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MODELLING AND NUMERICS FOR RESPIRATORY AEROSOLS

LAURENT BOUDIN, CELINE GRANDMONT, ALEXANDER LORZ, AND AYMAN MOUSSA

ABsTRACT. In this work, we first deal with the modelling and the discretization of an
aerosol evolving in the air, in the respiration framework, within a domain which can be
fixed or moving. We also investigate basic numerical properties of the numerical code
which was developped, and also focus on the influence of the aerosol on the airflow.

1. INTRODUCTION

The evolution of droplets or particles in a surrounding fluid is a phenomenon encountered
in several areas, ranging from medicine (aerosol therapy) to motor industry (transport and
combustion of petrol). In the particular aerosol therapy case, in vivo observations of drug
delivery in the airways induce several difficulties. For instance, aerosol deposition maps
require heavy experimental protocols, which cannot be easily repeated, and the obtained
measurements may not be accurate enough.

Consequently, the choice of physically relevant models, and thereafter the design of sta-
ble, efficient numerical methods allow in silico experiments which can provide a wide range
of results for various physical situations and parameters (type of aerosols, surrounding flu-
ids, pathological state...).

Several kinds of modelling are available to describe the aerosol movement in a fluid.
Two of them are discussed quite in detail in [31]: one can consider individual particles on
the one hand, or a collection of particles on the other hand.

Two-phase models consider the collection of droplets or particles as a fluid and study
the evolution, for instance, of aerosol concentration in the ambient fluid. Those models
are most certainly adapted in the case when the volume fraction occupied by the dispersed
phase is not negligible with respect to the volume fraction occupied by the surrounding
fluid [34, 7, 36, 17]. Unfortunately, such models do not allow an accurate description of
particle deposition. This is why we shall only focus on spray models in which the discrete
aspect of the dispersed phase is kept.

Following particles as individuals is the other classical strategy, see [9, 15, 16, 39, 46|
for instance. Nevertheless, describing the behaviour of such a (very) large number of
particles may lead to both technical and numerical difficulties if one tries to keep the track
of each individual trajectory. For instance, the Atomiser pocket aeroneb GO from DTF'
Corporation has the following characteristics: airflow rate of 0.3 mL /min, average (in mass)
diameter equal to 3.6 um. Hence, this nebulizer allows the injection of 10'0 particles in
one minute.

In this context of very numerous particles, and since the volume occupied by the aerosol
remains negligible in the human airways, the formalism of statistical physics and kinetic
theory is especially well-fitted. This type of coupling was first introduced by O’Rourke [40]
or Williams [43] and is now quite often used to model aerosol transport in the lung, see
[10, 27, 13]. As for the interaction between the aerosol and the surrounding fluid, following
a nomenclature introduced by O’Rourke (see also [22]), we assume the spray to be thin.
This means that

e the aerosol volume fraction in the mixture remains negligible;
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e there are no interactions between the aerosol particles;
e the aerosol can have an effect on the fluid, as a response to the drag force exerted
by the fluid on the particles.

Note that, for two-phase models as well as ODE ones, the aerosol retroaction on the fluid
is seldom taken into account, up to our knowledge. In the same context of aerosol kinetic
modelling we consider hereafter, [27]| presents a study of aerosol transport in the trachea
where the retroaction is taken into account.

The aerosol is then described by a distribution function which satisfies a Vlasov-type
equation. The fluid is assumed to be homogeneous, Newtonian, incompressible, and can
be described using the Navier-Stokes equations, see [28] for instance. The physical domain
can be either fixed or time dependent.

The aerosol and fluid are coupled through two terms: the particle acceleration, depend-
ing on the relative velocity of the particle in the fluid, and the retroaction force applied
by the aerosol on the fluid. Consequently, we have to deal with a strong coupling of two
types of equations: one at the macroscopic scale (Navier-Stokes), one at the mesoscopic
scale (Vlasov). The existence of solutions of the obtained system in a fixed domain has
been investigated by various authors [30, 6, 11, 45|. The main issue in these mathematical
studies lies in the fact that the system is nonlinear and strongly coupled.

The numerical strategy faces the same difficulty together with the different level of
descriptions for both phases (macro/mesoscopic). We choose an explicit time-advancing
scheme, which allows to solve the fluid and aerosol parts in a staggered way. The system
is thus uncoupled in the approximation procedure, reminiscent from the existence proof in
[11]. For the space discretization, a finite element procedure and a particle-in-cell method
are respectively used to approximate the fluid velocity and pressure, and the distribution
function. The moving domain case is handled thanks to the arbitrary Lagrangian-Eulerian
(ALE) method, see [38] in a finite element context.

This whole approximation scheme was implemented in the C++ library LifeV.

In this article, we aim to investigate the range of parameters for which our scheme is
numerically stable and accurate. In particular, we study the influence of the retroaction
force. Tts explicit treatment may induce unphysical instabilities due to large particle ve-
locities. In the human lung, if therapeutic aerosols seem not to require the retroaction
term in most standard situations, it is not the case for polluting particles, whose average
volume is larger. We also consider the moving domain case, which is usually not taken
into account, and is a first step towards the bronchial wall motion.

Once the full aerosol-fluid model has been described, we present the considered numeri-
cal method and then focus on three cases: a fixed domain without or with retroaction and
a moving domain without retroaction. In each case, we study the numerical sensivity with
respect to various parameters (time step, mesh size, initial datum, particle representativ-

ity...).
2. MODEL

In the upper airways, we can safely assume that the air is Newtonian and incompress-
ible, thus governed by the incompressible Navier-Stokes equations. During the respiration
process, some airway walls may be time-dependent. Thus our equations will be considered
in a moving domain. When we focus on aerosols in human airways, the number of particles
can be significant, whereas the volume occupied by the aerosol remains small. A classical
strategy in statistical mechanics then consists in describing the spray behavior thanks to
one single kinetic equation.

To model our problem, we are led to couple both types of equations to obtain a
fluid /kinetic system we present in the next subsections.

2.1. Geometries. In our study, a typical fluid domain, denoted by €2, is a cylinder or
a branch (see Figure 1), which can depend on time t. Its boundary I'y = 9 is divided
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into three (not necessarily connected) subsets: the inlet T'i", the outlet I'Y"* and the wall
'yl In most situations, T'" and T'Y"* do not depend on time, because they are chosen
as artificial boundaries. On the contrary, the motion of I} is driven by physiological

phenomena.
|
/ I
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-~

FiGURE 1. Branch geometry with a moving wall.

In the sequel n; will denote the unit vector going out and normal to 0€2;.

2.2. Fluid equations. Since, in our framework, the fluid is Newtonian, incompressible
and homogeneous, the fluid mass density pg, remains constant. We denote v the fluid
kinematic viscosity and 1 = pqy v its dynamic one. The flow is classically described by
its velocity field u(t,z) € R? and the pressure p(t,x) € R, where ¢t > 0 is the time and
x = (21,72, 23) € R3 is the position. It is governed by the following equations:

omu[Oru + (u - Vy)u| = =Vep + nAgu + F, teR,, xely, (2.1)
Ve -u=0, teRy, ey, (2.2)

where F' is a vector field representing the forces acting on the fluid (gravity, aerosol retroac-
tion). Moreover, to take into account the fact that the domain itself can move, we consider
given time-indexed open sets €); of R3. If we denote, for any ¢t > 0, the displacement
Ay : Qg — Qq from the initial (reference) configuration, we shall assume that (¢, ) — As(x)
is as smooth as needed, see [38, 19].

2.3. Aerosol equation. The distribution function f : Ry x R3 x R*> — R, depends on
time ¢ and position x of the particles, but also on their velocity v. In fact, f can also
depend on particle radius, temperature or other relevant quantities, as seen in [40, 43].
Let us emphasize that we do not take into account any phenomenon modifying the aerosol
distribution regarding radius (no collision, no abrasion, etc.) or other physical quantities
(no significant temperature variation during the breathing process, for instance). This
ensures that the initial radius distribution is conserved with respect to time. Therefore,
for the sake of simplicity, the aerosol is chosen monodispersed in size, meaning that r is a
parameter, see Remark 2 below. Each particle is assumed to remain spherical and hence,
its mass m is constant and satisfies m = 4773 pger /3, where paer is the constant volume
mass of each particle.
The distribution function solves the Vlasov equation, i.e.

Of+v-Vaf +Vy-(af) =0, (2.3)
where a(t,z,v) is the acceleration field undergone by the aerosol.

Remark 1. One can understand f in two ways. It can be seen as

e a number density: f(t,x,v)dxdv is the number of droplets located in the elemen-
tary volume of the phase space, centred at (x,v) at time t;

e a probability density: if the zero-th moment of f equals 1, f(t,-,-) is the density
function, at time t, of the probability of presence of the particles in the phase space.
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Remark 2. We can take into account the case where the particles have different radii.
Indeed, if the fluid velocity is given, all the terms involving the particles linearly depend
on f. Hence, several distribution functions of different radii may be superponed to model
a size-polydispersed distribution. This has implications in the numerical computations, see
Remark 6 in Section 3.

2.4. Interaction between the fluid and the aerosol. The terms F' and a must still be
defined. In what follows, the gravitational effects will be neglected because we only focus
on fluid-aerosol interaction. Both terms F and a model a drag force (or acceleration)
between the fluid and the aerosol. We refer to Appendix A for a discussion about the drag
force expression. We here use the Stokes law, which allows to write, for any t and x,

6mnr

a(t,z,v) = (u(t,z) — v), (2.4)

F(t,x)=—-m | f(t,z,v)a(t,z,v)dv. (2.5)
RS
Whether we take F' into account or not in this model is a real issue: it is called the aerosol
retroaction on the fluid.

2.5. Initial and boundary conditions. Equations (2.1)—(2.5) must be supplemented by
initial and boundary conditions. Recall that for any ¢t > 0, the motion of the boundary is
given by the displacement A; : Q¢ — € of the whole domain, from the initial (reference)
configuration, (¢t,x) — A;(x) being as smooth as needed. The velocity of the domain at
the point @ € 9€); is hence given by

w(t,x) = A(A 7 (2)).
We assume that the fluid velocity fit w on T}
u = w on [T (2.6)

Of course, when the domain is fixed, w = 0 and we have a homogeneous Dirichlet boundary
condition for w on I'§*.

On both the inlet(s) and the outlet(s), we can assign Dirichlet or Neumann boundary
conditions, for instance, if ui® : I'® — R3, we can choose

u = ui® on T'", (Vau + (Veu)T) - ny — pny = 0 on TS, (2.7)

For a more realistic modelling in the airflow context, one can propose, as in [28, 8] the
following strategy. In the proximal areas, the airflow is computed thanks to the Navier-
Stokes equations whereas, in the distal part, it is described by a well chosen 0D boundary
conditions, taking the diaphragm motion into account.

We choose an absorption boundary condition for the aerosol on the wall. In the kinetic
formalism, it writes

(v—w) -ny<0=f=0, onIyxR3 (2.8)

Remark 3. The boundary conditions on T are of course consistent with the respiration
framework: indeed, the wall is coated with mucus and the aerosol particles deposit on the
wall when they hit it.

Consider ug : Qo — R? and fy : Qg x R? — R, as initial data, i.e.
u(0,z) = uolx), z €, FfO.2.0) = fol@v), T veR.  (29)

In a fixed domain, with homogeneous Dirichlet boundary conditions for the fluid and
absorption for the spray, on 9€)g, we have the following proposition.

Proposition 4. Assume that Q; = Qg for anyt >0, uw =0 on 0y and f = 0 on Iy x R3
ifv-ng < 0. Then the energy of the whole aerosol-air system decreases.
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Proof. Multiply respectively (2.3) by mwv?/2 and (2.1) by w. Then integrate the outcoming
equalities respectively on Qg x R3 and €, to get

d 1
— m// f(t,a:,v)v2dvda:+—/ ofu|u(t, z)|*dx
dt\ 2 Qo xR3 2 Jao

= —//aQ Raf(t,ac,'v)'v-nodfvdx <0,
o X

since f is nonnegative. The previous inequality ensures that the total kinetic energy of the
coupled system decreases. O

Remark 5. If one considers other kinds of fluid boundary conditions, such as (2.7), the
previous result does not hold and no energy bound can be derived. This lack of energy
estimate comes from the Neumann boundary conditions for the Navier-Stokes system, and
may also lead to numerical instabilities, see [25] for a review on this topic.

The nonlinearity in the Navier-Stokes equations and the strong coupling between the
Vlasov and Navier-Stokes equations are the two major difficulties about the full system
(2.1)—(2.7) from both mathematical and numerical viewpoints. System (2.1)—(2.9) was
mathematically investigated in a fixed domain (global in time existence of weak solutions)
in [30, 6, 11, 45]. In the two-dimensional case, uniqueness was also investigated [44].
Note that the approximation strategy used in the existence result established in [11] and
especially the uncoupling process between the kinetic and fluid equations inspired the
numerical scheme presented in the next section.

3. NUMERICAL SCHEME

We here propose a time-advancing scheme to solve the strongly coupled problem (2.1)—
(2.7). We first uncouple the fluid and aerosol problems and solve the fluid part with a
retroaction source term coming from the previous time step. Then we solve the kinetic
part, using the updated fluid velocity to compute the drag force. Note that we may need
time subcycling of the kinetic part to get an accurate value of the retroaction term.

The aerosol is computed thanks to a particle-in-cell (PIC) method [18, 20, 21, 42]. For
the fluid, we use a Lagrange finite element method associated to an arbitrary Lagrangian-
Eulerian (ALE) approach [32, 23|, to handle the moving aspect. Those methods are briefly
discussed in the next subsections. The most intricate part of this scheme probably lies in
the coupling between (2.1) and (2.3) through (2.5).

Since the computational domain can move, we need to define the domain mapping
Ai : Q9 — R3 and the associated velocity w(t,-) : Q; — R3. For instance, at each time
t, A; can be computed from the boundaries movement as a solution to a Poisson problem
set on .

Besides, our work is embedded in the C++ finite element library LifeV?, which previ-
ously owned numerical tools to handle both fixed and moving meshes, most classical finite
element methods, and offered solvers for biological flows (Navier-Stokes, Darcy, etc.). If
more details are needed, the reader is invited to refer to [37], see also [38, 19] about the
fluid solvers.

In the following, we shall denote T the final time of computation, and consider a regular
subdivision (t,)o<n<n of [0,T] with a step At > 0.

3.1. The Navier-Stokes equations. Most features of the fluid solver we present below
are standard. Nevertheless, we briefly explain how the whole computation is handled.

We discretize the Navier-Stokes equations (2.1)-(2.2) written in the ALE conservative
form [38]. With our boundary conditions (2.6)(2.7), it is given, for any ¢ € [0,T], by

2Free software under LGPL license, jointly developed in four institutions: Ecole Polytechnique Fédérale
de Lausanne (Switzerland), Politecnico di Milano (Italy), Inria Paris-Rocquencourt (France) and Emory
University (USA), see http://www.lifev.org/
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d
0flu 3 u - B(t,x)dx + oau [(u—w)-Vyu|-Bdx
dt Q Q:

— gﬁu/ (divw)u - Bdx +77/ Vet : VgeBde +/ p(div@)dx = F - (Bdx,
Qy Q Q Q

/ (divu) p(t,z)dx =0,
Q

where B and p are suitable test functions (transported by the ALE mapping A; from
reference test functions), satisfying 3 = 0 on the wall and on the inlets.

We choose a backward Euler scheme and a semi-implicit treatment of the convective
term. In the simpler case of a fixed domain, it reduces to a standard semi-implicit Euler
scheme.

For the space discretization, we use a Lagrange finite element method. For a character-
istic size h > 0, consider a tetrahedric mesh of (g, denoted by

My,
h __ h
76 - U KO,@"
=1

where each K&i is a tetrahedron. For each ¢, the tetrahedric mesh T, of € is the union of
Mj, tetrahedra whose vertices are transported from the reference configuration 7g* by the
discrete ALE mapping .A?. This mapping should preserve the tetrahedric structure of the
mesh, see [38] for details.

Then we define the basis functions, at each time t", (¢} )i<r<n, for velocities, and
(¥})1<e<p, for pressures, transported from P1 — P1 reference basis functions on 7E)h. Once
again, .A? should preserve the chosen finite element space. Due to the choice of a P1 — P1
setting, we use a stabilized formulation, that we do not detail here.

Then, at time ¢, we approximate the unknowns on 7;@ by

Nn Py
u'(@) =Y upei(@),  pl(x) =) pjvy(e),
k=1 =1
for any « € Q. The unknowns then become the following column vectors

U”:(u?,...,u”Nh)T, H"z(p’f,...,p%h)T.

Consequently, from " to "1, we have to solve the following linear system

Dn+1 (Bn—l—l)T Un+1 B Fn 0flu MU
Bn+1 0 Hn+1 - 0 E 0 ) (31)
where
B" = <_ ¢znvw : 90? d$> )
Qyn 1<i<P,,1<j<N;
M= </ @?-@?m) 7
Qyn 1<i,j <Ny,
T
F" = ( F"-(p?d:c) ,
Qyn 1<i<Np,
pntl o — %Mnﬂ — g C"Y2 4 pAnt
with

A = < Vaepi : Vap] d:c) )
Qn

1<i,j<Np

Np,
on+/2 (Z(uz — / <‘PZH ) Vm(p?H) Lt dm]) .
Qent1 1<i,j<Np,

k=1
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The definition of F™ on Qn is given in 3.3 below.

The semi-implicit treatment of the convective term appears in the expression of C"11/2
where uj is used with the basis functions at time t"*t1. In the same way, note that (3.1)
involves nodal quantities at time ¢"*!. In particular, vectors in the right-hand side of
(3.1), are defined using the finite element coordinates of quantities on (n, and further
transported by the ALE mapping on Qn+1 (on the corresponding nodes).

3.2. The Vlasov equation. Unlike the finite element method, the particle method does
not provide an approximation of f on the mesh nodes. More precisely, the distribution
function is computed as a weighted sum of Dirac masses in the positions and velocities of
the numerical particles, 7.e., in a measure sense,

Nnum

f(t,(E,’U) = Z wp(swp(t) ® 5vp(t)(w7v)7

p=1

where the number of numerical particles IV, is initially chosen by the user, w, is called the
representativity of numerical particle p, and ¢ — (x,(t), v,(t)) is the trajectory, in the phase
space, of p. Hence, we just have to compute the characteristics to get an approximation
of f from its initial datum. Note that, as soon as x,(t) does not belong to }; any longer,
that means that particle p is deposited on T} or went out of the domain through I'i* or
9"t From a numerical point of view, Ny, is not modified but the outgoing particles are
not treated any more.

For practical purposes, Ny, is very small with respect to the average number of physical
aerosol particles Ngero, Which makes the computations much less costly. In fact, we can
write

Nnum

Naero = E Wp,
p=1

which gives an order of magnitude of w,. For instance, if we choose Nyero = 1019 (see 2.3)
and Npum = 103, we could set wp = 107 for all numerical particles. The relevance of such
a choice is discussed later in Section 5.

As long as the particle p remains in the domain, its coordinates in the space phase solve
the Cauchy problem

Ep(t) = vp(t),  Up(t) = alt,zp(t),vp(t)),  0<t<T,

with chosen initial data @,(0) and v,(0). This problem is solved with a first-order semi-
implicit Euler scheme

nt+l _ n ~n+1/2 n+l _ _n n+1
v, =wv, +Ata /2, z, =z, +Atv,", (3.2)
where a"*1/2 is the drag acceleration depending on quantities at both times ¢" and "1

This is explained in the next subsection, because it is related to the coupling between both
phases.

Eventually, we must emphasize that this method needs averaging, since it relies on
statistical physics. Indeed, if the particles are injected with a uniform distribution at ",
we must proceed with several initial numerical distributions and take the computations
average to locate the deposition areas, for instance.

Remark 6. As we already stated, we only describe the scheme (and the model) for a
monodispersed (in radius) aerosol. It is of course possible to consider numerical particles
with various radii. Hence, it is possible to reproduce the radius distribution of the particles
in the aerosol. It is very useful when one a priori knows how an aerosol nebulizer generates
particles. Of course, if one takes into account the size changes of aerosol particles due to
the air humidity [33], this strategy must be adapted.
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3.3. The coupling. Let us now focus on the coupling between the Vlasov and Navier-
Stokes equations. We here choose to use an explicit time marching scheme, so that the
fluid and aerosol parts are basically solved once per time step. It enables to reduce the
computational cost. Nevertheless, it may lead to stability issues we investigate afterwards.
Note that, as already stated, the proof of existence of weak solutions in [11] is based on
the same kind of decoupling strategy. The whole process is quite similar to the ones in [40]
or [27].

We assume that, at time ", U", 11", (Z}))1<p<Noum> (Vp)1<p<Npum and F™ are known.
Of course, when n = 0, F'° must be first computed from the initial data before starting the
time loop. Then we solve (3.1) to obtain U"+! and II"*!. Next, to advance the aerosol in
time, we compute a discrete particle acceleration denoted by a@"t1/2 and defined by

6
gt/ — —:ZT (@ (zy) —opth,

where the quantity ﬁ”“(m?) is the fluid velocity at the position of particle p, at the

previous time step. Since the fluid velocity is only known at mesh points, we need to

interpolate it in order to evaluate ﬁ"*l(azg).

Note that ), € Qs and that U™ lies in Qynt1. First, particle p may not be in Qnt1 any
more. In this case, the particle is considered to be deposited, hence taking the boundary
condition of f on I'}! into account. Second, we have to find out in which cell particle p is,
and its associated barycentric coordinates. This is possible thanks to a locating algorithm
[26]. Note that, apart from the initial locating processes, this algorithm should converge
in a very small number of iterations, so it is not so costly. Third, we perform a linear
interpolation of U™ on the mesh points at time ¢"*! to get @' (x}).

Once we know a"*1/2, we compute ’UZH and a:;f*l thanks to (3.2), and eventually F"*?,
as
NII'le
n+1 6mnr i1, nt1 n+1
F (:r,') = —m Z Wy - (u (:Dp ) — ’Up )6ac$+1 (m), xr € Qtn+1.
p=1

tn+1 n+1/2

Note that, to compute F' at time , we do not use a . Consequently, the numerical
total momentum is not conserved any more, which may imply stability issues.

Remark 7. The fluid time step may not be suitable to precisely follow the discrete particle
trajectories. As seen on Figure 2, without subcycling, the particle goes across several cells
during a same time step, whereas the high fluid velocity on the black nodes spins the particle
trajectory. In this case, one should introduce a time subcycling strategy.

K

FIGURE 2. A particle with (solid line) and without (dashed line) time subcycling.
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Remark 8. In order for the retroaction term to be more accurate, we may use the smallest
subcycle time step for the fluid phase too. Indeed, each particle may be able to exchange its
momentum with the fluid in each cell it goes across.

In what follows, we numerically study accuracy and stability properties of our scheme.
Since we aim to model the aerosol deposition in the human lung, the air is chosen as the
ambient gas at temperature 310K, so that ggy, = 1.204 x 1073 g.cm™ and n = 1.85 x
10~*g em~!s~!. The previous values can be found, for instance, in [1].

We first investigate in Section 4 the no-retroaction case in a fixed domain. We are
interested, for instance, in sensitivity with respect to the mesh size, time step, initial
particle locations. Then, in Section 5, we perform the same kind of tests in the retroaction
case, again in a fixed domain. We moreover focus on representativity issues appearing
when dealing with the retroaction term. Finally, Section 6 is dedicated to the moving
domain case without retroaction. In particular, we exhibit an exact solution to (2.1)—(2.2)
and compare it with our numerical solution. In every case, one of the main issues is to
accurately predict the deposition map of the aerosol. We conclude our study by using our
numerical code on a typical lung geometry.

4. NUMERICAL TESTS WITHOUT RETROACTION

We first focus on the behaviour of our numerical code when the action of the particles on
the fluid is neglected. We consider an orthonormal system (O, ey, ez, eg). The computa-
tional domain is a cylinder of axis (O, eg), length L = 5 cm and radius R = 0.2 cm, centred
at O. The airflow follows the Poiseuille law, with velocity w going along the cylinder axis,
i.€.

2 2
T1° + X2
u(t,w):U<1—T> es, U >0.
In particular, « does not depend on ¢ and z3, only on the transverse coordinates x1 and
Z9.

Particles evolve in the airflow. They have the same radius r, mass density p,, and are
injected in the fluid at time 7},; = 0.2s with the same initial velocity V0. Fig. 3 sums up
the situation.

R U(t, m) (]
fluid flow
€3

y VO 0
l 2
—

VO

L/2

FIGURE 3. Initial velocity VO for the computations : solid line for 4.1,
dashed line for 4.2 and following.

4.1. Behavior of the particle velocities. In order to validate the characteristics method
implementation in our code, let us consider here the case when there is only one numerical
particle in the fluid. The Stokes law allows to obtain an analytic expression of the particle
velocity. Since there is no action of the particle on the fluid, the particle asymptotically
follows the streamlines of the fluid. From the analytic form of the fluid velocity, we can
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deduce one for the particle velocity. Let us denote by X (¢) and V(¢) the location and
velocity of the particle at time ¢, and choose VO = V%es, V0 € R. Consequently, at each
time ¢, V/(¢) is parallel to the line Reg. Its coordinate V() along this line is then given by

t s/t
V()= |V +u(X(t))-es / € ds] e T,
,I‘inj
where
9 2
T
9
Hence, we get
V(1) = u(X(t) - es + VO — u(X(t)) - egle” ~Tmil/T, (4.1)

as long as the particle remains in the cylinder.

4.1.1. Motionless fluid. We first assume that the fluid does not move, i.e. U = 0. Conse-
quently, (4.1) becomes

V(t) = Voe*(t*Tinj)/T’

the fluid slows down the particle. For standard physical parameters (water droplet in the
air), the relaxation time 7 is very small. Since we are only interested in the code validation,
let us use a non realistic mass density for the particle, i.e. 10g/cm?, to allow, in the same
time, a significant relaxation time and a small particle Reynolds number.

5 . : ; ; . 0.1
45 F J 0.09 +
_ 4l Analytic solution g 0.08 |
< x| Numerical solution S
g 35 S oo7y
B 3+ 8 0.06
3 T |
2 2.5 > 0.05
[ -—
o 2t S o004t
2 st 8 o003}
5] 5
= 1F £ 002
0.5 0.01
0 L L L L L L 0 L L L L L
0 02 04 06 08 1 12 1.4 0 02 04 06 08 1 12 14
time (s) time ()

FIGURE 4. Analytic/numerical particle velocities: (a) plots, (b) error.

Choosing V? = 5cm/s and Tinj = 0.2s, we get V(t) = 5¢3:33(t=0.2) for any ¢t > Tin;-
In Fig. 4a, the analytic and numerical particle velocities are plotted with respect to time,
and Fig. 4b shows the absolute error between both velocities.

4.1.2. Nonzero Poiseuille profile. We now assume that the maximum fluid velocity U is
positive, here U = 3cm/s. To compute V(¢) for each particle thanks to (4.1), we need to
find the value of the fluid velocity at the particle location. Thanks to the Poiseuille law, it
is enough to know the distance between the particle and the cylinder axis.

Consider, for instance, two particles. One is located on the axis and the other one
0.1cm away (in the radial direction). Let us take V? = —0.1cm/s, opposite to the fluid
flow. Then Fig. 5 shows again the very good agreement between the analytic and numerical
velocities of the particle.

In the remainder of this section, we investigate the numerical sensitivity of our scheme
with respect to various parameters of the computations, such as the mesh, the time step,
etc. We study an aerosol with 3000 numerical particles sharing the same initial transverse
velocity VO = V%e; with V® = 6.5cm/s. Fig. 3 may again allow to understand the
situation. The chosen final time is 1.4s. Twenty different initial space distributions of
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FIGURE 5. Analytic/numerical velocities for a particle on the axis and an-
other one 0.1 cm away from the axis.

3000 numerical particles are used for the particle method: they are uniformly drawn inside
a disk of radius 0.16 cm at 3 = —L/2. All the particles have the same radius, i.e. 50 um.

4.2. Mesh sensitivity. We consider seven different meshes, from approximately 10,000
tetrahedra to 640,000. More precisely, we give, in Table 1, the number of tetrahedra and
a corresponding average cell size value (h) obtained as the cube root of the ratio between
the cylinder volume and the number of cells.

Number of cells | 9,954 | 28,800 | 67,200 | 80,136 | 130,200 | 295,416 | 645, 150
h (in cm) [ 0.0398 | 0.0279 | 0.0211 | 0.0199 | 0.0169 | 0.0128 | 0.0099

TABLE 1. Various meshes under study.

Due to computational costs, the range of explored cell sizes is narrowed between 0.01
and 0.04. We perform the simulations for all seven different meshes with 20 different initial
distributions of particles, with a time step At = 0.0027s. The finest mesh computation is
taken as the reference one.

First, we consider a given initial particle distribution. For each numerical particle, we
recover the time evolution of the distance between its reference position and the ones
obtained using coarser meshes. Then we compute the average of this distance with respect
to all the numerical particles. We iterate this process for each of the 20 initial particle
distributions, which allows to define the average distance as a statistical quantity. For
instance, in Fig. 6, the average particle distance between computations on meshes 80 and
640 is shown, as well as the associated standard deviation.

After an initial phase, we observe a linear growth of the average distance error. Hence,
the growth ratios are quantities of interest. They can be seen as line slopes. In Fig. 7,
we plot the slope values with respect to the typical cell size h, and once again with the
statistical error.

Our numerical scheme behaves with a remarkable statistical stability. On the deposition
phenomenon, the variation of the average fraction of deposited particles (and the standard
deviation) at final time does not seem significant in terms of meshes, see Fig. 8. The
percentage of 54.7% is clearly a satisfying value, and we can note that using a coarser
mesh seems to overestimate the deposition effect a little.

Eventually, when focusing on the coarsest and the finest meshes, let us emphasize that
the maximal distance between the positions of the same particle at deposition time in the
two different meshes is only 0.015 cm.



12 L. BOUDIN, C. GRANDMONT, A. LORZ, AND A. MOUSSA

0.009
0.008 | 1 |
0.007 | 17 1
0.006 | rd .
0.005 | of] .
0.004 | .
0.003 | 1
0.002 | .
0.001 | .

0

average distance between particles (cm)

0 02 04 06 08 1 12 14
time (s)
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FiGURE 8. Fraction of deposited particles with respect to h.

4.3. Time step sensitivity. In order to study the sensitivity of the computations with
respect to the time step, we use the finest mesh from Table 1 with 645,150 tetrahedra.
We study three situations: the reference one with At/4 = 0.000675s, and two others with
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At/2 and At. We then compute the distance between the locations of each numerical
particle in the reference situation and one of the two others, at each multiple of A¢, up to
final time 1.4s, and take the average over all the particles.
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Ficure 9. Comparisons on averaged particle locations on (a) At and At/4,
(b) At/2 and At/4.

Then Fig. 9a-b respectively show the average (over the 20 randomly drawn space initial
distributions) position errors for At/4 and At, and At/4 and At/2, respectively. As usual,
the average and the standard deviation are displayed. Both results are satisfactory because
the errors seem to have a linear behaviour with respect to physical time t.

Furthermore, we can check the number of deposited particles does not depend on the
time step in the previous tests. More precisely, the maximal distance between the impact
positions in computations with A¢/4 and At/2 is 0.004 cm and in computations with A¢/4
and At is 0.008 cm.

Notice that this stability behavior for the deposition of particles is clearly related to
the subcycling strategy mentionned in Remark 7, that we systematically used in these
computations. Without the refinement of the time step for the particles, some of them
could ignore artificially the boundary layer of the fluid, going through several cells in one
time step and go out of the mesh. This would indeed be an artefact since, reducing the
time step, these particles would start to perceive more accurately the velocity of the fluid
near the boundary, whence reducing the deposition ratio.

4.4. Sensitivity with respect to the initial particle locations. This test focuses on
the sensitivity with respect to the initial space distribution of the numerical particles. We
choose At = 0.0027s and consider every mesh from Table1. For a given initial configu-
ration of particles, we perturb the particle locations in the following way. Each particle
is randomly (with a uniform law) relocated in a small disk of radius h/2 centred at the
particle initial position. The small radius value ensures that the particle remains in the
cylinder after the perturbation. Let us emphasize that the perturbation depends on the
considered mesh, through h.

We perform the computations for 20 different perturbations of the same kind, and even-
tually compute the maximal distance between the locations of the particles at final time
with respect to the reference configuration, averaged on the 20 draws. Fig. 10 shows a
remarkable stability with respect to the perturbation of the initial distribution.

5. NUMERICAL TESTS WITH RETROACTION

In this section, the particles exert a retroaction force on the fluid, and the coupling
between the Navier-Stokes and Vlasov equations is strong. The retroaction effect was
already discussed in a two-dimensional setting [13]: there were situations when F' could
not be neglected at all (big and numerous particles, high initial relative particle velocities).
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FiGure 10. Effect of a mesh-depending perturbation of the initial particle
distribution on the average distance between particles at final time.

The discussion about F' allows to classify respiratory aerosols following [40]. They can be
very thin sprays (interaction between particles, spray volume fraction and F are negligible)
or thin sprays (interaction between particles and spray volume fraction are negligible, but
F is not).

In this section, the computations for both phases are performed at each time step,
whereas, in Section 4, we were able to first compute the full time evolution of the fluid
flow, and afterwards the movement of each numerical particle as a post-treatment. The
computational cost of course significantly increases, since we now need to know the aerosol
movement at each time to compute the retroaction source term in the Navier-Stokes equa-
tions (2.1). Let us emphasize that we should consider relevant situations in which the
aerosol has a significant effect on the fluid flow.

We performed the same kind of sensitivity studies as in the previous section. We do
not provide results regarding sensitivity with respect to the mesh, because they are very
similar to the ones shown in 4.2, but we choose to present a result regarding the time step
sensitivity. We also tackle the key issue on particles representativity.

5.1. Time step sensitivity. Let us mimic the test from 4.3, with the same value of
At = 0.0027s. We here use the 80, 136-tetrahedron mesh for the computations. Fig. 11a-b
can eagsily be compared to Fig. 9a. The average distance between the locations of particles
computed with At and At/4 is a little bit bigger when retroaction is on, for both small and
high representativities. Nevertheless, it really remains of the same order of magnitude.
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FIGURE 11. Comparisons on averaged particle locations on At and At/4
with (a) w, = 1, (b) w, = 10%.
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5.2. Representativity of the numerical particles. In this subsection, we discuss the
numerical approximation of the retroaction term, and mainly the influence of the particle
representativity. First, we deal with a given number N,,, of numerical particles. We
investigate the behaviour of the total kinetic energy (of the coupled system) for various
values of the representativity. This implies that we do not use the same number of physical
particles in each numerical experiment. Next, we aim to exhibit an optimal value of the
representativity for a given realistic total number particles.

5.2.1. Representativity issues for a given number of numerical particles. We inject 3000
numerical particles with axial velocity 3cm/s at z = 0.2 in a disk with radius 0.12 cm,
and we consider an initially motionless fluid. The boundary conditions are chosen as in
Proposition 4. Since retroaction is taken into account, the fluid velocity should be non
zero near the particles shortly after the injection. According to Proposition 4, the total
kinetic energy should decrease. The computations are first performed for a chosen time
step equal to 0.0027 s, and various representativities. In Fig. 12, we observe that the total
kinetic energy does not decrease when representativity, and consequently the number of
physical particles, grow.
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F1GURE 12. Total kinetic energy for various representativities, with At = 0.0027.

Moreover, performing the same test for the larger time step 0.004 s, we observe in Fig. 13
that the total kinetic energy does not decrease anymore for w, = 5.10%, whereas it did for
At = 0.0027.

This numerical behaviour may be explained by the explicit treatment of the retroaction
as a source term in the Navier-Stokes equations. This explicit treatment may induce an
unphysical energy production. More precisely, when computing velocity and pressure at
t"*+1 the source term writes

Nnum
6mnr , .
F'(x)=—-m Zl wp— (@ () — v)) bap (), T € Qn,
p:

where w,, clearly appears as a key parameter. Furthermore, the comparison between both
cases with two different time steps suggests the existence of a CFL-like condition involving
the product w,At among others.
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FiGUure 13. Total kinetic energy for two “critical” representativities, with
At = 0.004.

5.2.2. Representativity issues for a given number of physical particles. In this subsection,
the number of physical particles is constant: 10'°, which is realistic for a standard nebu-
lizer. We aim to determine how many numerical particles should be involved to represent
those physical particles. By choosing very few numerical particles with a huge represen-
tativity in our computations, the space distribution of the aerosol particles may not well
taken into account. Consequently, the aerosol retroaction, which only has a local effect,
could be underestimated, leading to a non physical behaviour. Hence, the number of nu-
merical particles should be a compromise between both the numerical cost and the space
distribution of the particles in the fluid.
Here we consider three cases:

e 100 numerical particles, each representing 108 physical particles,
e 1000 numerical particles, each representing 107 physical particles,
e 10,000 numerical particles, each representing 10 physical particles.

The 1000 and 10, 000-particle test cases are obtained thanks to perturbation of the 100-
particle one. More precisely, we build a random distribution of 100 particles in a disk of
radius 0.06 cm at z = 0.2. Then we create a new distribution by replacing each of the 100
particles by 10 particles randomly chosen in a disk of radius 0.06 cm around them. This
process is repeated to get the 10, 000-particle situation from the 1000 one.

We check the fluid velocity at two different mesh nodes close to the z-axis, near the initial
location of the particles at z = 0.238095, and away from this same location at z = 0.595238.
More precisely, in Fig. 14-15, we show the numerical error on the fluid velocity norm at
both nodes, comparing the 1000-particle case with the other ones. In both situations, the
results are quite similar when dealing with 1000 and 10,000 particles, whereas they are
significantly different when dealing with 1000 and 100 particles. Consequently, it is first
clear that the choice of 100 numerical particles is not relevant to represent 10'° physical
particles. Second, since the error between the 1000 and 10, 000-particle situations remains
small (of order of magnitude 1072 cm/s), the choice of 1000 numerical particles appears
as a good compromise in terms of numerical cost and accuracy. Note that the tests have
been performed for several particle draws, and the standard deviation in any case is upper-
bounded by 1076,

6. NUMERICAL TESTS IN A MOVING DOMAIN

Let us now investigate the moving domain situation. At initial time, the domain is the
cylinder from Figure 3. We study a case where the domain motion and the fluid behaviour
can be analytically computed, see Proposition 9 and its proof within Appendix B. The
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parison with 1000 numerical particles.

considered time dependent domain is given, for any ¢, by
Q¢ = {(k(t)r cos b, k(t)rsin, (. (¢) |0 <r < R,0<6 <2, —L <2z < L},
where we set
k(t) = exp(At), with A =1o0g(0.9)/1.4 ~ —0.075.

A solution to the Navier-Stokes equations writes, using cylindrical coordinates,

@re — it)ze
H(t) (a 2 z>

k(t)
p(t,?“, Z) = _r_% - /ﬁl?t)z [3/41(t)2 — /ﬁ:(t)li(t)] .

We checked that the Navier-Stokes ALE solver accurately reproduced the previous solution.
Indeed, using the coarsest mesh and time step, the error on the fluid velocity is at most of
order 7.1073 cm/s.

u(t,r,z) = ure, +uey =

We can also obtain the trajectory, in the phase space, of each numerical particle in a
semi-analytical way, thanks, for instance, to the python function expm. Let us use again
the notations X (¢) and V(¢) introduced in 4.1. Note that V' does not remain parallel to
e, anymore. We can write

. . 1
X =vQE), VE)=--(V([)-ult X))
where we arbitrarily set 7 = 2: it may not be a physical value, but allows to study the

particle trajectory in a reasonable time scale. The previous differential system can be
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rewritten with matrix notations and solved by computing a matrix exponential, i.e.

where

DO | >

(0 I3 _
= (4 0p) A=

and I3 denotes the identity matrix of R3.

In what follows, we perform various numerical experiments without retroaction to in-
vestigate the solver efficiency when taking the mesh motion into account. Our numerical
scheme uses a decoupling method, where the fluid-aerosol system and the domain are
sequently solved once per time step. At each time step, we proceed in the following way:

1. move the domain,
2. solve the fluid equation,
3. locate and move the particles thanks to (3.2).

Other implicit or explicit strategies may have been considered. In particular, the order
of the different steps is a crucial issue with respect to the particle deposition. Hence, we
check that the chosen strategy is efficient by comparing our numerical solution with the
semi-explicit one, see Fig. 16.
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F1GURE 16. Comparisons on averaged particle locations with the semi-
analytical reference solution.

We choose the same initial conditions and number of numerical particles as in the lower
part of page 10 describing the test case in a fixed domain.

6.1. Mesh sensitivity. We choose 0.0027 s as the time step for this test case. We observe,
on Fig. 17, an almost constant deposition ratio with respect to the mesh size.

Next we compare, on Fig. 18, the deposited particle locations at both final time and
deposition time (for each particle). Note that this deposition time is the one obtained in
the reference situation. This fact may explain the slight difference in the distances observed
for each mesh, comparing cases a and b.

6.2. Time step sensitivity. Fig. 19 shows a very good agreement between the three
plots, for the considered time steps.The test case is performed in the 80, 136-tetrahedron
mesh.
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7. CONCLUSIONS AND PROSPECTS

In this paper, we proposed a model to describe the interaction of a thin spray in an
incompressible viscous flow in order to accurately predict the aerosol deposition and possi-
bly take into account the aerosol retroaction on the fluid and/or some wall motion. A non
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linear coupled Vlasov-Navier-Stokes system was thus considered and explicitly discretized
in time. For the space approximation, a PIC method was used for the kinetic equation,
whereas an ALE finite element method was considered for the fluid part. We numerically
demonstrated the stability of our scheme in various situations: fixed or moving domains,
with or without retroaction. In particular, we highlighted the existence of a CFL-like
condition in the retroaction case. Note that our numerical simulations showed very good
convergence properties for the deposition rate, with respect to the mesh size for instance.
One crucial point here lies in the sub-cycling strategy used to advance the particles in time,
enabling an accurate prediction of the deposition phenomenon, which is a crucial issue of
our study. We also want to underline that considering a kinetic modelling of the aerosol is
appropriate in this context: a phase field description, even if numerically less costly, does
not allow an easy description of deposition, whereas following each individual particles may
be too expansive, in particular when retroaction is not negligible. Consequently, our model
and our explicit numerical strategy represent a good compromise and are a good candidate
to perform efficient in silico experiments of aerosol deposition in complex situations such
as lung modelling.

APPENDIX A. ABOUT THE DRAG FORCE

In [40], O’Rourke gives a general expression of the drag force of the air on the aerosol.
In terms of acceleration, it reads, for any ¢,  and v,
2
r
a(t,x,v) = 8—mgﬁuC’D|u(t,a:) —v|(u(t,z) —v), (A.1)

where Cp is a dimensionless parameter called the drag coefficient. This coefficient is semi-
empirically computed using the particle Reynolds number, which allows to measure the
ratio between inertia and viscosity forces on the particle:

2
Re, := EQHU'I"|U —v|.

Then Cp, which also depends on u and v, is given by Schiller and Naumann'’s law [14], also
used in [24, 27], in the KIVA codes [5, 4, 2, 3, 41| and for complex fluid-particle mixtures
12, 35]:

24 1

—— <1 + —Rep2/3> : if Re, < 1000,
CD — Rep 6

0.424, if Re, > 1000.

When Re, is small, which is the case in the respiration framework, one can also use

Cn = 24/Rep, see [29]. This formula immediately allows to recover the Stokes law from
(A.1).

APPENDIX B. ANALYTIC SOLUTIONS TO THE INCOMPRESSIBLE NAVIER-STOKES
EQUATIONS

In this section, we derive analytic solutions to the incompressible Navier-Stokes equa-
tions without source terms in a prescribed moving domain, which is initially a cylinder.

Using the cylindrical coordinates (r,0,z) and the associated basis (e,,eg,e,) (where
es = e;), the cylinder at initial time is given by

C= {(rcosﬂ,rsin@,z)m <r<R0<0<2r,—-L<2z SL},

and we can write u with the form w(¢,r,0,2) = u,e, + ugeg + u,e,. Assuming that u
does not depend on 6 anymore and ug = 0, u satisfies

u(t,r,z) = ure, + u e,. (B.1)

The incompressible Navier-Stokes equations then become

1
atur + urarur + uzazur = —0rp + ;87" (Tarur) + azzur - 5> (B2)
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1 2
atuz + uraruz + uzazuz = —0.p+ ;87’ (Taruz) + azzuz ’ (B3)

%Br(rur) + 0u, = 0. (B.4)

Those equations hold in the time-depending domain C(t) obtained from C(0) := C thanks
to a transformation to be determined. Let x € C?(R4;R% ) such as x(0) = 1. Consider a
point located at cylindrical coordinates (r, 8, z) at initial time. We look for the displacement
of this point taking the form (k(¢)r,8,(,(t)) (cylindrical coordinates), where (, is smooth
enough and (,(0) = z. The latter function (,, —L/2 < z < L/2, must still be defined.
With that kind of displacements, C(t) is no longer a cylinder but keeps the symmetry axis
(Oz) and remains centred at the origin.

In order to simplify again the computations, we assume that w is such that u, does not
depend on z and remains zero on the axis. Let us now write the boundary condition on
the wall. The fluid and the wall share the same velocity. This ensures that

ur(t, K(1)R) = A()R, (B.5)
uz(t, k() R, (1) = C(b). (B.6)
The simplest possibility for (B.5) to hold is then
A(t)
= —1. B.
up(t,7) K(t)r (B.7)
We still have to specify u,, p, and ¢, for each z € [-L/2, L/2].

Equation (B.4) implies
1 K
Oyuy, = —=0p(ru,) = —2—.
r K
A convenient u, is then not depending on r, and has the form

uy(t,r z) = —2%2—}—1}(75), (B.8)

where v is a C'! arbitrary function of ¢ and has the dimension of a velocity. Note that v

can also depend on 7, but that dependence is not useful here. We can now use (B.7)-(B.8)
in (B.2) and obtain an equation on p

Consequently, p has the form

where ¢ depends on t and z, and has the dimension of a pressure, up to the air mass
density. Eventually, (B.3) allows to identify a convenient function ¢. Indeed, we can write

2z . .. . i (1)
d.q(t,2) + )2 [3i(t)? — k(t)K(t)] = —o(t) + 2%0(15).
Hence, up to a constant, p satisfies

r? i(t) 22 9 k(t)
t = ——— - 3k(t)” — k(t)k(t 2—=u(t) —o(t . B.9
plt.rs) = =5 S 2 307 - ROw] + 2500 00| 5 (B9)
Eventually, (B.6) gives the following Cauchy problem on (,, which has a unique solution
on R+,

Y= —2%@/ + v, y(0) = z. (B.10)

Let us now sum up the result we just proved.
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Proposition 9. Let v € CYRy;R), k € C*(Ry;RY) with £(0) = 1. For any z €
[—L/2,L/2], consider the unique solution . to Cauchy problem (B.10). Set, for anyt > 0,

C(t) = {(r(t)rcos 0, k(t)rsinf, ¢ () |0 <r < R,0<60 <2m, —L <2z <L}.

Then uw and p, defined by (B.1) and (B.7)-(B.9), solve the incompressible Navier-Stokes
equations (B.2)—(B.4), with boundary conditions (B.5)~(B.6) on the wall of C(t).
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