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BOUNDEDNESS OF THE DIFFERENTIATION OPERATOR IN
MODEL SPACES AND APPLICATION TO PELLER TYPE

INEQUALITIES

ANTON BARANOV AND RACHID ZAROUF

Abstract. Given an inner function Θ in the unit disc D, we study the boundedness of
the differentiation operator which acts from from the model subspace KΘ =

(
ΘH2

)⊥
of

the Hardy space H2, equiped with the BMOA-norm, to some radial-weighted Bergman
space. As an application, we generalize Peller’s inequality for Besov norms of rational
functions f of degree n ≥ 1 having no poles in the closed unit disc D.

1. Introduction and notations

A well-known inequality by Peller (see inequality (2.1) below) majorizes a Besov norm
of any rational function f of degree n ≥ 1 having no poles in the closed unit disc D =
{ξ ∈ C : |ξ| ≤ 1} in terms of its BMOA-norm and its degree n. The original proof of
Peller makes use of the theory of Hankel operators. One of the aims of this paper is
to give a direct proof of this inequality and extend it to more general radial-weighted
Bergman norms. Our proof combines integral representation for the derivative of f by
using a model spaces approach, and the generalization of a theorem by Dyn’kin. The
corresponding inequalities are obtained in terms of radial-weighted Bergman norms of the
derivative of finite Blaschke products (of degree n = deg f), instead of n itself. The finite
Blaschke products in question has the same poles as f. The inequalities are sharp and
attained by these Blaschke products. The study of radial-weighted Bergman norms of the
derivatives of finite Blaschke products of degree n and their asymptotic as n tends to +∞
may be of independent interest. A contribution to this topic, which we are going to exploit
here, was given by Arazy, Fisher and Peetre.

Let Pn be the space of complex analytic polynomials of degree at most n and let

R+
n =

{
P

Q
: P, Q ∈ Pn, Q(ξ) 6= 0 |ξ| ≥ 1

}
,

be the set of rational functions of degree at most n with poles outside of the closed unit disc
D. In this paper, we consider the norm of a rational function f ∈ R+

n in different function
spaces which will consist of analytic functions in the open unit disc D = {ξ : |ξ| < 1}.
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1.1. Some Banach spaces of analytic functions. We denote by Hol(D) the space of
holomorphic functions in D.

1.1.1. The Besov spaces Bp, 1 < p ≤ +∞.

• A function f ∈ Hol(D) belongs to the Besov space Bp, 1 < p ≤ +∞, if and only if

‖f‖Bp
= |f(0)|+ ‖f‖⋆Bp

< +∞,

where ‖f‖⋆Bp
is the seminorm defined by

‖f‖⋆Bp
=

(
ˆ

D
(1− |u|)p−2 |f ′(u)|

p
dA(u)

) 1

p

,

A being the normalized area measure on D.
• A function f ∈ Hol(D) belongs to the Besov space B1 if and only if

‖f‖B1
= |f(0)|+ |f ′(0)|+ ‖f‖⋆B1

< +∞,

where ‖f‖⋆B1
is the seminorm defined by

‖f‖⋆B1
=

ˆ

D
|f ′′(u)| dA(u).

• A function f ∈ Hol(D) belongs to the space B∞ (known as the Bloch space) if and
only if

‖f‖B∞

= |f(0)|+ sup
z∈D

|f ′(z)| (1− |z|) < ∞.

We refer to [Pee, Tri, BeLo] for general properties of Besov spaces.

1.1.2. The radial-weighted Bergman spaces Ap (w), 1 ≤ p < ∞. The radial-weighted
Bergman space Ap (w), 1 ≤ p < ∞ (where ”a” means analytic) is defined as:

Ap (w) =

{
f ∈ Hol (D) : ‖f‖pAp(w) =

ˆ

D
w(|u|) |f(u)|p dA(u) < ∞

}
,

where the weight w satisfies w ≥ 0 and
´ 1

0
w(r) dr < ∞. The classical power weights

w(r) = wα(r) = (1− r2)
α
, α > −1, are of special interest; in this case we put Ap(α) =

Ap (wα) . We refer to [HKZ] for general properties of weighted Bergman spaces.

1.1.3. The spaces A1
p(α), 1 ≤ p ≤ +∞, α > −1. A function f ∈ Hol(D) belongs to the

space A1
p(α), 1 ≤ p ≤ +∞, α > −1, if and only if

‖f‖A1
p(α)

= |f(0)|+ ‖f ′‖Ap(α)
< +∞.

We also define the A1
p(α)-seminorm by ‖f‖⋆A1

p(α)
= ‖f ′‖Ap(α)

. Note that the Bp and A1
p(p−2)

coincide for 1 < p ≤ +∞.

2



1.1.4. The space BMOA. There are many ways to define BMOA; see [Gar, Chapter 6].
For the purposes of this paper we choose the following one: a function f ∈ Hol(D) belongs
to the BMOA space (of analytic functions of bounded mean oscillation) if and only if

‖f‖BMOA = inf ‖g‖L∞(T) < +∞,

where the infimum is taken over all g ∈ L∞(T), T = {ξ : |ξ| = 1} being the unit circle,
for which the representation

f(ξ) =
1

2πi

ˆ

T

g(u)

u− ξ
du, |ξ| < 1,

holds. Recall that BMOA is the dual space of the Hardy space H1 under the pairing

〈f, g〉 =

ˆ

T
f(u)g(u)du, f ∈ H1, g ∈ BMOA,

where this integral must be understood as the extension of the pairing acting on a dense
subclass of H1, see [Bae, page 23].

1.2. Model spaces.

1.2.1. General inner functions. By Hp, 1 ≤ p ≤ ∞, we denote the standard Hardy spaces
(see [Gar, Nik]). Recall that H2 is a reproducing kernel Hilbert space, with the kernel

kλ(w) =
1

1− λw
, λ, w ∈ D,

known as the Szegö kernel (or the Cauchy kernel) associated with λ. Thus 〈f, kλ〉 = f(λ)
for all f ∈ H2 and for all λ ∈ D, where 〈·, ·〉 means the scalar product on H2.

Let Θ be an inner function, i.e. Θ ∈ H∞ and |Θ(ξ)| = 1 a.e. ξ ∈ T. We define the
model subspace KΘ of the Hardy space H2 by

KΘ =
(
ΘH2

)⊥
= H2 ⊖ΘH2.

By the famous theorem of Beurling, these and only these subspaces of H2 are invariant
with respect to the backward shift operator. We refer to [Nik] for the general theory of
the spaces KΘ and their numerous applications.

For any inner function Θ, the reproducing kernel of the model space KΘ corresponding
to a point ξ ∈ D is of the form

kΘ
λ (w) =

1−Θ(λ)Θ(w)

1− λw
, λ, w ∈ D,

that is
〈
f, kΘ

λ

〉
= f(λ) for all f ∈ KΘ and for all λ ∈ D.

1.2.2. The case of finite Blaschke products. From now on, for any σ = (λ1, . . . , λn) ∈ Dn,
we consider the finite Blaschke product

Bσ =
n∏

k=1

bλk
,
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where bλ(z) =
λ−z
1−λz

, is the elementary Blaschke factor corresponding to λ ∈ D. We suppose

here that Θ = Bσ with

σ = {λ1, ..., λ1, λ2, ..., λ2, ..., λt, ..., λt} ∈ Dn,

where every λs is repeated according to its multiplicity ns,
∑t

s=1 ns = n. Then, we have

KBσ
= H2 ⊖ BσH

2 = span
(
kλj , i : 1 ≤ j ≤ t, 0 ≤ i ≤ nj − 1

)
,

where if λ 6= 0, kλ, i =
(

d
dλ

)i
kλ and kλ = 1

1−λz
is the standard Cauchy kernel at the point

λ, whereas if λ = 0, k0, i = zi.
The subspace KBσ

consists of rational functions of the form p/q, where p ∈ Pn−1 and
q ∈ Pn, with the poles 1/λ1, . . . , 1/λn of corresponding multiplicities (including possible
poles at ∞). Thus, if f ∈ R+

n and 1/λ1, . . . , 1/λn are the poles of f (repeated according
to multiplicities), then f ∈ KzBσ

with σ = (λ1, . . . , λn). Conversely, KBσ
is obviously a

subset of R+
n for any σ ∈ Dn.

From now on, for two positive functions a and b, we say that a is dominated by b,
denoted by a . b, if there is a constant c > 0 such that a ≤ cb; and we say that a and b
are comparable, denoted by a ≍ b, if both a . b and b . a.

2. Main results

2.1. Main ingredients. It has been proved in 1980 by Peller [Pel1] that

(2.1) ‖f‖⋆Bp
≤ cpn

1

p ‖f‖BMOA ,

for any f ∈ R+
n and 1 ≤ p ≤ +∞, where cp is a constant depending only on p. Later, this

result was extended to the range p > 0 independently and with different proofs by Peller
[Pel2] and Semmes [Sem]. The aim of the present article is:

(1) study the boundedness of the differention operator from (KΘ, ‖·‖BMOA) to Ap (α) ,
1 < p ≤ +∞, α > −1, and

(2) generalize Peller’s result (2.1) replacing the Bp-seminorm by the A1
p(α)-one.

In both of these problems, we make use of a method based on two main ingredients:

• integral representation for the derivative of functions in KΘ or in R+
n and

• a generalization of a theorem by Dyn’kin, see Subsection 2.2.3.

As a one more ingredient (required in problem (2)) we use estimates of Bp-seminorms of
finite Blaschke products by Arazy, Fischer and Peetre [AFP].

2.2. Main results. Let us consider the differentation operator Df = f ′ and the shift and
the backward shift operators defined respectively by

(2.2) Sf = zf, S⋆f =
f − f(0)

z
,

for any f ∈ Hol(D). From now on, for any inner function Θ, we put

Θ̃ = zΘ = SΘ.
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2.2.1. Boundedness of the differentiation operator from (KΘ, ‖·‖BMOA) to Ap (α). First,
note that the operator

D : BMOA → Ap (α)

is bounded when p ≥ 2 and α ≥ p− 1, and also when 1 ≤ p < 2 and α > p− 1, and, thus,
for these values of parameters the embedding BMOA ⊂ A1

p (α) is continuous. Indeed, for
any f in BMOA we have

‖f ′‖
p
Ap(α)

=

ˆ

D
(1− |u|)p−2 |f ′(u)|

p−2
(1− |u|)α−(p−2) |f ′(u)|

2
dA(u)

≤ ‖f‖p−2
B∞

ˆ

D
(1− |u|)α−(p−2) |f ′(u)|

2
dA(u)

≤ ‖f‖p−2
B∞

ˆ

D
(1− |u|) |f ′(u)|

2
dA(u),

when α−(p−2) ≥ 1. Here B∞ is the Bloch space. Since
´

D(1−|u|) |f ′(u)|2 dA(u) = ‖f‖2H2 ,
‖f‖H2 . ‖f‖BMOA and ‖f‖B∞

. ‖f‖BMOA , we conclude that

‖f ′‖Ap(α)
. ‖f‖BMOA .

In the case 1 ≤ p < 2 and α > p − 1 the boundedness of D from (KΘ, ‖·‖BMOA) to
Ap (α) is trivial. However, for 1 ≤ p < 2, the space A1

p(p− 1) does not contain even some

functions from the disc-algebra. The reason for that is that if f ∈ A1
p(p− 1), 1 ≤ p < 2,

then, by a result of S.A. Vinogradov [Vin, Lemma 1.6],
∑∞

n=0 |f̂(2
n)|p < ∞, (where f̂(n)

stands for the nth Fourier coefficient of f). Thus, BMOA * A1
p(p− 1) when 1 ≤ p < 2.

Now, we consider an arbitrary inner function Θ. Our first main result gives necessary
and sufficient conditions under which the differentiation operator

D : (KΘ, ‖·‖BMOA) → Ap (α)

is bounded. When this is the case, we estimate its norm in terms of ‖ Θ′ ‖Ap(α).

Theorem 2.1. Let 1 < p ≤ ∞, α > −1, and p > 1 + α. We distinguish three cases:

(a) If α > p− 1, then D : (KΘ, ‖·‖BMOA) → Ap (α) is bounded.

(b) If p − 2 < α < p − 1, then D : (KΘ, ‖·‖BMOA) → Ap (α) is bounded if and only if

Θ′ ∈ A1 (α− p+ 1) .
(c) If α < p− 2 and p > 1, then D : (KΘ, ‖·‖BMOA) → Ap (α) is bounded if and only if

Θ is a finite Blaschke product.

In cases (b) and (c), we have

(2.3) ‖D‖ .‖ Θ′ ‖Ap(α). ‖D‖+ const,

with constants depending on p and α only.

Remark. More precisely, we show that for α < p−1, D is bounded if and only if Θ′ ∈ Ap(α)
and then use a theorem by Ahern [Ahe1] and its generalizations by Verbitsky [Ver] and
Gluchoff [Glu]. The case α = p− 1 and 1 ≤ p < 2 is still open.

It should be noted that the membership of Blaschke products in various function spaces
is a well-studied topic. Besides the above-cited papers by Ahern, Gluchoff and Verbitsky
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let us mention the Ahern–Clark papers [AC1, AC2] and recent works by D. Girela, J.
Peláez, D. Vukotić and A. Aleman [GPV, AV].

2.2.2. Generalization of Peller’s inequalities. In the following theorem, we give a general-
ization of Peller’s inequality (2.1).

Theorem 2.2. Let f ∈ R+
n , deg f = n and σ ∈ Dn be the set of its poles counting

multiplicities (including poles at ∞). For any α > −1, 1 < p ≤ ∞, and p > 1 + α, we

have

(2.4) ‖f‖⋆A1
p(α)

≤ Kp, α ‖f‖BMOA ‖ B̃′
σ ‖Ap(α),

where Kp
p, α = 2

1
α+1

2
1

α+1 −1

(
p

p−1−α

)p
2p+1.

Remark. The inequality (2.4) is sharp and attained by f = Bσ. Indeed, we have

‖ B̃′
σ ‖Ap(α)≤‖ zB′

σ ‖Ap(α) + ‖ Bσ ‖Ap(α).‖ B′
σ ‖Ap(α),

and ‖ Bσ ‖BMOA= 1.

Remark. Now, taking α = p− 2, we have

‖f ′‖Ap(α)
= ‖f‖⋆Bp

, ‖ B̃′
σ ‖Ap(α)=‖ B̃σ ‖⋆Bp

.

To deduce Peller’s inequalities (2.1) it remains to apply the following theorem by Arazy,
Fischer and Peetre [AFP]: if 1 ≤ p ≤ ∞, then there exist absolute positive constants mp

and Mp such that

(2.5) mpn
1

p ≤‖ B ‖⋆Bp
≤ Mpn

1

p .

Indeed, we obtain for 1 < p ≤ ∞,

‖f‖⋆Bp
≤ K

1

p

p, p−2Mp ‖f‖BMOA (n+ 1)
1

p . n
1

p ‖f‖BMOA ,

which is Peller’s estimate (2.1) for 1 < p ≤ ∞. The case p = 1 requires a special treatment
which will be developped later because of the particular definition of B1.

2.2.3. Generalization of a theorem by Dyn’kin. Dyn’kin proved that [Dyn, Theorem 3.2]
that

(2.6)

ˆ

D

(
1− |B(u)|2

1− |u|2

)2

dA(u) ≤ 8(n+ 1),

for any finite Blaschke product B of degree n.

From now on, for any inner function Θ, and for any α > −1, p > 1, we put

(2.7) Ip, α(Θ) =

ˆ

D
(1− |u|2)α

(
1− |Θ(u)|2

1− |u|2

)p

dA(u).

Dyn’kin’s Theorem can be stated as follows: for any finite Blaschke product B of degree

n, we have

I2, 0(B) ≤ 8(n+ 1).

Here, we generalize this result to the case α > −1, p > 1, and p > 1 + α.
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In the proof of Theorem 2.2, we will need the following generalization of Dyn’kin’s
result.

Theorem 2.3. We suppose that p > 1, α > −1 and p > 1 + α. Then,

‖Θ′‖
p
Ap(α)

≤ Ip,α(Θ) ≤ Kp,α ‖Θ
′‖

p
Ap(α)

,

where Kp, α is the same constant as in Theorem 2.2.

The paper is organized as follows. We first focus in Section 3 on the generalization
of Dyn’kin’s result. In Section 4 Theorem 2.1 is proved, while Section 5 is devoted to
the proof of Peller type inequalities (Theorem 2.2). Finally, in Section 6 we discuss some
estimates of radial-weighted Bergman norms of Blaschke products.

3. Generalization of Dyn’kin’s Theorem

The aim of this Section is to prove Theorem 2.3. The lower bound is trivially obtained
as an application of the well-known Schwarz-Pick inequality applied to Θ. The proof of
the upper bound will be done step by step, using lemmas which are stated below. The
main ideas come from [Dyn, Theorem 3.2]. In this Section, Θ is any inner function.

Lemma 3.1. For p > 1, α > −1 and p > 1 + α, we have

Ip, α(Θ) ≤ 2p
ˆ 2π

0

ˆ 1

0

(1− r)α
(

1

1− r

ˆ 1

r

|Θ′(seiθ)|ds

)p

dr
dθ

π
.

Proof. Writing the integral Ip, α(Θ) in polar coordinates, and using the fact that

1− |Θ(u)|2 ≤ 2(1− |Θ(u)|),

we obtain

Ip,α(Θ) ≤ 2p
ˆ 1

0

r(1− r2)α−p

(
ˆ 2π

0

(1− |Θ(reiθ)|)p
dθ

π

)
dr

≤ 2p
ˆ 1

0

r(1− r2)α−p

(
ˆ 2π

0

|Θ(eiθ)−Θ(reiθ)|p
dθ

π

)
dr

≤ 2p
ˆ 1

0

r(1− r2)α−p

(
ˆ 2π

0

(
ˆ 1

r

|Θ′(seiθ)|ds

)p
dθ

π

)
dr

≤ 2p
ˆ 2π

0

ˆ 1

0

(1− r)α
1

(1− r)p

(
ˆ 1

r

|Θ′(seiθ)|ds

)p

dr
dθ

π
,

which completes the proof of the lemma. �

We recall now a general version of Hardy’s inequality, see [HLP, page 245], which after
change of variables gives (as in [Ahe2, Lemma 7]):

Lemma 3.2. If h : (0, 1) → [0,+∞) , p > 1, α > −1 and p > 1 + α,
ˆ 1

0

(1− r)α
(

1

1− r

ˆ 1

r

h(s)ds

)p

dr ≤

(
p

p− 1− α

)p ˆ 1

0

(1− r)αh(r)pdr.
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Corollary 3.3. We suppose that p > 1, α > −1 and p > 1 + α. Then,

Ip, α(Θ) ≤ Cp, α

ˆ 2π

0

ˆ 1

0

(1− r)α|Θ′(reiθ)|pdr
dθ

π
,

where Cp,α =
(

p
p−1−α

)p
2p.

Proof. Combining estimates in Lemma 3.1 and Lemma 3.2 (setting h(s) = hθ(s) =
|Θ′(seiθ)|, for any fixed θ ∈ (0, 2π)), we obtain
ˆ 1

0

(1− r)α
(

1

1− r

ˆ 1

r

|Θ′(seiθ)|ds

)p

dr ≤

(
p

p− 1− α

)p ˆ 1

0

(1− r)α|Θ′(reiθ)|pdr.

Thus,

Ip, α(Θ) ≤

(
p

p− 1− α

)p

2p
ˆ 2π

0

ˆ 1

0

(1− r)α|Θ′(reiθ)|pdr
dθ

π
which completes the proof. �

Lemma 3.4. Let any nonzero weight w satisfying w ≥ 0 and
´ 1

0
w(r) dr < ∞. Let β =

βw ∈ (0, 1) such that
´ 1

0
w(r) dr = 2

´ β

0
w(r) dr. Then, for f ∈ Ap (w) , 1 ≤ p < ∞,

‖f‖pAp(w) ≤

ˆ 2π

0

w(r)

ˆ 1

0

|f(reiθ)|pdr
dθ

π

≤
2

β

ˆ 1

β

rw(r)

(
ˆ 2π

0

|f(reiθ)|p
dθ

π

)
dr ≤

2

β
‖f‖pAp(w) .

Proof. The proof follows easily from the fact that for any f in Hol (D), the function

r 7→

ˆ 2π

0

|f(reiθ)|p
dθ

π
,

is nondecreasing on [0, 1] . �

We are now ready to prove Theorem 2.3.

Proof. We first prove (2.4). Applying the previous Lemma 3.4 with f = Θ′ and w(r) =
(1− r2)α, α > −1, we obtain, going back to the above Corollary that

Ip, α(Θ) ≤ Cp, α

ˆ 2π

0

ˆ 1

0

(1− r)α|Θ′(reiθ)|pdr
dθ

π
≤

2

β
Cp, α ‖Θ

′‖
p
Ap(α)

,

where Cp, α =
(

p
p−1−α

)p
2p, and β = βα satisfies the condition

ˆ 1

β

w(r) dr =

ˆ β

0

w(r) dr.

By a direct computation, we see that β = βα is given by the equation 1−(1−β)α+1

1+α
= (1−β)α+1

1+α
,

which is equivalent to

(3.1) β = βα = 1−
1

2
1

α+1

.

�
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4. Proof of Theorem 2.1

4.1. Integral representation for the derivative of functions in KΘ. An important
ingredient of our proof is the following simple and well-known integral representation for
the derivative of a function from a model space.

Lemma 4.1. Let Θ be an inner function and f ∈ KΘ. We have

f ′(u) =
〈
f, z

(
kΘ
u

)2〉
,

for any u ∈ D.

Proof. For a fixed u ∈ D, we have

f ′(u) =

〈
f,

z

(1− uz)2

〉
=
〈
f, z

(
kΘ
u

)2 〉
.

Here the first equality is the standard Cauchy formula, while the second follows from the

fact that z(1 − uz)−2 − z
(
kΘ
u (z)

)2
∈ ΘH2 and f ⊥ zΘH2. �

4.2. Proof of the right-hand side inequality in (2.3). Now, we state and prove the
following proposition in which the quantity Ip,α(Θ) is involved.

Proposition 4.2. Let α > −1, and 1 < p ≤ ∞, Θ be an inner function and f ∈ KΘ. We

have

‖f ′‖Ap(α)
≤ ‖f‖BMOA (Ip,α(Θ))

1

p .

Proof. We use the integral representation of a f from Lemma 4.1:

f ′(u) =
〈
f, z

(
kΘ
u

)2〉
=

ˆ

T
f(τ)τ (kΘ

u (τ))
2dm(τ),

for any u ∈ D, and thus

‖f ′‖
p
Ap(α)

=

ˆ

D
(1− |u|2)α

∣∣∣∣
ˆ

T
f(τ)τ (kΘ

u (τ))
2dm(τ)

∣∣∣∣
p

dA(u)

≤ ‖f‖pBMOA

ˆ

D
(1− |u|2)α

∣∣∣∣
ˆ

T
τ (kΘ

u (τ))
2dm(τ)

∣∣∣∣
p

dA(u)

≤ ‖f‖pBMOA

ˆ

D
(1− |u|2)α

(
ˆ

T

∣∣kΘ
u (τ)

∣∣2 dm(τ)

)p

dA(u)

= ‖f‖pBMOA

ˆ

D
(1− |u|2)α

(
1− |Θ(u)|2

1− |u|2

)p

dA(u),

whih completes the proof. �

4.3. Proof of the left-hand side inequality in (2.3).

Proof. We prove the left-hand side inequality implicitely stated in (2.3) from Theorem 2.1.
We consider the test function

f = S⋆Θ =
Θ−Θ(0)

z
,
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where S⋆ is the backward shift operator (2.2). It is well-known that f belongs to KΘ and
easy to check that ‖f‖BMOA ≤ 2 and thus,

‖D‖(KΘ, ‖·‖BMOA)→Ap(α)(wα)
≥

‖f ′‖Ap(α)

2
.

Now,

‖f ′‖
p
Ap(α)

≥

ˆ 1

βα

r w(r)

ˆ

T
|f ′ (rξ)|

p
dm(ξ) dr,

where βα is given by (3.1) and thus,

‖f ′‖Ap(α)
≥

(
ˆ 1

βα

r w(r)

ˆ

T

∣∣∣∣
Θ′ (rξ)

rξ

∣∣∣∣
p

dm(ξ) dr

) 1

p

+

−

(
ˆ 1

βα

r w(r)

ˆ

T

∣∣∣∣
Θ(rξ)−Θ(0)

r2ξ2

∣∣∣∣
p

dm(ξ) dr

) 1

p

.

On one hand we have
ˆ 1

βα

r w(r)

ˆ

T

∣∣∣∣
Θ′ (rξ)

rξ

∣∣∣∣
p

dm(ξ) dr ≥

ˆ 1

βα

r w(r)

ˆ

T
|Θ′ (rξ)|

p
dm(ξ) dr,

and applying Lemma 3.4 with w = wα (and β = βα) we obtain
ˆ 1

βα

r wα(r)

ˆ

T

∣∣∣∣
Θ′ (rξ)

rξ

∣∣∣∣
p

dm(ξ) dr ≥
βα

2

ˆ 2π

0

ˆ 1

0

wα(r)|Θ
′(reiθ)|pdr

dθ

π

≥
βα

2

ˆ 2π

0

ˆ 1

0

wα(r)|Θ
′(reiθ)|pdr

dθ

π
=

βα

2
‖ Θ′ ‖pAp(α)

.

On the other hand,
ˆ 1

βα

r wα(r)

ˆ

T

∣∣∣∣
Θ(rξ)−Θ(0)

r2ξ2

∣∣∣∣
p

dm(ξ) dr ≤ 2p
ˆ 1

βα

wα(r)

r
dr ≤

2p

βα

ˆ 1

βα

wα(r)dr.

Finally, we conclude that

‖f ′‖Ap(α)
≥

β
1/p
α

21/p
‖ Θ′ ‖Ap(α) −

2

β
1/p
α

(
ˆ 1

βα

wα(r)dr

) 1

p

.

�

4.4. Proof of Theorem 2.1. To be complete the proof of Theorem 2.1, we need to recall
the following theorem proved by Ahern [Ahe1] for the case 1 ≤ p ≤ 2 and generalized by
Verbitsky [Ver] and Gluchoff [Glu] to the range 1 ≤ p < ∞. This theorem characterizes
inner functions Θ which derivative belong to Ap(α).

Theorem. Let Θ be an inner function, 1 ≤ p < ∞, and α > −1.
(a) If α > p− 1, then Θ′ ∈ Ap(α).
(b) If p− 2 < α < p− 1, then Θ′ ∈ Ap(α) if and only if Θ′ ∈ Ap (α− p+ 1) .
(c) If α < p−2 and p > 1, then Θ′ ∈ Ap(α) if and only if Θ is a finite Blaschke product.

Let us prove Theorem 2.1.
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Proof. We start with the proof of (a). Going back to Proposition 4.2, we have that

‖f ′‖
p
Ap(α)

≤ ‖f‖pBMOA

ˆ

D
(1− |u|2)α

(
1− |Θ(u)|2

1− |u|2

)p

dA(u),

and bounding roughly (from above) 1− |Θ(u)|2 by 2, we obtain that for α > p− 1,

‖f ′‖
p
Ap(α)

≤ ‖f‖pBMOA

ˆ

D
(1− |u|)α−pdA(u) . ‖f‖pBMOA ,

with a constant depending only on p and α. �

In order to prove (b) and (c), we first remark that for α < p−1, it follows from (2.3) that
D : (KΘ, ‖·‖BMOA) → Ap (α) is bounded if and only if Θ′ ∈ Ap (α) . A direct application
of the above Ahern–Verbitsky–Gluchoff theorem completes the proof.

5. Proof of Peller type inequalities

In this section we prove Theorem 2.2. From now on the inner function Θ is a finite
Blaschke product. Recall that if f ∈ R+

n and 1/λ1, . . . , 1/λn are the poles of f (repeated
according to multiplicities), then f ∈ KzBσ

with σ = (λ1, . . . , λn).

Proof. Let f ∈ R+
n ; there exists σ ∈ Dn such that f ∈ KB̃σ

, B̃σ = zBσ. Then, by
Proposition 4.2 we have

‖f ′‖Ap(α)
≤ ‖f‖BMOA

(
Ip,α(B̃σ)

) 1

p

,

for any α > −1, and 1 < p ≤ ∞. Now applying Theorem 2.3, we complete the proof. �

Remark. In Subsection 2.2.2, we have shown how to deduce Peller’s inequality (2.1) from
the result of Arazy−Fischer−Peetre (2.5). Let us show that for p ≥ 2, one can give a very

simple proof which uses only Proposition 4.2 and Dyn’kin’s estimate I2, 0(B̃σ) ≤ 8(n+ 2),
where n = degBσ. Indeed, in this case, we have

Ip, p−2(B̃σ) =

ˆ

D
(1− |u|2)p−2

(
1− |B̃σ(u)|

2

1− |u|2

)p−2+2

dA(u)

=

ˆ

D

(
1− |B̃σ(u)|

2
)p−2

(
1− |B̃σ(u)|

2

1− |u|2

)2

dA(u)

≤ I2, 0(B̃σ) ≤ 8(n+ 2).

Thus, applying Proposition 4.2 with α = p− 2 we obtain

‖f‖pBp
= ‖f‖pA1

p(p−2) ≤ ‖f‖pBMOA

(
I2, 0(B̃σ)

) 1

p

,

which completes the proof.
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6. Radial-weighted Bergman norms of the derivative of finite Blaschke

products and applications

Again, let n ≥ 1, σ = (λ1, . . . , λn) ∈ Dn and Bσ be the finite Blaschke product
corresponding to σ. For any 1 ≤ p < ∞ and α > −1, we set

ϕn(p, α) = sup
{
‖B′

σ‖Ap(α)
: σ ∈ Dn

}
.

An application of [AFP] gives

(6.1) ϕn(p, p− 2) ≍ n1/p.

We have seen above (see Subsection 2.2.2) how (6.1) implies Peller’s inequality (2.1).
Thus, it could be of interest to find a more general estimate (for other values of α and
p) of ϕn(p, α). Notice that for each fixed p, the function α 7→ ϕn(p, α) is decreasing and
there exists a critical αp ≥ −1 :

αp = inf

{
α < −1 : sup

n
ϕn(p, α) < ∞

}
.

As a consequence, the asymptotic behavior of ϕn(p, α) as n tends to infinity (for fixed
values of α and p) can exist only if α ≥ αp. In this notation we can rewrite Theorem 2.2
as

‖f‖⋆A1
p(α)

. ϕn(p, α) ‖f‖BMOA ,

for any f ∈ R+
n , α > −1, and 1 < p ≤ ∞ such that p > 1 + α.

Proposition 6.1. For any p ≥ 1, αp = p− 1.

Proof. By the Schwarz–Pick lemma, we have that for any σ ∈ Dn,

‖B′
σ‖

p
Ap(α)

≤ Ip,α(Bσ),

and for any α > p− 1,

Ip,α(Bσ) ≤

ˆ

D
(1− |u|2)α

(
1− |Bσ(u)|

2

1− |u|2

)p

dA(u) .

ˆ

D

1

(1− |u|)p−α
dA(u) < ∞,

and thus αp ≤ p− 1 for each p.
Next we show that αp ≥ p− 1. Let us consider the set σ = (0, . . . , 0) ∈ Dn, for which

Bσ(z) = zn. In this case, we have

‖B′
σ‖

p
Ap(α)

=
∥∥nzn−1

∥∥p
Ap(α)

= np

ˆ 1

0

r (1− r2)α
ˆ

T
|rξ|p(n−1) dm(ξ) dr,

which gives

‖B′
σ‖

p
Ap(α)

= np

ˆ 1

0

(1− r2)αrp(n−1)+1dr,

and

β(pn− p+ 2, α + 1) ≤
‖B′

σ‖
p
Ap(α)

np
≤ 2αβ(pn− p+ 2, α + 1),
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where β stands for the Beta function β(x, y) =
´ 1

0
rx−1(1 − r)y−1dr. Let α = p − 1 − ε,

ε > 0. Then by the standard Γ-function asymptotics, we obtain

‖B′
σ‖

p
Ap(α)

≥ Γ(α+ 1)np Γ(pn− p+ 2)

Γ(pn+ α− p+ 3)
∼n→∞ Γ(α + 1)np(pn)ε−p,

whence supn ϕp(α, n) = ∞. �
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