ falling in I. Recall that ǭn = (n/ log n) -1/3 . For κ 0 as in (2.2), we control

P (n) λ0 (ℓ n (λ) -ℓ n (λ 0 ) ≤ -(κ 0 + 1)nǭ 2 n ).
We follow most of the computations of [START_REF] Salomond | Concentration rate and consistency of the posterior under monotonicity constraints[END_REF]. Let e n = (nǭ

2 n ) -k/2 , λ0n (t) = λ 0 (t)1 t≤θn θn 0 λ 0 (u)du , with θ n = inf θ : θ 0 λ0 (t)dt ≥ 1 - e n n ,
and λ 0n = M λ0 λ0n . Define the event A n = {X ∈ N : X ≤ θ n }. We make use of the following result. Let Ñ be a Poisson process with intensity n(1

+ α)m 2 λ 0 . If Ñ (T ) = k, denote by Ñ = {X 1 , . . . , X k }.
Conditionally on Ñ (T ) = k, the random variables X 1 , . . . , X k are i.i.d. with density λ0 . So,

P (n) λ0 (A c n | Γ n ) ≤ ∞ k=1 P (n) λ0 (∃ X i > θ n | Ñ (T ) = k) P (n) λ0 ( Ñ (T ) = k) ≤ ∞ k=1 1 -1 - e n n k P (n) λ0 ( Ñ (T ) = k) = O e n n E (n) λ0 [ Ñ (T )] = O(e n ) = O((nǭ 2 n ) -k/2 ). Now, P (n) λ0 ℓ n (λ) -ℓ n (λ 0 ) ≤ -(κ 0 + 2)nǭ 2 n | Γ n ≤ P (n) λ0 ℓ n (λ) -ℓ n (λ 0 ) ≤ -(κ 0 + 2)nǭ 2 n | A n , Γ n + P (n) λ0 (A c n | Γ n ).
We now deal with the first term on the right-hand side. On Γ n ∩ A n ,

ℓ n (λ 0 ) = ℓ n (λ 0n ) + θn 0 log λ 0 (t) λ 0n (t) dN t - T 0 [λ 0 (t) -λ 0n (t)]Y t dt = ℓ n (λ 0n ) + N (T ) log θn 0 λ0 (t)dt -M λ0 T 0 λ0 (t)Y t dt + M λ0 θn 0 λ0 (t)Y t dt θn 0 λ0 (t)dt ≤ ℓ n (λ 0n ) + M λ0 T θn λ0 (t)dt θn 0 λ0 (t)Y t dt θn 0 λ0 (t)dt -M λ0 T θn λ0 (t)Y t dt ≤ ℓ n (λ 0n ) + M λ0 e n (1 + α)m 2 1 -e n /n .
So, for every λ and any n large enough, •). Let H > 0 be fixed. For all λ ∈ B k,n (λ 0n ; ǭn , H), using Proposition 4.1, we obtain

P (n) λ0 ℓ n (λ) -ℓ n (λ 0 ) ≤ -(κ 0 + 2)nǭ 2 n | A n , Γ n ≤ P (n) λ0 ℓ n (λ) -ℓ n (λ 0n ) ≤ -(κ 0 + 1)nǭ 2 n | A n , Γ n = P (n) λ0n ℓ n (λ) -ℓ n (λ 0n ) ≤ -(κ 0 + 1)nǭ 2 n | Γ n because P (n) λ0 (• | A n ) = P (n) λ0n ( 
P (n) λ0n ℓ n (λ) -ℓ n (λ 0n ) ≤ -(κ 0 + 1)nǭ 2 n | Γ n = O((nǭ 2 n ) -k/2 ).
Mimicking the proof of Lemma 8 in Salomond ( 2013), we have that, for some constant

C k > 0, π 1 Bk,n ( λ0n ; ǭn , H) ≥ e -C k nǭ 2 n
when n is large enough, so that the first part of condition (ii) of Theorem 2.1 is verified. As in Salomond ( 2013), we set

F n = { λ : λ(0) ≤ M n }, with M n = exp(c 1 nǭ 2 n )
and c 1 a positive constant. From Lemma 9 of Salomond ( 2013), there exists a > 0 such that π 1 (F c n ) ≤ e -c1(a+1)nǭ 2 n for n large enough, and the first part of condition (i) is satisfied. It is known from [START_REF] Groeneboom | Estimating a monotone density[END_REF] that the ǫ-entropy of F n is of order (log M n )/ǫ, that is o(n) for all ǫ > 0 and the second part of (i) holds. The second part of (ii) is a consequence of equation ( 22) of [START_REF] Salomond | Concentration rate and consistency of the posterior under monotonicity constraints[END_REF].

Auxiliary results

This section reports the proofs of Proposition 4.1 and Proposition 4.2 that have been stated in Section 4. Proofs of intermediate results are deferred to Section 6.

We use the fact that for any pair of densities f and g, f -g 1 ≤ 2h(f, g).

Proof of Proposition 4.1. Recall that the log-likelihood evaluated at λ is given by ℓ n (λ) = T 0 log(λ(t))dN t -T 0 λ(t)Y t dt. Since on Ω c , N is empty and Y t ≡ 0 almost surely, we can assume, without loss of generality, that Ω = [0, T ]. Define

M n (λ) = T 0 λ(t)µ n (t)dt, M n (λ 0 ) = T 0 λ 0 (t)µ n (t)dt, and 
λn (•) = λ(•)µ n (•) M n (λ) = λ(•)μ n (•) T 0 λ(t)μ n (t)dt , λ0,n (•) = λ 0 (•)µ n (•) M n (λ 0 ) = λ0 (•)μ n (•) T 0 λ0 (t)μ n (t)dt . By straightforward computations, KL(λ 0 ; λ) = E (n) λ0 [ℓ n (λ 0 ) -ℓ n (λ)] = M n (λ 0 ) KL( λ0,n ; λn ) + M n (λ) M n (λ 0 ) -1 -log M n (λ) M n (λ 0 ) = M n (λ 0 ) KL( λ0,n ; λn ) + φ M n (λ) M n (λ 0 ) ≤ nm 2 M λ0 KL( λ0,n ; λn ) + φ M n (λ) M n (λ 0 ) , (5.1)
where φ(x) = x -1 -log x and KL( λ0,n ; λn ) = T 0 log λ0,n (t) λn (t) λ0,n (t)dt.

We control KL( λ0,n ; λn ) for λ ∈ B k,n (λ 0 ; v n , H). By using Lemma 8.2 of [START_REF] Ghosal | Convergence rates of posterior distributions[END_REF], we have

KL( λ0,n ; λn ) ≤ 2h 2 ( λ0,n , λn ) 1 + log λ0,n λn ∞ ≤ 2h 2 ( λ0,n , λn ) 1 + log m 2 m 1 + log λ0 λ ∞ ≤ 2 1 + log m 2 m 1 h 2 ( λ0,n , λn ) 1 + log λ0 λ ∞ (5.2)
because 1 + log(m 2 /m 1 ) ≥ 1. We now deal with h 2 ( λ0,n , λn ). We have

h 2 ( λ0,n , λn ) = T 0 λ0,n (t) -λn (t) 2 dt = T 0 λ0 (t)μ n (t) T 0 λ0 (u)μ n (u)du - λ(t)μ n (t) T 0 λ(u)μ n (u)du 2 dt ≤ 2m 2 T 0 λ0 (t) T 0 λ0 (u)μ n (u)du - λ0 (t) T 0 λ(u)μ n (u)du 2 dt + 2m 2 T 0 λ0 (t) T 0 λ(u)μ n (u)du - λ(t) T 0 λ(u)μ n (u)du 2 dt ≤ 2m 2 U n + 2m 2 m 1 h 2 ( λ0 , λ), with U n = 1 T 0 λ0 (t)μ n (t)dt - 1 T 0 λ(t)μ n (t)dt 2 .
We denote by ǫn := 1

T 0 λ0 (u)μ n (u)du T 0 [ λ(t) -λ0 (t)]μ n (t)dt, so that |ǫ n | ≤ 1 m 1 T 0 | λ(t) -λ0 (t)|μ n (t)dt ≤ 2m 2 m 1 h( λ0 , λ).
Then,

U n = 1 T 0 λ0 (t)μ n (t)dt 1 - 1 √ 1 + ǫn 2 ≤ ǫ2 n 4m 1 ≤ m 2 2 m 3 1 h 2 ( λ0 , λ).
Finally,

h 2 ( λ0,n , λn ) ≤ 2m 2 m 1 m 2 2 m 2 1 + 1 h 2 ( λ0 , λ).
(5.

3)

It remains to bound φ (M n (λ)/M n (λ 0 )). We have

|M n (λ 0 ) -M n (λ)| ≤ T 0 |λ(t) -λ 0 (t)|µ n (t)dt ≤ nm 2 T 0 |λ(t) -λ 0 (t)|dt ≤ m 2 m 1 M λ0 M n (λ 0 ) M λ0 λ -λ0 1 + |M λ -M λ0 | ≤ m 2 m 1 M λ0 M n (λ 0 )[2M λ0 h( λ, λ0 ) + |M λ -M λ0 |] ≤ m 2 m 1 M λ0 M n (λ 0 )(2M λ0 + 1)v n . Since φ(u + 1) ≤ u 2 if |u| ≤ 1/2, we have φ M n (λ) M n (λ 0 ) ≤ m 2 2 m 2 1 M 2 λ0 (2M λ0 + 1) 2 v 2 n
for n large enough.

(5.4) Combining (5.1), (5.2), (5.3) and (5.4), we have KL(λ 0 ; λ) ≤ κ 0 nv 2 n for n large enough, with κ 0 as in (2.2). We now deal with

V 2k (λ 0 ; λ) = E (n) λ0 [|ℓ n (λ 0 ) -ℓ n (λ) -E (n) λ0 [ℓ n (λ 0 ) -ℓ n (λ)]| 2k ], k ≥ 1.
We begin by considering the case k > 1. In the sequel, we denote by C a constant that may change from line to line. Straightforward computations lead to

V 2k (λ 0 ; λ) = E (n) λ0 - T 0 λ 0 (t) -λ(t) -λ 0 (t) log λ 0 (t) λ(t) [Y t -µ n (t)]dt + T 0 log λ 0 (t) λ(t) [dN t -Y t λ 0 (t)dt] 2k   ≤ 2 2k-1 (A 2k + B 2k ),
with

B 2k := E (n) λ0   T 0 log λ 0 (t) λ(t) [dN t -Y t λ 0 (t)dt] 2k  
and, by (2.1),

A 2k := E (n) λ0   T 0 λ 0 (t) -λ(t) -λ 0 (t) log λ 0 (t) λ(t) [Y t -µ n (t)]dt 2k   ≤ T 0 λ 0 (t) -λ(t) -λ 0 (t) log λ 0 (t) λ(t) 2 dt k × E (n) λ0   T 0 [Y t -µ n (t)] 2 dt k   ≤ 2 2k-1 C 1k n k (A 2k,1 + A 2k,2 ) ,
where, for

λ ∈ B k,n (λ 0 ; v n , H), A 2k,1 := T 0 λ 2 0 (t) log 2 λ 0 (t) λ(t) dt k ≤ M 2k λ0 λ0 k ∞ T 0 λ0 (t) log 2 M λ0 λ0 (t) M λ λ(t) dt k ≤ 2 2k-1 M 2k λ0 λ0 k ∞ E k 2 ( λ0 ; λ) + log M λ M λ0 2k ≤ C E k 2 ( λ0 ; λ) + |M λ -M λ0 | 2k ≤ Cv 2k n and A 2k,2 := T 0 [λ 0 (t) -λ(t)] 2 dt k = T 0 (M λ0 -M λ ) λ0 (t) -M λ [ λ(t) -λ0 (t)] 2 dt k ≤ 2 2k-1 λ0 2k ∞ (M λ0 -M λ ) 2k + 2 2k-1 M 2k λ T 0 λ0 (t) -λ(t) 2 λ0 (t) + λ(t) 2 dt k ≤ 2 2k-1 λ0 2k ∞ (M λ0 -M λ ) 2k + 2 k M 2k λ ( λ0 ∞ + λ ∞ ) k h 2k ( λ0 , λ) ≤ Cv 2k n .
Therefore,

A 2k ≤ C(nv 2 n ) k .
To deal with B 2k , for any T > 0, we set

M T := T 0 log λ 0 (t) λ(t) [dN t -Y t λ 0 (t)dt],
so (M T ) T is a martingale. Using the Burkholder-Davis-Gundy Inequality (see Theorem B.15 in [START_REF] Karr | Point processes and their statistical inference[END_REF]), there exists a constant C(k) only depending on k such that, since
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2k > 1, E (n) λ0 [|M T | 2k ] ≤ C(k)E (n) λ0   T 0 log 2 λ 0 (t) λ(t) dN t k   .
Therefore, for k > 1,

B 2k = E (n) λ0 [|M T | 2k ] ≤ 3 k-1 C(k)   E (n) λ0   T 0 log 2 λ 0 (t) λ(t) [dN t -Y t λ 0 (t)dt] k + T 0 log 2 λ 0 (t) λ(t) [Y t -µ n (t)]λ 0 (t)dt k + T 0 log 2 λ 0 (t) λ(t) µ n (t)λ 0 (t)dt k     = 3 k-1 C(k)(B (0) k,2 + B (1) k,2 + B (2) k,2 ), with B (0) k,2 = E (n) λ0   T 0 log 2 λ 0 (t) λ(t) [dN t -Y t λ 0 (t)dt] k   , B (1) 
k,2 = E (n) λ0   T 0 log 2 λ 0 (t) λ(t) [Y t -µ n (t)]λ 0 (t)dt k   , B (2) 
k,2 = T 0 log 2 λ 0 (t) λ(t) µ n (t)λ 0 (t)dt k .
This can be iterated: we set J = min{j ∈ N : 2 j ≥ k} so that 1 < k2 1-J ≤ 2. There exists a constant C k , only depending on k, such that for

B (1) k2 1-j ,2 j = E (n) λ0   T 0 log 2 j λ 0 (t) λ(t) [Y t -µ n (t)]λ 0 (t)dt k2 1-j   and B (2) k2 1-j ,2 j = T 0 log 2 j λ 0 (t) λ(t) µ n (t)λ 0 (t)dt k2 1-j , B 2k ≤ C k   E (n) λ0   T 0 log 2 J λ 0 (t) λ(t) [dN t -Y t λ 0 (t)dt] k2 1-J   + J j=1 (B (1) 
k2 1-j ,2 j + B

(2)

k2 1-j ,2 j )   ≤ C k        E (n) λ0   T 0 log 2 J λ 0 (t) λ(t) [dN t -Y t λ 0 (t)dt] 2     k2 -J + J j=1 (B (1) 
k2 1-j ,2 j + B

(2)

k2 1-j ,2 j )    = C k   E (n) λ0 T 0 log 2 J+1 λ 0 (t) λ(t) Y t λ 0 (t)dt k2 -J + J j=1 (B (1) 
k2 1-j ,2 j + B

(2)

k2 1-j ,2 j )   = C k   T 0 log 2 J+1 λ 0 (t) λ(t) µ n (t)λ 0 (t)dt k2 -J + J j=1 (B (1) 
k2 1-j ,2 j + B

(2)

k2 1-j ,2 j )   = C k   B (2) k2 -J ,2 J+1 + J j=1 (B (1) 
k2 1-j ,2 j + B

(2)

k2 1-j ,2 j )   .
Note that, for any 1 ≤ j ≤ J, B

(1)

k2 1-j ,2 j ≤ T 0 log 2 j+1 λ 0 (t) λ(t) λ 2 0 (t)dt k2 -j × E (n) λ0   T 0 [Y t -µ n (t)] 2 dt k2 -j   ≤ C(M 2 λ0 λ0 ∞ ) k2 -j T 0 log 2 j+1 M λ0 λ0 (t) M λ λ(t) λ0 (t)dt k2 -j × n k2 -j ≤ C log 2 j+1 M λ0 M λ + E 2 j+1 ( λ0 ; λ) k2 -j × n k2 -j ≤ C(nv 2 n ) k2 -j ≤ C(nv 2 n ) k
, where we have used (2.1). Similarly, for any j ≥ 1,

B (2) k2 1-j ,2 j ≤ (nm 2 M λ0 ) k2 1-j T 0 log 2 j M λ0 λ0 (t) M λ λ(t) λ0 (t)dt k2 1-j ≤ C log 2 j M λ0 M λ + E 2 j ( λ0 ; λ) k2 1-j × n k2 1-j ≤ C(nv 2 n ) k2 1-j ≤ C(nv 2 n ) k .
Therefore, for any k > 1,

V 2k (λ 0 ; λ) ≤ κ(nv 2 n ) k ,
where κ depends on C 1k , k, H, λ 0 , m 1 and m 2 . Using previous computations, the case k = 1 is straightforward. So, we obtain the result for V k (λ 0 ; λ) for every k ≥ 2.

To prove Proposition 4.2, we use the following lemma whose proof is reported in Section 6.

Lemma 5.1. Under condition (1.2), there exist constants ξ, K > 0, only depending on M λ0 , α, m 1 and m 2 , such that, for any non-negative function λ 1 , there exists a test φ λ1 so that

E (n) λ0 [1 Γn φ λ1 ] ≤ 2 exp (-Kn λ 1 -λ 0 1 × min{ λ 1 -λ 0 1 , m 1 }) and sup λ: λ-λ1 1 <ξ λ1-λ0 1 E λ [1 Γn (1-φ λ1 )] ≤ 2 exp (-Kn λ 1 -λ 0 1 × min{ λ 1 -λ 0 1 , m 1 }) .
Proof of Proposition 4.2. We consider the setting of Lemma 5.1 and a covering of S n,j (v n ) with L 1 -balls of radius ξjv n and centers (λ l,j ) l=1, ..., Dj , where D j is the covering number of S n,j (v n ) by such balls. We set φ n,j = max l=1, ..., Dj φ λ l,j , where the φ λ l,j 's are defined in Lemma 5.1. So, there exists a constant ρ > 0 such that

E (n) λ0 [1 Γn φ n,j ] ≤ 2D j e -Knj 2 v 2
n and sup λ∈Sn,j (vn)

E (n) λ [1 Γn (1-φ n,j )] ≤ 2e -Knj 2 v 2 n , if j ≤ ρ v n , and 
E (n)
λ0 [1 Γn φ n,j ] ≤ 2D j e -Knjvn and sup λ∈Sn,j (vn)

E (n) λ [1 Γn (1-φ n,j )] ≤ 2e -Knjvn , if j > ρ v n ,
where K is a constant (see Lemma 5.1). We now bound D j . First note that for any λ = M λ λ and λ

′ = M λ ′ λ′ , λ -λ ′ 1 ≤ M λ λ -λ′ 1 + |M λ -M λ ′ |. (5.5) Assume that M λ ≥ M λ0 . Then, λ -λ 0 1 ≥ λ> λ0 [M λ λ(t) -M λ0 λ0 (t)]dt = M λ λ> λ0 [ λ(t) -λ0 (t)]dt + (M λ -M λ0 ) λ> λ0 λ0 (t)dt ≥ M λ λ> λ0 [ λ(t) -λ0 (t)]dt = M λ 2 λ -λ0 1 . Conversely, if M λ < M λ0 , λ -λ 0 1 ≥ λ0> λ[M λ0 λ0 (t) -M λ λ(t)]dt ≥ M λ0 λ0> λ[ λ0 (t) -λ(t)]dt = M λ0 2 λ -λ0 1 .
So, 2 λ -λ 0 1 ≥ (M λ ∨ M λ0 ) λ -λ0 1 and we finally have

λ -λ 0 1 ≥ max (M λ ∨ M λ0 ) λ -λ0 1 /2, |M λ -M λ0 | . (5.6) So, for all λ = M λ λ ∈ S n,j (v n ), λ -λ0 1 ≤ 2(j + 1)v n M λ0 and |M λ -M λ0 | ≤ (j + 1)v n . (5.7) Therefore, S n,j (v n ) ⊆ ( Sn,j ∩ F n ) × {M : |M -M λ0 | ≤ (j + 1)v n } and any covering of ( Sn,j ∩F n )×{M : |M -M λ0 | ≤ (j +1)v n } will give a covering of S n,j (v n ). So, to bound D j , we have to build a convenient covering of ( Sn,j ∩F n )×{M : |M -M λ0 | ≤ (j +1)v n }.
We distinguish two cases.

• We assume that (j + 1)v n ≤ 2M λ0 . Then, (5.7) implies that

M λ ≤ 3M λ0 . More- over, if λ -λ′ 1 ≤ ξjv n 3M λ0 + 1 and |M λ -M λ ′ | ≤ ξjv n 3M λ0 + 1 , then, by (5.5), λ -λ ′ 1 ≤ (M λ + 1)ξjv n 3M λ0 + 1 ≤ ξjv n .
By assumption (ii) of Theorem 2.1, this implies that, for any δ > 0, there exists J 0 such that for j ≥ J 0 ,

D j ≤ D((3M λ0 + 1) -1 ξjv n , Sn,j ∩ F n , • 1 ) × 2(j + 1)v n × (3M λ0 + 1) ξjv n + 1 2 exp(δ(j + 1) 2 nv 2 n ). • We assume that (j + 1)v n > 2M λ0 . If λ -λ′ 1 ≤ ξ 4 and |M λ -M λ ′ | ≤ ξ(M λ ∨ M λ0 ) 4 ,
using again (5.5) and (5.7),

λ -λ ′ 1 ≤ ξM λ 4 + ξ(M λ + M λ0 ) 4 ≤ 3ξM λ0 4 + ξ(j + 1)v n 2 ≤ 7ξ(j + 1)v n 8 ≤ ξjv n ,
for n large enough. By assumption (i) of Theorem 2.1, this implies that, for any δ > 0,

D j D(ξ/4, F n , • 1 ) × log((j + 1)v n ) log(jv n ) exp(δn).
It is enough to choose δ small enough to obtain the result of Proposition 4.2.

Appendix

Proof of Lemma 5.1. For any λ, we denote by

E (n) λ,Γn [•] = E (n) λ [1 Γn × •]. For any λ, λ ′ , we define λ -λ ′ μn := Ω |λ(t) -λ ′ (t)|μ n (t)dt.
On Γ n we have 

m 1 λ -λ 0 1 ≤ λ -λ 0 μn ≤ m 2 λ -λ 0 1 . ( 6 
A := {t ∈ Ω : λ 1 (t) ≥ λ 0 (t)} and A c := {t ∈ Ω : λ 1 (t) < λ 0 (t)}
and the following pseudo-metrics

d A (λ 1 , λ 0 ) := A [λ 1 (t) -λ 0 (t)]μ n (t)dt and d A c (λ 1 , λ 0 ) := A c [λ 0 (t) -λ 1 (t)]μ n (t)dt. Note that λ 1 -λ 0 μn = d A (λ 1 , λ 0 )+d A c (λ 1 , λ 0 ). For u > 0, if d A (λ 1 , λ 0 ) ≥ d A c (λ 1 , λ 0 ), define the test φ λ1,A (u) := 1 N (A) - A λ 0 (t)Y t dt ≥ ρ n (u) , with ρ n (u) := 2nv(λ 0 )u + u 3 ,
where, for any non-negative function λ,

v(λ) := (1 + α) Ω λ(t)μ n (t)dt. (6.3) Similarly, if d A (λ 1 , λ 0 ) < d A c (λ 1 , λ 0 ), define φ λ1,A c (u) := 1 N (A c ) - A c λ 0 (t)Y t dt ≤ -ρ n (u) .
Since for any non-negative function λ, on Γ n , by (4.1),

( (6.4) for K A c a positive constant small enough only depending on α, M λ0 , m 1 and m 2 . Now, we set φ λ1 = φ λ1,A (u A )1 {d A (λ1, λ0)≥d A c (λ1, λ0)} + φ λ1,A c (u A c )1 {d A (λ1, λ0)<d A c (λ1, λ0)} , so that, with K = min{K A , K A c }, by using (6.5),

E (n) λ0,Γn [φ λ1 ] = E (n)
λ0,Γn [φ λ1,A (u A )]1 {d A (λ1, λ0)≥d A c (λ1, λ0)} + E

(n) λ0,Γn [φ λ1,A c (u A c )]1 {d A (λ1, λ0)<d A c (λ1, λ0)} ≤ 2e -u A 1 {d A (λ1, λ0)≥d A c (λ1, λ0)} + 2e -u A c 1 {d A (λ1, λ0)<d A c (λ1, λ0)} ≤ 2 exp (-Kn λ 1 -λ 0 1 × min{ λ 1 -λ 0 1 , m 1 }) .

If λ -λ 1 1 < ξ λ 1 -λ 0 1 , ξ = m 1 (1 -α)/[4m 2 (1 + α)], then λ -λ 1 μn ≤ 1 -α 4(1 + α) λ 1 -λ 0 μn
and Lemma 6.1 shows that

E (n) λ,Γn [1 -φ λ1 ] ≤ 2e -u A 1 {d A (λ1, λ0)≥d A c (λ1, λ0)} + 2e -u A c 1 {d A (λ1, λ0)<d A c (λ1, λ0)} ≤ 2 exp (-Kn λ 1 -λ 0 1 × min{ λ 1 -λ 0 1 , m 1 }) ,
which completes the proof of Lemma 5.1.

Proof of Lemma 6.1. We only consider the case where d A (λ 1 , λ 0 ) ≥ d A c (λ 1 , λ 0 ). The case d A (λ 1 , λ 0 ) < d A c (λ 1 , λ 0 ) can be dealt with using similar arguments. So, we assume that d A (λ 1 , λ 0 ) ≥ d A c (λ 1 , λ 0 ). On Γ n we have Therefore,

E (n) λ,Γn [1 -φ λ1,A (u A )] = P (n) λ,Γn N (A) - A λ(t)Y t dt < ρ n (u A ) + A (λ 0 -λ)(t)Y t dt = P (n) λ,Γn N (A) - A λ(t)Y t dt < ρ n (u A ) - A (λ 1 -λ 0 )(t)Y t dt + A (λ 1 -λ)(t)Y t dt ≤ P (n) λ,Γn N (A) - A λ(t)Y t dt < ρ n (u A ) - 1 2 A (λ 1 -λ 0 )(t)Y t dt .
Assume that λ 1 -λ 0 μn ≤ 2 Mn (λ 0 ). This assumption implies that d A (λ 1 , λ 0 ) ≤ λ 1 -λ 0 μn ≤ 2 Mn (λ 0 ) ≤ 2m 2 M λ0 . Since v(λ 0 ) = (1 + α) Mn (λ 0 ), with u A = u 0A nd 2 A (λ 1 , λ 0 ), where u 0A ≤ 1 is a constant depending on α, m 1 and m 2 chosen later, we have

ρ n (u A ) ≤ nd A (λ 1 , λ 0 ) 2u 0A (1 + α) Mn (λ 0 ) + u 0A nd 2 A (λ 1 , λ 0 ) 3 ≤ K 1 √ u 0A nd A (λ 1 , λ 0 )
as soon as K 1 ≥ [2(1 + α) Mn (λ 0 )] 1/2 + 2 Mn (λ 0 ) √ u 0A /3. Note that the definition of v(λ) in ( 6. where C 1 only depends on α, M λ0 , m 1 and m 2 . Combined with (6.4), this implies that, on Γ n , if K 1 ≤ (1 -α)/[4 √ u 0A ], which is true for u 0A small enough, For u 0A small enough only depending on M λ0 , α, m 1 and m 2 , we have

1 2 A (λ 1 -λ 0 )(t)Y t dt -ρ n (u A ) ≥ (1 -α)n 2 d A (λ 1 , λ 0 ) 1 - 2K 1 √ u 0A
(1 -α) 4 √ u 0A ≥ 2(1 + α) Mn (λ 0 ) + 2 Mn (λ 0 ) √ u 0A 3 so (6.6) is true. Since r ≥ u A for u 0A small enough, then

E (n) λ,Γn [1 -φ λ1,A (u)] ≤ 2e -u A .
Assume that λ 1 -λ 0 μn > 2 Mn (λ 0 ). We take u A = u 1A nd A (λ 1 , λ 0 ), where u 1A ≤ 1 is a constant depending on α chosen later. We still consider the same test φ λ1,A (u A ).

A [λ 1

 1 (t) -λ 0 (t)]Y t dt ≥ n(1 -α) A [λ 1 (t) -λ 0 (t)]μ n (t)dt ≥ n(1 -α) 2 λ 1 -λ 0 μn ≥ 2n(1 + α) λ -λ 1 μn ≥ 2n(1 + α) A |λ(t) -λ 1 (t)|μ n (t)dt ≥ 2 A |λ(t) -λ 1 (t)|Y t dt.

  t)μ n (t)dt + (1 + α) Ω [λ(t) -λ 0 (t)]μ n (t)dt ≤ v(λ 0 ) + (1 + α) λ -λ 0 μn ≤ v(λ 0 ) + (1 + α) [ λ -λ 1 μn + λ 1 -λ 0 μn ] ≤ v(λ 0 ) + 5 + 3α 4 λ 1 -λ 0 μn ≤ C 1 ,

  [1 -φ λ1,A (u A )] ≤ 2e -r .(6.6) 

  1 -α)

	Ω	λ(t)μ n (t)dt ≤	Ω	λ(t)	Y t n	dt ≤ (1 + α)

Ω λ(t)μ n (t)dt,

inequality (6.2) applied with H = 1 A or H = 1 A c , b = 1 and v = nv(λ 0 ) implies that, for any u > 0,

(6.5)

We now state a useful lemma whose proof is given below.

We set Mn (λ 0 ) = Ω λ 0 (t)μ n (t)dt and we distinguish two cases.

, where

and u 0A , u 1A are two constants only depending on α, M λ0 , m 1 and m 2 .

Assume that d

and u 0A c , u 1A c are two constants only depending on α, M λ0 , m 1 and m 2 .

Note that, by (6.1), if

for K A a positive constant small enough only depending on α, M λ0 , m 1 and m
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Observe now that, since d A (λ 1 , λ 0 ) ≥ 1 2 λ 1 -λ 0 μn ≥ Mn (λ 0 ),

and, under the assumptions of the lemma,

where C 2 only depends on α. Therefore,

where the last inequality is true for u 1A small enough depending only on α. Finally, using (6.7), since u A = u 1A nd A (λ 1 , λ 0 ), we have

for u 1A small enough depending only on α. We then obtain

which completes the proof.