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♣ ,
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Abstract. This paper is the third part of our study started with Cattiaux, León and
Prieur (2014 2013). For some ergodic hamiltonian systems we obtained a central limit
theorem for a non-parametric estimator of the invariant density (Cattiaux et al. 2014)
and of the drift term (Cattiaux et al. 2013), under partial observation (only the positions
are observed). Here we obtain similarly a central limit theorem for a non-parametric
estimator of the diffusion term.

1. Introduction

In this article we consider the estimation, using data sampled at high frequency, of the
local variance or diffusion term σ(·, ·) in the system

(
Zt := (Xt, Yt) ∈ R2d , t ≥ 0

)
governed

by the following Itô stochastic differential equation:{
dXt = Ytdt
dYt = σ(Xt, Yt) dWt − (c(Xt, Yt)Yt +∇V (Xt))dt.

The function c is called the damping force and V the potential, σ is the diffusion term
and W a standard brownian motion.

The problem of estimating the diffusion term, sometimes called volatility, in a model
of diffusion has a somewhat long history and has a lot of motivations, in particular in the
analysis of financial or neuronal data.

The beginning of the story takes place at the end of the eighties of the last century. The
first and seminal articles were written by Dacunha-Castelle and Florens (1986), Florens
(1989), Dohnal (1987) and Genon-Catalot and Jacod (1993). The method generally used
is the central limit theorem for martingales. Recently an excellent survey introducing the
subject and giving some important recent references was written by Podolskij and Vetter
(2010). In that work the authors give some insights about the methods of proof of the
limit theorems and recall also the existence of some goodness of fit tests useful in financial
studies. This article also mentioned the names of those linked to the development in this
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area. They are, among other, Bibby and Sorensen (1995), Jacod and Protter (1998) and
Barndorff-Nielsen et al. (2006). The second of the last cited works contains a deep study
for the asymptotic behavior of discrete approximations of stochastic integrals, it is thus
in tight relationship with the estimation of the diffusion term.

The present article is the continuation of two previous works by the authors: Cattiaux
et al. (2014) and Cattiaux et al. (2013). In the first one we tackled the problem of
estimating the invariant density of the system (1) and in the second one the estimation
of the drift term (x, y) 7→ b(x, y) = −c(x, y)y + ∇V (x) was studied. In both papers we
assumed that the diffusion coefficient σ is constant, in order to control the mixing rate
of the process (see the remarks at the end of the present paper for extensions to the non
constant diffusion case).

Here we consider the estimation of the function σ, in particular we do no more assume
necessarily that it is a constant. We observe the process in a high resolution grid i.e.
Zphn

, p = 1 . . . , n with hn −−−−→
n→+∞

0. As for our previous works, we consider the case

where only the position coordinates Xphn
are observed (partial observations). This is of

course the main technical difficulty. This situation leads us to define the estimator using
the second order increments of process ∆2X(p, n) = X(p+1)hn

− 2Xphn
+ X(p−1)hn

. This
fact introduces some technicalities in the proof of each result.

In the first part of the article we consider the case of infill statistics t = nhn is fixed. Two
situations are in view: firstly σ is a constant and we estimate σ2 by using a normalization
of ∆2X(p, n), secondly σ is no more constant and we estimate

∫ t

0
σ2(Xs, Ys)ds. In both

cases we obtain a stable limit theorem with rate
√
n for the estimators (for the definition

of stable convergence in law see the next section).
This asymptotic convergence can be applied, for instance, for testing the null hypothesis

H0: the matrix σ contains only non vanishing diagonal terms i.e. σij = 0 for i 6= j.
In the second part we study the infinite horizon estimation nhn = t −−−−→

n→+∞
+∞. We

assume that the rate of mixing of the process (Zt , t ≥ 0) is sufficiently high. Whenever
σ is a constant we obtain a central limit theorem (CLT) for the estimator of σ2 with rate√
n. However, in the case where σ is not a constant we get a new CLT but the rate now

is
√
nhn and the asymptotic variance is the same as the one obtained for occupation time

functionals.
The result in the infinite horizon can serve to test H0 : σ(x, y) = σ against the sequence

of alternatives Hn
1 : σn = σ + cnd(x, y), for some sequence cn tending to zero as n tends

to infinity, because of the difference in the convergence rate under the null and under the
sequence of alternatives.

Estimation with partial observations has been considered previously in the literature.
In Gloter (2006), the case of one dimensional diffusion Vt is studied. One observes

only St =
∫ t

0
Vsds, in a discrete uniform grid. The estimation is made for the param-

eters defining the variance and the drift. More recently for the same type of models,
the problem of estimation was considered in Comte et al. (2009). In this last work,
the study is non-parametric in nature, it deals with adaptive estimation, evaluating the
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quadratic risk. The models in both these articles, contrary to models of type (1), do
not allow the second equation to depend on the first coordinate. It can be written as{
dSt = Vtdt
dVt = σ(Vt) dWt + b(Vt)dt

.

The literature concerning the estimation for models of type (1) is rather scarce. How-
ever, two papers must be cited. Firstly Pokern et al. (2009) consider parameter esti-
mation by using approximate likelihoods. The horizon of estimation is infinite and they
assume hn −−−−→

n→+∞
0 and nhn −−−−→

n→+∞
+∞. Secondly Samson and Thieullen (2012) in-

troduce, in the case of partial observations, an Euler contrast defined using the second
coordinate only. However, we should point out that the present work, while dealing with
non-parametric estimation, has a non-empty intersection with the one of Samson et al.
(2012) when the diffusion term is constant.

Let us end this introduction with some comments about some possible generalizations.
In the first place the methods that we use in this work can be adapted for considering the
power variation type estimators defined as

VF (n) =

(([ t
2hn

]−1)hn∑

p=0

F (∆2X(p, n)),

for F a smooth function, usually F (x) = |x|r the rth power variation (see e.g., Jacod
2008). Secondly, it would be possible to study an estimator constructed through a Fourier
transform method as the one defined in Malliavin and Mancino (2009).

2. Tools

2.1. Stable convergence. In this article, the type of convergence we consider is the
stable convergence, introduced by Renyi, whose definition is recalled below (see Definition
2.1). In this subsection all random variables or processes are defined on some probability
space (Ω,F,P).

Definition 2.1 (Definition 2.1 in Podolskij and Vetter (2010)). Let Yn be a sequence of
random variables with values in a Polish space (E, E). We say that Yn converges stably

with limit Y , written Yn
S−−−−→

n→+∞
Y , where Y is defined on an extension (Ω′,F′,P′) iff for

any bounded, continuous function g and any bounded F-measurable random variable Z it
holds that

E(g(Yn)Z) → E′(g(Y )Z)

as n→ +∞.

If F is the σ-algebra generated by some random variable (or process) X, then it is
enough to consider Z = h(X) for some continuous and bounded h. It is thus clear that
the stable convergence in this situation, is equivalent to the convergence in distribution
of the sequence (Yn, X) to (Y,X). It is also clear that convergence in Probability implies
stable convergence. As shown in Podolskij and Vetter (2010), the converse holds true if
Y is F measurable.
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Notice that we may replace the assumption Z is bounded by Z ∈ L1(P). This remark
allows us to replace P by any Q which is absolutely continuous with respect to P, i.e.

Proposition 2.2. Assume that Yn (defined on (Ω,F,P)) converges stably to Y . Let Q be
a probability measure on Ω such that dQ

dP
= H. Then Yn (defined on (Ω,F,Q)) converges

stably to the same Y (defined on (Ω′,F′,Q′ = HP′)).

In particular, in the framework of our diffusion processes, this proposition combined
with Girsanov transform theory will allow us to “kill” the drift.

2.2. About the S.D.E. (1). In all the paper we will assume (at least) that the coef-
ficients in (1) satisfy:

• H0 the diffusion matrix σ is symmetric, smooth, bounded as well as its first and
second partial derivatives and uniformly elliptic, i.e. ∀x, y, σ(x, y) ≥ σ0 Id (in the
sense of quadratic forms) for a positive constant σ0 > 0;

• H1 the potential V is lower bounded and continuously differentiable on Rd;
• H2 the damping matrix c is continuously differentiable and for all N > 0 :
sup|x|≤N, y∈Rd |c(x, y)| < +∞ and ∃ c0, L > 0 cs(x, y) ≥ c0Id for all |x| > L, y ∈
Rd, cs being the symmetrization of the matrix c.

Under these assumptions equation (1) admits an unique strong solution which is non
explosive. In addition

Lemma 2.3 (Lemma 1.1 in Wu (2001)). Assume H0, H1 and H2. Then, for every initial
state z = (x, y) ∈ R2d, the s.d.e. (1) admits a unique strong solution Pz (a probability
measure on Ω), which is non explosive. Moreover Pz << P0

z on (Ω,Ft) for each t > 0,
where P0

z is the law of the solution of (1) associated to c(x, y) = 0 and V = 0, and with
(Ft := σ(Zs, 0 ≤ s ≤ t))t≥0.

Remark 2.4. The formulation of H0 can be surprising. Let σ∗ denote the transposed
matrix of σ. Actually the law of the process depends on σσ∗ (which is the second order
term of the infinitesimal generator). If this symmetric matrix is smooth, it is well known
that one can find a smooth symmetric square root of it, which is the choice we make for
σ. As it will be clear in the sequel, our estimators are related to σσ∗ (hence here σ2). ♦

3. Finite horizon (infill) estimation.

We consider infill estimation, that is we observe the process on a finite time interval
[0, T ], with a discretization step equal to hn with hn −−−−→

n→+∞
0.

According to Lemma 2.3 and Proposition 2.2, any P0
z stably converging sequence Yn is

also Pz stably converging to the same limit. Hence in all this section we will assume
that H0 is satisfied and that c and V are identically 0. Any result obtained in this
situation is thus true as soon as H0, H1 and H2 are satisfied.
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3.1. The case of a constant diffusion matrix. We start with the definition of the
“double” increment of the process.

Define for 1 ≤ p ≤ [ T
2hn

]− 1 := pn (here [.] denotes the integer part)

∆2X(p, n) = X(2p+1)hn
− 2X2phn

+X(2p−1)hn
. (3.1)

Then

σ−1 ∆2X(p, n) =
∫ (2p+1)hn

2phn
Wsds−

∫ 2phn

(2p−1)hn
Wudu

=
∫ (2p+1)hn

2phn
(Ws −W2phn

)ds+
∫ 2phn

(2p−1)hn
(W2phn

−Wu)du.

The right hand side is the sum of two independent centered normal random vectors, whose

coordinates are independent, so that
√

3
2h3

n
σ−1 ∆2X(p, n) is a centered gaussian random

vector with covariance matrix equal to Identity (recall that we assume that σ = σ∗).
Furthermore, all the (∆2X(p, n))1≤p≤pn are independent (thanks to our choice of the
increments).

So we define our estimator σ̂2
n of the matrix σ2 as

σ̂2
n =

1

[ T
2hn

]− 1

3

2h3n

[ T
2hn

]−1∑

p=1

∆2X(p, n) >< ∆2X(p, n) , (3.2)

where A >< B denotes the (d, d) matrix obtained by taking the matrix product of the
(d, 1) vector A with the transposed of the (d, 1) vector B, denoted by B∗.
Using what precedes we see that

σ−1 σ̂2
n σ

−1 =
1

[ T
2hn

]− 1

[ T
2hn

]−1∑

p=1

M(p, n)

where for each n the M(p, n) are i.i.d. symmetric random matrices whose entries Mi,j are
all independent for i ≥ j, satisfying E0

z(Mi,j) = δi,j and Var0z(Mi,j) = 1 + δi,j.

According to the law of large numbers and the Central Limit Theorem for triangular
arrays of independent variables we have

Lemma 3.3 (convergence). Assume c = 0, V = 0 and H0.
Then if hn −−−−→

n→+∞
0, starting from any initial point z = (x, y) ∈ R2d, we have

σ̂2
n

P0
z−−−−→

n→+∞
σ2 ,

and ([
T

2hn

]
− 1

)1/2

(σ−1 σ̂2
n σ

−1 − Id)
D−−−−→

n→+∞
N(d,d),

where N(d,d) is a (d, d) symmetric random matrix whose entries are centered gaussian
random variables with Var(Ni,j) = 1+δi,j, all the entries (i, j) for i ≥ j being independent.
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The consistence result is interesting since convergence in P0
z probability implies con-

vergence in Pz probability (i.e. for general c and V ). The convergence in distribution
however is not sufficient and has to be reinforced into a stable convergence.
This is the aim of what follows.

To this end we define the sequence of processes defined for 0 ≤ t ≤ T ,

σ̂2
n(t) =

1

[ T
2hn

]− 1

3

2h3n

[ t
2hn

]−1∑

p=1

∆2X(p, n) >< ∆2X(p, n) , (3.4)

where the empty sums are set equal to zero. We will prove

Theorem 3.5 (convergence in Skorohod’s metric). Assume c = 0, V = 0 and H0.
Then if hn −−−−→

n→+∞
0, starting from any initial point z = (x, y) ∈ R2d, we have

(
W·,

(√
T

2hn
σ−1 σ̂2

n(·) σ−1 − Id

))
D([0,T ])×D([0,T ])−−−−−−−−−−→

n→+∞

(
W·, W̃·

)
,

where
(
W̃t , t ∈ [0, T ]

)
is a (d, d) symmetric matrix valued random process whose entries

are Wiener processes with variance Vari,j(t) = (1 + δi,j) (t/T ), all the entries (i, j) for

i ≥ j being independent. In addition W̃. is independent of W..

According to the discussion on stable convergence we immediately deduce

Corollary 3.6 (stable convergence). Under assumptions H0, H1 and H2, if hn −−−−→
n→+∞

0,

starting from any initial point z = (x, y) ∈ R2d, we have
√

T

2hn

(
σ−1 σ̂2

n σ
−1 − Id

) S−−−−→
n→+∞

N(d,d) ,

where N(d,d) is as in Lemma 3.3.

Proof of Theorem 3.5 : In the following, we fix T = 1 without loss of generality. Notice
that we may also replace T

2hn
by [ T

2hn
]− 1 (using Slutsky’s theorem if one wants).

The convergence of

t 7→ Zn(t) =

√
1

2hn
σ−1 σ̂2

n(t) σ
−1

to a matrix of Wiener processes is proved as for Donsker invariance principle. The only
difference here is that instead of an i.i.d. sample we look at a triangular array of i.i.d.
random vectors (on each row), but the proof in Billingsley (1999) applies in this situation.
This result is sometimes called Donsker-Prohorov invariance principle. Writing Wt as the
sum of its increments on the grid given by the intervals [(2p − 1)hn, (2p + 1)hn] the
convergence of the joint law of (W., Zn(.)) in D([0, 1]) is proved in exactly the same way.
The final independence assumption is a simple covariance calculation. �
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3.2. Estimation of the noise, general case.

In this section, we do not assume anymore that the diffusion term σ is constant.
In the following, we want to estimate

∫ t

0
σ2(Xs, Ys)ds, for any 0 ≤ t ≤ T .

To this end, we introduce the quadratic variation process defined for n ∈ N∗ and 0 ≤ t ≤ T
as

QVhn
(t) =

1

h2n

[ t
2hn

]−1∑

p=1

∆2X(p, n) >< ∆2X(p, n) , (3.7)

with ∆2X(p, n) defined in (3.1). The main result of this section is

Theorem 3.8. Under assumptions H0, H1 and H2, if hn −−−−→
n→+∞

0, starting from any

initial point z = (x, y) ∈ R2d, we have for any 0 ≤ t ≤ T

QVhn
(t)

Pz−−−−→
n→+∞

1

3

∫ t

0

σ2(Xs, Ys)ds ,

and √
1

hn

(
QVhn

(t)− 1

3

∫ t

0

σ2(Xs, Ys)ds

)
S−−−−→

n→+∞

2

3

∫ t

0

σ(Xs, Ys) dW̃s σ(Xs, Ys) ,

where
(
W̃t , t ∈ [0, T ]

)
is a symmetric matrix valued random process independent of the

initial Wiener process W., whose entries W̃.(i, j) are Wiener processes with variance
Vi,j(t) = (1 + δi,j)t, these entries being all independent for i ≥ j.

Recall that for the proof of this theorem, we only need to consider the case where c = 0
and V = 0.
In this case, the strong solution, with initial conditions (X0, Y0) = (x, y) = z, can be
written as

Zt = (Xt, Yt) =

(
x+ yt+

∫ t

0

Ysds, y +

∫ t

0

σ(Xs, Ys)dWs

)
.

We thus have:

∆2X(p, n) =

∫ (2p+1)hn

2phn

[ ∫ s

0

σ(Xu, Yu)dWu

]
ds−

∫ 2phn

(2p−1)hn

[ ∫ s

0

σ(Xu, Yu)dWu

]
ds .

Using Fubini’s theorem for stochastic integrals, one gets:

∆2X(p, n) = hn
∫ 2phn

0
σ(Xu, Yu)dWu +

∫ (2p+1)hn

2phn
((2p+ 1)hn − u)σ(Xu, Yu)dWu

− hn
∫ (2p−1)hn

0
σ(Xu, Yu)dWu −

∫ 2phn

(2p−1)hn
(2phn − u)σ(Xu, Yu)dWu ,
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thus

∆2X(p, n) =

∫ (2p+1)hn

(2p−1)hn

(hn − |u− 2phn|)σ(Xu, Yu)dWu . (3.9)

If p 6= q are two integers, denoting by ∆2X(p, n, i) the ith coordinate of ∆2X(p, n), we
immediately have, for all i, j = 1, ..., d,

E0
z (∆2X(p, n, i)∆2X(q, n, j)) = 0 . (3.10)

As a warm up lap, we look at the convergence of the first moment of QVhn
.

Lemma 3.11 (preliminary result). Assume c = 0, V = 0 and H0. Then, if hn −−−−→
n→+∞

0,

starting from any initial point z = (x, y) ∈ R2d, we have for any 0 ≤ t ≤ T ,

E0
zQVhn

(t) −−−−→
n→+∞

1

3

∫ t

0

E0
z σ

2(Xu, Yu) du.

Recall that we assumed σ = σ∗, and of course look at the previous equality as an
equality between real matrices.

Proof of Lemma 3.11: First, using Ito’s isometry and Equality (3.9), one gets

E0
z (∆2X(p, hn) >< ∆2X(p, hn)) =

∫ (2p+1)hn

(2p−1)hn

(hn − |u− 2phn|)2 E0
z σ

2(Xu, Yu)du.

Since ∫ (2p+1)hn

(2p−1)hn

(hn − |u− 2phn|)2 du =
2

3
h3n ,

we thus have

1

h2n
E0
z (∆2X(p, hn) >< ∆2X(p, hn))−

1

3

∫ (2p+1)hn

(2p−1)hn

E0
z σ

2(Xu, Yu) du =

=
1

h2n

∫ (2p+1)hn

(2p−1)hn

(hn − |u− 2phn|)2 E0
z

(
σ2(Xu, Yu)− σ2(X(2p−1)hn

, Y(2p−1)hn
)
)
du +

+
1

3

∫ (2p+1)hn

(2p−1)hn

E0
z

(
σ2(X(2p−1)hn

, Y(2p−1)hn
)− σ2(Xu, Yu)

)
du .

Define on Ω× [0, t], the sequence of random (matrices)

Gn(u) =

[ t
2hn

]−1∑

p=1

σ2(X(2p−1)hn
, Y(2p−1)hn

) 1I(2p−1)hn≤u<(2p+1)hn
.

Since σ is continuous, Gn converges P0
z ⊗ du almost everywhere to σ2(Xu, Yu). In

addition since σ is bounded, Gn is dominated by a constant which is P0
z ⊗ du integrable
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on Ω× [0, t].
Hence using Lebesgue bounded convergence theorem, we get that

∫ t

0

E0
z

(
Gn(u)− σ2(Xu, Yu)

)
du → 0 .

Similarly, the variables

[ t
2hn

]−1∑

p=1

(hn − |u− 2phn|)2
h2n

1I(2p−1)hn≤u<(2p+1)hn
(σ2(X(2p−1)hn

, Y(2p−1)hn
)− σ2(Xu, Yu))

are bounded and converge almost everywhere to 0, so that their expectation also goes to
0. This completes the proof. �

Of course, a careful look at this proof shows that we did not use all the strength of H0,
only the fact that σ is continuous and bounded. It is thus clearly possible to improve upon
this result, using the same idea of introducing the skeleton Markov chain and controlling
the errors.

Hence introduce

∆2H(p, hn) =

∫ (2p+1)hn

(2p−1)hn

(hn − |u− 2phn|) σ(X(2p−1)hn
, Y(2p−1)hn

) dWu . (3.12)

We may decompose

J1
n + J2

n + J3
n = QVhn

(t)− 1

3

∫ t

0

σ2(Xu, Yu)du with (3.13)

J1
n = QVhn

(t)− 1

h2n

[ t
2hn

]−1∑

p=1

∆2H(p, hn) >< ∆2H(p, hn) ,

J2
n =




1

h2n

[ t
2hn

]−1∑

p=1

∆2H(p, hn) >< ∆2H(p, hn)


 − 1

3

(∫ t

0

Gn(u)du

)

J3
n =

1

3

(∫ t

0

Gn(u)du−
∫ t

0

σ2(Xu, Yu)du

)
.

For A = (Ai,j)1≤i≤q,1≤j≤r a q × r real matrix, we define |A| as |A| = max1≤i≤q,1≤j≤r |Ai,j|.
We then have

Lemma 3.14. Assume c = 0, V = 0, (X0, Y0) = (x, y) ∈ R2d and H0. Then, there exist
constants C depending on σ, its derivatives and the dimension only, such that for any
0 ≤ t ≤ T ,

E0
z

(∣∣∣∣
∫ t

0

Gn(u)du−
∫ t

0

σ2(Xu, Yu)du

∣∣∣∣
)

≤ Ct
√
hn , (3.15)
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and
E0
z

(
|∆2X(p, hn)−∆2H(p, hn)|2

)
≤ C h4n . (3.16)

Proof. For the first part it is enough to show that
∫ t

0

E0
z

∣∣Gn(u)− σ2(Xu, Yu)
∣∣ du ≤ Ct

√
hn .

But using the fact that σ and its first derivatives are continuous and bounded, there exists
a constant C only depending on these quantities (but which may change from line to line),
such that∫ t

0

E0
z

∣∣Gn(u)− σ2(Xu, Yu)
∣∣ du ≤ Ct sup

|a−b|≤2hn

E0
z(|Za − Zb|) ≤ Ct

√
hn . (3.17)

For the second part, we have

E0
z

(
|∆2X(p, hn)−∆2H(p, hn)|2

)
=

= E0
z

(∫ (2p+1)hn

(2p−1)hn

(hn − |u− 2phn|)2 Trace((σ(X(2p−1)hn
, Y(2p−1)hn

)− σ(Xu, Yu))
2) du

)
,

from which the result easily follows as before. �

We deduce immediately

Proposition 3.18. Assume c = 0, V = 0 and H0. Then, if hn −−−−→
n→+∞

0, starting from

any initial point z = (x, y) ∈ R2d, we have for any 0 ≤ t ≤ T , that J1
n and J3

n are
converging to 0 in L1(P0

z) (with rates hn and
√
hn), hence in P0

z probability.

Proof. The result for J3
n is contained in the previous Lemma. For J1

n we calculate E0
z[|J1

n|].
The (i, j)th term of J1

n is given by

1

h2n

[ t
2hn

]−1∑

p=1

(∆2X(p, hn, i)−∆2H(p, hn, i))(∆2X(p, hn, j)−∆2H(p, hn, j)) ,

so that, according to the previous Lemma and Cauchy-Schwarz inequality, we thus have
E0
z[|J1

n|] ≤ Ct hn. �

In order to prove the first part of Theorem 3.8, i.e. the convergence in Probability it
remains to look at J2

n. We have

J2
n =

1

h2n

[ t
2hn

]−1∑

p=1

σ(X(2p−1)hn
, Y(2p−1)hn

)

(
M(p, hn) − 2h3n

3
Id

)
σ(X(2p−1)hn

, Y(2p−1)hn
) ,

(3.19)
where

M(p, hn) = ∆2W (p, hn) >< ∆2W (p, hn)
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and

∆2W (p, hn) =

∫ (2p+1)hn

(2p−1)hn

(hn − |u− 2phn|) dWu .

As before we start with an estimation Lemma

Lemma 3.20. Assume c = 0, V = 0, (X0, Y0) = (x, y) ∈ R2d and H0. Then, there exist
constants C depending on σ, its derivatives and the dimension only, such that

E0
z

(∣∣∣∣M(p, hn) − 2h3n
3

Id

∣∣∣∣
2
)

≤ C h6n . (3.21)

Proof. We shall look separately at the diagonal terms and the off diagonal terms of

M(p, hn) − 2h3
n

3
Id.

The off diagonal terms are of the form Ai,j(n) with

Ai,j(n) =

(∫ (2p+1)hn

(2p−1)hn

(hn − |u− 2phn|) dW i
u

) (∫ (2p+1)hn

(2p−1)hn

(hn − |u− 2phn|) dW j
u

)

(3.22)
where W i and W j are independent linear Brownian motions. Introduce the martingales

Ui(s) =

∫ s

(2p−1)hn

(hn − |u− 2phn|) dW i
u

defined for (2p− 1)hn ≤ s ≤ (2p+ 1)hn. Using Ito’s formula Ai,j(n) can be rewritten
(∫ (2p+1)hn

(2p−1)hn

(Uj(u)− Uj((2p− 1)hn)) (hn − |u− 2phn|) dW i
u

)

+

(∫ (2p+1)hn

(2p−1)hn

(Ui(u)− Ui((2p− 1)hn)) (hn − |u− 2phn|) dW j
u

)

so that

E0
z

(
A2

i,j(n)
)

= 2

∫ (2p+1)hn

(2p−1)hn

(hn − |u− 2phn|)2 E0
z[(Ui(u)− Ui((2p− 1)hn))

2] du

= 2

∫ (2p+1)hn

(2p−1)hn

(hn − |u− 2phn|)2
(∫ u

(2p−1)hn

(hn − |s− 2phn|)2 ds
)
du

= c h6n ,

where c is some universal constant, so that we get the result.
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The diagonal terms can be written Ai,i(n) with

Ai,i(n) =

(∫ (2p+1)hn

(2p−1)hn

(hn − |u− 2phn|) dW i
u

)2

− 2

3
h3n (3.23)

= 2

∫ (2p+1)hn

(2p−1)hn

(Ui(u)− Ui((2p− 1)hn)) (hn − |u− 2phn|) dW i
u ,

and we can conclude exactly as before. �

We can now state

Proposition 3.24. Assume c = 0, V = 0 and H0. Then, if hn −−−−→
n→+∞

0, starting from

any initial point z = (x, y) ∈ R2d, we have for any 0 ≤ t ≤ T , that J2
n converges to 0 in

L2(P0
z) (with rate

√
hn), hence in P0

z probability.

Proof. We look at each term (J2
n)ij of the matrix J2

n. Such a term can be written in the
form

(J2
n)ij =

1

h2n

[ t
2hn

]−1∑

p=1

d∑

l,k=1

al,k,i,j(X(2p−1)hn
, Y(2p−1)hn

)Al,k(p, n)

where the al,k,i,j’s are C2
b functions, and the Al,k(p, n) are defined in the proof of the

previous Lemma (here we make explicit the dependence in p). Hence

h4n (J
2
n)

2
ij =

=

[ t
2hn

]−1∑

p,q=1

d∑

l,k,i,j=1

bl,k,i,j(X(2p−1)hn
, Y(2p−1)hn

) cl,k,i,j(X(2q−1)hn
, Y(2q−1)hn

)Al,k(p, n)Ai,j(q, n)

for some new functions bl,k,i,j and cl,k,i,j. As we remarked in (3.10), the expectation of
terms where p 6= q is equal to 0, so that

E0
z

[
h4n (J

2
n)

2
ij

]
≤ C

d∑

l,k,i,j=1

[ t
2hn

]−1∑

p=1

E0
z [Al,k(p, n)Ai,j(p, n)]

≤ Ct h5n ,

according to the previous Lemma and Cauchy-Schwarz inequality, hence the result. �

We thus have obtained the first part of the main Theorem i.e.

Corollary 3.25 (consistence result). Under assumptions H0, H1 and H2, if hn −−−−→
n→+∞

0,

starting from any initial point z = (x, y) ∈ R2d, we have for any 0 ≤ t ≤ T

QVhn
(t)

Pz−−−−→
n→+∞

1

3

∫ t

0

σ2(Xs, Ys)ds.
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We turn now to the second part of the main Theorem, i.e. the obtention of confidence
intervals. Again we assume first that c = 0 and V = 0.

Since we will normalize by
√
hn we immediately see that the first “error” term J1

n/
√
hn

converges to 0 in P0
z probability according to the rate of convergence we obtained in

Proposition 3.18.
For the second error term J3

n, the convergence rate in
√
hn is not sufficient to conclude.

So we have to improve on it.

Lemma 3.26. Assume c = 0, V = 0, (X0, Y0) = (x, y) ∈ R2d and H0. Then, there exists
some constant C depending on σ, its first two derivatives and the dimension only, such
that for any 0 ≤ t ≤ T ,

E0
z

(∣∣∣∣
∫ t

0

Gn(u)du−
∫ t

0

σ2(Xu, Yu)du

∣∣∣∣
)

≤ Ct hn , (3.27)

hence
(∫ t

0
Gn(u)du−

∫ t

0
σ2(Xu, Yu)du

)
/
√
hn goes to 0 in P0

z probability.

Proof. To begin with

σ2(Xu, Yu)−Gn(u) =

[ t
2hn

]−1∑

p=1

(σ2(Xu, Yu)− σ2(X(2p−1)hn
, Y(2p−1)hn

)) 1I(2p−1)hn≤u<(2p+1)hn
.

Now look at each coordinate, and to simplify denote by f the coefficient σ2
ij. It holds

f(Zu)−Gij
n (u) =

[ t
2hn

]−1∑

p=1

1I(2p−1)hn≤u<(2p+1)hn

∫ u

(2p−1)hn

(
< σ(Zs)∇yf(Zs), dWs > +

1

2
Trace(σD2

yf σ)(Zs) ds+ < Ys,∇xf(Zs) > ds

)

=

[ t
2hn

]−1∑

p=1

1I(2p−1)hn≤u<(2p+1)hn
(I1(n, p, u) + I2(n, p, u) + I3(n, p, u) + I4(n, p, u))

With

I1(n, p, u) =

∫ u

(2p−1)hn

< σ(Zs)∇yf(Zs)− σ(Z(2p−1)hn
)∇yf(Z(2p−1)hn

), dWs > ,

I2(n, p, u) = < σ(Z(2p−1)hn
)∇yf(Z(2p−1)hn

), Wu −W(2p−1)hn
> ,

I3(n, p, u) =

∫ u

(2p−1)hn

1

2
Trace(σD2

yf σ)(Zs) ds ,

I4(n, p, u) =

∫ u

(2p−1)hn

< Ys,∇xf(Zs) > ds .
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Notice that |I3(n, p, u)| ≤ C(u− (2p− 1)hn) so that

∫ t

0

[ t
2hn

]−1∑

p=1

1I(2p−1)hn≤u<(2p+1)hn
|I3(n, p, u)|du ≤ Ct hn .

Similarly |I4(n, p, u)| ≤ C (sup0≤s≤t |Ys|)(u− (2p− 1)hn) so that

E0
z



∫ t

0

[ t
2hn

]−1∑

p=1

1I(2p−1)hn≤u<(2p+1)hn
|I4(n, p, u)|du


 ≤ Ct hn E0

z

(
sup
0≤s≤t

|Ys|
)

≤ Ct(1+t1/2)hn

according to the Burkholder-Davis-Gundy inequality.

Now

(E0
z(|I1(n, p, u)|))2 ≤ E0

z (|I1(n, p, u)|2))

= E0
z

[∫ u

(2p−1)hn

|σ(Zs)∇yf(Zs)− σ(Z(2p−1)hn
)∇yf(Z(2p−1)hn

|2 ds
]

≤ C(u− (2p− 1)hn) E
0
z( sup

|a−b|≤2hn

|Za − Zb|2)

≤ C hn (u− (2p− 1)hn)

using the fact that σ and its first two derivatives are bounded and (3.17). It follows that

E0
z



∫ t

0

[ t
2hn

]−1∑

p=1

1I(2p−1)hn≤u<(2p+1)hn
|I1(n, p, u)|du


 ≤ Ct hn .

Finally 
E0

z

∣∣∣∣∣∣

∫ t

0

[ t
2hn

]−1∑

p=1

1I(2p−1)hn≤u<(2p+1)hn
I2(n, p, u) du

∣∣∣∣∣∣




2

≤

≤ E0
z




∣∣∣∣∣∣

∫ t

0

[ t
2hn

]−1∑

p=1

1I(2p−1)hn≤u<(2p+1)hn
I2(n, p, u) du

∣∣∣∣∣∣

2



≤ 2 E0
z



∫ t

0

∫ t

0

[ t
2hn

]−1∑

p,q=1

1I(2p−1)hn≤u<(2p+1)hn
1I(2q−1)hn≤s<(2q+1)hn

1Is≤u I
2(n, p, u) I2(n, q, s) ds du




As before, if (2p− 1)hn ≤ u < (2p+ 1)hn and (2q − 1)hn ≤ s < (2q + 1)hn,

E0
z(I

2(n, p, u) I2(n, q, s)) = 0
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as soon as p 6= q.
If p = q,

|E0
z(I

2(n, p, u) I2(n, p, s))| ≤ C
√
u− (2p− 1)hn

√
s− (2p− 1)hn ,

so that for a fixed u between (2p− 1)hn and (2p+ 1)hn, s belongs to [(2p− 1)hn, u] and∫ u

(2p−1)hn

|E0
z(I

2(n, p, u) I2(n, p, s))| ds ≤ C h3/2n (u− (2p− 1)hn)
1/2 .

Integrating with respect to du we finally get

E0

z

∣∣∣∣∣∣

∫ t

0

[ t
2hn

]−1∑

p=1

1I(2p−1)hn≤u<(2p+1)hn
I2(n, p, u) du

∣∣∣∣∣∣




2

≤ Ct h2n ,

as expected. �

We turn now to the Central Limit Theorem for J2
n defined in (3.19). We will prove

Proposition 3.28. Assume c(x, y) = 0, V = 0 and H0. If hn −−−−→
n→+∞

0, starting from

any initial point z = (x, y) ∈ R2d and ∀ 0 ≤ t ≤ T ,
√

1

hn
J2
n(t)

S−−−−→
n→+∞

2

3

∫ t

0

σ(Xu, Yu) dW̃u σ(Xu, Yu) ,

where
(
W̃t , t ∈ [0, T ]

)
is a symmetric matrix valued random process independent of the

initial Wiener process W., whose entries W̃.(i, j) are Wiener processes with variance
Vi,j(t) = (1 + δi,j)t, these entries being all independent for i ≥ j.

Proof. Define

ξn,p =
1

h2n
σ(X(2p−1)hn

, Y(2p−1)hn
)

(
M(p, hn) − 2h3n

3
Id

)
σ(X(2p−1)hn

, Y(2p−1)hn
) ,

and Gn,p the σ-field generated by the ξn,j for j ≤ p. As we already saw

E0
z [ξn,p|Gn,p−1] = 0

(here the null matrix), saying that for a fixed n the ξn,p are martingale increments and
J2
n(t) =

∑
p ξn,p.

In order to prove the Proposition we can first show that for all N ∈ N, all N -uple
t1 < ..., tN ≤ t,

√
1

hn

(
J2
n(t),Wt1 , ...,WtN

) D−−−−→
n→+∞

(∫ t

0

σ(Xu, Yu) dW̃u σ(Xu, Yu) ,Wt1 , ...,WtN

)
,

and then apply the results we recalled on stable convergence as we did in the constant case.
To get the previous convergence, one can use the Central Limit Theorem for triangular
arrays of Lindeberg type, stated for instance in Dacunha-Castelle and Duflo (1983) Thm.
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2.8.42.
Another possibility is to directly use Jacod’s stable convergence theorem stated in Thm
2.6 of Podolskij et al. (2010). Actually in our situation, both theorems require exactly
the same controls (this is not surprising), as soon as one verifies that the statement of
Jacod’s theorem extends to a multi-dimensional setting.
We choose the second solution, and use the notations in Podolskij et al. (2010) Thm 2.6,
so that our ξn,p/

√
hn is equal to their Xpn.

Conditions (2.6) (martingale increments) and (2.10) (dependence onW. only) in Podolskij
et al. (2010) are satisfied. Condition (2.8) is also satisfied with vs = 0 as we already
remarked in the constant case. Here it amounts to see that

E0
z

[
Ai,j(n)(W

k
(2p+1)hn

−W k
(2p−1)hn

)|F(2p−1)hn

]
= 0

for all triple (i, j, k) where the Ai,j(n) are defined in (3.22) and (3.23), which is immediate.
It thus remains to check the two conditions

1

hn

[ t
2hn

]−1∑

p=1

E0
z

[
(teiξn,pej)

2|F(2p−1)hn

] P0
z−−−−→

n→+∞

∫ t

0

θ2ij(Xu, Yu) du , (3.29)

for all i, j = 1, ..., d (el, l = 1, ..., d being the canonical basis) , and

1

hn

[ t
2hn

]−1∑

p=1

E0
z

[
|ξn,p|2 1I|ξn,p|>ε|F(2p−1)hn

] P0
z−−−−→

n→+∞
0 for all ε > 0 , (3.30)

where |ξ| denotes the Hilbert-Schmidt norm of the matrix |ξ|.
We denote by ui = σei, and we use the notations of Lemma 3.20, Ui(n, s) =

∫ s

(2p−1)hn
(hn−

|u− 2phn|) dW i
u and simply Ui(n) = Ui(n, (2p+ 1)hn)). Hence

Ai,j(n) = Ui(n)Uj(n)− δi,j
2h3n
3

.

It follows

h4n E0
z

[
(teiξn,pej)

2|F(2p−1)hn

]
= E0

z



(
∑

k,l

uki Ak,l(n) u
l
j

)2

|F(2p−1)hn




= E0
z

[
∑

k,l,k′,l′

uki u
l
j u

k′

i u
l′

j Ak,l(n)Ak′,l′(n)|F(2p−1)hn

]

=
∑

k,l,k′,l′

uki u
l
j u

k′

i u
l′

j E0
z

[
Ak,l(n)Ak′,l′(n)|F(2p−1)hn

]
.
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But all conditional expectations are vanishing except those for which (k, l) = (k′, l′), in
which case it is equal to

(1 + δk,l)

(∫ (2p+1)hn

(2p−1)hn

(hn − |u− 2phn|)2 du
)2

=
4

9
h6n (1 + δk,l) .

Hence

1

hn

[ t
2hn

]−1∑

p=1

E0
z

[
(teiξn,pej)

2|F(2p−1)hn

]
=

d∑

k,l=1

(1+δk,l)
4hn
9

[ t
2hn

]−1∑

p=1

σ2
i,k(Z(2p−1)hn

) σ2
j,l(Z(2p−1)hn

) ,

and converges to
d∑

k,l=1

(1 + δk,l)
4

9

∫ t

0

σ2
i,k(Zu) σ

2
j,l(Zu) du .

We get a similar result for 1
hn

∑[ t
2hn

]−1

p=1 E0
z

[
(teiξn,pej)(

tei′ξn,pej′)|F(2p−1)hn

]
for any pairs

(i, j), (i′, j′). It remains to remark that this increasing process is the one of

2

3

∫ t

0

σ(Zu) dW̃u σ(Zu)

where W̃. is as in the statement of the proposition.

Finally, (3.30) is immediately checked, using the previous calculation, Cauchy-Schwarz
inequality and Burkholder-Davis-Gundy inequality. �

To conclude the proof of the main theorem it is enough to apply Slutsky’s theorem
since all the error terms converge to 0 in Probability (recall that Slutsky’s theorem also
works with stable convergence).

4. Infinite-horizon estimation

In the previous section, we dealt with infill estimation. We now consider that we
work with an infinite-horizon design. We aim at estimating the quantity Eµ(σ

2(X0, Y0)),
where (Zt := (Xt, Yt) ∈ R2 , t ≥ 0) is still governed by (1) and µ is the invariant measure,
supposed to exist. We thus have to introduce some new assumptions

• H3 There exists an (unique) invariant probability measure µ and the Pµ sta-
tionary process Z. is α-mixing with rate τ i.e. (in our markovian situation) there
exists a non-increasing function τ going to 0 at infinity such that for all u ≤ s, all
random variables F,G bounded by 1 s.t. F (resp. G) is Fu (resp. Gs) measurable
where Fu (resp. Gs) is the σ-algebra generated by Zv for v ≤ u (resp. v ≥ s), one
has

Covµ(f(Zu) g(Zs)) ≤ τ(s− u) .
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• H4 Define b(x, y) := − (c(x, y)y +∇V (x)). There exists some r ≥ 4 such that

Eµ(|b(Z0)|r) < +∞ and
∫ +∞

0
τ 1−(4/r)(t)dt < +∞.

We shall come back later to these assumptions, indicating sufficient conditions for them
to hold.

We introduce the following estimator

Kn =
3

2

1

(n− 1)h3n

n−1∑

p=1

∆2X(p, n) >< ∆2X(p, n) , (4.1)

where ∆2X(p, n) is the double increment of X defined in (3.1).

We now state the main result of this section:

Theorem 4.2. Assume that H0 up to H4 are satisfied. Assume in addition that
∫ +∞

1

t−1/2 τ 1/2(t)dt < +∞ .

Let hn be a sequence going to 0 such that nhn → +∞ and nh3n → 0.
Then, in the stationary regime,

√
2nhn

(
Kn − Eσ2(X0, Y0)

) D−−−−→
n→+∞

N , (4.3)

where N is a symmetric random matrix, with centered gaussian entries satisfying

Cov(Ni,j,Nk,l) =
1

2

∫ +∞

0

Eµ(σ̄
2
i,j(Z0) σ̄

2
k,l(Zs) + σ̄2

k,l(Z0)σ̄
2
i,j(Zs)) ds .

where σ̄2(z) = σ2(z)− Eµ(σ
2(Z0)).

Remark 1. In the case where σ is constant, this result is useless as the covariances are
all vanishing. ♦

Proof of Theorem 4.2:
From now on we assume that the assumptions H0 up to H4 are satisfied.

Of course since we are looking at the whole time interval up to infinity, it is no more
possible to use Girsanov theory to reduce the problem to c = V = 0. Hence, arguing as
for the statement of (3.9), and defining b(x, y) := − (c(x, y)y +∇V (x)), we get:

∆2X(p, n) =

∫ (2p+1)hn

(2p−1)hn

(hn − |u− 2phn|) (σ(Zu)dWu + b(Zu)du) .

We then define the semi-martingale (Ht , (2p− 1)hn ≤ t ≤ (2p+ 1)hn) by:

dHt = (h− |t− 2phn|)σ(Zt)dWt + (hn − |t− 2phn|)b(Zt)dt ,
H(2p−1)hn

= 0 .
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so that ∆2X(p, n) = H(2p+1)hn
. Using Ito’s formula we then have

(∆2X(p, n) >< ∆2X(p, n))i,j =

=

∫ (2p+1)hn

(2p−1)hn

(hn − |u− 2phn|) (H i
u (σ(Zu)dWu)

j +Hj
u (σ(Zu)dWu)

i) + (4.4)

+

∫ (2p+1)hn

(2p−1)hn

(hn − |u− 2phn|) (H i
u b

j(Zu) +Hj
u b

i(Zu))du

+

∫ (2p+1)hn

(2p−1)hn

(hn − |u− 2phn|)2 σ2
i,j(Zu) du .

We have a simple but useful estimate, available for all i = 1, ...d, all k ∈ N, all p and all
u between (2p− 1)hn and (2p+ 1)hn

Eµ(|H i
s|2k) ≤ C(k)(||σ||2k∞ (s−(2p−1)hn)

k h2kn +(s−(2p−1)hn)
2k h2kn (Eµ(|b(Z0)|2k)) . (4.5)

Indeed one can first use (a + b)2k ≤ C(k)(a2k + b2k), for positive numbers a, b which will
be here the absolute values of the martingale part and of the bounded variation part.
Then, if bu is stationary and hu bounded by h,

Eµ

((∫ t

0

bu hu du

)m)
≤ tm hm Eµ(b

m
0 ) ,

which can be used with m = 2k, t = (s−(2p−1)hn), bu = bi(Zu), hu = (hn−|u−2phn|) ≤
2hn. This gives the control for the bounded variation part. Finally using Burkholder-
Davis-Gundy inequality, we are reduced to the same control for the martingale part, this
time with m = k, hu = (hn − |u− 2phn|)2 ≤ 4h2n and |bu| ≤ ||σ||2∞.

Now we can decompose
Kn − Eµσ

2(Z0) = Kn,1 +Kn,2

with

Kn,1 =
3

2

1

(n− 1)h3n

n−1∑

p=1

{
∆2X(p, n) >< ∆2X(p, n) −

∫ (2p+1)hn

(2p−1)hn

(hn − |s− 2phn|)2σ2(Zs)ds

}

and

Kn,2 =
3

2

1

(n− 1)h3n

n−1∑

p=1

∫ (2p+1)hn

(2p−1)hn

(hn − |s− 2phn|)2
{
σ2(Zs)− Eµσ

2(Z0)
}
ds .

We shall look at both quantities separately, starting with Kn,2.
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4.1. Study of Kn,2.

Lemma 4.6. There exists some constant C only depending on the bounds of σ such that

Eµ

{
|Kn,2|2

}
≤ C

nhn

∫ +∞

0

τ(t) dt .

Proof.
4

9
Eµ

{(
Kn,2

)2
i,j

}
=

1

(n− 1)2h6n
n−1∑

p,q=1

∫ (2p+1)hn

(2p−1)hn

∫ (2q+1)hn

(2q−1)hn

(hn − |s− 2phn|)2(hn − |u− 2qhn|)2 Eµ

{
σ2

i,j(Zs)σ
2
i,j(Zu)

}
dsdu

≤ ||σ2||2∞
(n− 1)2h6n

n−1∑

p,q=1

∫ (2p+1)hn

(2p−1)hn

∫ (2q+1)hn

(2q−1)hn

(hn − |s− 2phn|)2(hn − |u− 2qhn|)2 τ(|s− u|) duds

≤ C||σ2||2∞
(n− 1)

+
C||σ2||2∞
(n− 1)2

∑

|p−q|≥2

τ(2(|p− q| − 1)hn) ≤
C||σ2||2∞
(n− 1)

+
C||σ2||2∞
(n− 1)

n−2∑

k=1

τ(2k hn) ,

≤ C||σ2||2∞
(

1

n− 1
+

1

(n− 1)hn

∫ +∞

0

τ(t) dt

)
,

with C some constant. We have used the fact that τ is non increasing for the final
inequality. �

The previous result indicates why the normalization
√
nhn has to be chosen. Now we

decompose again
Kn,2 = Kn,21 +Kn,22

by decomposing

σ2(Zs)− Eµσ
2(Z0) = σ2(Zs)− σ2(Z(2p−1)hn

) + σ2(Z(2p−1)hn
)− Eµσ

2(Z0) .

We thus have

Kn,22 =
1

2(n− 1)hn

n−1∑

p=1

∫ (2p+1)hn

(2p−1)hn

(σ2(Z(2p−1)hn
)− Eµσ

2(Z0)) ds

=
1

2(n− 1)hn

∫ (2n−1)hn

hn

(σ2(Zs)− Eµσ
2(Z0)) ds

+
1

2(n− 1)hn

n−1∑

p=1

∫ (2p+1)hn

(2p−1)hn

(σ2(Z(2p−1)hn
)− σ2(Zs)) ds

= Kn,222 +Kn,221 .

It follows that
√

2(n− 1)hn Kn,2 =
1√

2(n− 1)hn

∫ (2n−1)hn

hn

(σ2(Zs)−Eµσ
2(Z0)) ds+

√
2(n− 1)hn(Kn,221+Kn,21) ,
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the first summand being the important term the two others being error terms. We shall
show that these errors terms converge to 0 in L2. Indeed,

Eµ

(
(n− 1)2h2n (Kn,221)

2
i,j

)
≤ C

n−1∑

p,q=1

∫ (2p+1)hn

(2p−1)hn

∫ (2q+1)hn

(2q−1)hn

dsdu

Eµ

{
(σ2

i,j(Zs)− σ2
i,j(Z(2p−1)hn

))(σ2
i,j(Zu)− σ2

i,j(Z(2q−1)hn
))
}

so that, as for the proof of lemma 4.6, what has to be done is to control

Cov(σ2
i,j(Zs)− σ2

i,j(Z(2p−1)hn
), σ2

i,j(Zu)− σ2
i,j(Z(2q−1)hn

)) .

The problem is that, if we use the α-mixing we will not improve upon the bound in the
previous Lemma, since the uniform bound of these variables is still of order a constant.
However for Markov diffusion processes one can show (see e.g. Cattiaux, Chafäı and
Guillin (2012) lemma 4.2 and lemma 5.1, or Doukhan (1994) chapter 1, but the latter
result also easily follows from the Riesz-Thorin interpolation theorem) the following:

Lemma 4.7. Let F and G be as in the definition of the α-mixing except that they are
not bounded. Assume that F ∈ Lr(Eµ) and G ∈ La(Eµ) for some r and a larger than or
equal to 2. Then

Covµ(F,G) ≤ C min
(
τ

r−2

2r (s− u) ||F ||Lr ||G||L2 ; τ
a−2

2a (s− u) ||F ||L2 ||G||La

)
,

for some constant C depending on a and r only. One also has

Covµ(F,G) ≤ C τ
r−2

2r ((s− u)/2) τ
a−2

2a ((s− u)/2) ||F ||Lr ||G||La ,

for some constant C depending on a and r only.

Choosing F = σ2
i,j(Zs)−σ2

i,j(Z(2p−1)hn
) and G = σ2

i,j(Zu)−σ2
i,j(Z(2q−1)hn

), r = a, we see
that what we have to do is to get a nice upper bound for Eµ(|F |r). But

|σ2
i,j(Zs)− σ2

i,j(Z(2p−1)hn
)| ≤ K |Zs − Z(2p−1)hn

|
where K only depends on σ and its first derivatives. Using Burkholder-Davis-Gundy
inequality we thus have

Eµ(|F |r) ≤ C(hr/2n + hrn Eµ(|b(Z0)|r)) .
It follows that, provided Eµ(|b(Z0)|r) < +∞,

Cov(σ2
i,j(Zs)− σ2

i,j(Z(2p−1)hn
), σ2

i,j(Zu)− σ2
i,j(Z(2q−1)hn

)) ≤ C hn τ
1−(2/r)((|p− q| − 1)hn) ,

so that finally, as in the proof of Lemma 4.6 we get

Eµ

(
(n− 1)hn (Kn,221)

2
i,j

)
≤ C hn

(
1 +

∫ +∞

0

τ 1−(2/r)(t) dt

)
. (4.8)

Exactly in the same way we obtain the same result replacing Kn,221 by Kn,21.
It remains to look at

1√
2(n− 1)hn

∫ (2n−1)hn

hn

(σ2(Zs)− Eµσ
2(Z0)) ds .
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The asymptotic behavior of such additive functionals of stationary Markov processes
has been extensively studied. For simplicity we refer to the recent Cattiaux et al.
(2012) for an overview and a detailed bibliography. In particular, section 4 of this refer-
ence contains the following result (essentially due to Maxwell and Woodroofe), provided∫ +∞

1
t−1/2 τ 1/2(t) dt < +∞, the previous quantity converges in distribution to a centered

gaussian random variable, as soon as nhn goes to infinity. The calculation of the co-
variance matrix of these variables is done as in Cattiaux et al. (2012). We have thus
obtained

Proposition 4.9. Assume that H0 up to H4 are satisfied. Assume in addition that∫ +∞

1
t−1/2 τ 1/2(t)dt < +∞. Let hn be a sequence going to 0 such that nhn → +∞.

Then, in the stationary regime,
√
2(n− 1)hn Kn,2 converges in distribution to a symmetric

random matrix N , with centered gaussian entries satisfying

Cov(Ni,j,Nk,l) =
1

2

∫ +∞

0

Eµ(σ̄
2
i,j(Z0) σ̄

2
k,l(Zs) + σ̄2

k,l(Z0)σ̄
2
i,j(Zs)) ds .

4.2. Study of Kn,1.

Lemma 4.10. Assume that for some k ∈ N∗, Eµ(|b(Z0)|4k) < +∞ and that
∫ +∞

0
τ 1−(1/k)(t)dt <

+∞.
Then, there exists some constant C(k) such that for all i, j = 1, .., d,

Varµ

[(
Kn,1

)
i,j

]
≤ C(k)

n
.

Hence
Varµ

[√
nhn

(
Kn,1

)
i,j

]
→ 0 .

Proof. We write

∆2X(p, n) >< ∆2X(p, n) −
∫ (2p+1)hn

(2p−1)hn

(hn − |s− 2phn|)2σ2(Zs)ds =Mp,n + Vp,n

where M. (resp V.) denotes the martingale (resp. bounded variation) part. As usual we
use V̄ for the centered V − Eµ(V ). Hence

4

9
(n− 1)2 h6n Varµ

[(
Kn,1

)
i,j

]
=

n−1∑

p,q=1

Eµ(M
i,j
p,nM

i,j
q,n +M i,j

p,nV̄
i,j
q,n + V̄ i,j

p,nM
i,j
q,n + V̄ i,j

p,nV̄
i,j
q,n) .
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A lot of terms of this sum are vanishing, so that we get

4

9
(n− 1)2 h6n Varµ

[(
Kn,1

)
i,j

]
=

n−1∑

p=1

Eµ((M
i,j
p,n)

2 + 2V̄ i,j
p,nM

i,j
p,n + (V̄ i,j

p,n)
2)

+
n−1∑

p>q=1

Eµ(V̄
i,j
p,nM

i,j
q,n + 2 V̄ i,j

p,nV̄
i,j
q,n)

Using stationarity and (4.5) we get

Eµ((M
i,j
p,n)

2) =

∫ 2hn

0

(hn − |u− hn|)2 Eµ(σ
2
i,i(Zs)(H

j
s )

2 + σ2
j,j(Zs)(H

i
s)

2 + 2σ2
i,j(Zs)H

j
sH

i
s) ds

≤ C h6n (1 + hn Eµ(|b(Z0)|2)) .
Similarly

Eµ((V
i,j
p,n)

2) = Eµ

[(∫ 2hn

0

(hn − |u− hn|) (H i
u b

j(Zu) +Hj
u b

i(Zu))du

)2
]

≤ C h3n

∫ 2hn

0

Eµ(|b(Zu)|2)(H i
u)

2) du

≤ C h7n (Eµ(|b(Z0)|4))1/2 (1 + hn(Eµ(|b(Z0)|4))1/2) .
It follows that

n−1∑

p=1

Eµ((M
i,j
p,n)

2 + 2V̄ i,j
p,nM

i,j
p,n + (V̄ i,j

p,n)
2) ≤ C (n− 1)h6n .

Exactly in the same way one obtains that, for k ∈ N∗, provided Eµ(|b(Z0)|2k) < +∞,

Eµ(|M i,j
p,n|2k) ≤ C(k)h6kn

and provided Eµ(|b(Z0)|4k) < +∞,

Eµ(|V i,j
p,n|2k) ≤ C(k)h7kn .

Again we shall use Lemma 4.7 to control

Eµ(V̄
i,j
p,nM

i,j
q,n) = Covµ(V

i,j
p,n,M

i,j
q,n) and Eµ(V̄

i,j
p,nV̄

i,j
q,n) = Covµ(V

i,j
p,n, V

i,j
q,n) ,

and we obtain

Covµ(V
i,j
p,n,M

i,j
q,n) ≤ C h6n τ

(k−1)/k((p−q−1)/2) and Covµ(V
i,j
p,n, V

i,j
q,n) ≤ C h6n τ

(k−1)/k((p−q−1)/2)

provided respectively Eµ(|b(Z0)|2k) < +∞ and Eµ(|b(Z0)|4k) < +∞.

We have thus obtained
n−1∑

p>q=1

Eµ(V̄
i,j
p,nM

i,j
q,n + 2 V̄ i,j

p,nV̄
i,j
q,n) ≤ C (n− 1)h6n

∫ +∞

0

τ (k−1)/k(t) dt ,
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so that gathering all previous estimates we get the result. �

It remains to bound the expectation of
(
Kn,1

)
i,j
. But

Eµ

[(
Kn,1

)
i,j

]
=

3

2(n− 1)h3n

n−1∑

p=1

Eµ

[∫ (2p+1)hn

(2p−1)hn

(hn − |u− 2phn|) (H i
ub

j(Zu) +Hj
ub

i(Zu))du

]

=
3

2(n− 1)h3n
(An,1 + An,2)

with

An,1 =
n−1∑

p=1

Eµ

[∫ (2p+1)hn

(2p−1)hn

(hn − |u− 2phn|) (H i
ub

j(Z(2p−1)hn
) +Hj

ub
i(Z(2p−1)hn

))du

]
,

and
An,2 =

=
n−1∑

p=1

Eµ

[∫ (2p+1)hn

(2p−1)hn

(hn − |u− 2phn|) (H i
u(b

j(Zu)− bj(Z(2p−1)hn
)) +Hj

u(b
i(Zu)− bi(Z(2p−1)hn

)))du

]
.

An,2 can be studied exactly as we did before because bj(Zu) − bj(Z(2p−1)hn
) is centered.

To be more precise, instead of calculating An,2 we look at the L2 norm of the random
variable
n−1∑

p=1

∫ (2p+1)hn

(2p−1)hn

(hn−|u−2phn|) (H i
u(b

j(Zu)− bj(Z(2p−1)hn
))+Hj

u(b
i(Zu)− bi(Z(2p−1)hn

)))du

which is, thanks to the centering property, similar to the quantities we have studied in
the proof of Lemma 4.10, that is we can use the mixing property for the covariances. It
follows that

√
nhn

An,2

nh3
n
goes to 0.

Finally, using the semi martingale decomposition of Hu,

An,1 =
n−1∑

p=1

∫ (2p+1)hn

(2p−1)hn

(hn − |u− 2phn|) Eµ(H
i
ub

j(Z(2p−1)hn
) +Hj

ub
i(Z(2p−1)hn

))du

=
n−1∑

p=1

∫ (2p+1)hn

(2p−1)hn

∫ u

(2p−1)hn

(hn − |u− 2phn|)(hn − |v − 2phn|)

Eµ(b
i(Zv)b

j(Z(2p−1)hn
) + bj(Zv)b

i(Z(2p−1)hn
))dvdu

so that
|An,1| ≤ C nh4n (Eµ(|b(Z0)|2))2 .

Hence
√
nhn

An,1

nh3
n
goes to 0, provided nh3n → 0. This completes the proof of the Theorem.

�
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4.3. The σ constant case.
As we already remarked, if σ(x, y) is constant, Kn,2 = 0. The good normalization is then√
n. Indeed, in the previous proof we did not use the full strength of the bound

Eµ(|V i,j
p,n|2k) ≤ C(k)h7kn ,

furnishing some h
7/2
n instead of a h3n each time a bounded variation term appears. Hence

all terms will go to 0 except the two remaining terms:

• √
n An,1

nh3
n
≤ C (Eµ(|b(Z0)|2))2

√
nhn for which we need nh2n → 0,

• and the remaining martingale term
∫ (2p+1)hn

(2p−1)hn

(hn − |u− 2phn|)
∫ u

(2p−1)hn

(hn − |s− 2phn|)(σ(Zs)dWs)
i (σ(Zu)dWu)

j

in (4.4).

But since σ is constant, this is exactly the martingale term we encountered in subsection
3.1. We thus have obtained

Theorem 4.11. Assume that H0 up to H4 are satisfied and that σ is constant.
Let hn be a sequence going to 0 such that nhn → +∞ and nh2n → 0.
Then, in the stationary regime,

√
n
(
Kn − σ2

) D−−−−→
n→+∞

σN(d,d) σ , (4.12)

where N(d,d) is as in Lemma 3.3.

4.4. About H3 and H4.
As we promised we come back to the conditions H3 and H4. Actually in full generality
very few is known. All known results amounts to the existence of some Lyapunov function
(see e.g. Wu (2001) Theorem 2.4) i.e. some non negative function ψ satisfying −Lψ ≥ λψ
at infinity for some λ > 0. In this case τ has an exponential decay and the invariant
measure exponential moments, so that H3 and H4 are satisfied provided b has some
polynomial growth. General (and not really tractable) conditions for the existence of ψ
are discussed in Wu (2001) sections 3 and 4. One can also relax the Lyapunov control as
in Douc et al. (2009).

Tractable conditions are only known when σ is constant. They are recalled in Cattiaux
et al. (2014) (see hypotheses H1 and H2 therein, based on Wu (2001) and Bakry et al.
(2008)). Mainly, one has to assume that c and V have at most polynomial growth and
that < x,∇V (x) > is positive enough at infinity, for instance

< x,∇V (x) >≥ λ|x|
at infinity.
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5. Examples and numerical simulation results

In this section we want to illustrate some of the main results of the paper. We start
with the Itô stochastic differential equation defined by (1):

{
dXt = Ytdt
dYt = σ(Xt, Yt) dWt − (c(Xt, Yt)Yt +∇V (Xt))dt.

More precisely, we first consider an harmonic oscillator that is driven by a white noise
forcing:

dXt = Ytdt

dYt = σ dWt − (κYt +DXt)dt (5.1)

with κ > 0 and D > 0. For this model we know that the stationary distribution is
Gaussian, with mean zero and an explicit variance matrix given in e.g. Gardiner (1985).

For this example, the diffusion term is constant, equal to σ. Recall that the infill
estimator with T = 1 is defined by (3.2):

σ̂2
n =

1

[ 1
2hn

]− 1

3

2h3n

[ 1

2hn
]−1∑

p=1

(
X(2p+1)hn

− 2X2phn
+X(2p−1)hn

)2
.

As the model satisfies assumptions H0, H1 and H2, we know from Corollary 3.6 that if
hn −−−−→

n→+∞
0, starting from any initial point z = (x, y),

√
1

2hn

(
σ̂2
n − σ2

) S−−−−→
n→+∞

N (0, 2 σ4) .

A 95% asymptotic confidence interval for σ2 is thus defined as:

CI95%(σ
2) =

[
σ̂2
n − 1.96

√
2σ̂2

n

√
2hn , σ̂

2
n + 1.96

√
2σ̂2

n

√
2hn

]
.

In the following, we approximate the solution of (5.1) by an explicit Euler scheme. We
choose hn = n−γ, γ > 0, κ = 2 and D = 2. Then, for different values of n and γ, we
compute M = 1000 realizations of σ̂2

n. On these M realizations we compute the empirical

relative mean squared error defined by RMSE = 1
M

∑M
j=1

(
σ̂2,j
n −σ2

σ2

)2
, as far as the em-

pirical coverage of the 95% confidence interval defined as ECOV = 1
M

∑M
j=1 1σ2∈CI

j

95%
(σ2).

The results are summarized in Table 2 below.
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σ γ n RMSE ECOV
1 0.5 100 0.47 0.85
1 0.5 1000 0.13 0.92
1 0.5 104 0.04 0.93
1 0.7 100 0.19 0.90
1 0.7 1000 0.03 0.94
1 0.7 104 0.006 0.95
2 0.5 100 2.03 0.86
2 0.5 1000 0.53 0.91
2 0.5 104 0.15 0.94
2 0.7 100 0.72 0.91
2 0.7 1000 0.13 0.94
2 0.7 104 0.02 0.95

Table 1. Infill estimation, empirical relative mean squared error (RMSE)
and empirical coverage (ECOV) of the 95% confidence interval with hn =
n−γ, M = 1000 realizations of the estimator, and for different values of n,
γ and σ.

As expected, the more γ is high, the more fast is the convergence. The speed of
convergence also depends (through a constant term in the asymptotic variance) on the
unknown value of σ2.

We now consider for the same model the infinite-horizon estimation. Model (5.1) satis-
fies assumptions H0 up to H4. Thus, if hn −−−−→

n→+∞
0, nhn −−−−→

n→+∞
+∞ and nh2n −−−−→

n→+∞
0,

then through Theorem 4.11 we have:
√
n
(
Kn − σ2

) D−−−−→
n→+∞

N (0, 2σ4) ,

with Kn = 3
2

1
(n−1)h3

n

∑n−1
p=1

(
X(2p+1)hn

− 2X2phn
+X(2p−1)hn

)2
. A 95% asymptotic confi-

dence interval for σ2 is thus defined as:

CI95%(σ
2) =

[
Kn − 1.96

√
2Kn√
n

, Kn + 1.96

√
2Kn√
n

]
.

In the following, we approximate the solution of (5.1) by an explicit Euler scheme. We
choose hn = n−γ, γ > 0, κ = 2 and D = 2. Then, for different values of n and γ, we
computeM = 1000 realizations of Kn. On theseM realizations we compute the empirical

relative mean squared error defined by RMSE = 1
M

∑M
j=1

(
Kj

n−σ2

σ2

)2
, as far as the em-

pirical coverage of the 95% confidence interval defined as ECOV = 1
M

∑M
j=1 1σ2∈CI

j

95%
(σ2).

The results are summarized in Table 2 below.
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σ γ n RMSE ECOV
1 0.5 100 0.022 0.890
1 0.5 500 0.005 0.917
1 0.5 1000 0.002 0.923
1 0.7 100 0.019 0.942
1 0.7 500 0.004 0.947
1 0.7 1000 0.002 0.949
2 0.5 100 0.084 0.892
2 0.5 500 0.017 0.921
2 0.5 1000 0.008 0.933
2 0.7 100 0.085 0.926
2 0.7 500 0.018 0.936
2 0.7 1000 0.008 0.947

Table 2. Infinite-horizon estimation, empirical relative mean squared error
(RMSE) and empirical coverage (ECOV) of the 95% confidence interval
with hn = n−γ, M = 1000 realizations of the estimator, and for different
values of n, γ and σ.

As expected, we observe that the rate of convergence does not depend on γ. The result
of Theorem 4.11 has to be compared to the one in Theorem 2 in Samson and Thieullen
(2012). In Samson and Thieullen (2012), the estimator is obtained by minimizing a
contrast. More precisely, the authors in Samson and Thieullen (2012) define the contrast
to minimize as:

Ln(σ
2) =

n−2∑

p=1

3

2

(
X(p+1)hn

− 2Xphn
+X(p−1)hn

)2

h3nσ
2

+ (n− 2) log(σ2) ,

and they obtain

σ̃2
n =

3

2

1

n− 2

n−2∑

p=1

(
X(p+1)hn

− 2Xphn
+X(p−1)hn

)2

h3n
.

They obtain the same rate of convergence but with the asymptotic variance equal to 9
4
σ4.

Our definition (3.1) of the double increment of X, which is different from theirs, allows
to recover the asymptotic variance 2 σ4 they get for the case of complete observations. In
the present paper, we do not study the optimality of the estimators. It is naturally a very
interesting problem, which, for the model under study is still open.

We now consider a variant of Model (5.1) in which we consider a diffusion term which
is non constant. We are only considering the infill estimation as it is not really tractable
to construct a model with a non constant diffusion term satisfying assumptions H3 and
H4, as already mentioned in Section 4.4.

More precisely, we consider the following model:

dXt = Ytdt

dYt = σ exp

(
1

X2
t + 1

)
dWt − (κYt +DXt)dt. (5.2)
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In that case, the infill estimator is defined as:

QVhn
(1) =

1

h2n

[ 1

2hn
]−1∑

p=1

(
X2p+1)hn

− 2X2phn
+X(2p−1)hn

)2
.

Model (5.2) satisfies assumptions H0, H1 and H2. Thus, if hn −−−−→
n→+∞

0, we get from

Theorem 3.8:√
1

hn

(
QVhn

(1)− σ2

3

∫ 1

0

exp

(
2

X2
s + 1

)
ds

)
S−−−−→

n→+∞

2σ2

3

∫ 1

0

exp

(
2

X2
s + 1

)
dW̃s ,

where
(
W̃t , t ∈ [0, T ]

)
is a Wiener process independent of the initial Wiener process W.,

with variance equal to 2.
In the following, we choose hn = n−γ with γ = 0.7. We compute M = 1000 realizations

of the estimator QVhn
(1) and M = 1000 realizations of the limit σ2

3

∫ 1

0
exp

(
2

X2
s+1

)
ds.

This integral is approximated by a quadrature formula with the rectangle rule.
We consider two cases: for the first one, n = 105, κ = 2, D = 2 and σ = 1, for the second

one n = 104, κ = 2, D = 2 and σ = 0.5 We compute for each case the empirical relative
mean squared error (RMSE) and we draw (see Figures 1 and 2) both the histogram of
the estimator and the one of the limit integral for the M = 1000 realizations.
We get for both cases RMSE = 0.05. As γ = 0.7 is the same for both cases, and as

n = 105 for the first case and n = 104 for the second one, it proves that the asymptotic
variance is smaller for the second case.
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Figure 1. Histograms on M = 1000 realizations of the estimator and of
the limit integral, n = 105, σ = 1, hn = n−0.7.
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0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
0

50

100

150

200

250

(a)

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
0

50

100

150

200

250

(b)

Figure 2. Histograms on M = 1000 realizations of the estimator and of
the limit integral, n = 104, σ = 2, hn = n−0.7.

The histograms in Figures 1 and 2 are similar. However we note that we have a
boundary effect for the upper tail in both cases, probably due to the approximation of
the limit integral by a quadrature rule.
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Probabilités et Statistiques 29 (1), p. 119-151.

A. Gloter (2006). Parameter estimation for a discretely observed integrated diffusion
process. Scandinavian Journal of Statistics 33 (1), p. 83-104.

J. Jacod (2008). Asymptotic properties of realized power variations and related
functionals of semimartingales. Stoch. Processes and Appl. 118 , p. 517-559.

J. Jacod and P. Protter (1998). Asymptotic error distributions for the Euler method for
stochastic differential equations. Ann. Probab. 26 (1), p. 267-307.

P. Malliavin and E. Mancino (2009). A Fourier transform method for nonparametric
estimation of multivariate volatility. Ann. of Stat. 37 (4),p. 1983-2010.

M. Podolskij, and M. Vetter (2010). Understanding limit theorems for semimartingales:
a short survey. Stat. Neerl. 64 (3), p. 329-351.

Y. Pokern, A. Stuart and P. Wiberg (2009). Parameter estimation for partially observed
hypoelliptic diffusions. J. Roy. Stat. Soc. B 71, p. 49-3.

A. Samson and M. Thieullen (2012). Contrast estimator for completely or partially
observed hypoelliptic diffusion. Stoch. Processes and Appl. 122 (7), p. 2521-2552.

L. Wu (2001).Large and moderate deviations and exponential convergence for stochastic
damping Hamiltonian systems. Stoch. Processes and Appl. 91, p. 205-238.
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