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MODELLING AND NUMERICS FOR RESPIRATORY AEROSOLSLAURENT BOUDIN, CÉLINE GRANDMONT, ALEXANDER LORZ, AND AYMAN MOUSSAAbstra
t. In this work, we �rst deal with the modelling and the dis
retization of anaerosol evolving in the air, in the respiration framework, within a domain whi
h 
an be�xed or moving. We also investigate basi
 numeri
al properties of the numeri
al 
odewhi
h was developped, and also fo
us on the in�uen
e of the aerosol on the air�ow.1. Introdu
tionThe evolution of droplets or parti
les in a surrounding �uid is a phenomenon en
ounteredin several areas, ranging from medi
ine (aerosol therapy) to motor industry (transport and
ombustion of petrol). In the parti
ular aerosol therapy 
ase, in vivo observations of drugdelivery in the airways indu
e several di�
ulties. For instan
e, aerosol deposition mapsrequire heavy experimental proto
ols, whi
h 
annot be easily repeated, and the obtainedmeasurements may not be a

urate enough.Consequently, the 
hoi
e of physi
ally relevant models, and thereafter the design of sta-ble, e�
ient numeri
al methods allow in sili
o experiments whi
h 
an provide a wide rangeof results for various physi
al situations and parameters (type of aerosols, surrounding �u-ids, pathologi
al state...).Several kinds of modelling are available to des
ribe the aerosol movement in a �uid.Two of them are dis
ussed quite in detail in [31℄: one 
an 
onsider individual parti
les onthe one hand, or a 
olle
tion of parti
les on the other hand.Two-phase models 
onsider the 
olle
tion of droplets or parti
les as a �uid and studythe evolution, for instan
e, of aerosol 
on
entration in the ambient �uid. Those modelsare most 
ertainly adapted in the 
ase when the volume fra
tion o

upied by the dispersedphase is not negligible with respe
t to the volume fra
tion o

upied by the surrounding�uid [34, 7, 36, 17℄. Unfortunately, su
h models do not allow an a

urate des
ription ofparti
le deposition. This is why we shall only fo
us on spray models in whi
h the dis
reteaspe
t of the dispersed phase is kept.Following parti
les as individuals is the other 
lassi
al strategy, see [9, 15, 16, 39, 46℄for instan
e. Nevertheless, des
ribing the behaviour of su
h a (very) large number ofparti
les may lead to both te
hni
al and numeri
al di�
ulties if one tries to keep the tra
kof ea
h individual traje
tory. For instan
e, the Atomiser po
ket aeroneb GO from DTF1Corporation has the following 
hara
teristi
s: air�ow rate of 0.3mL/min, average (in mass)diameter equal to 3.6µm. Hen
e, this nebulizer allows the inje
tion of 1010 parti
les inone minute.In this 
ontext of very numerous parti
les, and sin
e the volume o

upied by the aerosolremains negligible in the human airways, the formalism of statisti
al physi
s and kineti
theory is espe
ially well-�tted. This type of 
oupling was �rst introdu
ed by O'Rourke [40℄or Williams [43℄ and is now quite often used to model aerosol transport in the lung, see[10, 27, 13℄. As for the intera
tion between the aerosol and the surrounding �uid, followinga nomen
lature introdu
ed by O'Rourke (see also [22℄), we assume the spray to be thin.This means that
• the aerosol volume fra
tion in the mixture remains negligible;Date: July 17, 2014.This work was partially funded by the ANR-08-JCJC-013-01 proje
t headed by C. Grandmont and theANR-10-BLAN-1119 proje
t headed by M. Filo
he.1See http://www.dtf.fr 1
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• there are no intera
tions between the aerosol parti
les;
• the aerosol 
an have an e�e
t on the �uid, as a response to the drag for
e exertedby the �uid on the parti
les.Note that, for two-phase models as well as ODE ones, the aerosol retroa
tion on the �uidis seldom taken into a

ount, up to our knowledge. In the same 
ontext of aerosol kineti
modelling we 
onsider hereafter, [27℄ presents a study of aerosol transport in the tra
heawhere the retroa
tion is taken into a

ount.The aerosol is then des
ribed by a distribution fun
tion whi
h satis�es a Vlasov-typeequation. The �uid is assumed to be homogeneous, Newtonian, in
ompressible, and 
anbe des
ribed using the Navier-Stokes equations, see [28℄ for instan
e. The physi
al domain
an be either �xed or time dependent.The aerosol and �uid are 
oupled through two terms: the parti
le a

eleration, depend-ing on the relative velo
ity of the parti
le in the �uid, and the retroa
tion for
e appliedby the aerosol on the �uid. Consequently, we have to deal with a strong 
oupling of twotypes of equations: one at the ma
ros
opi
 s
ale (Navier-Stokes), one at the mesos
opi
s
ale (Vlasov). The existen
e of solutions of the obtained system in a �xed domain hasbeen investigated by various authors [30, 6, 11, 45℄. The main issue in these mathemati
alstudies lies in the fa
t that the system is nonlinear and strongly 
oupled.The numeri
al strategy fa
es the same di�
ulty together with the di�erent level ofdes
riptions for both phases (ma
ro/mesos
opi
). We 
hoose an expli
it time-advan
ings
heme, whi
h allows to solve the �uid and aerosol parts in a staggered way. The systemis thus un
oupled in the approximation pro
edure, reminis
ent from the existen
e proof in[11℄. For the spa
e dis
retization, a �nite element pro
edure and a parti
le-in-
ell methodare respe
tively used to approximate the �uid velo
ity and pressure, and the distributionfun
tion. The moving domain 
ase is handled thanks to the arbitrary Lagrangian-Eulerian(ALE) method, see [38℄ in a �nite element 
ontext.This whole approximation s
heme was implemented in the C++ library LifeV.In this arti
le, we aim to investigate the range of parameters for whi
h our s
heme isnumeri
ally stable and a

urate. In parti
ular, we study the in�uen
e of the retroa
tionfor
e. Its expli
it treatment may indu
e unphysi
al instabilities due to large parti
le ve-lo
ities. In the human lung, if therapeuti
 aerosols seem not to require the retroa
tionterm in most standard situations, it is not the 
ase for polluting parti
les, whose averagevolume is larger. We also 
onsider the moving domain 
ase, whi
h is usually not takeninto a

ount, and is a �rst step towards the bron
hial wall motion.On
e the full aerosol-�uid model has been des
ribed, we present the 
onsidered numeri-
al method and then fo
us on three 
ases: a �xed domain without or with retroa
tion anda moving domain without retroa
tion. In ea
h 
ase, we study the numeri
al sensivity withrespe
t to various parameters (time step, mesh size, initial datum, parti
le representativ-ity...). 2. ModelIn the upper airways, we 
an safely assume that the air is Newtonian and in
ompress-ible, thus governed by the in
ompressible Navier-Stokes equations. During the respirationpro
ess, some airway walls may be time-dependent. Thus our equations will be 
onsideredin a moving domain. When we fo
us on aerosols in human airways, the number of parti
les
an be signi�
ant, whereas the volume o

upied by the aerosol remains small. A 
lassi
alstrategy in statisti
al me
hani
s then 
onsists in des
ribing the spray behavior thanks toone single kineti
 equation.To model our problem, we are led to 
ouple both types of equations to obtain a�uid/kineti
 system we present in the next subse
tions.2.1. Geometries. In our study, a typi
al �uid domain, denoted by Ωt, is a 
ylinder ora bran
h (see Figure 1), whi
h 
an depend on time t. Its boundary Γt = ∂Ωt is divided



MODELLING AND NUMERICS FOR RESPIRATORY AEROSOLS 3into three (not ne
essarily 
onne
ted) subsets: the inlet Γin
t , the outlet Γout

t and the wall
Γwall
t . In most situations, Γin

t and Γout
t do not depend on time, be
ause they are 
hosenas arti�
ial boundaries. On the 
ontrary, the motion of Γwall

t is driven by physiologi
alphenomena.
Γin
t Γwall

t

Γout
t

Ωt

Figure 1. Bran
h geometry with a moving wall.In the sequel nt will denote the unit ve
tor going out and normal to ∂Ωt.2.2. Fluid equations. Sin
e, in our framework, the �uid is Newtonian, in
ompressibleand homogeneous, the �uid mass density ̺�u remains 
onstant. We denote ν the �uidkinemati
 vis
osity and η = ̺�u ν its dynami
 one. The �ow is 
lassi
ally des
ribed byits velo
ity �eld u(t,x) ∈ R
3 and the pressure p(t,x) ∈ R, where t ≥ 0 is the time and

x = (x1, x2, x3) ∈ R
3 is the position. It is governed by the following equations:

̺�u[∂tu+ (u · ∇x)u] = −∇xp+ η∆xu+ F , t ∈ R+, x ∈ Ωt, (2.1)
∇x · u = 0, t ∈ R+, x ∈ Ωt, (2.2)where F is a ve
tor �eld representing the for
es a
ting on the �uid (gravity, aerosol retroa
-tion). Moreover, to take into a

ount the fa
t that the domain itself 
an move, we 
onsidergiven time-indexed open sets Ωt of R3. If we denote, for any t ≥ 0, the displa
ement

At : Ω0 → Ωt from the initial (referen
e) 
on�guration, we shall assume that (t,x) 7→ At(x)is as smooth as needed, see [38, 19℄.2.3. Aerosol equation. The distribution fun
tion f : R+ × R
3 × R

3 → R+ depends ontime t and position x of the parti
les, but also on their velo
ity v. In fa
t, f 
an alsodepend on parti
le radius, temperature or other relevant quantities, as seen in [40, 43℄.Let us emphasize that we do not take into a

ount any phenomenon modifying the aerosoldistribution regarding radius (no 
ollision, no abrasion, et
.) or other physi
al quantities(no signi�
ant temperature variation during the breathing pro
ess, for instan
e). Thisensures that the initial radius distribution is 
onserved with respe
t to time. Therefore,for the sake of simpli
ity, the aerosol is 
hosen monodispersed in size, meaning that r is aparameter, see Remark 2 below. Ea
h parti
le is assumed to remain spheri
al and hen
e,its mass m is 
onstant and satis�es m = 4πr3̺aer/3, where ̺aer is the 
onstant volumemass of ea
h parti
le.The distribution fun
tion solves the Vlasov equation, i.e.
∂tf + v · ∇xf +∇v · (af) = 0, (2.3)where a(t,x,v) is the a

eleration �eld undergone by the aerosol.Remark 1. One 
an understand f in two ways. It 
an be seen as

• a number density: f(t,x,v) dxdv is the number of droplets lo
ated in the elemen-tary volume of the phase spa
e, 
entred at (x,v) at time t;
• a probability density: if the zero-th moment of f equals 1, f(t, ·, ·) is the densityfun
tion, at time t, of the probability of presen
e of the parti
les in the phase spa
e.
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an take into a

ount the 
ase where the parti
les have di�erent radii.Indeed, if the �uid velo
ity is given, all the terms involving the parti
les linearly dependon f . Hen
e, several distribution fun
tions of di�erent radii may be superponed to modela size-polydispersed distribution. This has impli
ations in the numeri
al 
omputations, seeRemark 6 in Se
tion 3.2.4. Intera
tion between the �uid and the aerosol. The terms F and a must still bede�ned. In what follows, the gravitational e�e
ts will be negle
ted be
ause we only fo
uson �uid-aerosol intera
tion. Both terms F and a model a drag for
e (or a

eleration)between the �uid and the aerosol. We refer to Appendix A for a dis
ussion about the dragfor
e expression. We here use the Stokes law, whi
h allows to write, for any t and x,
a(t,x,v) =

6πηr

m
(u(t,x)− v), (2.4)

F (t,x) = −m

∫

R3

f(t,x,v)a(t,x,v) dv. (2.5)Whether we take F into a

ount or not in this model is a real issue: it is 
alled the aerosolretroa
tion on the �uid.2.5. Initial and boundary 
onditions. Equations (2.1)�(2.5) must be supplemented byinitial and boundary 
onditions. Re
all that for any t ≥ 0, the motion of the boundary isgiven by the displa
ement At : Ω0 → Ωt of the whole domain, from the initial (referen
e)
on�guration, (t,x) 7→ At(x) being as smooth as needed. The velo
ity of the domain atthe point x ∈ ∂Ωt is hen
e given by
w(t,x) := Ȧt(A

−1
t (x)).We assume that the �uid velo
ity �t w on Γwall

t

u = w on Γwall
t . (2.6)Of 
ourse, when the domain is �xed, w ≡ 0 and we have a homogeneous Diri
hlet boundary
ondition for u on Γwall

0 .On both the inlet(s) and the outlet(s), we 
an assign Diri
hlet or Neumann boundary
onditions, for instan
e, if uin
t : Γin

t → R
3, we 
an 
hoose

u = uin
t on Γin

t , (∇xu+ (∇xu)
T ) · nt − pnt = 0 on Γout

t . (2.7)For a more realisti
 modelling in the air�ow 
ontext, one 
an propose, as in [28, 8℄ thefollowing strategy. In the proximal areas, the air�ow is 
omputed thanks to the Navier-Stokes equations whereas, in the distal part, it is des
ribed by a well 
hosen 0D boundary
onditions, taking the diaphragm motion into a

ount.We 
hoose an absorption boundary 
ondition for the aerosol on the wall. In the kineti
formalism, it writes
(v −w) · nt < 0 ⇒ f = 0, on Γwall

t × R
3. (2.8)Remark 3. The boundary 
onditions on Γwall

t are of 
ourse 
onsistent with the respirationframework: indeed, the wall is 
oated with mu
us and the aerosol parti
les deposit on thewall when they hit it.Consider u0 : Ω0 → R
3 and f0 : Ω0 × R

3 → R+ as initial data, i.e.
u(0,x) = u0(x), x ∈ Ω0, f(0,x,v) = f0(x,v), x ∈ Ω0, v ∈ R

3. (2.9)In a �xed domain, with homogeneous Diri
hlet boundary 
onditions for the �uid andabsorption for the spray, on ∂Ω0, we have the following proposition.Proposition 4. Assume that Ωt = Ω0 for any t ≥ 0, u = 0 on ∂Ω0 and f = 0 on ∂Ω0×R
3if v · n0 < 0. Then the energy of the whole aerosol-air system de
reases.



MODELLING AND NUMERICS FOR RESPIRATORY AEROSOLS 5Proof. Multiply respe
tively (2.3) by mv2/2 and (2.1) by u. Then integrate the out
omingequalities respe
tively on Ω0 × R
3 and Ω0, to get

d

dt

(

m

2

∫∫

Ω0×R3

f(t,x,v)v2 dv dx+
1

2

∫

Ω0

̺�u|u(t,x)|2dx)
= −

∫∫

∂Ω0×R3

f(t,x,v)v · n0 dv dx ≤ 0,sin
e f is nonnegative. The previous inequality ensures that the total kineti
 energy of the
oupled system de
reases. �Remark 5. If one 
onsiders other kinds of �uid boundary 
onditions, su
h as (2.7), theprevious result does not hold and no energy bound 
an be derived. This la
k of energyestimate 
omes from the Neumann boundary 
onditions for the Navier-Stokes system, andmay also lead to numeri
al instabilities, see [25℄ for a review on this topi
.The nonlinearity in the Navier-Stokes equations and the strong 
oupling between theVlasov and Navier-Stokes equations are the two major di�
ulties about the full system(2.1)�(2.7) from both mathemati
al and numeri
al viewpoints. System (2.1)�(2.9) wasmathemati
ally investigated in a �xed domain (global in time existen
e of weak solutions)in [30, 6, 11, 45℄. In the two-dimensional 
ase, uniqueness was also investigated [44℄.Note that the approximation strategy used in the existen
e result established in [11℄ andespe
ially the un
oupling pro
ess between the kineti
 and �uid equations inspired thenumeri
al s
heme presented in the next se
tion.3. Numeri
al s
hemeWe here propose a time-advan
ing s
heme to solve the strongly 
oupled problem (2.1)�(2.7). We �rst un
ouple the �uid and aerosol problems and solve the �uid part with aretroa
tion sour
e term 
oming from the previous time step. Then we solve the kineti
part, using the updated �uid velo
ity to 
ompute the drag for
e. Note that we may needtime sub
y
ling of the kineti
 part to get an a

urate value of the retroa
tion term.The aerosol is 
omputed thanks to a parti
le-in-
ell (PIC) method [18, 20, 21, 42℄. Forthe �uid, we use a Lagrange �nite element method asso
iated to an arbitrary Lagrangian-Eulerian (ALE) approa
h [32, 23℄, to handle the moving aspe
t. Those methods are brie�ydis
ussed in the next subse
tions. The most intri
ate part of this s
heme probably lies inthe 
oupling between (2.1) and (2.3) through (2.5).Sin
e the 
omputational domain 
an move, we need to de�ne the domain mapping
At : Ω0 → R

3 and the asso
iated velo
ity w(t, ·) : Ωt → R
3. For instan
e, at ea
h time

t, At 
an be 
omputed from the boundaries movement as a solution to a Poisson problemset on Ωt.Besides, our work is embedded in the C++ �nite element library LifeV2, whi
h previ-ously owned numeri
al tools to handle both �xed and moving meshes, most 
lassi
al �niteelement methods, and o�ered solvers for biologi
al �ows (Navier-Stokes, Dar
y, et
.). Ifmore details are needed, the reader is invited to refer to [37℄, see also [38, 19℄ about the�uid solvers.In the following, we shall denote T the �nal time of 
omputation, and 
onsider a regularsubdivision (tn)0≤n≤N of [0, T ] with a step ∆t > 0.3.1. The Navier-Stokes equations. Most features of the �uid solver we present beloware standard. Nevertheless, we brie�y explain how the whole 
omputation is handled.We dis
retize the Navier-Stokes equations (2.1)�(2.2) written in the ALE 
onservativeform [38℄. With our boundary 
onditions (2.6)�(2.7), it is given, for any t ∈ [0, T ], by2Free software under LGPL li
ense, jointly developed in four institutions: É
ole Polyte
hnique Fédéralede Lausanne (Switzerland), Polite
ni
o di Milano (Italy), Inria Paris-Ro
quen
ourt (Fran
e) and EmoryUniversity (USA), see http://www.lifev.org/
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̺�u d

dt

∫

Ωt

u · β(t,x) dx+ ̺�u ∫
Ωt

[(u−w) · ∇xu] · β dx

− ̺�u ∫
Ωt

(divw)u · β dx+ η

∫

Ωt

∇xu : ∇xβ dx+

∫

Ωt

p(divβ) dx =

∫

Ωt

F · β dx,

∫

Ωt

(divu)µ(t,x) dx = 0,where β and µ are suitable test fun
tions (transported by the ALE mapping At fromreferen
e test fun
tions), satisfying β = 0 on the wall and on the inlets.We 
hoose a ba
kward Euler s
heme and a semi-impli
it treatment of the 
onve
tiveterm. In the simpler 
ase of a �xed domain, it redu
es to a standard semi-impli
it Eulers
heme.For the spa
e dis
retization, we use a Lagrange �nite element method. For a 
hara
ter-isti
 size h > 0, 
onsider a tetrahedri
 mesh of Ω0, denoted by
T h
0 =

Mh
⋃

i=1

Kh
0,i,where ea
h Kh

0,i is a tetrahedron. For ea
h t, the tetrahedri
 mesh T h
t of Ωt is the union of

Mh tetrahedra whose verti
es are transported from the referen
e 
on�guration T h
0 by thedis
rete ALE mapping Ah

t . This mapping should preserve the tetrahedri
 stru
ture of themesh, see [38℄ for details.Then we de�ne the basis fun
tions, at ea
h time tn, (ϕn
k)1≤k≤Nh

for velo
ities, and
(ψn

ℓ )1≤ℓ≤Ph
for pressures, transported from P1−P1 referen
e basis fun
tions on T h

0 . On
eagain, Ah
t should preserve the 
hosen �nite element spa
e. Due to the 
hoi
e of a P1− P1setting, we use a stabilized formulation, that we do not detail here.Then, at time tn, we approximate the unknowns on T h

tn by
un(x) =

Nh
∑

k=1

unkϕ
n
k(x), pn(x) =

Ph
∑

ℓ=1

pnℓ ψ
n
ℓ (x),for any x ∈ Ωtn . The unknowns then be
ome the following 
olumn ve
tors

Un = (un1 , . . . , u
n
Nh

)T, Πn = (pn1 , . . . , p
n
Ph
)T.Consequently, from tn to tn+1, we have to solve the following linear system

[

Dn+1 (Bn+1)T
Bn+1 0

] [

Un+1

Πn+1

]

=

[

Fn

0

]

+
̺�u
∆t

[

MnUn

0

]

, (3.1)where
Bn =

(

−

∫

Ωtn

ψn
i ∇x · ϕn

j dx

)

1≤i≤Ph,1≤j≤Nh

,

Mn =

(
∫

Ωtn

ϕn
i · ϕn

j dx

)

1≤i,j≤Nh

,

Fn =

(
∫

Ωtn

F n ·ϕn
i dx

)T
1≤i≤Nh

,

Dn+1 =
̺�u
∆t

Mn+1 − ̺�uCn+1/2 + ηAn+1,with
An =

(
∫

Ωtn

∇xϕ
n
i : ∇xϕ

n
j dx

)

1≤i,j≤Nh

,

Cn+1/2 =

(

Nh
∑

k=1

(unk −wn+1
k )

[

∫

Ω
tn+1

(

ϕn+1
k · ∇xϕ

n+1
j

)

·ϕn+1
i dx

])

1≤i,j≤Nh

.



MODELLING AND NUMERICS FOR RESPIRATORY AEROSOLS 7The de�nition of F n on Ωtn is given in 3.3 below.The semi-impli
it treatment of the 
onve
tive term appears in the expression of Cn+1/2,where unk is used with the basis fun
tions at time tn+1. In the same way, note that (3.1)involves nodal quantities at time tn+1. In parti
ular, ve
tors in the right-hand side of(3.1), are de�ned using the �nite element 
oordinates of quantities on Ωtn , and furthertransported by the ALE mapping on Ωtn+1 (on the 
orresponding nodes).3.2. The Vlasov equation. Unlike the �nite element method, the parti
le method doesnot provide an approximation of f on the mesh nodes. More pre
isely, the distributionfun
tion is 
omputed as a weighted sum of Dira
 masses in the positions and velo
ities ofthe numeri
al parti
les, i.e., in a measure sense,
f(t,x,v) =

Nnum
∑

p=1

ωpδxp(t) ⊗ δvp(t)(x,v),where the number of numeri
al parti
les Nnum is initially 
hosen by the user, ωp is 
alled therepresentativity of numeri
al parti
le p, and t 7→ (xp(t),vp(t)) is the traje
tory, in the phasespa
e, of p. Hen
e, we just have to 
ompute the 
hara
teristi
s to get an approximationof f from its initial datum. Note that, as soon as xp(t) does not belong to Ωt any longer,that means that parti
le p is deposited on Γwall
t or went out of the domain through Γin

t or
Γout
t . From a numeri
al point of view, Nnum is not modi�ed but the outgoing parti
les arenot treated any more.For pra
ti
al purposes, Nnum is very small with respe
t to the average number of physi
alaerosol parti
les Naero, whi
h makes the 
omputations mu
h less 
ostly. In fa
t, we 
anwrite

Naero = Nnum
∑

p=1

ωp,whi
h gives an order of magnitude of ωp. For instan
e, if we 
hoose Naero = 1010 (see 2.3)and Nnum = 103, we 
ould set ωp = 107 for all numeri
al parti
les. The relevan
e of su
ha 
hoi
e is dis
ussed later in Se
tion 5.As long as the parti
le p remains in the domain, its 
oordinates in the spa
e phase solvethe Cau
hy problem
ẋp(t) = vp(t), v̇p(t) = a(t,xp(t),vp(t)), 0 ≤ t ≤ T,with 
hosen initial data xp(0) and vp(0). This problem is solved with a �rst-order semi-impli
it Euler s
heme

vn+1
p = vn

p +∆t ãn+1/2, xn+1
p = xn

p +∆tvn+1
p , (3.2)where ãn+1/2 is the drag a

eleration depending on quantities at both times tn and tn+1.This is explained in the next subse
tion, be
ause it is related to the 
oupling between bothphases.Eventually, we must emphasize that this method needs averaging, sin
e it relies onstatisti
al physi
s. Indeed, if the parti
les are inje
ted with a uniform distribution at Γin

t ,we must pro
eed with several initial numeri
al distributions and take the 
omputationsaverage to lo
ate the deposition areas, for instan
e.Remark 6. As we already stated, we only des
ribe the s
heme (and the model) for amonodispersed (in radius) aerosol. It is of 
ourse possible to 
onsider numeri
al parti
leswith various radii. Hen
e, it is possible to reprodu
e the radius distribution of the parti
lesin the aerosol. It is very useful when one a priori knows how an aerosol nebulizer generatesparti
les. Of 
ourse, if one takes into a

ount the size 
hanges of aerosol parti
les due tothe air humidity [33℄, this strategy must be adapted.
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oupling. Let us now fo
us on the 
oupling between the Vlasov and Navier-Stokes equations. We here 
hoose to use an expli
it time mar
hing s
heme, so that the�uid and aerosol parts are basi
ally solved on
e per time step. It enables to redu
e the
omputational 
ost. Nevertheless, it may lead to stability issues we investigate afterwards.Note that, as already stated, the proof of existen
e of weak solutions in [11℄ is based onthe same kind of de
oupling strategy. The whole pro
ess is quite similar to the ones in [40℄or [27℄.We assume that, at time tn, Un, Πn, (xn
p )1≤p≤Nnum, (vn

p )1≤p≤Nnum and Fn are known.Of 
ourse, when n = 0, F 0 must be �rst 
omputed from the initial data before starting thetime loop. Then we solve (3.1) to obtain Un+1 and Πn+1. Next, to advan
e the aerosol intime, we 
ompute a dis
rete parti
le a

eleration denoted by ãn+1/2 and de�ned by
ãn+1/2 =

6πηr

m
(ũn+1(xn

p )− vn+1
p ),where the quantity ũn+1(xn

p ) is the �uid velo
ity at the position of parti
le p, at theprevious time step. Sin
e the �uid velo
ity is only known at mesh points, we need tointerpolate it in order to evaluate ũn+1(xn
p ).Note that xn

p ∈ Ωtn and that Un+1 lies in Ωtn+1 . First, parti
le pmay not be in Ωtn+1 anymore. In this 
ase, the parti
le is 
onsidered to be deposited, hen
e taking the boundary
ondition of f on Γwallt into a

ount. Se
ond, we have to �nd out in whi
h 
ell parti
le p is,and its asso
iated bary
entri
 
oordinates. This is possible thanks to a lo
ating algorithm[26℄. Note that, apart from the initial lo
ating pro
esses, this algorithm should 
onvergein a very small number of iterations, so it is not so 
ostly. Third, we perform a linearinterpolation of Un+1 on the mesh points at time tn+1 to get ũn+1(xn
p ).On
e we know ãn+1/2, we 
ompute vn+1

p and xn+1
p thanks to (3.2), and eventually F n+1,as

F n+1(x) = −m

Nnum
∑

p=1

ωp
6πηr

m

(

ũn+1(xn+1
p )− vn+1

p

)

δ
x
n+1
p

(x), x ∈ Ωtn+1 .Note that, to 
ompute F at time tn+1, we do not use ãn+1/2. Consequently, the numeri
altotal momentum is not 
onserved any more, whi
h may imply stability issues.Remark 7. The �uid time step may not be suitable to pre
isely follow the dis
rete parti
letraje
tories. As seen on Figure 2, without sub
y
ling, the parti
le goes a
ross several 
ellsduring a same time step, whereas the high �uid velo
ity on the bla
k nodes spins the parti
letraje
tory. In this 
ase, one should introdu
e a time sub
y
ling strategy.

Figure 2. A parti
le with (solid line) and without (dashed line) time sub
y
ling.



MODELLING AND NUMERICS FOR RESPIRATORY AEROSOLS 9Remark 8. In order for the retroa
tion term to be more a

urate, we may use the smallestsub
y
le time step for the �uid phase too. Indeed, ea
h parti
le may be able to ex
hange itsmomentum with the �uid in ea
h 
ell it goes a
ross.In what follows, we numeri
ally study a

ura
y and stability properties of our s
heme.Sin
e we aim to model the aerosol deposition in the human lung, the air is 
hosen as theambient gas at temperature 310K, so that ̺�u = 1.204 × 10−3 g.
m−3 and η = 1.85 ×
10−4 g 
m−1 s−1. The previous values 
an be found, for instan
e, in [1℄.We �rst investigate in Se
tion 4 the no-retroa
tion 
ase in a �xed domain. We areinterested, for instan
e, in sensitivity with respe
t to the mesh size, time step, initialparti
le lo
ations. Then, in Se
tion 5, we perform the same kind of tests in the retroa
tion
ase, again in a �xed domain. We moreover fo
us on representativity issues appearingwhen dealing with the retroa
tion term. Finally, Se
tion 6 is dedi
ated to the movingdomain 
ase without retroa
tion. In parti
ular, we exhibit an exa
t solution to (2.1)�(2.2)and 
ompare it with our numeri
al solution. In every 
ase, one of the main issues is toa

urately predi
t the deposition map of the aerosol. We 
on
lude our study by using ournumeri
al 
ode on a typi
al lung geometry.4. Numeri
al tests without retroa
tionWe �rst fo
us on the behaviour of our numeri
al 
ode when the a
tion of the parti
les onthe �uid is negle
ted. We 
onsider an orthonormal system (O,e1,e2,e3). The 
omputa-tional domain is a 
ylinder of axis (O,e3), length L = 5 
m and radius R = 0.2 
m, 
entredat O. The air�ow follows the Poiseuille law, with velo
ity u going along the 
ylinder axis,i.e.

u(t,x) = U

(

1−
x1

2 + x2
2

R2

)

e3, U ≥ 0.In parti
ular, u does not depend on t and x3, only on the transverse 
oordinates x1 and
x2.Parti
les evolve in the air�ow. They have the same radius r, mass density ρp, and areinje
ted in the �uid at time Tinj = 0.2 s with the same initial velo
ity V 0. Fig. 3 sums upthe situation.

O

e1

e3

e2

u(t,x)�uid �ow
L/2

V 0

V 0

b

R

Figure 3. Initial velo
ity V 0 for the 
omputations : solid line for 4.1,dashed line for 4.2 and following.4.1. Behavior of the parti
le velo
ities. In order to validate the 
hara
teristi
s methodimplementation in our 
ode, let us 
onsider here the 
ase when there is only one numeri
alparti
le in the �uid. The Stokes law allows to obtain an analyti
 expression of the parti
levelo
ity. Sin
e there is no a
tion of the parti
le on the �uid, the parti
le asymptoti
allyfollows the streamlines of the �uid. From the analyti
 form of the �uid velo
ity, we 
an
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e one for the parti
le velo
ity. Let us denote by X(t) and V (t) the lo
ation andvelo
ity of the parti
le at time t, and 
hoose V 0 = V 0 e3, V 0 ∈ R. Consequently, at ea
htime t, V (t) is parallel to the line Re3. Its 
oordinate V (t) along this line is then given by
V (t) =

[

V 0 + u(X(t)) · e3

∫ t

Tinj es/ττ ds

]

e−t/τ ,where
τ :=

2r2ρp
9η

.Hen
e, we get
V (t) = u(X(t)) · e3 + [V 0 − u(X(t)) · e3]e

−(t−Tinj)/τ , (4.1)as long as the parti
le remains in the 
ylinder.4.1.1. Motionless �uid. We �rst assume that the �uid does not move, i.e. U = 0. Conse-quently, (4.1) be
omes
V (t) = V 0e−(t−Tinj)/τ ,the �uid slows down the parti
le. For standard physi
al parameters (water droplet in theair), the relaxation time τ is very small. Sin
e we are only interested in the 
ode validation,let us use a non realisti
 mass density for the parti
le, i.e. 10 g/
m3, to allow, in the sametime, a signi�
ant relaxation time and a small parti
le Reynolds number.
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/numeri
al parti
le velo
ities: (a) plots, (b) error.Choosing V 0 = 5 
m/s and Tinj = 0.2 s, we get V (t) = 5e−3.33(t−0.2) for any t ≥ Tinj.In Fig. 4a, the analyti
 and numeri
al parti
le velo
ities are plotted with respe
t to time,and Fig. 4b shows the absolute error between both velo
ities.4.1.2. Nonzero Poiseuille pro�le. We now assume that the maximum �uid velo
ity U ispositive, here U = 3 
m/s. To 
ompute V (t) for ea
h parti
le thanks to (4.1), we need to�nd the value of the �uid velo
ity at the parti
le lo
ation. Thanks to the Poiseuille law, itis enough to know the distan
e between the parti
le and the 
ylinder axis.Consider, for instan
e, two parti
les. One is lo
ated on the axis and the other one
0.1 
m away (in the radial dire
tion). Let us take V 0 = −0.1 
m/s, opposite to the �uid�ow. Then Fig. 5 shows again the very good agreement between the analyti
 and numeri
alvelo
ities of the parti
le.In the remainder of this se
tion, we investigate the numeri
al sensitivity of our s
hemewith respe
t to various parameters of the 
omputations, su
h as the mesh, the time step,et
. We study an aerosol with 3000 numeri
al parti
les sharing the same initial transversevelo
ity V 0 = V 0 e1 with V 0 = 6.5 
m/s. Fig. 3 may again allow to understand thesituation. The 
hosen �nal time is 1.4 s. Twenty di�erent initial spa
e distributions of
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Figure 5. Analyti
/numeri
al velo
ities for a parti
le on the axis and an-other one 0.1 
m away from the axis.
3000 numeri
al parti
les are used for the parti
le method: they are uniformly drawn insidea disk of radius 0.16 
m at x3 = −L/2. All the parti
les have the same radius, i.e. 50µm.4.2. Mesh sensitivity. We 
onsider seven di�erent meshes, from approximately 10, 000tetrahedra to 640, 000. More pre
isely, we give, in Table 1, the number of tetrahedra anda 
orresponding average 
ell size value (h) obtained as the 
ube root of the ratio betweenthe 
ylinder volume and the number of 
ells.Number of 
ells 9, 954 28, 800 67, 200 80, 136 130, 200 295, 416 645, 150

h (in 
m) 0.0398 0.0279 0.0211 0.0199 0.0169 0.0128 0.0099Table 1. Various meshes under study.Due to 
omputational 
osts, the range of explored 
ell sizes is narrowed between 0.01and 0.04. We perform the simulations for all seven di�erent meshes with 20 di�erent initialdistributions of parti
les, with a time step ∆t = 0.0027 s. The �nest mesh 
omputation istaken as the referen
e one.First, we 
onsider a given initial parti
le distribution. For ea
h numeri
al parti
le, were
over the time evolution of the distan
e between its referen
e position and the onesobtained using 
oarser meshes. Then we 
ompute the average of this distan
e with respe
tto all the numeri
al parti
les. We iterate this pro
ess for ea
h of the 20 initial parti
ledistributions, whi
h allows to de�ne the average distan
e as a statisti
al quantity. Forinstan
e, in Fig. 6, the average parti
le distan
e between 
omputations on meshes 80 and640 is shown, as well as the asso
iated standard deviation.After an initial phase, we observe a linear growth of the average distan
e error. Hen
e,the growth ratios are quantities of interest. They 
an be seen as line slopes. In Fig. 7,we plot the slope values with respe
t to the typi
al 
ell size h, and on
e again with thestatisti
al error.Our numeri
al s
heme behaves with a remarkable statisti
al stability. On the depositionphenomenon, the variation of the average fra
tion of deposited parti
les (and the standarddeviation) at �nal time does not seem signi�
ant in terms of meshes, see Fig. 8. Theper
entage of 54.7% is 
learly a satisfying value, and we 
an note that using a 
oarsermesh seems to overestimate the deposition e�e
t a little.Eventually, when fo
using on the 
oarsest and the �nest meshes, let us emphasize thatthe maximal distan
e between the positions of the same parti
le at deposition time in thetwo di�erent meshes is only 0.015 
m.
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t to h.4.3. Time step sensitivity. In order to study the sensitivity of the 
omputations withrespe
t to the time step, we use the �nest mesh from Table 1 with 645, 150 tetrahedra.We study three situations: the referen
e one with ∆t/4 = 0.000675 s, and two others with
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∆t/2 and ∆t. We then 
ompute the distan
e between the lo
ations of ea
h numeri
alparti
le in the referen
e situation and one of the two others, at ea
h multiple of ∆t, up to�nal time 1.4 s, and take the average over all the parti
les.
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time (s)Figure 9. Comparisons on averaged parti
le lo
ations on (a) ∆t and∆t/4,(b) ∆t/2 and ∆t/4.Then Fig. 9a�b respe
tively show the average (over the 20 randomly drawn spa
e initialdistributions) position errors for ∆t/4 and ∆t, and ∆t/4 and ∆t/2, respe
tively. As usual,the average and the standard deviation are displayed. Both results are satisfa
tory be
ausethe errors seem to have a linear behaviour with respe
t to physi
al time t.Furthermore, we 
an 
he
k the number of deposited parti
les does not depend on thetime step in the previous tests. More pre
isely, the maximal distan
e between the impa
tpositions in 
omputations with ∆t/4 and ∆t/2 is 0.004 
m and in 
omputations with ∆t/4and ∆t is 0.008 
m.Noti
e that this stability behavior for the deposition of parti
les is 
learly related tothe sub
y
ling strategy mentionned in Remark 7, that we systemati
ally used in these
omputations. Without the re�nement of the time step for the parti
les, some of them
ould ignore arti�
ially the boundary layer of the �uid, going through several 
ells in onetime step and go out of the mesh. This would indeed be an artefa
t sin
e, redu
ing thetime step, these parti
les would start to per
eive more a

urately the velo
ity of the �uidnear the boundary, when
e redu
ing the deposition ratio.4.4. Sensitivity with respe
t to the initial parti
le lo
ations. This test fo
uses onthe sensitivity with respe
t to the initial spa
e distribution of the numeri
al parti
les. We
hoose ∆t = 0.0027 s and 
onsider every mesh from Table 1. For a given initial 
on�gu-ration of parti
les, we perturb the parti
le lo
ations in the following way. Ea
h parti
leis randomly (with a uniform law) relo
ated in a small disk of radius h/2 
entred at theparti
le initial position. The small radius value ensures that the parti
le remains in the
ylinder after the perturbation. Let us emphasize that the perturbation depends on the
onsidered mesh, through h.We perform the 
omputations for 20 di�erent perturbations of the same kind, and even-tually 
ompute the maximal distan
e between the lo
ations of the parti
les at �nal timewith respe
t to the referen
e 
on�guration, averaged on the 20 draws. Fig. 10 shows aremarkable stability with respe
t to the perturbation of the initial distribution.5. Numeri
al tests with retroa
tionIn this se
tion, the parti
les exert a retroa
tion for
e on the �uid, and the 
ouplingbetween the Navier-Stokes and Vlasov equations is strong. The retroa
tion e�e
t wasalready dis
ussed in a two-dimensional setting [13℄: there were situations when F 
ouldnot be negle
ted at all (big and numerous parti
les, high initial relative parti
le velo
ities).
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t of a mesh-depending perturbation of the initial parti
ledistribution on the average distan
e between parti
les at �nal time.The dis
ussion about F allows to 
lassify respiratory aerosols following [40℄. They 
an bevery thin sprays (intera
tion between parti
les, spray volume fra
tion and F are negligible)or thin sprays (intera
tion between parti
les and spray volume fra
tion are negligible, but
F is not).In this se
tion, the 
omputations for both phases are performed at ea
h time step,whereas, in Se
tion 4, we were able to �rst 
ompute the full time evolution of the �uid�ow, and afterwards the movement of ea
h numeri
al parti
le as a post-treatment. The
omputational 
ost of 
ourse signi�
antly in
reases, sin
e we now need to know the aerosolmovement at ea
h time to 
ompute the retroa
tion sour
e term in the Navier-Stokes equa-tions (2.1). Let us emphasize that we should 
onsider relevant situations in whi
h theaerosol has a signi�
ant e�e
t on the �uid �ow.We performed the same kind of sensitivity studies as in the previous se
tion. We donot provide results regarding sensitivity with respe
t to the mesh, be
ause they are verysimilar to the ones shown in 4.2, but we 
hoose to present a result regarding the time stepsensitivity. We also ta
kle the key issue on parti
les representativity.5.1. Time step sensitivity. Let us mimi
 the test from 4.3, with the same value of
∆t = 0.0027 s. We here use the 80, 136-tetrahedron mesh for the 
omputations. Fig. 11a�b
an easily be 
ompared to Fig. 9a. The average distan
e between the lo
ations of parti
les
omputed with ∆t and ∆t/4 is a little bit bigger when retroa
tion is on, for both small andhigh representativities. Nevertheless, it really remains of the same order of magnitude.
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al parti
les. In this subse
tion, we dis
uss thenumeri
al approximation of the retroa
tion term, and mainly the in�uen
e of the parti
lerepresentativity. First, we deal with a given number Nnum of numeri
al parti
les. Weinvestigate the behaviour of the total kineti
 energy (of the 
oupled system) for variousvalues of the representativity. This implies that we do not use the same number of physi
alparti
les in ea
h numeri
al experiment. Next, we aim to exhibit an optimal value of therepresentativity for a given realisti
 total number parti
les.5.2.1. Representativity issues for a given number of numeri
al parti
les. We inje
t 3000numeri
al parti
les with axial velo
ity 3 
m/s at z = 0.2 in a disk with radius 0.12 
m,and we 
onsider an initially motionless �uid. The boundary 
onditions are 
hosen as inProposition 4. Sin
e retroa
tion is taken into a

ount, the �uid velo
ity should be nonzero near the parti
les shortly after the inje
tion. A

ording to Proposition 4, the totalkineti
 energy should de
rease. The 
omputations are �rst performed for a 
hosen timestep equal to 0.0027 s, and various representativities. In Fig. 12, we observe that the totalkineti
 energy does not de
rease when representativity, and 
onsequently the number ofphysi
al parti
les, grow.
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3e6Figure 12. Total kineti
 energy for various representativities, with ∆t = 0.0027.Moreover, performing the same test for the larger time step 0.004 s, we observe in Fig. 13that the total kineti
 energy does not de
rease anymore for ωp = 5.106, whereas it did for

∆t = 0.0027.This numeri
al behaviour may be explained by the expli
it treatment of the retroa
tionas a sour
e term in the Navier-Stokes equations. This expli
it treatment may indu
e anunphysi
al energy produ
tion. More pre
isely, when 
omputing velo
ity and pressure at
tn+1, the sour
e term writes

F n(x) = −m

Nnum
∑

p=1

ωp
6πηr

m

(

ũn(xn
p )− vn

p

)

δxn
p
(x), x ∈ Ωtn ,where ωp 
learly appears as a key parameter. Furthermore, the 
omparison between both
ases with two di�erent time steps suggests the existen
e of a CFL-like 
ondition involvingthe produ
t ωp∆t among others.
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 energy for two �
riti
al� representativities, with

∆t = 0.004.5.2.2. Representativity issues for a given number of physi
al parti
les. In this subse
tion,the number of physi
al parti
les is 
onstant: 1010, whi
h is realisti
 for a standard nebu-lizer. We aim to determine how many numeri
al parti
les should be involved to representthose physi
al parti
les. By 
hoosing very few numeri
al parti
les with a huge represen-tativity in our 
omputations, the spa
e distribution of the aerosol parti
les may not welltaken into a

ount. Consequently, the aerosol retroa
tion, whi
h only has a lo
al e�e
t,
ould be underestimated, leading to a non physi
al behaviour. Hen
e, the number of nu-meri
al parti
les should be a 
ompromise between both the numeri
al 
ost and the spa
edistribution of the parti
les in the �uid.Here we 
onsider three 
ases:
• 100 numeri
al parti
les, ea
h representing 108 physi
al parti
les,
• 1000 numeri
al parti
les, ea
h representing 107 physi
al parti
les,
• 10, 000 numeri
al parti
les, ea
h representing 106 physi
al parti
les.The 1000 and 10, 000-parti
le test 
ases are obtained thanks to perturbation of the 100-parti
le one. More pre
isely, we build a random distribution of 100 parti
les in a disk ofradius 0.06 
m at z = 0.2. Then we 
reate a new distribution by repla
ing ea
h of the 100parti
les by 10 parti
les randomly 
hosen in a disk of radius 0.06 
m around them. Thispro
ess is repeated to get the 10, 000-parti
le situation from the 1000 one.We 
he
k the �uid velo
ity at two di�erent mesh nodes 
lose to the z-axis, near the initiallo
ation of the parti
les at z = 0.238095, and away from this same lo
ation at z = 0.595238.More pre
isely, in Fig. 14�15, we show the numeri
al error on the �uid velo
ity norm atboth nodes, 
omparing the 1000-parti
le 
ase with the other ones. In both situations, theresults are quite similar when dealing with 1000 and 10, 000 parti
les, whereas they aresigni�
antly di�erent when dealing with 1000 and 100 parti
les. Consequently, it is �rst
lear that the 
hoi
e of 100 numeri
al parti
les is not relevant to represent 1010 physi
alparti
les. Se
ond, sin
e the error between the 1000 and 10, 000-parti
le situations remainssmall (of order of magnitude 10−2 
m/s), the 
hoi
e of 1000 numeri
al parti
les appearsas a good 
ompromise in terms of numeri
al 
ost and a

ura
y. Note that the tests havebeen performed for several parti
le draws, and the standard deviation in any 
ase is upper-bounded by 10−6. 6. Numeri
al tests in a moving domainLet us now investigate the moving domain situation. At initial time, the domain is the
ylinder from Figure 3. We study a 
ase where the domain motion and the �uid behaviour
an be analyti
ally 
omputed, see Proposition 9 and its proof within Appendix B. The
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ity error away from the parti
les w.r.t. time, 
om-parison with 1000 numeri
al parti
les.
onsidered time dependent domain is given, for any t, by
Ωt =

{

(κ(t)r cos θ, κ(t)r sin θ, ζz(t)) | 0 ≤ r ≤ R, 0 ≤ θ ≤ 2π,−L ≤ 2z ≤ L
}

,where we set
κ(t) = exp(λt), with λ = log(0.9)/1.4 ≃ −0.075.A solution to the Navier-Stokes equations writes, using 
ylindri
al 
oordinates,

u(t, r, z) = urer + uzez =
κ̇(t)

κ(t)
rer − 2

κ̇(t)

κ(t)
zez ,

p(t, r, z) = −
r2

2

κ̈(t)

κ(t)
−

z2

κ(t)2
[

3κ̇(t)2 − κ̈(t)κ(t)
]

.We 
he
ked that the Navier-Stokes ALE solver a

urately reprodu
ed the previous solution.Indeed, using the 
oarsest mesh and time step, the error on the �uid velo
ity is at most oforder 7.10−3 
m/s.We 
an also obtain the traje
tory, in the phase spa
e, of ea
h numeri
al parti
le in asemi-analyti
al way, thanks, for instan
e, to the python fun
tion expm. Let us use againthe notations X(t) and V (t) introdu
ed in 4.1. Note that V does not remain parallel to
ez anymore. We 
an write

Ẋ(t) = V (t), V̇ (t) = −
1

τ
(V (t)− u(t,X(t))),where we arbitrarily set τ = 2: it may not be a physi
al value, but allows to study theparti
le traje
tory in a reasonable time s
ale. The previous di�erential system 
an be



18 L. BOUDIN, C. GRANDMONT, A. LORZ, AND A. MOUSSArewritten with matrix notations and solved by 
omputing a matrix exponential, i.e.
(

X(t)
V (t)

)

= exp(At)

(

X(0)
V (0)

)

,where
A =

(

0 I3
A1 −I3/2) , A1 =

λ

2





1 0 0
0 1 0
0 0 −2



 ,and I3 denotes the identity matrix of R3.In what follows, we perform various numeri
al experiments without retroa
tion to in-vestigate the solver e�
ien
y when taking the mesh motion into a

ount. Our numeri
als
heme uses a de
oupling method, where the �uid-aerosol system and the domain aresequently solved on
e per time step. At ea
h time step, we pro
eed in the following way:1. move the domain,2. solve the �uid equation,3. lo
ate and move the parti
les thanks to (3.2).Other impli
it or expli
it strategies may have been 
onsidered. In parti
ular, the orderof the di�erent steps is a 
ru
ial issue with respe
t to the parti
le deposition. Hen
e, we
he
k that the 
hosen strategy is e�
ient by 
omparing our numeri
al solution with thesemi-expli
it one, see Fig. 16.
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ations with the semi-analyti
al referen
e solution.We 
hoose the same initial 
onditions and number of numeri
al parti
les as in the lowerpart of page 10 des
ribing the test 
ase in a �xed domain.6.1. Mesh sensitivity. We 
hoose 0.0027 s as the time step for this test 
ase. We observe,on Fig. 17, an almost 
onstant deposition ratio with respe
t to the mesh size.Next we 
ompare, on Fig. 18, the deposited parti
le lo
ations at both �nal time anddeposition time (for ea
h parti
le). Note that this deposition time is the one obtained inthe referen
e situation. This fa
t may explain the slight di�eren
e in the distan
es observedfor ea
h mesh, 
omparing 
ases a and b.6.2. Time step sensitivity. Fig. 19 shows a very good agreement between the threeplots, for the 
onsidered time steps.The test 
ase is performed in the 80, 136-tetrahedronmesh.
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tion of deposited parti
les for various time steps: ∆t/4,

∆t/2 and ∆t. 7. Con
lusions and prospe
tsIn this paper, we proposed a model to des
ribe the intera
tion of a thin spray in anin
ompressible vis
ous �ow in order to a

urately predi
t the aerosol deposition and possi-bly take into a

ount the aerosol retroa
tion on the �uid and/or some wall motion. A non



20 L. BOUDIN, C. GRANDMONT, A. LORZ, AND A. MOUSSAlinear 
oupled Vlasov-Navier-Stokes system was thus 
onsidered and expli
itly dis
retizedin time. For the spa
e approximation, a PIC method was used for the kineti
 equation,whereas an ALE �nite element method was 
onsidered for the �uid part. We numeri
allydemonstrated the stability of our s
heme in various situations: �xed or moving domains,with or without retroa
tion. In parti
ular, we highlighted the existen
e of a CFL-like
ondition in the retroa
tion 
ase. Note that our numeri
al simulations showed very good
onvergen
e properties for the deposition rate, with respe
t to the mesh size for instan
e.One 
ru
ial point here lies in the sub-
y
ling strategy used to advan
e the parti
les in time,enabling an a

urate predi
tion of the deposition phenomenon, whi
h is a 
ru
ial issue ofour study. We also want to underline that 
onsidering a kineti
 modelling of the aerosol isappropriate in this 
ontext: a phase �eld des
ription, even if numeri
ally less 
ostly, doesnot allow an easy des
ription of deposition, whereas following ea
h individual parti
les maybe too expansive, in parti
ular when retroa
tion is not negligible. Consequently, our modeland our expli
it numeri
al strategy represent a good 
ompromise and are a good 
andidateto perform e�
ient in sili
o experiments of aerosol deposition in 
omplex situations su
has lung modelling. Appendix A. About the drag for
eIn [40℄, O'Rourke gives a general expression of the drag for
e of the air on the aerosol.In terms of a

eleration, it reads, for any t, x and v,
a(t,x,v) =

πr2

8m
̺�uCD|u(t,x)− v|(u(t,x)− v), (A.1)where CD is a dimensionless parameter 
alled the drag 
oe�
ient. This 
oe�
ient is semi-empiri
ally 
omputed using the parti
le Reynolds number, whi
h allows to measure theratio between inertia and vis
osity for
es on the parti
le:Rep := 2

η
̺�ur|u− v|.Then CD, whi
h also depends on u and v, is given by S
hiller and Naumann's law [14℄, alsoused in [24, 27℄, in the KIVA 
odes [5, 4, 2, 3, 41℄ and for 
omplex �uid-parti
le mixtures[12, 35℄:

CD =











24Rep (1 + 1

6
Rep2/3) , if Rep < 1000,

0.424, if Rep ≥ 1000.When Rep is small, whi
h is the 
ase in the respiration framework, one 
an also use
CD = 24/Rep, see [29℄. This formula immediately allows to re
over the Stokes law from(A.1).Appendix B. Analyti
 solutions to the in
ompressible Navier-StokesequationsIn this se
tion, we derive analyti
 solutions to the in
ompressible Navier-Stokes equa-tions without sour
e terms in a pres
ribed moving domain, whi
h is initially a 
ylinder.Using the 
ylindri
al 
oordinates (r, θ, z) and the asso
iated basis (er,eθ,ez) (where
e3 = ez), the 
ylinder at initial time is given by

C =
{

(r cos θ, r sin θ, z) | 0 ≤ r ≤ R, 0 ≤ θ ≤ 2π,−L ≤ 2z ≤ L
}

,and we 
an write u with the form u(t, r, θ, z) = urer + uθeθ + uzez. Assuming that udoes not depend on θ anymore and uθ = 0, u satis�es
u(t, r, z) = urer + uzez . (B.1)The in
ompressible Navier-Stokes equations then be
ome

∂tur + ur∂rur + uz∂zur = −∂rp+

[

1

r
∂r (r∂rur) + ∂2zzur −

ur
r2

]

, (B.2)
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∂tuz + ur∂ruz + uz∂zuz = −∂zp+

[

1

r
∂r (r∂ruz) + ∂2zzuz

]

, (B.3)
1

r
∂r(rur) + ∂zuz = 0. (B.4)Those equations hold in the time-depending domain C(t) obtained from C(0) := C thanksto a transformation to be determined. Let κ ∈ C2(R+;R

∗
+) su
h as κ(0) = 1. Consider apoint lo
ated at 
ylindri
al 
oordinates (r, θ, z) at initial time. We look for the displa
ementof this point taking the form (κ(t)r, θ, ζz(t)) (
ylindri
al 
oordinates), where ζz is smoothenough and ζz(0) = z. The latter fun
tion ζz, −L/2 ≤ z ≤ L/2, must still be de�ned.With that kind of displa
ements, C(t) is no longer a 
ylinder but keeps the symmetry axis

(Oz) and remains 
entred at the origin.In order to simplify again the 
omputations, we assume that u is su
h that ur does notdepend on z and remains zero on the axis. Let us now write the boundary 
ondition onthe wall. The �uid and the wall share the same velo
ity. This ensures that
ur(t, κ(t)R) = κ̇(t)R, (B.5)

uz(t, κ(t)R, ζz(t)) = ζ̇z(t). (B.6)The simplest possibility for (B.5) to hold is then
ur(t, r) =

κ̇(t)

κ(t)
r. (B.7)We still have to spe
ify uz, p, and ζz for ea
h z ∈ [−L/2, L/2].Equation (B.4) implies

∂zuz = −
1

r
∂r(rur) = −2

κ̇

κ
.A 
onvenient uz is then not depending on r, and has the form

uz(t, r, z) = −2
κ̇(t)

κ(t)
z + v(t), (B.8)where v is a C1 arbitrary fun
tion of t and has the dimension of a velo
ity. Note that v
an also depend on r, but that dependen
e is not useful here. We 
an now use (B.7)�(B.8)in (B.2) and obtain an equation on p

−∂rp = r
κ̈

κ
.Consequently, p has the form

p(t, r, z) = −
r2

2

κ̈(t)

κ(t)
+ q(t, z),where q depends on t and z, and has the dimension of a pressure, up to the air massdensity. Eventually, (B.3) allows to identify a 
onvenient fun
tion q. Indeed, we 
an write

∂zq(t, z) +
2z

κ(t)2
[

3κ̇(t)2 − κ̈(t)κ(t)
]

= −v̇(t) + 2
κ̇(t)

κ(t)
v(t).Hen
e, up to a 
onstant, p satis�es

p(t, r, z) = −
r2

2

κ̈(t)

κ(t)
−

z2

κ(t)2
[

3κ̇(t)2 − κ̈(t)κ(t)
]

+

[

2
κ̇(t)

κ(t)
v(t)− v̇(t)

]

z. (B.9)Eventually, (B.6) gives the following Cau
hy problem on ζz, whi
h has a unique solutionon R+,
ẏ = −2

κ̇

κ
y + v, y(0) = z. (B.10)Let us now sum up the result we just proved.



22 L. BOUDIN, C. GRANDMONT, A. LORZ, AND A. MOUSSAProposition 9. Let v ∈ C1(R+;R), κ ∈ C2(R+;R
∗
+) with κ(0) = 1. For any z ∈

[−L/2, L/2], 
onsider the unique solution ζz to Cau
hy problem (B.10). Set, for any t ≥ 0,
C(t) =

{

(κ(t)r cos θ, κ(t)r sin θ, ζz(t)) | 0 ≤ r ≤ R, 0 ≤ θ ≤ 2π,−L ≤ 2z ≤ L
}

.Then u and p, de�ned by (B.1) and (B.7)�(B.9), solve the in
ompressible Navier-Stokesequations (B.2)�(B.4), with boundary 
onditions (B.5)�(B.6) on the wall of C(t).A
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