
HAL Id: hal-01044603
https://hal.science/hal-01044603v1

Submitted on 23 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Linear instability, nonlinear instability, and ligament
dynamics in three-dimensional laminar two-layer

liquid/liquid flows
Lennon O Naraigh, Prashant Valluri, David M. Scott, Iain Bethune, Peter

D.M. Spelt

To cite this version:
Lennon O Naraigh, Prashant Valluri, David M. Scott, Iain Bethune, Peter D.M. Spelt. Linear instabil-
ity, nonlinear instability, and ligament dynamics in three-dimensional laminar two-layer liquid/liquid
flows. Journal of Fluid Mechanics, 2014, 750, pp.464-506. �10.1017/jfm.2014.274�. �hal-01044603�

https://hal.science/hal-01044603v1
https://hal.archives-ouvertes.fr


Under consideration for publication in J. Fluid Mech. 1

Linear instability, nonlinear instability, and
ligament dynamics in three-dimensional
laminar two-layer liquid/liquid flows
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We consider the linear and nonlinear stability of two-phase density-matched but viscosity-
contrasted fluids subject to laminar Poiseuille flow in a channel, paying particular atten-
tion to the formation of three-dimensional waves. A combination of Orr–Sommerfeld–
Squire analysis (both modal and non-modal) with direct numerical simulation of the
three-dimensional two-phase Navier–Stokes equations is used. For the parameter regimes
under consideration, under linear theory, the most unstable waves are two-dimensional.
Nevertheless, we demonstrate several mechanisms whereby three-dimensional waves en-
ter the system, and dominate at late time. There exists a direct route, whereby three-
dimensional waves are amplified by the standard linear mechanism; for certain parameter
classes, such waves grow at a rate less than but comparable to that of most-dangerous
two-dimensional mode. Additionally, there is a weakly nonlinear route, whereby a purely
spanwise wave grows according to transient linear theory and subsequently couples to a
streamwise mode in weakly nonlinear fashion. Consideration is also given to the ultimate
state of these waves: persistent three-dimensional nonlinear waves are stretched and dis-
torted by the base flow, thereby producing regimes of ligaments, ‘sheets’, or ‘interfacial
turbulence’. Depending on the parameter regime, these regimes are observed either in
isolation, or acting together.

1. Introduction

Two-layer channel flows are a useful model for several industrial systems, including
oil/gas transport and the cleaning of surfaces by flow. A large body of literature is de-
voted to the linear theory of infinitesimally small perturbations in these flows, mostly
on (periodic) two-dimensional perturbations in the streamwise and wall-normal direc-
tions of a uni-directional base state. The subject of this paper is the route by which
three-dimensional small-amplitude waves eventually leads to wave overturning, ligament
formation and droplet entrainment allowing for flows that are not periodic in the main
flow direction. We concentrate herein on density-matched laminar systems, representa-
tive of liquid/liquid flows, with the view that the additional effects of a density contrast
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is best studied subsequently; a viscosity contrast is anyway usually present in gas/liquid
systems, and is known often to produce the dominant mechanism for linear instability,
as recalled below. Our objective is accomplished using a high-resolution direct numerical
simulation of two-phase density-matched but viscosity-contrasted flows in a long channel.
One possible route to droplet formation is a purely linear one: a single linear mode

dominates and holds up to a very late stage before ligament formation. Prior work on
linear stabililty analysis of two-layer channel flows has been mostly on two-dimensional
systems, within the framework of Orr–Sommerfeld theory. Results obtained with two-
dimensional nonlinear direct numerical simulations in Valluri et al. (2007, 2010) follow
linear theory up to a point close to the turnover of waves. Linear stability analysis has
revealed that the dominant mechanism that leads to linear temporal growth is the so-
called Yih mechanism (Yiantsios & Higgins 1988), due to the viscosity contrast across
the interface (Yih 1967). Viscosity stratification leads to net work being done by the
perturbation velocity and stress at the interface. By using an energy budget, Boomkamp
& Miesen (1996) verified that this mechanism plays an important role in many papers on
interfacial instability. Other mechanisms for instability are also conveniently summarized
by Boomkamp & Miesen (1996). Of particular importance for laminar two-layer flow here
also is a Tollmien–Schlichting or shear-type mechanism (possibly in both fluids). Com-
petition between shear modes and the Yih mode has been observed for particular choices
of flow parameters (Yecko et al. 2002). The extension of the modal analysis to three-
dimensional disturbances, although not straightforward in view of the fact that Squire’s
theorem does not necessarily apply (Yiantsios & Higgins 1988), shows that the dominant
mode is two-dimensional in a wide range of multiphase flow situations, albeit that for
some parameter values large-amplitude three-dimensional waves might result (Sahu &
Matar 2011).
The present work is focused on laminar pressure-driven channel flow where both

viscosity-contrast modes and shear modes are present (as in the classification of Boomkamp
& Miesen (1996)). For completeness we mention briefly the mechanism of Miles (1957)
that pertains in turbulent flows. There, the transfer of energy from the mean flow into
the wave perturbations is governed by the sign of the second derivative of the base-state
flow at the critical layer – the height where the wave speed and the base-state velocity
match. For viscosity-driven instabilities (exemplified by the study of Yih (1967)), the
critical layer plays no role in the generation of instability, despite re-emerging as an
important factor in the case of miscible systems: for a continuously-stratified viscosity
profile, Craik (1969) showed for a Couette-type flow, the viscosity stratification induces
a curvature in the velocity profile which, if negative at the critical layer, promotes insta-
bility. We emphasize however that the present work is focused exclusively on immiscible
systems with a piecewise constant viscosity profile. The reader is referred to the review
by Govindarajan & Sahu (2014) for a more in-depth discussion of miscible flows, as well
as three-layer viscosity stratification.
In practice, disturbances are expected initially to be localized, and modal temporal

stability analysis may be of restricted value, as the manner whereby such initially lo-
calized pulses are amplified should really be considered in linearly unstable cases: either
amplification in at least one moving frame of reference and damping in the labora-
tory frame (convective instability), or growing disturbances in the entire domain in the
laboratory frame (absolute instability). To determine absolute instability from the Orr–
Sommerfeld theory for the two-dimensional model, the saddle-point method was used
initially in Valluri et al. (2010); Ó Náraigh et al. (2013) but difficulties arose due to the
presence of singularities in the complex wavenumber plane and due to spatio-temporal
mode competition. It was therefore necessary to confirm independently the boundaries
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between convectively and absolutely unstable cases in parameter space. For this purpose,
an alternative approach was developed in by Ó Náraigh et al. (2013) wherein the Orr–
Sommerfeld eigenvalue problem was converted into a Cauchy problem such that highly-
efficient DNS of the linearized equations of motion can be performed, and the evolution
of an initially-localized pulse tracked (the so-called ray-analysis approach, based on ear-
lier work on single-phase flows (Delbende & Chomaz 1998; Delbende et al. 1998)). Using
this approach, the evolution of a pulse in an arbitrary frame of reference travelling at
velocity v with respect to the laboratory frame can be tracked, and the pulse growth
rate obtained as a function of v, from which the convectively or absolutely unstable na-
ture of instability can then be concluded. The existing evidence (Sahu & Matar 2011)
is that allowing for three-dimensional disturbances does not significantly move convec-
tive/absolute boundaries here.
The extent to which such linear theory governs three-dimensional wave growth has

not yet been established. Furthermore, the growth rates from a modal linear analysis
are merely asymptotic (i.e. valid in the notional limit as t → ∞ but before the onset
of nonlinear effects). Effects not captured by a modal analysis can be present at early
times and lead to substantial transient growth because the Orr–Sommerfeld equation is
non-normal and the eigenfunctions of a given mode are not orthogonal. In this way, the
growth of an arbitrarily-chosen initial condition containing a mixture of Orr–Sommerfeld
eigenmodes can produce transient growth rates that are orders of magnitude in excess of
the asymptotic growth rates computed from the standard eigenvalue analyses. Transient
growth has been reported for the two-dimensional two-layer channel-flow problem (van
Noorden et al. 1998) and for transverse modes in a two-layer mixing layer (Yecko &
Zaleski 2005).
Various nonlinear mechanisms may eventually become dominant. For instance, the

linearly-most-dangerous streamwise mode may interact weakly nonlinearly with spanwise
modes, and the evolution of the spanwise modes is ‘slaved’ via a centre-manifold-type
approximation to the streamwise spanwise mode. For generic references to this theory, see
the work by Schmid & Henningson (2001). A specific version of this theory also exists, but
concerns only streamwise (two-dimensional) modes in the context of a longwave model
that only approximates the underlying equations of motion (Barthelet et al. 1995). An
extension of this approach has been carried out by King &McCready (2000), and accounts
for a range of of weakly nonlinear interactions between a wide variety of modes that are
strongly excited in the linear theory. The work by King & McCready (2000) is based
on the full linearized Navier–Stokes equations, but is still focused only on streamwise
(two-dimensional) modes.
The linearly-most-dangerous streamwise mode may stabilize at large amplitude and

thereafter, a finite-amplitude unidirectional travelling wave superimposed on the base
state is treated as a ‘new’ base state. This new base state may be unstable to three-
dimensional perturbations. Typically, secondary growth rates are computed via Floquet
analysis (Schmid & Henningson 2001). For gas/liquid jet flows, such a route has been iden-
tified by Marmottant & Villermaux (2004), involving a secondary instability of Rayleigh–
Taylor type. Although the present study is on density-matched systems, ligament growth
is observed in the results below, such that there must be mechanisms other than the
Rayleigh–Taylor instability at work here.
Once a wave has overturned to form a ligament, various scenarios may lead to droplets.

A tentative study of three-dimensional two-phase mixing-layer flow by Scardovelli & Za-
leski (1999) found that initial conditions corresponding to two-dimensional linear theory
cause the interface to develop into ‘sheets’, which break to form cylinders that subse-
quently break up due to capillary instability. On the other hand, for initial conditions that
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are sufficiently far from the description given by linear theory, spanwise waves were found
to develop on the sheet edges that further develop into cylinders – this time pointing in
the streamwise direction - which then break up. Sheets and ligaments are observed in jet
breakup as well as in two-layer flows, with sheets often inflated resulting in a bag-type
shape in gas/liquid systems (e.g. the work by Marmottant & Villermaux (2004)).
Various governing mechanisms of the evolution of three-dimensional sheets and liga-

ments have been identified. In the work by Marmottant & Villermaux (2004), a simple
force balance was proposed as a model of ligament dynamics in gas-assisted jet breakup:
mainly form drag exerted by the gas flow was argued to lead to an increase in momentum
of the ligament. A different mechanism has been identified in breakup of droplets pinned
on an adhering surface by shear flow in density-matched systems: there, the work done by
the tangential stress exerted by the exterior fluid is converted into surface energy (Ding
et al. 2010).
This paper is organized as follows. After an overview of methodology and validation

tests in Section 2, and an outline of the pertinent general behaviour of modal and non-
modal linear growth in Section 3, we use direct numerical simulations of channel flows
in a periodic domain in Section 4 to establish to what extent linear theory is followed,
or whether a non-linear mechanism becomes significant before the turnover of waves. In
Section 5 we investigate ‘open’ domains (with an inlet and an outlet). Ligament dynam-
ics are investigated in Section 6, wherein we also report a transition to a highly-agitated
flow regime. Concluding remarks are presented in Section 7.

2. Problem statement and computational methodologies

In this section we present the problem statement and the computational methodologies
used in this study, which are linear theory and direct numerical simulation (DNS) of the
fully nonlinear governing equations, using the twophase levelset solver (TPLS).

2.1. Problem statement

Throughout this paper, we study the two-phase Navier–Stokes equations, in a rectangular
Cartesian frame (x, y, z) in a channel geometry [0, Lx] × [0, Ly] × [0, Lz]. We fix Lz = 1
in the nondimensional framework described below. We are interested in density-matched
pressure-driven channel flow, for which an equilibrium configuration is unidirectional
two-phase Poiseuille flow, wherein the phases are confined in two layers parallel to the
direction of flow. Either the pressure gradient or the flow rate is fixed. We therefore
assign labels j = B, T to the fluid layers, and consider the case in which the bottom layer
contains the more viscous fluid. The dimensionless physical parameters in the problem are
the Reynolds number Re = ρTV Lz/µT , the viscosity ratiom = µB/µT (bottom/top), the
surface-tension parameter (inverse capillary number) S = γ/(µTV ). Here, γ denotes the
(dimensional) surface tension. Across interfaces separating the two phases, the following
standard jump conditions are satisfied:

Jn̂ ·
[
−pI+ µj

(
∇uj +∇uT

j

)]
K · t̂(r) = 0, Jn̂ ·

[
−pI+ µj

(
∇uj +∇uT

j

)]
· n̂K = Sκ,

(2.1)
where n̂ is a normal vector to the interface (pointing from j = B to j = T ), and t̂(1)

and t̂(2) are the tangent vectors. The brackets J·K denote the jump condition across the
interface ((j = T ) − (j = B)), and κ denotes the interfacial (mean) curvature. Note
that for large-amplitude non-equilibrium situations (characterized by wave overturning
and droplet entrainment), the notion of ‘top’ and ‘bottom’ fluids becomes ambiguous.
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Figure 1. Definition sketch showing the open-flow case. Periodic conditions are used in the
y-direction. The interface shown is a result of a simulation that is discussed in Section 6 (the
interface has been coloured by the local height of the interface location).

However, the ambiguity is removed by identifying j = T with the less viscous fluid and
j = B with its more viscous counterpart.
Boundary conditions are required to close the system of equations. Bounding walls with

the implied no-slip boundary conditions are introduced at z = 0 and z = Lz. Inlet/outlet
boundary conditions (’open flow’) are imposed in the streamwise (x-) direction, and
periodic boundary conditions in the spanwise (y-) direction: at the inlet, the velocity
field is prescribed as u(x = 0) = (U0(z), 0, 0), and at the outlet, ∂xu = 0. Here U0(z) is a
prescribed inlet condition, the mean value of which sets the velocity scale V . Throughout
this paper, the inlet condition is taken to be Poiseuille flow-profile obtained by computing
the steady flat-interface solution of the Navier–Stokes equations for a particular flat-
interface height h0. At times, we also make use of periodic boundary conditions in the
x-direction. Finally, the system is perturbed either through initial conditions or through
a forcing localized in space; details of these are presented together with the linear and
nonlinear simulation techniques in the subsequent subsections. A definition sketch for
the open-flow case is shown in Figure 1; the periodic case is similar.

2.2. Linear theory

Linear theory is used in subsequent sections to study the early-time development of three-
dimensional disturbances. It is shown that some of the characteristics of the linear regime
are retained at later times by the subsequent nonlinear regime, thereby underscoring the
importance of understanding fully the initial linear phase of the wave development. In lin-
ear theory, small-amplitude disturbances grow or decay exponentially, with growth rates
and phase speeds determined from a modal Orr–Sommerfeld–Squire (OSS) eigenvalue
analysis. The idea behind this approach is to linearize the equations of motion around
a steady base state corresponding to uni-directional flow, to reduce the linearized equa-
tions down to an equation pair involving the wall-normal velocity and vorticity, and to
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Laplace–Fourier transform the resulting linear differential-algebraic equation. The trans-
formed problem is recalled here in generic terms as follows:

λ

(
MOS 0
MC MS

)(
w̃αβ(z, λ)
ω̃z,αβ(z, λ)

)
=

(
LOS 0
LC LS

)(
w̃αβ(z, λ)
ω̃z,αβ(z, λ)

)
, (2.2)

where LOS depends on wavenumbers and the wall-normal derivative, LOS = LOS [iα, iβ, ∂z],
and similarly for the other operators. Here, following standard notation, α denotes a
wavenumber in the streamwise direction and β denotes a wavenumber in the spanwise
direction. Also, the base state implicit in Equation (2.2) is the analytically-computed
Poiseuille profile got from the Navier–Stokes equations by balancing the pressure drop
with the viscous stress. For wall-bounded flows, solution of Equation (2.2) for the eigen-
value λ gives a discrete family of eigenvalues for each Fourier mode, {λn(α, β)}

∞
n=0. The

growth rate is then determined by the eigenvalue with the largest real part. In fact, this
approach is rather standard and is not discussed further here (but see Sahu & Matar
(2011) and Appendix A; the analytic base state is also provided in the same appendix).
The eigenvalue probem (2.2) can be viewed as the Laplace-transform of a differential-

algebraic equation, the asymptotic solution of which picks out the most-dangerous eigen-
mode of Equation (2.2). However, at finite times, a combination of modes can combine
to produce transient growth rates in excess of the asymptotic most-dangerous expo-
nential growth rate. This is possible because the eigenfunctions of Equation (2.2) are
non-orthogonal, which is due in turn to the non-normality of the operators in the same
equation (Trefethen et al. 1993; Schmid & Henningson 2001). The resulting transient
growth is captured by the maximum amplification factor

Gαβ(t) = sup ∥ (wαβ(z, t), ωz,αβ(z, t)) ∥E , (2.3)

where ∥ · ∥E denotes the energy norm (Schmid & Henningson 2001; van Noorden et al.

1998), and where the supremum is taken over all possibile states (wαβ(t), ωαβ(t)) whose
energy norm at t = 0 is unity. Computation of the maximum amplification factor is
standard, and is carred out in this work in a manner similar to that used by Yecko &
Zaleski (2005).

2.3. Nonlinear DNS

Beyond linear theory, DNS of the Navier–Stokes equations is used in the following,
through the stage of overturning waves, ligament formation and up to the point of droplet
entrainment. A levelset method is utilized with a continuous surface tension model (Suss-
man & Fatemi 1998). In this levelset formalism, the basic Navier–Stokes equations for
density-matched fluids are modelled as

(
∂u

∂t
+ u · ∇u

)
= −∇p+

1

Re
∇ ·

[
µ
(
∇u+∇uT

)]
+ δϵ(ϕ)Sn̂∇ · n̂, (2.4a)

∇ · u = 0, (2.4b)

n̂ =
∇ϕ

|∇ϕ|
,

∂ϕ

∂t
+ u · ∇ϕ = 0. (2.4c)

Here, ϕ(x, t) is the levelset function indicating in which phase the point x lies (ϕ < 0 in
the bottom layer, ϕ > 0 in the top layer). The (possibly multivalued) interface η(x, t) is
therefore the zero level set, ϕ(x, t) = 0 =⇒ x = (x, y, η(x, y, t)). Moreover, the levelset
function determines the unit vector normal to the interface (n̂), as well as the viscosity,
via the relation µ = m (1−Hϵ(ϕ)) +Hϵ(ϕ). The function Hϵ(ϕ) is a regularized Heavi-
side function, which is smooth across a width ϵ = 1.5∆x. Finally, δϵ(s) = dHϵ(s)/ds is a
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regularized delta function supported on an interval [−ϵ, ϵ]. The delta function δϵ(s) is im-
plemented either via an analytical expression for dHϵ(s)/ds , or through finite-differencing
of Hϵ(·). For the problem under consideration, both approaches yield identical results.
The details of the numerical method are discussed below under several headings.
Grid structure, momentum treatment: The velocities and pressure are discretized on

an isotropic MAC grid, with velocities defined at cell faces and pressures defined at cell
centres, and grid spacing ∆z; the timestep is denoted by ∆t. The convective derivative
is treated using a third-order Adams–Bashforth scheme (Boyd 2001). The momentum
fluxes are treated in a flux-conservative fashion, and the derivatives in the momentum
term in the ith direction in Equation (2.4a) are written as follows:

∂x (µ∂xui) + ∂y (µ∂yui) + ∂z (µ∂zui)︸ ︷︷ ︸
=Di

+ ∂x (µ∂xi
u) + ∂y (µ∂xi

v) + ∂z (µ∂xi
w)︸ ︷︷ ︸

=Ci

, (2.5)

such that each derivative in the sum can be approximated numerically as a difference
taken between two cell faces, thereby accurately taking account of the momentum flux be-
tween cells. The expression (2.5) is discretized in time using a Crank–Nicolson treatment
for the second-order manifestly diffusive terms Di and a third-order Adams-Bashforth
treatment for the leftover terms Ci:

1
2

(
Dn+1

i +Dn
i

)
+ 23

12C
n
i − 4

3C
n−1
i + 5

12C
n−2
i , (2.6)

where n here denotes the nth timestep in the simulation. Several other methods for
implementing the finite-differencing of the momentum term were attempted, but the
method described here proved to be the best at capturing the stress profile across the
interface.
Pressure treatment, operator inversions, levelset advection: The pressure and asso-

ciated incompressibility constraint are treated using the projection method. Both the
implicit momentum step and the pressure correction step call for Helmholtz’s equation
and Poisson’s equation, respectively. For the Helmholtz step, successive over-relaxation
is used. For the Poisson step, we experimented with two methods: successive over-
relaxation, or GMRES with a block-Jacobi preconditioner, which was implemented using
the PETSc library. The two methods yielded identical results, albeit that the code’s per-
formance was substantially improved under GMRES (Scott et al. 2013a). Finally, the
levelset function ϕ is advected using a third-order WENO scheme (Ding et al. 2007), and
the resulting updated levelset function is reinitialized using a Hamilton–Jacobi equation
and the algorithm of Russo & Smereka (2000). The maximum curvature is limited to
1/∆z.
Practical implementation: The numerical method is coded in Fortran 90 for implemen-

tation on a distributed/shared-memory architecture, using a combination of OpenMP
and MPI (Gropp et al. 1994). The code is run on a supercomputer in which the basic
processor is an AMD Opteron 2.3GHz Interlagos processor. For a typical simulation 1024
such processors were used for 12 hours. The source code (‘TPLS’) of the GMRES version
is available under an open-source license (Scott et al. (2013b)).
This approach resolves large changes in interfacial topology with only a small amount of

mass loss. Specifically, for a typical simulation (P3, Table 2), we computed maxt |VB(t)−
VB(0)|/VB(0) = 4%, where VB(t) denotes the volume of the ‘bottom’ phase at time t,
and the maximum is taken over the full duration of the simulation. The mass loss in
other simulations was similar. We have not found evidence of any parasitic currents in
the simulations. These can arise in levelset methods because of the small-scale smoothing
of the viscosity profile and the implementation of the continuum surface force (Meland
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Figure 2. Validation of DNS against separate semi-analytical Orr–Sommerfeld description: (a)
shows the L2 norm of the perturbation w-velocity, and therefore exhibits the wave growth rate;
(b) shows the perturbation w-velocity at a particular location and therefore demonstrates the
wave period; (c) is a plot of the streamfunction normalized as shown in the caption to make
contact with OS theory.

et al. 2007); their absence may be anticipated by the large streamwise velocities and rapid
instability timescales that are present in the current problem. Comparisons of our results
with the quasi-analytic linear theory in Section 2.2 demonstrate that the standard levelset
method maintains accuracy with respect to the basic physical model in Equation (2.1).
Unless indication is given to the contrary, a grid spacing ∆z = 1/160 is used throughout
this work. This choice is checked on a case-by-case basis using the following tests: first,
with ∆z = 1/160, the full DNS solver reproduces the results of quasi-analytical Orr–
Sommerfeld theory (e.g. Section 2.4). Also, the key nonlinear features (large-amplitude
waves, wave overturning, ligaments) are virtually identical for ∆z = 1/160, 1/225. Finally,
the timestep is chosen such that the advective CFL number based on the maximum base-
state velocity U0(z) is at most 0.2. For the small surface-tension parameters considered
throughout this work, timesteps that satisfy the advective CFL criterion automatically
satisfy the capillary-wave CFL condition. Note also: although not all the momentum
terms are treated in a Crank–Nicolson way (see Equation (2.6)), for the parameters
under consideration, the numerical stability of the code was not affected by the diffusive
contributions in the momentum equation.

2.4. Validation of nonlinear DNS code against linear theory

The code has been rigorously validated with respect to the two-dimensional Orr–Sommerfeld
quasi-analytic theory. We have computed the DNS values of the growth rate and wave
speed of the most-dangerous temporal mode for the parameter values

(Re,m,S) = (100, 30, 0.01), h0 = 0.3; (2.7)

good agreement is obtained with respect to the eigenvalue analysis (Figure 2). The param-
eters Re, m, and S are varied throughout the work, but the density ratio is maintained
at r = 1 and the film thickness is maintained at h0 = 0.3. The parameter ranges studied
are motivated by the work’s intended application, namely the modelling of viscous soil
removal in plants during cleaning and product turnover operations (Valluri et al. 2010).
Here, ∆z = 1/160 is sufficient for the simulations to have converged, with the conver-
gence criteria as described above in Section 2.3. Also, for Equation (2.7), ∆t = 10−4 is
sufficient for the advective CFL condition described in Section 2.3 to be satisfied.
As a further test, we examined the inlet/outlet version of the code, with Neumann

boundary condition ϕx(x = 0) = ϕx(x = Lx) = 0, subject to an impulsive force (varying
only in x; no y-dependence) applied at very early time, centred at x = Lx/3.
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Figure 3. (a) Space-time plot of the norm n(x, t) for the parameters in Equation (2.7); (b)
Comparison between spatio-temporal Orr–Sommerfeld analysis and the DNS at the pulse max-
imum; (c) Comparison between spatio-temporal Orr–Sommerfeld analysis and the DNS at the
source of the disturbance.

We expect standard spatio-temporal Orr–Sommerfeld analysis (Ó Náraigh et al. 2013)
to apply to the present case. Thus, we predict that a two-dimensional pulse should
form as a result of the imposed initial condition, whose maximum should grow at the
same rate as the temporally most-dangerous mode. Moreover, the same Orr–Sommerfeld
analysis demonstrates that the flow parameters (2.7) should produce absolute instability,
in other words, disturbances grow at the location of the initial impulse, in addition to
being convected downstream by the same impulse (Huerre & Monkewitz 1990; Ó Náraigh
et al. 2013). It is therefore also expected that the disturbance should grow at the source,
with a growth rate given by the value of the Orr–Sommerfeld frequency Ω(α) evaluated
at the saddle point in the complex α-plane. A spacetime plot of the pulse norm

n(x, t) =

(∫ 1

0

|w(x, z, t)|2dz

)1/2

is therefore shown in Figure 3(a) (w represents the perturbation velocity in the wall-
normal direction, see Appendix A). Information from this plot is extracted in Figure 3(b),
where the pulse maximum is followed. The pulse maximum grows at the same rate as the
temporally most-dangerous mode as computed by the Orr–Sommerfeld analysis. Further-
more, the instability grows at the source (absolute instability), and the numerical growth
rate is in agreement with the theoretical growth rate computed from the saddle-point of
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Figure 4. Shapshots of the maximum amplification factor Gαβ(t) for transient linear theory,
for the parameter values (m,Re,S) = (30, 100, 0.01).

the complex Orr–Sommerfeld eigenvalue analysis. The measured period in Figure 3(c) is
0.9±0.1. The apparent period is only half this amount, because absolute values are taken
in plotting n(x, t), rather than a signed velocity. The theoretical value of the period is
2π/7.095 = 0.8856. Thus, the numerical period and the theoretical periods (equivalently
wave speeds) agree. The growth rates are also in agreement. A final test involves the
study of a parameter class that is convectively unstable. Specifically, we repeated these
DNS calculations with Re = 40 (the other parameters in Equation (2.7) remaining the
same). Standard spatio-temporal Orr–Sommerfeld analysis indicates that this parameter
class is convectively unstable. This is confirmed by the DNS (not shown): the norm n(x, t)
decays at the source location, while the growing disturbance is convected downstream;
and grows at a rate corresponding to the temporally most-dangerous mode computed
from Orr–Sommerfeld analysis. Further tests concerning the full Orr–Sommerfeld–Squire
analysis (not shown here, but demonstrated throughout the paper) demonstrate that the
numerical method also captures the three-dimensional modes.

3. Linear regime - modal and non-modal

We use the approach based on linear theory outlined in Section 2.2 to study the initial
growth of small-amplitude waves, outlining several features of both transient growth and
the (asymptotic) dispersion relation for future reference. The calculations are carried out
for the parameter values m = 30, with various values of S and Re.
Figure 4 shows snaphsots of the maximum amplification factor Gαβ(t) at various times,

for the parameter set (m,Re,S) = (30, 100, 0.01). For early times, the purely spanwise
modes (i.e. with α = 0) produce the largest transient growth; for later times, the largest
amplification occurs for modes that are more streamwise-dominant. This process con-
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Figure 5. Modal growth rates obtained directly from solving the Orr–Sommerfeld–Squire
problem. Here, (m,Re,S) = (30, 100, 0.01).
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Figure 6. The same as Figure 5, but with (m,Re,S) = (30, 100, 0.1).

cludes when the maximum of Gαβ(t) lies on the α-axis, but this could not be confirmed
due to numerical overflow. However, in support of our claim, we computed the limiting
factor

lim
t1,t2→∞

t2≫t1

{
1

t2 − t1
log

[
Gαβ(t2)

Gαβ(t1)

]}

and found it to correspond to the asymptotic growth rate computed from eigenvalue
Orr–Sommerfeld analysis. This limiting factor is maximal along the α-axis. Thus, at late
times, maximal growth is centred on the streamwise axis, such that the asymptotic peak
of the maximum amplification factor is bound to lie along the same axis. Crucially, most
of the transient energy resides at short times in the contribution from the wall-normal
vorticity component. This is characteristic of an algebraic instability called the lift-up
effect originally observed in single-phase flows (Schmid & Henningson 2001), but observed
also in two-phase mixing layers (Yecko & Zaleski 2005).
Concerning the asymptotic or eigenvalue analysis of the disturbance, the eigenvalue

Orr–Sommerfeld–Squire growth rates for the same parameter set as in Figure 4 are
computed and the results are shown in Figure 5. A large range of modes is unstable. The
most-dangerous modes are streamwise, and the α-dispersion relation in Figure 5(b) is
‘flat’, such that a band of unstable wavenumbers with very similar growth rates is excited.
Upon increasing the surface tension but leaving the other parameters the same, similar
features pertain (Figure 6). Here, however, the spanwise growth rates are much smaller
than the streamwise ones, and the range of excited modes is narrower. Note also that
the α-dispersion relation is flatter than before. Consideration is also given to a situation
wherein a very narrow range of modes is excited ((m,Re,S) = (30, 300, 0.3)). First,
the characteristics of the transient growth are very similar to the previous case, with
maximum amplification at very early times occurring for the spanwise modes, followed
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Figure 7. The same as Figure 5, but with (m,Re,S) = (30, 300, 0.3).

by a shift towards a more streamwise-dominant situation. Concerning the asymptotic
results, the dispersion relation valid as t→ ∞ is shown in Figure 7(b). This possesses a
sharp peak at α ≈ 4.2, such that a single mode will feature prominently in the asymptotic
evolution of the interface. Also, in spite of the larger Reynolds number than before,
three-dimensional waves are more stable in this situation, and only a narrow range of
spanwise waves are unstable in the asymptotic limit. These dispersion relations will be
used subsequently to explain the linear and weakly nonlinear evolution of the interfacial
waves in the full DNS.

4. Linear and nonlinear waves in periodic simulations

We begin the presentation of results obtained with direct numerical simulations of cases
wherein streamwise-periodic boundary conditions are used. Although these boundary
conditions do not reflect the behaviour of a real system, it is appropriate to consider
such simulations, for a number of compelling reasons: first, these simulations comprise a
‘clean’ database, wherein only a small number of modes is active initially, and wherein
issues surrounding spatio-temporal growth do not enter, such that the growth of waves
can be investigated unambiguously in the framework of linear theory. Also, although a
Fourier transform may be taken in a non-periodic domain, the results there are ambiguous
because of boundary effects, and such a decomposition is more appropriate in a periodic
system.
In these periodic cases, the system is perturbed through the initial condition for the

interface location; the initial conditions involve forcing spanwise modes (with a tiny
contribution from streamwise modes):

η(x, y, t = 0) = h0 +
1
9A0

3∑

n=1

3∑

m=1

cos (α0nx+ β0my + φnm)

+ 1
9ϵA

3∑

n=1

3∑

m=1

[
cos (nα0x+ φnm) + cos (mβ0y + φnm)

− cos (2α0nx+ β0ny + φnm)− cos (α0nx+ 2β0ny + φnm)

]
, (4.1a)

or forcing of both streamwise and spanwise modes:

η(x, y, t = 0) = h0 +
1
12A0

3∑

n=1

3∑

m=0

cos (α0nx+ β0my + φnm)

+ 1
12ϵA

3∑

n=1

3∑

m=0

[
cos (nα0x+ φnm) + cos (mβ0y + φnm)

− cos (2α0nx+ β0ny + φnm)− cos (α0nx+ 2β0ny + φnm)

]
(4.1b)
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Figure 8. Interfacial spectra for the case P0. (a) Streamwise modes. (b) Spanwise modes, with
β = 2π/Ly. Both figures show the action of weakly nonlinear mechanisms. In particular in (b)
the growth of the purely spanwise mode with α = 0 is shown.

(note the different limits on the summation index m). Here, A0 is some amplitude, φij ∈
[0, 2π) is a randomly-selected phase, and ϵA =

(
2.23× 10−5

)
A0 is a small parameter.

Also, α0 = 2π/Lx and β0 = 2π/Ly are the fundamental wavenumbers in the streamwise
and spanwise directions respectively.

4.1. Subcritical case

The main focus of this section is on the subcritical case – in this context, by ‘subcritical’
we mean those parameter regimes that admit linearly unstable streamwise modes but
no linearly unstable spanwise modes. Consequently, consideration is given to the sim-
ulation P0, involving the parameter set (m,Re,S) = (30, 300, 0.3). Further geometric
parameters are (Lx, Ly, Lz) = (1.58, 1, 1), and the initial conditions are those given by
Equation (4.1a). The Orr–Sommerfeld–Squire analysis in Section 3 indicates that this pa-
rameter set produces instability, with large temporal growth rates for streamwise waves,
and no temporal growth for waves with spanwise components. The same quasi-analytical
theory predicts that for the geometry prescribed in the P0 simulation, only one unstable

mode should be present, with α = 3.97 and Ωi = 10.85.
The inception of the three-dimensional wave structures in the DNS takes place at early

times, when the wave amplitudes are small. To understand this genesis, spectra of the
interface height were taken at different times. The spectrum is computed with respect to
the interface η(x, y, t), defined as follows:

η(x, y, t) = min
i
Z(x, y, t), Z(x, y, t) = {zi|ϕ(x, y, zi, t) = 0, i = 1, 2, · · · }. (4.2)

For small-amplitude waves, i = 1 only, corresponding to a situation wherein there are
no overturning waves, droplets, or ligaments. For i > 1, the interfacial spectrum loses
any definite meaning, and spectral data in this regime are not discussed further. The
results of the spectral analysis are shown in Figure 8. Figure 8(a) shows a time series of
the streamwise modes only. The mode α = 3.96 grows exponentially fast, at a rate given
by OSS theory. As further predicted by the same theory, the other modes do not grow
initially. However, as time goes by, the other modes undergo exponential growth, in a
manner that is perfectly consistent with weakly nonlinear theory (Barthelet et al. 1995):
the nth multiple of the fundamental wavenumber α = α0 = 3.97 grows at a rate nΩi(α0).
Consideration is also given to spanwise modes with β = β0 := 2π/Ly (Figure 8(b)),

wherein an interesting feature arises: the purely spanwise mode (α = 0, β0) that is stable
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in normal-mode linear theory grows exponentially at approximately the same rate as the
streamwise most-dangerous mode (α = 3.96, β = 0). It is as if the purely spanwise mode
is slaved to the most-dangerous streamwise mode. Further streamwise modes at (α ̸=
0, β0) are also excited, but their amplitude remains small compared to the exponentially-
growing mode until close to the wave turnover time.
These observations are explained in a theoretical framework that couples nonlinear

analysis (Craik 1985) to linear transient growth. We start with the following exact non-
linear equations

(
Lα −

∂

∂t
Mα

)
χα =

∑

β

Q [χβ, χα−β] +
∑

β

∑

γ

R [χβ, χγ , χα−β−γ ] , (4.3)

where α denotes a Fourier mode and χα(z, t) denotes the complete state of the system
in the same Fourier mode (i.e. χ contains information about velocity, vorticity, and
interface height, as in the Orr–Sommerfeld–Squire (OSS) theory) (Schmid & Henningson
2001; Craik 1985; King & McCready 2000). Each normal mode α with corresponding
state χα can be decopmposed further into a sum over OSS eigenfunctions:

χα =
∞∑

m=1

A(m)
α (t)v(m)

α (z),
(
Lα − λ(m)

α Mα

)
v(m)
α = 0.

This gives rise to the following infinite set of amplitude equations:
(

d

dt
− λ(m)

α

)
A(m)

α =
∑

β

∞∑

p,q=1

µ
(m,p,q)
α,β A

(p)
β A

(q)
α−β+

∑

β

∑

γ

∞∑

p,q,r=1

ν
(m,p,q,r)
α,β,γ A

(p)
β A(q)

γ A
(r)
α−β−γ

(4.4)
Equally, the right-hand side of the basic equation (4.3) can be decomposed as follows:

(
Lα −

∂

∂t
Mα

)
χα =

∑

β

Q

[
∞∑

p=1

A
(p)
β v

(p)
β ,

∞∑

q=1

A
(q)
β v

(q)
α−β

]

+
∑

β

∑

γ

R

[
∞∑

p=1

A
(p)
β v

(p)
β ,

∞∑

q=1

A(q)
γ v

(q)
β ,

∞∑

r=1

A
(r)
β v

(r)
α−β−γ

]
(4.5)

Based on the results of the simulation P0, we carry out simplifications of Equation (4.5) to
extract a phenomenological theory from the same equation. The situation is complicated,
and different families of modes exhibit different types of nonlinear behaviour. We address
each mode family in turn.

Purely streamwise modes

For the simulation under consideration, standard OSS eigenvalue analysis shows that the
mode

α = α0 :=

(
2π

Lx
, 0

)

grows rapidly according to linear theory, while all other modes are linearly stable (the
mode α0 is the most-dangerous mode). Indeed, the exponential growth of the mode α0

holds up until the breaking point of the nonlinear waves. In addition, the ‘harmonics’, i.e.
the modes α = ((2π/Lx)n, 0), with n = 2, 3, · · · appear in the simulation to be ‘slaved’
to the most-dangerous mode. This behaviour of the growth rates in these instances has
already been alluded to in Figure 8(a). Furthermore, the behaviour of the corresponding
wave frequencies is shown in Figure 9 and the results summarized in Table 1. These results
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Figure 9. Plot of hα(t)/|hα(t)| for (a) the most-dangerous mode; (b) the first harmonic; (c) the
second harmonic. Here hα(t) denotes the two-dimensional Fourier transform of the interfacial
height h(x, y, t), at time t, and at wavenumber α.

α n nΩr,OS(α0, 0) ΩDNS Sample time

3.97 1 30.4 29.9 t > 0.48
7.94 2 60.8 60.6 t > 0.54
11.01 3 91.2 92.8 t > 0.68

Table 1. Dominant wave frequency at intermediate times: comparison between DNS and Stuar-
t–Landau / Slow-Manifold theory. Here n labels the harmonic: α0 = 2π/Lx is the fundamental
wavenumber, and the considered wavenumbers are in the relation α = nα0.

show that at early times, a range of frequencies is present, consistent with the fact that
each normal mode χα(z, t) contains a mixture of OSS modes (hence frequencies). At
late times, a single frequency becomes apparent, whose value is given to within a small
measurement error by the relation

Ωr,DNS(nα0, 0) = nΩr,OS(α0, 0), n = 1, 2, · · ·
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These results (once the transient effects dissipate) are entirely consistent with Slow-
Manifold theory applicable to a handful of modes. In particular, it suffices to consider only
one OSS mode per Fourier mode, such that the amplitude equations (4.4) at quadratic
order reduce to the following form:

dA(α0,0)

dt
= λ(α0,0)A(α0,0),

dA(2α0,0)

dt
= λ(2α0,0)A(2α0,0) + µ(α0,0),(2α0,0)A

2
(α0,0)

,

dA(3α0,0)

dt
= λ(3α0,0)A(3α0,0) +

[
µ(α0,0),(3α0,0) + µ(2α0,0),(3α0,β0)

]
A(α0,0)A(2α0,0),(4.6)

where all superscripts take the value m = 1 and are suppressed for brevity. Given the
separation of scales inherent in this particular problem:

ℜ(λ(α0,0)) ≫ 1, ∀α ̸= (α0, 0), ℜ(λα) ≪ −1,

Slow-Manifold theory applies (Pavliotis & Stuart 2008), such that

Anα0,0 ∝ An
α0,0, (4.7)

thereby explaining the results observed in the DNS. The behaviour described in Equa-
tion (4.7) has been observed in the same simulation for n = 4, 5 too. Note also that the
same conclusion as Equation (4.7) is reached even when cubic-order interactions are taken
into account (Barthelet et al. 1995; King & McCready 2000). These facts confirm the
robustness of the match between theory and simulation for this particular (streamwise)
mode family.
Note: using rigorous homogenization theory (Pavliotis & Stuart 2008), one can show

that a dynamical system does not need to be close to ‘criticality’ in order for slaving
to occur (in this context, by ‘criticality’ we mean that a single mode is barely linearly
unstable, and all other modes are linearly stable). Proximity to criticality is sufficient
for slaving to occur, but is not necessary. Instead, the necessary condition for slaving to
occur is for a separation of scales should exist: the natural evolution timescale of (say)
A(α0,0) should be well separated from the timescales of the other Fourier modes in the
problem, as is the case in the present discussion.

The spanwise mode (α0, β0)

In the P0 simulation, linear theory applies to this mode until the breaking point. Care is
needed here: the measured Fourier mode contains a mixture of OSS modes, such that the
temporal evolution is not a simple exponential decay characterized by a single damping
rate: a number of damping rates and oscillation frequencies apply. This description is
confirmed unambigously by using our own independent linearized DNS (L-DNS) tech-
nique (Ó Náraigh et al. 2013) and comparing the results with those arising from the DNS
using the TPLS solver. The results of this comparison are shown in Figure 10(a)–(b).
A spectral analysis of the temporal evolution associated with the L-DNS is shown in
Figure 10(c). Two sharp peaks are on display, corresponding to two stable OSS eigen-
modes. Clearly, the behaviour of this particular Fourier mode is explained adequately
with straightforward linear theory, albeit that a combination of OSS eigenmodes is ac-
tive.

The purely spanwise mode (0, β0)

In the simulation, this mode is observed to grow exponentially at a rate close to that of
the most-dangerous mode. Additionally, the frequency of modulation is low (Figure 11).
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Figure 10. Dynamics of the spanwise Fourier mode α = (α0, β0). (a) Real part of hα(t)/hα(0)
with a comparison between the full DNS and the linearized DNS; (b) imaginary part of the
same; (c) Spectral analysis (frequency space) based on the linearized DNS (broken line) and the
full nonlinear DNS (solid line, with dots, spectrum taken between t = 0 and t = 1.02). The two
most-prominent peaks in the L-DNS in fact coincide with the OSS modal frequencies.

These two observations are not explained either by linear theory, or by a naive application
of Slow-Manifold theory. However, a more refined version of the latter can be invoked,
as we now explain.
We start with the basic equation (4.5) truncated at quadratic order. We take α =

(0, β0), where β0 = 2π/Ly. With regard to the summation variable β, in a first approxi-
mation, only those values of β and α− β that induce a coupling to the most-dangerous
mode matter. Consequently, one obtains the following reduction in the complexity, for
the mode α = (0, β0):

(
Lα −

∂

∂t
Mα

)
χα = Q

[
A

(1)
(α0,0)

v
(1)
(α0,0)

,

∞∑

q=1

A
(q)
(−α0,β0)

v
(q)
(−α0,β0)

]
. (4.8)

For the present simulation, the Fourier mode (−α0, β0) is not excited directly by the
initial condition (but it will of course appear as the simulation progresses, due to non-
linear coupling). Consequently, it can be neglected in a lowest-order approximation, and
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Figure 11. Dynamics of the purely spanwise Fourier mode (0, β0), with evidence of evolution
over a dominant long timescale T > 1, Ω < 2π.

Equation (4.8) is reduced further to the following model equation:

(
Lα −

∂

∂t
Mα

)
χα = Q

[
A

(1)
(−α0,0)

v
(1)
(α0,0)

,
∞∑

q=1

A
(q)
(α0,β0)

v
(q)
(α0,β0)

]
(4.9)

Finally, from the DNS and from the previous discussion, the Fourier and OSS modes
appearing on the right-hand side obey linear theory. Also, the quadratic interaction
function Q(·, ·) is bilinear, meaning that Equation (4.10) now simplifies in the following
manner:
(
Lα −

∂

∂t
Mα

)
χα =

∞∑

q=1

exp
[(
λ
(1)
α0,0

+ λ
(q)
α0,β0

)
t
]
Q
[
A

(1)
(−α0,0)

(0)v
(1)
(α0,0)

, A
(q)
(α0,β0)

(0)v
(q)
(α0,β0)

]
,

:=
∞∑

q=1

Fq(z;α0, β0) exp
[(
λ
(1)
α0,0

+ λ
(q)
α0,β0

)
t
]
. (4.10)

Equation (4.10) is a forced linear PDE, where the forcing contains a number of am-
plification factors and a number of complex frequencies in the exponential form eλeff t,
where

{λeff ∈ C|λeff = λ
(1)
α0,0

+ λ
(q)
(α0,β0)

, q = 1, 2 · · · }. (4.11)

Given that the OSS eigenvalues for the confined flow considered herein form a discrete

set, the possibility that λ
(q)
eff will coincide with an eigenvalue of the OSS operator at the

Fourier mode (0, β0) is anomolous, and need not be considered here. Therefore, assuming

non-coincidence, the equation system (4.10) will select that particular value of λ
(q)
eff that

maximizes the resolvent norm (Schmid & Henningson 2001)

R(z) = ∥ (Lα − zMα)
−1

∥.

We call this phenomenon ‘quasi-resonance’ (the term ‘resonance’ is restricted to mean
R(z) = ∞, i.e. a z-value correspoding to an eigenvalue of the linear problem at (0, β0)).
We have plotted the resolvent norm as a function of the variable z, with z ranging over (a
portion of) the complex plane. The results are shown in Figure 12. We have also plotted
the resolvent norm evaluated at those particular z-values that correspond to eigenvalue

combinations λ
(1)
α0,0

+ λ
(q)
(α0,β0)

. The eigenvalue combination that maximizes the resolvent
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Figure 13. (a) Growth of purely spanwise Fourier mode α = (0, β0) with comparison to quasi-
linear / weakly nonlinear theory as described in this section; (b) Spectral analysis of the same
Fourier mode; the spectrum is taken between t = 0 and t = 1.02

norm is found to be

λeff = λ(α0,0) + (−1.38− 30.4i) = (10.91 + 30.62i) + (−1.416− 31.92i) = 9.494− 1.300i
(4.12)

The exponential growth exhibted in the DNS is compared against this predicted growth
rate in Figure 13(a). Good agreement is obtained between the quasilinear / weakly non-
linear analysis proposed in this section and the full DNS. A spectral analysis of the same
mode is shown in Figure 13(b), based here on the full DNS. The Fourier transform (in
frequency space) is taken with respect to h(α,β)/|h(α,β)| to reduce the influence of the
growth rates on the frequency characterization. In view of the short window of time over
which spectral data are available (i.e. before wave overturning, and short compared to
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Case Parameters Geometric Parameters Figure

P1 A0 = 0.002, S = 0.01, Re = 100, ICs: Equa-
tion (4.1a)

(Lx, Ly, Lz) = (2, 1, 1)

P2 A0 = 0.002, S = 0.01, Re = 100, ICs: Equa-
tion (4.1b)

(Lx, Ly, Lz) = (2, 1, 1) Figure 14

P3 A0 = 0.02, S = 0.1, Re = 100, ICs: Equa-
tion (4.1a)

(Lx, Ly, Lz) = (2, 1, 1)

Table 2. Summary of those periodic simulations involving a number of linearly unstable
modes, with m = 30.

the dominant long timescale), quantitative comparison is difficult. However, the results
are consistent with the weakly nonlinear analysis: the most-prominent frequency is mea-
sured at Ω = ±(6±3), consistent with the data in Figure 11 and the ‘quasi-resonance’ in
Equation (4.12). A second peak at Ω = 24±3 is consistent with further ‘quasi-resonance’
corresponding to the third-largest value of the resolvent norm in the frequency set (4.11).

4.2. Supercritical route to three-dimensional waves

We also consider the route to ligament formation in periodic domains for supercritical
parameter sets, such that both streamwise and spanwise modes are linearly unstable.
Although it may be expected that in the linear regime, the initial growth of the waves
should be governed by standard modal linear instability, the subsequent behaviour is
also investigated, including the relevance of the weakly non-linear theory set out in the
previous section for the subcritical case.
A typical resulting flow behaviour is illustrated in Figure 14 for the case P2 (defined

in Table 2). In this case, under linear theory, two-dimensional and three-dimensional
waves are strongly amplified, with growth rates that are comparable in magnitude (e.g.
Figure 5); in particular,

Ωi(α = 9.42, β = 0)

Ωi(α = 9.42, β = 2π/Ly)
=

1.832

1.364
≈ 1.343,

from the same Orr–Sommerfeld–Squire analysis. We have investigated the physical mech-
anism at work during this early-stage growth. For the cases P1–P3 (See Table 2), we
analysed the tangential-stress distribution at the interface, and the results from the DNS
are consistent the standard conclusion from linear theory that the instability is precip-
itated by a mismatch in the viscosity across the interface (e.g. Yih (1967); Boomkamp
& Miesen (1996)). This was confirmed using an energy budget carried out in the frame-
work of linear theory. The case P0 exhibits a similar tangential-stress distribution, except
that a subsequent energy budget based again on linear theory revealed that other con-
tributions to the perturbation energy are dominant, with the Reynolds-stress term in
the upper layer being the largest contributor. This result indicates that the character
of the most-dangerous mode changes upon inceasing the Reynolds number, such that at
higher Reynolds number, a more shear-like mode emerges. Note, however, because several
terms give a positive contribution to the kinetic energy supplied to the perturbations, the
distinction between the mode types is somewhat blurred (Boomkamp & Miesen 1996).
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(a) t = 1.5 (b) t = 2.5 (c) t = 3.0

(d) t = 3.5 (e) t = 3.8 (f) t = 4.0

Figure 14. DNS solution for case P2 (S = 0.01, A0 = 0.002, and initial conditions given by
Equation (4.1b)). Snapshots of the interface profile at various times, coloured by wave

elevation.

A quantitative analysis of the results has been conducted in terms of interfacial spectra
for the P2 simulation (Figure 14). It is clear from this figure that the streamwise and
spanwise waves that develop on the interface in the snapshots arise initially directly
from linear theory: the streamwise and spanwise ‘long’ waves with α = 3.14, 6.28, 9.42 in
Figure 15 enjoy a period of exponential growth at a rate given by Orr–Sommerfeld–Squire
theory (shorter waves exhibit weak nonlinearity and are discussed below). A comparison
between the interfacial snapshots and the spectral plots in Figure 15 indicates that this
linear regime persists here until close to the point of overturning, similar to observations
in prior studies for related two-dimensional flows (Valluri et al. 2007, 2010). Note that in
Figure 15, ‘kinks’ in the time series of the spectral amplitudes signal wave overturning,
and roughly coincide with the end of the regime of exponential growth in the amplitudes
(i.e. the end of the regime of linearized dynamics).
Although linear theory persists until very close to the point of wave overturning, the

non-linear overturning itself is a key stage. Also, it is of interest to understand the
discrepancy in Figure 15, wherein the relatively short wave at α = 12.56 grows at a
faster rate than that predicted by linear theory. We study the nonlinear aspects of the
flow behaviour in terms of snapshots of the interface spectra, at relatively late times,
focusing on streamwise modes (Figure 16). The simplified weakly non-linear theory in
the work by Barthelet et al. (1995) is not expected to pertain: not only overtones of the
linearly most-dangerous mode, but also other combinations are present, due to the fact
that the parameter regime under investigation is far beyond criticality. Indeed, the most
prominent wave to be excited in the weakly non-linear regime is at α = 15.70 , which
suggests a three-wave interaction involving the linearly-excited modes at α = 6.28 and
α = 9.42. The second most-prominent wave to be excited in the non-linear regime is at
α = 18.84, corresponding to an overtone of the linearly most-dangerous mode at α = 9.42;
the overtone thus contributes to the steepening of the α = 9.42 wave. In this way, the
relatively short waves in the simulation are amplified at rates above those implied by
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Figure 15. Interfacial spectra for the cases P2, correspnding to initial conditions with
an equal mixture of spanwise and streamwise modes, with and A0 = 0.002. Here
(Re,m,S) = (100, 30, 0.01), The downwards-pointing kinks coincide with wave overturning.
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Figure 16. Snapshots of the interfacial spectra (streamwise modes) for the case P2. (a) Linear
regime; (b) weakly non-linear regime.

linear theory. This result can also be used to explain why the relatively short wave at
α = 12.56 does not obey linear theory, whereas longer waves (α = 3.14, 6.28, 9.42) do. We
also investigated a further simulation along exactly the same lines, namely P1 (Table 2),
corresponding to the same parameter set as P2, but with initial conditions that include
only a tiny contribution from streamwise modes. The results are very similar to the case
P2, highlighting the importance of the intrnisic linear-instability mechanism which is at
work in an identical manner in the two simulations P1 and P2.
Finally, we examine the robustness of the weakly nonlinear theory for spanwise modes

developed in the subcritical context (e.g. Equations (4.3)). Although the discussion
around Equation (4.3) takes place in the context of a simulation wherein only a sin-
gle streamwise mode is linearly unstable, the derivation of Equation (4.10) will carry
over in an approximate sense to the cases P1–P3. For, only a number of unstable modes
fit inside the periodic channels. In the simulations P1–P3, the dispersion relations are
‘flat’, meaning that all unstable modes have a growth rate comparable to the most-
dangerous modal growth rate. The spanwise (linearly stable) mode will therefore ‘see’
the streamwise modes as a single unstable mode, and under the coupling described in
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(b) P3, streamwise
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(c) P3, spanwise

Figure 17. Interfacial spectra for the cases P1, P3. (a) Case P1 revisited, streamwise modes.
(b) Streamwise modes, P3 (c) Spanwise modes, P3, with β = 2π/Ly.

Equation (4.3), will be amplified at (close to) the maximal rate. By examining relevant
spectra (Figure 17(a)), we have confirmed that this is indeed the case: in the simulations
P1–P2 considered earlier, after some transience, the purely spanwise mode (0, 2π/Ly)
does indeed grow at the same rate as the most-dangerous (streamwise) mode. However,
given the long transient time before such weakly nonlinear interactions enter, the simula-
tion is utterly dominated by the modes that are linearly unstable. This reflects the strong
supercriticality of this parameter set. A further simulation (P3) is intermediate between
(P1,P2) and P3: both the direct mechanism and the weakly nonlinear mechanism play a
role in producing the three-dimensional waves (Figure 17(b,c)).

5. Open-flow instabilities

We perform fully nonlinear simulations for long open channels, with Lx between 3.16
and 8.0. The aim is to investigate the extent to which the linear theory governs the
subsequent nonlinear evolution of the interfacial waves. We consider forcing that is both
localized in time (impulsive forcing), or continuous in time. In the first case, the consid-
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ered initial condition is u = 0, and

η(x, t = 0) = h0 +
(
0.02
9

)
e−(x−L0)

2/(2w2)
3∑

i=1

3∑

j=1

cos

(
2πx

Lx
i+

2πy

Ly
j + φij

)
, (5.1)

where w = Lx/10 and φij is a random phase. On the other hand, for continuous-in-time
forcing, in order to ‘trip’ open systems, the z-component of Equation (2.4) is modified to
include a localized continuous-in-time momentum forcing term F (x, t) that is compactly
supported in the x-direction, and contains a polychromatic mixture of y-modes and
temporal frequencies (the Fourier modes in the mixture have equal amplitude and a
random phase); specifically, we have

F (x, t) = δϵ(ϕ(x, t))δLx
(x)


 A0

NyNT

Ny−1∑

i=0

NT∑

j=1

cos

(
2πiy

Ly
+

ΩCjt

NT
+ φij

)
 , (5.2a)

where

δLx
(x) =

{
1 + cos

[
16π
Lx

(
x− 1

8Lx

)]
, 1

16Lx 6 x 6
3
16Lx,

0, otherwise.
(5.2b)

The prefactors in Equation (5.2a) have the effect of localizing the momentum disturbance
at the interface, and at x = Lx/8. (Note, the divergence of the velocity field is not
disturbed by this forcing.) Direct forcing of the interface itself at the inlet was also
examined. However, the existence of spanwise waves at the inlet is inconsistent with the
inlet condition u(x = 0) = (U0(z), 0, 0). In practice, this combination of inconsistent inlet
conditions led to an ill-posed problem, which failed to demonstrate grid-independence.
For that reason, the forcing protocol in Equations (5.2) was preferred.

The cutoff forcing frequency in Equation (5.2a) is taken to be ΩC = 20. For most of the
parameter cases considered, this is much larger than the frequency of the linearly most-
dangerous mode. However, even for those parameter cases where this condition is not
satisfied, for sufficiently large amplitudes A0, the non-passive nature (i.e. ϕ-dependence)
of the forcing in Equation (5.2a) is important, and further frequencies are generated non-
linearly, such that the ‘effective forcing’ contains frequencies greater than ΩC , including
that of the linearly most-dangerous mode. Beyond the compact source region, these
source-based nonlinearities play no role, except that they provide a broad spectrum of
frequencies that are subsequently excited in the wave dynamics. The nonlinearities that
do eventually matter for the interfacial waves are provided by the ‘natural’ evolution of
the waves first of all in spatio-temporal linear theory and then in nonlinear theories.

Finally, we emphasize that similar results are obtained regardless of the amplitude
of the forcing A0. This is due to the instabilities that are intrinsic to the considered
parameter regimes. Thus, disturbances of any amplitude will give rise to waves which
are amplified strongly so that that large-amplitude waves will always be obtained. Well
downstream, the wave amplitudes will be fixed by the intrinsic instability mechanisms
(both linear and nonlinear), independent of the details of the forcing. Thus, the typical
height perturbation will not be a definite function of A0. This description has also been
confirmed both for the simulations described herein and for further simulations that
were performed to validate more carefully this description (not shown). In all cases, the
asymptotic shape of the downstream three-dimensonal wave structures is more-or-less
independent of the magnitude of the forcing amplitude.
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Case Parameters

CH1 S = 0.001, Re = 100
CH2 S = 0.01, Re = 100
CH3 S = 0.1, Re = 100
CH4 S = 0.01, Re = 200

Table 3. Summary of parametric study of open flows with impulsive forcing, all with m = 30.
Geometric parameters: (Lx, Ly, Lz) = (3.54, 1, 1). Forcing location: L0 = 1. Each parameter
study corresponds to linear absolute instability.

5.1. Impulsive forcing

For the impulsive initial condition, simulations were performed in those parameter regimes
that are linearly absolutely unstable according to two-dimensional linear Orr–Sommerfeld
theory. The qualitative picture is that the interface evolves rapidly in the downstream
direction, and acquires a complicated three-dimensional structure. Again in this qualita-
tive picture, the downstream interfacial configuration resembles very closely the periodic
simulations already discussed. On the other hand, close to the source of the initial im-
pulse, the disturbance (both in the interfacial height and the flow velocity) rapidly evolves
towards a two-dimensional configuration and then first grows according to linear theory,
before saturating to some finite value. At saturation, the interface evolution at the source
appears to be periodic in time, with a single characteristic frequency. Finally, at very late
times, the interface shape - both downstream and upstream - takes on a decidedly two-
dimensional character. Snapshots of the interface configuration for the particular case
CH2 in Figure 18 confirm this description. A time series of the averaged wall-normal

velocity
∫ 1

0
dz

∫ 1

0
dy w(x, y, z, t) for the same case, at x = L0 = 1 is shown in Figure 19

(i.e. corresponding to the initial impulse location); this further confirms the saturation
and the frequency-selection discussed herein.
The behaviour exemplified in Figures 18–19 suggests that a global mode (Couairon &

Chomaz 1999) may be in operation in the system†. The picture is that the polychromatic
impulsive disturbance ‘selects’ the global mode at the disturbance source, leading to a
two-dimensional wave evolution near the source and in the upstream direction. In the
downstream direction, the polychromatic impulsive source initially leads to a complicated
interfacial evolution, wherein the complicated three-dimensional ligament dynamics give
rise to multiple timescales, as opposed to the single timescale inherent in the global mode.
However, this is a transient effect: because the disturbance at the source evolves into a
two-dimensional global mode, the same two-dimensional structure feeds the downstream
disturbance at later times, meaning that the eventual interfacial dynamics are almost
entirely two-dimensional (Figure 18(e)) throughout the entire domain. The same picture
is replicated in the other simulations (CH1-CH4).
For these reasons, we examined the frequency of the disturbance oscillation at x = L0 =

† For the avoidance of doubt, there is no ‘global’ instability in the sense of a spatially-evolving
base state in the streamwise direction (we have carefully checked that the average base-state
profile is translation-invariant in the x-direction). The ‘global’ instability referred to is in the
sense of Couiron and Chomaz, namely a self-sustained nonlinear oscillation that bifurcates from
the linearly absolutely unstable case.
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(a) t = 2.0 (b) t = 3.0 (c) t = 4.0

(d) t = 4.5 (e) t = 8.0 (f) t = 10.0

Figure 18. Parameter study CH2: impulsively-forced case with impulsive forcing located
initially at x = L0 = 1.
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Figure 19. Averaged velocity ⟨w⟩ :=
∫
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dx

∫
1

0
dy w(x, y, z, t), as a function of t at x = L0 = 1.

The pertinent simulation is CH2.

1 as a function of the control parameter. In the present context, the control parameter
was selected to be S: for fixed Re = 100,m = 30, h0 = 0.3, the flow is linearly absolutely
unstable for S < Sc ≈ 0.69 and linearly convectively unstable above the same threshold
value. Because of the extremely long times required for saturation to occur (24 hours’
runtime with 1024 cores on the machine described in Section 2), only a handful of three-
dimensional simulations was performed. However, this is sufficient (i) to demonstrate
that the upstream dynamics of the three-dimensional system are governed by the two-
dimensional global mode, and that (ii) the downstream dynamics as t→ ∞ are governed
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Figure 20. (a) Measured global-mode frequency from DNS (both 2D and 3D), compared to the
linear absolute (2D) frequency. The frequency is extracted from the time series of the averaged

velocity
∫

1

0
dx

∫
1

0
dy w(x, y, z, t) at location x = L0 = 1. (b) Velocity of upstream-propagating

front: comparison between linear theory and 2D DNS. Note: the upstream-propagating front is
eventually frozen-in, due to the Dirichlet boundary condition at the inlet.

by the same; characterization of the global mode can subsequently be performed using less
intense two-dimensional simulations. The result of the foregoing quantitative approach
is summarized in Figure 20. In Figure 20(a) it is seen that the upstream dynamics of the
full three-dimensional simulations are governed by a two-dimensional nonlinear global
mode, while the selected frequency of the two-dimensional global mode is very close
to the linearly absolutely unstable frequency (the small difference between the 2D and
3D cases is due to the shorter time interval over which the 3D data are gathered; this
difference was observed to decrease upon increasing the 3D simulation time).

The close match between the linearly absolutely unstable frequency and that of the
global mode suggests that the upstream-propagating front is a ‘pulled front’, in other
words, that the global-mode properties are determined entirely by the linear dynam-
ics (Huerre 2000; Chomaz 2003). To confirm this hypothesis, we computed the veloc-
ity of the upstream-propagating front. For reference: the upstream- and downstream-
propagating fronts represent the maximum extent of the spatially-localized disturbance
at a given time. The location of the upstream-propagating front becomes frozen after a
finite time because of the influence of the Dirichlet boundary condition at x = 0. In any
case, the front velocity before this final time is obtained from the full (two-dimensional
nonlinear DNS) and the result is compared with the front velocity from linear theory.
The front velocity from linear theory is computed using the method of Ó Náraigh et al.

(2013). Concerning the nonlinear DNS, it was not possible to locate the front at a given

time exactly in the DNS; however, by considering the spacetime plot of
∫ 1

0
|w(x, z, t)|2dz,

a range of possibilities for the front location (hence front velocity) was obtained. This
is reflected in the error bars in Figure 20. In any case, the location of the upstream-
propagating front in the nonlinear DNS agrees with the same front velocity in linear
theory, confirming the hypothesis that the global mode arises from a ‘pulled front’. Fur-
ther consideration of the so-called ‘healing length’ (Couairon & Chomaz 1999) did not
provide any further means of characterizing the global mode. This is not surprising, as
simple scaling laws for the healing length as a function of the criticality parameter ϵ (in
this case, ϵ = |S−Sc|) are known to break down when the dispersion relation of the linear
theory is different from the simple case that pertains for the complex Ginzburg–Landau
equation (Selvam et al. 2009).
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Case Physical parameters Geometric parameters Figure

CH5 A0 = 100, S = 0.01, Re = 100 (Lx, Ly, Lz) = (3.16, 1, 1) Figure 21
CH6 A0 = 300, S = 0.1, Re = 100 (Lx, Ly, Lz) = (8.0, 1, 1). Figures 22–23
CH7 A0 = 300, S = 0.1, Re = 300 (Lx, Ly, Lz) = (8.16, 1, 1).

Table 4. Parametric study showing the effects of varying the surface tension, all with m = 30.

Finally, we have verified that increasing the amplitude beyond that in Equation (5.1)
and running simulations in a linearly convective regime does not trigger self-sustained
oscillations. This confirms once again the fact that the self-sustained oscillations (both
linear and nonlinear) are triggered by the linear absolute instability. We have also veri-
fied tentatively (e.g. CH4) that these results carry over to different parameter regimes.
However, a more complete parametric study is performed in the context of continuous-
in-time forcing, to which the global-mode theory just described also applies, as we now
demonstrate.

5.2. Continuous forcing

We perform fully nonlinear simulations for long open channels, with Lx between 3.16
and 8.0. The aim is to investigate whether the influence of the global mode carries over
from the impulsive forcing to the continuous-in-time case. The relevant simulations are
summarized in Table 4 and Figures 21–23.
In Figures 21–23, the ligament formation occurs with a remarkable regularity. To in-

vestigate this further, we track back the origin of the ligaments via the total interfacial
curvature κx(x, t), defined here as

κx(x, t) = max
y,z

(∇ · n̂) . (5.3)

The results are plotted in the (x, t) plane in Figure 26. We have also examined a further
curvature-related quantity, namely maxy,z ∇2 ·(∇2ϕ/|∇2ϕ|), where ∇2 = (∂y, ∂z) denotes
the gradient operator restricted to the (y, z)-plane. A spacetime plot based on this further
curvature-related quantity yields a nearly-identical picture (not shown). For all three
plots in Figure 26, the narrow strips in spacetime where the curvature initially develops
a large magnitude can be related to the formation of interfacial waves, as is readily verified
by comparison with the interfacial snapshots, either in Figure 21 for CH5, or Figures 22–
23 for CH6. These narrow strips broaden into much wider regions of spacetime where the
curvature attains an even larger magnitude. These regions are similarly associated with
ligaments.
The spacetime diagrams in Figure 26 demonstrate conclusively the regularity with

which wave/ligament structures occur in all three parameter cases, suggesting that a
frequency-selection criterion is at work. To investigate the frequency selection, we first
of all examine parameter cases corresponding to linear absolute instability (CH5,CH6).
The frequency of ligament formation was found by examining a time series κx(x, t), at
a fixed location x. The frequencies were extracted by eye from Figure 26 and the results
were subsequently verified by a full spectral analysis of κx(x, t) by carrying out Fourier
transforms with respect to t at fixed x-locations. The frequencies are reported in Table 5
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(a) t = 0.1 (b) t = 0.9

(c) t = 1.6 (d) t = 2.2

(e) t = 2.9

Figure 21. DNS for high-surface-tension case CH5 – snapshots of interface at various times.

and are those obtained by the spectral analysis and the error bound in the measured
frequency is half the sampling frequency.
The results in Table 5 for CH5-CH6 are explained in combination with Figures 21–23.

We focus on intermediate x-stations where the ligaments are on the verge of forming, yet
sufficiently far from the forcing so that the flow responds to the forcing via intrinsic mech-
anisms, i.e. so that the precise details of the momentum forcing term are not important.
In this region, and at late times, the waves are of finite amplitude by definition, wherein
linear theory would not necessarily apply. However, the measured selected frequency
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(a) t = 1.5 (b) t = 2.5

(c) t = 3 (d) t = 3.5

Figure 22. DNS for high-surface-tension case CH6 – interface height at various early times.

(a) t = 4 (b) t = 4.5

(c) t = 5 (d) t = 5.5

Figure 23. DNS for high-surface-tension case CH6 – interface height at various later times.

at the relevant x-stations does in fact agree rather closely with the linearly absolutely
unstable frequency, which in turn agrees closely with the two-dimensional global-mode
frequency. Concerning the frequency selection via linear absolute instability, this is stan-
dard (e.g. the reference by Huerre (2000)), while the persistence of the same frequency at
larger amplitudes confirms the presence of a global mode whose properties are entirely
governed by linear theory (such global modes arise from ‘pulled’ fronts, as previously
demonstrated in the simulations with impulsive forcing). The selected frequency is al-
most exactly the same in both the linear and nonlinear cases: thus, a single frequency
(or at most, a very narrow band of frequencies) is ‘locked in’ to the system at the rel-
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(a) t = 0.525 (b) t = 0.675

(c) t = 0.75 (d) t = 0.825

Figure 24. DNS for the CH7 case (Re = 300,S = 0.1) – interface height at various early times.

(a) t = 0.9 (b) t = 0.975

(c) t = 1.125 (d) t = 1.35

Figure 25. DNS for the CH7 case (Re = 300,S = 0.1) – interface height at later times.

evant x-stations, and disturbances at the same frequency are then carried downstream,
where secondary instability precipitates the formation of three-dimensional structures.
Because of the externally-imposed forcing, the disturbance source retains spanwise waves
indefinitely (this is in contrast to the periodic case with impulsive forcing, where the dis-
turbance source eventually took on a two-dimensional structure, due to the selected
two-dimensional global mode there). Thus, for the externally-forced open flow, span-
wise perturbations are generated continuously, and are constantly carried downstream,
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(a) (b)

(c)

Figure 26. The maximum curvature in (y, z) planes versus (x, t) for Cases CH5 (a), CH6 (b),
and CH7 (c).

x Ω (DNS) C/A (OS) ℜ[Ω(α0)] (OS) Ωf,max (OS)

CH5 1.3 7.5± 0.6 A 7.08 N/A
CH6 2 5.9± 0.4 A 6.32 N/A
CH7 4.5 37± 1 C N/A 36.4

Table 5. Frequency of ligament generation for three distinct parameter cases, together with
comparisons against spatio-temporal (two-dimensional) OS theory. For cases CH5-CH6, the
spatial growth rate −αi(αr) admits no maximum away from αr = 0, meaning that it is impossible
to compute a maximum frequency Ωf,max.

such that secondary disturbances (and hence ligament formation) are underpinned by
the more dominant two-dimensional waves. In this instance, the two-dimensional waves
possess a frequency determined by the rules outlined above and hence, the frequency of
ligament formation is inherited from the supporting two-dimensional waves.
Consideration is also given to the convectively unstable parameter set (CH7). Again, as

demonstrated by Figure 26 and Table 5, there is a definite frequency of ligament forma-
tion. Naturally, this cannot be explained by the absolute instability / global-mode theory
used in the context of the simulations CH5-CH6. Instead, we revert to theory of linear
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Figure 27. Downstream spatial growth rate as a function of forcing frequencies (OS analysis).
Here (Re,m,S) = (300, 30, 0.1), corresponding to a convectively unstable case.

spatial growth. Again also, it suffices to consider the two-dimensional scenario, since the
most-prominent waves are two-dimensional (of coure, well downstream, three-dimensional
behaviour is observed). In this instance, the generic asymptotic streamfunction response
to localized continuous-in-time forcing δ(x)e−iΩf t is given by (e.g. Huerre (2000))

ψ(x, t) ∼ iH(x)
ei[α

+(Ωf )x−Ωf t]

∂D
∂Ω

∣∣
(α+(Ωf ),Ωf )

− iH(−x)
ei[α

−(Ωf )x−Ωf t]

∂D
∂Ω

∣∣
(α−(Ωf ),Ωf )

, t→ ∞, (5.4)

where D(Ω, α) denotes the dispersion relation obtained from the unforced normal-mode
eigenvalue problem for the streamfunction ψ(x, t), and where α±(Ωf ) denotes the spatial
growth rates associated with downstream propagation (plus sign) and upstream propaga-
tion (minus sign), derived from the same dispersion relation. One may extend this result
if a combination of forcing frequencies {Ωf1, · · · ,Ωfn} is present. Using the linearity of
the small-amplitude streamfunction equation, the response in Equation (5.4) will consist
of a sum over all forcing frequencies. In the convectively unstable case, the dominant
frequency well downstream of the forcing will be that frequency Ωf,max that maximizes
the pertinent spatial growth rate, i.e. Ωf,max corresponds to the most negative spatial
wave number in the set {α±

i (Ωf1), · · · , α
±
i (Ωfn)} (Figure 27). This prediction holds up

in the simulation: the measured frequency of ligament formation is Ω = 37± 1, while the
forcing frequency that most enhances downstream spatial growth according to OS theory
is Ωf,max = 36.4. The conclusion therefore is that linear theory selects a frequency from
the range of forcing frequencies available from the source. Disturbances are convected
downstream at the linearly selected frequency, whereupon three-dimensional structures
feed off the linearly-selected two-dimensional wave, leading to ligament formation at the
two-dimensonal wave frequency.
The selectivity observed in the convectively unstable case was not observed in the

work of Valluri et al. (2010). The mechanism just described in Equation (5.4) and in the
subsequent text has however been discussed previously by Selvam et al. (2009), and some
evidence of the same phenomenon has been found therein. A possible explanation for the
very distinct frequency-selection for the ligament formation in the present convectively
unstable case is that the dispersion relation α+

i (Ωf ) possesses a sharp maximum at
α = 36.4 (e.g. Figure 27), meaning that the system is able to discriminate between that
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narrow band of frequencies that promotes spatial growth in the downstream direction,
and all other forcing frequencies.

6. Ligament formation and dynamics/kinematics in open flows

Having investigated the onset of ligament formation in the previous section, we study
the late-time dynamics of ligaments here. We have performed a parametric study using
nonlinear DNS for 50 6 Re 6 300, 0.01 6 S 6 0.3, mostly at m = 30, which in-
cludes a C/A transition of the corresponding 2D system at sufficiently large S or Re. We
have found that sharp flow-regime boundaries (between elongated ligaments and sheets)
cannot be drawn: simulation results indicate that sheet-like disturbances can eventually
exhibit thread-like ligaments, and both types of behaviour can co-exist. Furthermore,
the observed late-time dynamics of ligaments is affected by additional parameters: the
strength of the forcing, the length of the computational domain and the duration of the
simulations. Overall though, two general trends can be reported. First, ligaments tend
to be more sheet-like at low values of S (although thread-like features can occur further
downstream), suggesting a passive stretching of overturned waves without significant ef-
fects of surface tension. A second general trend is that wave overturning and ligament
formation develop less frequently and at a slower pace at larger values of S. In this sec-
tion, we characterize the growth of ligaments and report flow behaviour involving many
ligaments.

6.1. Ligament growth

We first study the distance between tip and foot of ligaments in Figure 28(a). The
timescale of growth is more or less the same in all cases (including varying the surface-
tension parameter S and the viscosity ratio m), with the notable exception of cases
wherein the Reynolds number, Re, is varied. The fact that an increase in the value of
S by an order of magnitude hardly affects the ligament length as a function of time is
incompatible with the governing physical mechanism being the work done by tangential
shear stress being converted into surface energy, as in a droplet stretched whilst pinned on
a wall in shear flow (e.g. Ding et al. (2010)). Furthermore, the ligament dynamics argu-
ment of Marmottant & Villermaux (2004) for gas-assisted jets, when modified such that
a rate of change of momentum of a ligament corresponds to the shear stress integrated
over the ligament (rather than normal stress), would lead one to expect a significant
dependency in Figure 28(a) on the value of m, which is not observed.
The results in Figure 28(a) suggest instead that these ligaments are elongated in a

kinematic way, in line with the ‘strong-flow’ regime of droplet stretching in the work
by Cristini et al. (2003). A vector L is advected passively approximately according
to Batchelor (1967) (Chapter 3),

dLi

dt
= Lj

∂ui
∂xj

. (6.1)

where it is assumed that the vector length is small compared to length scales over which
∇u varies. We first observe that a unidirectional flow (over a flat interface) is independent
of S, and that the corresponding dimensionless shear rate just above the interface is
hardly affected by the value of m but varies approximately linearly with the value of Re.
The large discrepancy in time scale seen in Figure 28(a) for Re = 300 (with S = 0.1)
compared with the cases at Re = 100 can largely be explained by kinematic elongation of
ligaments: after multiplying the time variable by Re, the velocity of elongation for Re =
300 differs only by a factor of about two from the other data. This is strengthened further
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Figure 28. (a) Ligament length versus time; (b) Position of the top of the ligament tip relative
to the interface above the foot. Various cases are considered, as indicated. In CH5 and m = 60,
the ligaments are mostly thin sheets, whereas that traced in CH6 is a highly elongated thread.
For Re = 150, two ligaments have been traced, both being thread-like, that labelled Re150L1
being rather isolated, that labelled Re150L2 being surrounded by other ligaments. For Re = 150,
two ligaments have been traced: one being thread-like (labelled Re300L1), the other sheet-like
(labelled Re300L2). The data are shown up to the point of tearing or breakup.

by additional simulations included in Figure 28(a) for ligaments at Re = 150,S = 0.01
(a snapshot of this simulation is shown in Figure 1). On the other hand, there is scatter
in the growth rates of ligaments in the same simulation, to which we return below.
In fact, Equation (6.1) explains further details of the behaviour of ligaments in these

flows. Two regimes are seen in Figure 28(a): an early-time behaviour, which further
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inspection of our data shows to be near-exponential in time, and a near-linear regime.
Although such behaviour was also observed in the two-dimensional simulations in the
work by Valluri et al. (2010), no further analysis was offered there. In Figure 28(b), it
is seen that at early times (up to the end of a near-exponential time dependency in
Figure 28(a)), the relative position of the interface above the tip moves upwards relative
to the interface above the ligament foot (we have found this to be caused mostly by a
downwards motion of the latter, which would be expected from the foot – initially a
large-amplitude wave – is drained to form part of the ligament). The largest variation
in the velocity field is normal to the interface, and from Equation (6.1), this component
of L is expected to increase exponentially. Subsequently, this component of L saturates,
rendering the right-hand side of Equation (6.1) constant, thereby resulting in linear
elongation. Therefore, ligaments that are not stretched significantly in the (z-) direction
of the main variation of the flow are expected to be extended less in the main flow
direction. This mechanism is not unlike Taylor dispersion for passive scalars, wherein
a small rate of diffusion of a passive scalar in the direction of the main variation of
the velocity field leads to large dispersion in the main flow direction (Taylor 1953). In
conclusion, the results shown in Figure 28(a) and (b) are best understood together: cases
wherein the extension in the z-direction is small lead to weaker extension in the x- (main
flow) direction. The variation in the growth rates among ligaments in the same simulation
in Figure 28(a) is to be expected given their differences in Figure 28(b): for example,
the ligament labelled Re150L1 grows rather quickly in Figure 28(a) when compared to
Re150L2, but in the latter is seen in Figure 28(b) to descend into a trough whereas the
former maintains its ‘posture’.
Finally, the detailed parameter study carried out in the present section enables one

to connect the results somewhat to the energy-budget anlysis in the framework of lin-
ear theory. The parameter cases that admit absolute instability correspond to more
interfacial-type modes, driven by the Yih instability, while the parameter cases that are
convectively unstable correspond to more shear-type modes (albeit that a small con-
tribution to the perturbation energy from the interfacial viscosity mismatch is always
present). The parameter cases considered show that increasing the Reynolds number
promotes the shear-type mode while reducing the interfacial or Yih-type mode. Since the
shear-type modes are typically unconditionally convectively unstable, the same param-
eter governs the transition between absolute and convective instability. Of course, the
parameter space in the present problem is rich, and we have already demonstrated that
the inverse capillary number also controls the absoluteness or otherwise of the instabil-
ity. In any event, the nonlinear DNS results of this section confirm that the frequency
selection criteria and ligament generation are independent of the precise details of the
pertinent underlying linear mode and depend only on the more coarse-grained features,
such as absolute and convective instability, and the kinematic description of the ligament
generation and evolution.

6.2. Detailed study of the case CH7 and discussion of interfacial ‘turbulence’

Finally, we consider in more detail some simulation results concerning the simulation
CH7 (Re = 300,S = 0.1). Referring to Figures 24–25, the early-time t > 0.675 re-
sults are similar to those observed before for (CH5,CH6): the disturbances downstream
of the forcing region are largely two-dimensional, with three-dimensional perturbations
superimposed on the crest of large-amplitude two-dimensional waves. These waves are
stretched into sheet-like ligaments reminiscent of those seen in the case CH5 (e.g. the large
three-dimensional overturned wave at x ≈ 6, at t = 0.75). As the ligament is stretched
by the mean flow, it ‘rolls up’ and is carried out of the domain. However, these events are
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Figure 29. Snapshot of the interface height at t = 1.125, enlarged with respect to the
previous figure to show the co-existence of ‘sheets’ and ligaments.

accompanied by a violent collision on the windward side between the ligament’s carrier
wave and a neighbouring ligament just upstream (e.g. t = 0.9, 0.975). Such collisions
continue indefinitely, leading to a complicated ‘turbulent’ interfacial structure near the
outlet.

Although irregular flow behaviour is observed in prior work (Valluri et al. 2010; Fuster
et al. 2009), its relation to a weakly-perturbed state is unclear from these studies. In fact,
the transition to a highly-agitated state observed in Figure 25 for a three-dimensional
system appears within a very short distance downstream from the region where waves
are still of small amplitude. The basic description given above is supported by a further
simple kinematic argument. For CH7, the frequency of ligament generation is five times
greater than that of CH5 (see Table 5). In addition, due to the convective nature of
the instability in CH7, the ligaments form only well downstream in response to a spatial
amplification of the localized forcing (see Table 5 and Figure 24–25). Thus, a large number
of ligaments is created very rapidly in a small part of the domain. In addition, these
ligaments are distorted by the mean flow, wherein the mean shear rate on the gas side is
three times larger for CH7 compared to CH5 (the mean shear rate is directly proportional
to the Reynolds number). Consequently, the extreme nonlinear structures in the flow are
‘bunched up’ and interact to form the extremely complicated structures seen at late times
in Figure 25.

Finally, a detailed snapshot of the interfacial structures is shown in Figure 29, for
t = 1.125. This figure confirms the coexistence of ‘sheets’ and ligaments, which were
observed previously in separate instances, in CH5 and CH6 respectively. In certain gas-
liquid systems (Marmottant & Villermaux 2004), elongated liquid sheets (similar to those
described herein) are inflated with gas from the upper layer to produce bag-like shapes
that subsequently break up to produce droplets. This mechanism is typically contrasted
with the scenario wherein finger-like ligaments that extend in the streamwise direction
break up into droplets (Azzopardi 2003; Marmottant & Villermaux 2004). However, Fig-
ure 29 demonstrates that both phenomena may coexist, since both ‘sheets’ and elongated
ligaments are visible therein. These numerical findings are consistent with experimental
results (Lecoeur et al. 2010), albeit for a density-contrasted system.
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7. Discussion and conclusions

The initial motivation for the present study was to use fully nonlinear, three-dimensional
numerical simulations to identify which nonlinear mechanism should dominate beyond
the point where linear theory loses validity, and by what mechanism droplets are even-
tually formed, as a necessary basis for a future theoretical nonlinear studies, given the
diversity of types of nonlinear analysis that are available. The results for initially weakly-
perturbed flows have been found to mostly follow linear theory nearly up to the point of
wave overturning. For a case wherein spanwise modes are linearly stable, a subsequent
nonlinear mechanism for growth has been identified and modelled theoretically, whereby
spanwise modes are enslaved by the dominant streamwise mode(s). This has also been
demonstrated to occur in a case wherein spanwise modes are linearly unstable, although
there the spanwise modes also eventually interact, to result in more involved nonlinear
behaviour.

A further candidate route to three-dimensional instability was mooted in the introduc-
tion, namely secondary instability. In this scenario, the linearly-most-dangerous stream-
wise mode would stabilize at large amplitude and thereafter, a finite-amplitude unidi-
rectional travelling wave superimposed on the base state would become the ‘new’ base
state. This new base state could itself prove unstable to three-dimensional perturbations.
If secondary instability is understood in this narrow sense, namely as the formation of
secondary waves on a nonlinear but non-overturned wavy base state, and exemplified
by the kind of Floquet analysis performed by Schmid & Henningson (2001), then such
instability is ruled out in the present system, as the interfacial waves (both two- and
three-dimensional) turn over and form complicated highly nonlinear structures, rendering
analytic and quasi-analytic Floquet analyses around a wavy nonlinear base state impos-
sible. However, if one understands secondary instability more broadly, as an instability
that is fuelled by an underlying linearly unstable wave formation, then the phenomena
observed in this work can be regarded as a secondary instability. Consequently, the weak
nonlinear spanwise instability which is the cornerstone result of this work is an instability
of the secondary type.

Regarding the flow behaviour of waves that have overturned, space-time plots of the
interfacial curvature have revealed regular formation of ligaments, the frequency of which
has been related to linear theory and global-mode theory in a manner that hinges upon
whether the system is absolutely or convectively unstable. The results from a parametric
study of the late-time evolution of ligaments and sheets have been demonstrated to
support a purely kinematic explanation of ligament stretching, rather than a dynamic,
force-balance-based one, and to be related to a regime of rapid stretching of droplets
in extensional flow. In a case for an elevated value of the Reynolds number, a sudden
transition to an agitated, strongly chaotic regime has also been presented. This sudden
transition has been discussed in the context of the increased frequency at which ligaments
are formed in that case.

Finally, we comment briefly on some outstanding issues and discuss possible extensions
to the current work. The simulations performed so far have involved three-dimensional
channels where the extent of the channel in the spanwise direction is Ly = 0.5, 1, and
where the results were qualitatively similar for both of these geometries. However, one
may estimate the effect of widening the channel further beyond Ly = 1: in this situation,
a larger number of spanwise modes comes into play in linear theory, some of which will
be more unstable than those present in the current simulations. Thus, in wider channels,
the three-dimensional effects could become more prominent (depending of course on the
choice of parameters). However, this scenario involves a mere strengthening of one of the
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routes to three-dimensional waves discussed in the paper (namely the direct route via
spanwise linear instability), and the results in such a scenario are therefore expected to
be qualitatively similar to the ones already obtained. The indirect weakly nonlinear route
depends strongly on a coupling of a two-dimensional mode to purely spanwise modes,
and it is expected that this route would also be modified only in a qualitative fashion by
going over to wider channels.
The density-matched model simulated in this paper has been selected for its simplicity.

Also, it was motivated by our initial practical modelling concern in the removal of vis-
cous soils in plants during cleaning and product turnover operations (Valluri et al. 2010).
Nevertheless, the considered parameter regimes have already revealed a wide range of
behaviours, including mode competition and a transition between absolute and convec-
tive instability. Concerning other available variable parameters, the mean location of the
interface is an important parameter, and variation of this parameter does indeed lead
to mode competition (Ó Náraigh et al. 2011), and also controls the transition between
convective and absolute instability (Valluri et al. 2010). The mean interface location also
determines determines precisely which sub-type of the viscosity-contrast mechanism is at
work (Govindarajan & Sahu 2014; Charru & Hinch 2000). However, in the present simula-
tions, it is not possible to perform a complete parameter study, due to the enormous cost
of the computational resources deployed. For that reason, we have focused to a certain
extent on a single parameter for study, namely the surface-tension parameter (although
dependence on the viscosity ratio and the Reynolds number is also addressed in some
depth). This was for two reasons. First, the surface-tension parameter is a convenient
‘switch’ that controls both the transition between absolute and convective instability,
but also the shape of the resulting ligaments. Also, focusing on the single parameter
h0 = 0.3 was again motivated by the original practical application in industrial cleaning
processes in liquid-liquid flows. Certainly, a parameter study based additionally on h0
will throw up some interesting features. However, the methods developed in this paper
(the weak nonlinear theory whereby the transient mode is excited nonlinearly and selects
a given excitation on the basis of linear transient-growth theory, as well as the kinematic
analysis of the ligaments) are totally generic, and should be applicable more broadly.
Thus, it is important to place these methods on a firm evidence-based footing, so they
can be applied with confidence to wider parameter studies in the future. Indeed, it will
be of compelling interest to extend the present analyses to systems residing in other
distinct parameter regimes, thereby widening unambiguously both the applicability of
the present findings and the scope of the high-performance computing model developed
in this paper.
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Appendix A. Orr–Sommerfeld and Orr–Sommerfeld Squire equations

We describe here the equations and the numerical method for the 3D modal analysis
that is used directly in Section 2 and that forms the basis for the transient growth
calculations in Section 3. In the base state, the interface is flat (η = 0), the flow is steady
and unidirectional, v = w = 0, u = U0(z), and the pressure is linear, p = (dP/dL)x,
under a negative dimensionless pressure gradient, dP/dL. The solution for the laminar
velocity profile is then

U0(z) =

{
UB(z) = − Re

2mz
2 +Az, 0 6 z 6 h0,

UT (z) = −Re
2 (z − 1)

2
+B (z − 1) , h0 6 z 6 1

. (A 1)

The constants A and B are determined from continuity of velocity and shear stress at
the interface:

UB(h0) = UT (h0), mU ′
B(h0) = U ′

T (h0). (A 2)

As mentioned in Sections 2–3, we study the stability of the system by subjecting the
base state to a small-amplitude three-dimensional perturbation. Each flow variable is
expressed as a sum of the base state and the perturbation:

η = h0 + ϵη0e
i(αx+βy−Ωt), w = ϵw̃(z)ei(αx+βy−Ωt), ωz = ϵω̃z(z)e

i(αx+βy−Ωt),

p =
dP

dL
x+ ϵp̃(z)ei(αx+βy−Ωt). (A 3)

Here ϵ is the infinitesimally small amplitude of the wave and η0 is its phase (with |η0| = 1).
Substituting Equations (A 3) into the equations of motion and boundary conditions, and
dropping terms that are nonlinear in the perturbed variables, we get the following system
of governing equations:

iαrRe
[(
w̃′′

B − k2w̃B

)
(UB − c)− w̃BU

′′
B

]
= m

(
w̃′′′′

B − 2k2w̃′′
B + k4w̃B

)
, (A 4a)

irRe [αω̃zB (UB − c) + βU ′
Bw̃B ] = m

(
ω̃′′
zB − k2ω̃z

)
, (A 4b)

in the bottom phase, with k2 = α2 + β2, and

iαRe
[(
w̃′′

T − k2w̃T

)
(UT − c)− w̃TU

′′
T

]
= w̃′′′′

T − 2k2w̃′′
T + k4w̃T , (A 4c)

iRe [αω̃zT (UT − c) + βU ′
T w̃T ] = ω̃′′

zT − k2ω̃zT , (A 4d)

in the top phase. These are supplemented with the following no-slip and no-penetration
boundary conditions:

w̃ = w̃′ = ω̃z = 0 (A5)

at the walls z = 0 and z = 1. In addition, matching conditions are prescribed at the
interface z = h0. In the streamwise direction, continuity of velocity and tangential stress
and the jump condition in the normal stress imply the following relations:

w̃B = w̃T , (A 6a)

w̃′
B + η0U

′
B = w̃′

T + η0U
′
T , η0 = w̃B/(c− UB) = w̃T /(c− UT ), (A 6b)

m
(
w̃′′

B + k2w̃B

)
= w̃′′

T + k2w̃T , (A 6c)
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iαrRe [w̃B (c− UB) + w̃BU
′
B ] +m

(
w̃′′′

B − 3k2w̃B

)

= iαRe [w̃′
T (c− UT ) + w̃TU

′
T ] +

(
w̃′′′

T − 3k2w̃T

)
+ Sk4

[
w̃′

T − w̃′
B

iα (U ′
B − U ′

T )

]
= 0. (A 6d)

Finally, the same physical matching conditions applied to the spanwise direction give rise
to the following relations:

ω̃zB + iβU ′
Bη0 = ω̃zT + iβU ′

T η0, (A 6e)

mω̃′
zB = ω̃zT . (A 6f )

Equations (A 4)–(A 6) constitute an eigenvalue problem for the velocities (w̃B , w̃T ) and
vorticity components (ω̃zB , ω̃zT ), with eigenvalue λ = −iαc = −iω.
We solve Equations (A 4)–(A 6) using the Chebyshev collocation method described

by Boomkamp et al. (1997), wherein a trial solution involving the Chebyshev polynomials
Tj(·) is proposed in each domain:

w̃B(z) ≈

NB∑

j=0

ajTj(ηB1), ω̃zB(z) ≈

NB∑

j=0

bjTj(ηB2), (A 7a)

w̃T (z) ≈

NT∑

j=0

cjTj(ηT1), ω̃zT (z) ≈

NT∑

j=0

djTj(ηT2); (A 7b)

this reduces the differential equations (A 4) to a finite-dimensional eigenvalue problem.
The variables (ηB1, ηB2, ηT1, ηT2) are linear transformations of the z-coordinate, whose
range is confined to [−1, 1]. The trial solution for (w̃B , w̃T ) is substituted into the dif-
ferential equation (A 4) and evaluated at (NB − 3, NT − 3) interior points; similarly,
the trial solution for (ω̃zB , ω̃zT ) is substituted into the differential equation (A 4) and
evaluated at (NB − 1, NT − 1) interior points. This gives 2(NB + NT ) − 8 equations in
2(NB +NT ) + 4 unknowns; the system is closed by evaluating the trial functions at the
boundaries z = 0 and z = 1, and at the interface z = h0 (12 further equations). In this
way, a finite-dimensional analogue of Equations (A 4)–(A 6) is obtained:

Av = λBv, (A 8)

where A and B are 2(NB +NT + 2)× 2(NB +NT + 2) complex matrices, and

v = (a0, · · · , aNB
, b0, · · · , bNB

, c0, · · · , cNT
, d0, · · · , dNT

)
T

is a complex column-valued column vector. The eigenvalue λ is obtained using a standard
eigenvalue solver; the correctness of the implementation of the numerical scheme has been
validated by computing the dispersion relation λ(α, β) for a given set of flow parameters,
and comparing the result with the same dispersion relation computed by an different,
independent method (Sahu & Matar 2011); the results are identical.
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Scott, D. M., Náraigh, L. Ó, Bethune, I., Valluri, P. & Spelt, P. D. M. 2013a Perfor-
mance enhancement and optimization of the TPLS and DIM two-phase flow solvers. Tech.
Rep.. Edinburgh Parallel Computing Centre.
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