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MODELLING AND NUMERICS FOR RESPIRATORY AEROSOLSLAURENT BOUDIN, CÉLINE GRANDMONT, ALEXANDER LORZ, AND AYMAN MOUSSAAbstrat. In this work, we �rst deal with the modelling and the disretization of anaerosol evolving in the air, in the respiration framework, within a domain whih an be�xed or moving. We also investigate basi numerial properties of the numerial odewhih was developped, and also fous on the in�uene of the aerosol on the air�ow.1. IntrodutionThe evolution of droplets or partiles in a surrounding �uid is a phenomenon enounteredin several areas, ranging from mediine (aerosol therapy) to motor industry (transport andombustion of petrol). In the partiular aerosol therapy ase, in vivo observations of drugdelivery in the airways indue several di�ulties. For instane, aerosol deposition mapsrequire heavy experimental protools, whih annot be easily repeated, and the obtainedmeasurements may not be aurate enough.Consequently, the hoie of physially relevant models, and thereafter the design of sta-ble, e�ient numerial methods allow in silio experiments whih an provide a wide rangeof results for various physial situations and parameters (type of aerosols, surrounding �u-ids, pathologial state...).Several kinds of modelling are available to desribe the aerosol movement in a �uid.Two of them are disussed quite in detail in [31℄: one an onsider individual partiles onthe one hand, or a olletion of partiles on the other hand.Two-phase models onsider the olletion of droplets or partiles as a �uid and studythe evolution, for instane, of aerosol onentration in the ambient �uid. Those modelsare most ertainly adapted in the ase when the volume fration oupied by the dispersedphase is not negligible with respet to the volume fration oupied by the surrounding�uid [34, 7, 36, 17℄. Unfortunately, suh models do not allow an aurate desription ofpartile deposition. This is why we shall only fous on spray models in whih the disreteaspet of the dispersed phase is kept.Following partiles as individuals is the other lassial strategy, see [9, 15, 16, 39, 46℄for instane. Nevertheless, desribing the behaviour of suh a (very) large number ofpartiles may lead to both tehnial and numerial di�ulties if one tries to keep the trakof eah individual trajetory. For instane, the Atomiser poket aeroneb GO from DTF1Corporation has the following harateristis: air�ow rate of 0.3mL/min, average (in mass)diameter equal to 3.6µm. Hene, this nebulizer allows the injetion of 1010 partiles inone minute.In this ontext of very numerous partiles, and sine the volume oupied by the aerosolremains negligible in the human airways, the formalism of statistial physis and kinetitheory is espeially well-�tted. This type of oupling was �rst introdued by O'Rourke [40℄or Williams [43℄ and is now quite often used to model aerosol transport in the lung, see[10, 27, 13℄. As for the interation between the aerosol and the surrounding �uid, followinga nomenlature introdued by O'Rourke (see also [22℄), we assume the spray to be thin.This means that
• the aerosol volume fration in the mixture remains negligible;Date: July 17, 2014.This work was partially funded by the ANR-08-JCJC-013-01 projet headed by C. Grandmont and theANR-10-BLAN-1119 projet headed by M. Filohe.1See http://www.dtf.fr 1



2 L. BOUDIN, C. GRANDMONT, A. LORZ, AND A. MOUSSA
• there are no interations between the aerosol partiles;
• the aerosol an have an e�et on the �uid, as a response to the drag fore exertedby the �uid on the partiles.Note that, for two-phase models as well as ODE ones, the aerosol retroation on the �uidis seldom taken into aount, up to our knowledge. In the same ontext of aerosol kinetimodelling we onsider hereafter, [27℄ presents a study of aerosol transport in the traheawhere the retroation is taken into aount.The aerosol is then desribed by a distribution funtion whih satis�es a Vlasov-typeequation. The �uid is assumed to be homogeneous, Newtonian, inompressible, and anbe desribed using the Navier-Stokes equations, see [28℄ for instane. The physial domainan be either �xed or time dependent.The aerosol and �uid are oupled through two terms: the partile aeleration, depend-ing on the relative veloity of the partile in the �uid, and the retroation fore appliedby the aerosol on the �uid. Consequently, we have to deal with a strong oupling of twotypes of equations: one at the marosopi sale (Navier-Stokes), one at the mesosopisale (Vlasov). The existene of solutions of the obtained system in a �xed domain hasbeen investigated by various authors [30, 6, 11, 45℄. The main issue in these mathematialstudies lies in the fat that the system is nonlinear and strongly oupled.The numerial strategy faes the same di�ulty together with the di�erent level ofdesriptions for both phases (maro/mesosopi). We hoose an expliit time-advaningsheme, whih allows to solve the �uid and aerosol parts in a staggered way. The systemis thus unoupled in the approximation proedure, reminisent from the existene proof in[11℄. For the spae disretization, a �nite element proedure and a partile-in-ell methodare respetively used to approximate the �uid veloity and pressure, and the distributionfuntion. The moving domain ase is handled thanks to the arbitrary Lagrangian-Eulerian(ALE) method, see [38℄ in a �nite element ontext.This whole approximation sheme was implemented in the C++ library LifeV.In this artile, we aim to investigate the range of parameters for whih our sheme isnumerially stable and aurate. In partiular, we study the in�uene of the retroationfore. Its expliit treatment may indue unphysial instabilities due to large partile ve-loities. In the human lung, if therapeuti aerosols seem not to require the retroationterm in most standard situations, it is not the ase for polluting partiles, whose averagevolume is larger. We also onsider the moving domain ase, whih is usually not takeninto aount, and is a �rst step towards the bronhial wall motion.One the full aerosol-�uid model has been desribed, we present the onsidered numeri-al method and then fous on three ases: a �xed domain without or with retroation anda moving domain without retroation. In eah ase, we study the numerial sensivity withrespet to various parameters (time step, mesh size, initial datum, partile representativ-ity...). 2. ModelIn the upper airways, we an safely assume that the air is Newtonian and inompress-ible, thus governed by the inompressible Navier-Stokes equations. During the respirationproess, some airway walls may be time-dependent. Thus our equations will be onsideredin a moving domain. When we fous on aerosols in human airways, the number of partilesan be signi�ant, whereas the volume oupied by the aerosol remains small. A lassialstrategy in statistial mehanis then onsists in desribing the spray behavior thanks toone single kineti equation.To model our problem, we are led to ouple both types of equations to obtain a�uid/kineti system we present in the next subsetions.2.1. Geometries. In our study, a typial �uid domain, denoted by Ωt, is a ylinder ora branh (see Figure 1), whih an depend on time t. Its boundary Γt = ∂Ωt is divided



MODELLING AND NUMERICS FOR RESPIRATORY AEROSOLS 3into three (not neessarily onneted) subsets: the inlet Γin
t , the outlet Γout

t and the wall
Γwall
t . In most situations, Γin

t and Γout
t do not depend on time, beause they are hosenas arti�ial boundaries. On the ontrary, the motion of Γwall

t is driven by physiologialphenomena.
Γin
t Γwall

t

Γout
t

Ωt

Figure 1. Branh geometry with a moving wall.In the sequel nt will denote the unit vetor going out and normal to ∂Ωt.2.2. Fluid equations. Sine, in our framework, the �uid is Newtonian, inompressibleand homogeneous, the �uid mass density ̺�u remains onstant. We denote ν the �uidkinemati visosity and η = ̺�u ν its dynami one. The �ow is lassially desribed byits veloity �eld u(t,x) ∈ R
3 and the pressure p(t,x) ∈ R, where t ≥ 0 is the time and

x = (x1, x2, x3) ∈ R
3 is the position. It is governed by the following equations:

̺�u[∂tu+ (u · ∇x)u] = −∇xp+ η∆xu+ F , t ∈ R+, x ∈ Ωt, (2.1)
∇x · u = 0, t ∈ R+, x ∈ Ωt, (2.2)where F is a vetor �eld representing the fores ating on the �uid (gravity, aerosol retroa-tion). Moreover, to take into aount the fat that the domain itself an move, we onsidergiven time-indexed open sets Ωt of R3. If we denote, for any t ≥ 0, the displaement

At : Ω0 → Ωt from the initial (referene) on�guration, we shall assume that (t,x) 7→ At(x)is as smooth as needed, see [38, 19℄.2.3. Aerosol equation. The distribution funtion f : R+ × R
3 × R

3 → R+ depends ontime t and position x of the partiles, but also on their veloity v. In fat, f an alsodepend on partile radius, temperature or other relevant quantities, as seen in [40, 43℄.Let us emphasize that we do not take into aount any phenomenon modifying the aerosoldistribution regarding radius (no ollision, no abrasion, et.) or other physial quantities(no signi�ant temperature variation during the breathing proess, for instane). Thisensures that the initial radius distribution is onserved with respet to time. Therefore,for the sake of simpliity, the aerosol is hosen monodispersed in size, meaning that r is aparameter, see Remark 2 below. Eah partile is assumed to remain spherial and hene,its mass m is onstant and satis�es m = 4πr3̺aer/3, where ̺aer is the onstant volumemass of eah partile.The distribution funtion solves the Vlasov equation, i.e.
∂tf + v · ∇xf +∇v · (af) = 0, (2.3)where a(t,x,v) is the aeleration �eld undergone by the aerosol.Remark 1. One an understand f in two ways. It an be seen as

• a number density: f(t,x,v) dxdv is the number of droplets loated in the elemen-tary volume of the phase spae, entred at (x,v) at time t;
• a probability density: if the zero-th moment of f equals 1, f(t, ·, ·) is the densityfuntion, at time t, of the probability of presene of the partiles in the phase spae.



4 L. BOUDIN, C. GRANDMONT, A. LORZ, AND A. MOUSSARemark 2. We an take into aount the ase where the partiles have di�erent radii.Indeed, if the �uid veloity is given, all the terms involving the partiles linearly dependon f . Hene, several distribution funtions of di�erent radii may be superponed to modela size-polydispersed distribution. This has impliations in the numerial omputations, seeRemark 6 in Setion 3.2.4. Interation between the �uid and the aerosol. The terms F and a must still bede�ned. In what follows, the gravitational e�ets will be negleted beause we only fouson �uid-aerosol interation. Both terms F and a model a drag fore (or aeleration)between the �uid and the aerosol. We refer to Appendix A for a disussion about the dragfore expression. We here use the Stokes law, whih allows to write, for any t and x,
a(t,x,v) =

6πηr

m
(u(t,x)− v), (2.4)

F (t,x) = −m

∫

R3

f(t,x,v)a(t,x,v) dv. (2.5)Whether we take F into aount or not in this model is a real issue: it is alled the aerosolretroation on the �uid.2.5. Initial and boundary onditions. Equations (2.1)�(2.5) must be supplemented byinitial and boundary onditions. Reall that for any t ≥ 0, the motion of the boundary isgiven by the displaement At : Ω0 → Ωt of the whole domain, from the initial (referene)on�guration, (t,x) 7→ At(x) being as smooth as needed. The veloity of the domain atthe point x ∈ ∂Ωt is hene given by
w(t,x) := Ȧt(A

−1
t (x)).We assume that the �uid veloity �t w on Γwall

t

u = w on Γwall
t . (2.6)Of ourse, when the domain is �xed, w ≡ 0 and we have a homogeneous Dirihlet boundaryondition for u on Γwall

0 .On both the inlet(s) and the outlet(s), we an assign Dirihlet or Neumann boundaryonditions, for instane, if uin
t : Γin

t → R
3, we an hoose

u = uin
t on Γin

t , (∇xu+ (∇xu)
T ) · nt − pnt = 0 on Γout

t . (2.7)For a more realisti modelling in the air�ow ontext, one an propose, as in [28, 8℄ thefollowing strategy. In the proximal areas, the air�ow is omputed thanks to the Navier-Stokes equations whereas, in the distal part, it is desribed by a well hosen 0D boundaryonditions, taking the diaphragm motion into aount.We hoose an absorption boundary ondition for the aerosol on the wall. In the kinetiformalism, it writes
(v −w) · nt < 0 ⇒ f = 0, on Γwall

t × R
3. (2.8)Remark 3. The boundary onditions on Γwall

t are of ourse onsistent with the respirationframework: indeed, the wall is oated with muus and the aerosol partiles deposit on thewall when they hit it.Consider u0 : Ω0 → R
3 and f0 : Ω0 × R

3 → R+ as initial data, i.e.
u(0,x) = u0(x), x ∈ Ω0, f(0,x,v) = f0(x,v), x ∈ Ω0, v ∈ R

3. (2.9)In a �xed domain, with homogeneous Dirihlet boundary onditions for the �uid andabsorption for the spray, on ∂Ω0, we have the following proposition.Proposition 4. Assume that Ωt = Ω0 for any t ≥ 0, u = 0 on ∂Ω0 and f = 0 on ∂Ω0×R
3if v · n0 < 0. Then the energy of the whole aerosol-air system dereases.



MODELLING AND NUMERICS FOR RESPIRATORY AEROSOLS 5Proof. Multiply respetively (2.3) by mv2/2 and (2.1) by u. Then integrate the outomingequalities respetively on Ω0 × R
3 and Ω0, to get

d

dt

(

m

2

∫∫

Ω0×R3

f(t,x,v)v2 dv dx+
1

2

∫

Ω0

̺�u|u(t,x)|2dx)
= −

∫∫

∂Ω0×R3

f(t,x,v)v · n0 dv dx ≤ 0,sine f is nonnegative. The previous inequality ensures that the total kineti energy of theoupled system dereases. �Remark 5. If one onsiders other kinds of �uid boundary onditions, suh as (2.7), theprevious result does not hold and no energy bound an be derived. This lak of energyestimate omes from the Neumann boundary onditions for the Navier-Stokes system, andmay also lead to numerial instabilities, see [25℄ for a review on this topi.The nonlinearity in the Navier-Stokes equations and the strong oupling between theVlasov and Navier-Stokes equations are the two major di�ulties about the full system(2.1)�(2.7) from both mathematial and numerial viewpoints. System (2.1)�(2.9) wasmathematially investigated in a �xed domain (global in time existene of weak solutions)in [30, 6, 11, 45℄. In the two-dimensional ase, uniqueness was also investigated [44℄.Note that the approximation strategy used in the existene result established in [11℄ andespeially the unoupling proess between the kineti and �uid equations inspired thenumerial sheme presented in the next setion.3. Numerial shemeWe here propose a time-advaning sheme to solve the strongly oupled problem (2.1)�(2.7). We �rst unouple the �uid and aerosol problems and solve the �uid part with aretroation soure term oming from the previous time step. Then we solve the kinetipart, using the updated �uid veloity to ompute the drag fore. Note that we may needtime subyling of the kineti part to get an aurate value of the retroation term.The aerosol is omputed thanks to a partile-in-ell (PIC) method [18, 20, 21, 42℄. Forthe �uid, we use a Lagrange �nite element method assoiated to an arbitrary Lagrangian-Eulerian (ALE) approah [32, 23℄, to handle the moving aspet. Those methods are brie�ydisussed in the next subsetions. The most intriate part of this sheme probably lies inthe oupling between (2.1) and (2.3) through (2.5).Sine the omputational domain an move, we need to de�ne the domain mapping
At : Ω0 → R

3 and the assoiated veloity w(t, ·) : Ωt → R
3. For instane, at eah time

t, At an be omputed from the boundaries movement as a solution to a Poisson problemset on Ωt.Besides, our work is embedded in the C++ �nite element library LifeV2, whih previ-ously owned numerial tools to handle both �xed and moving meshes, most lassial �niteelement methods, and o�ered solvers for biologial �ows (Navier-Stokes, Dary, et.). Ifmore details are needed, the reader is invited to refer to [37℄, see also [38, 19℄ about the�uid solvers.In the following, we shall denote T the �nal time of omputation, and onsider a regularsubdivision (tn)0≤n≤N of [0, T ] with a step ∆t > 0.3.1. The Navier-Stokes equations. Most features of the �uid solver we present beloware standard. Nevertheless, we brie�y explain how the whole omputation is handled.We disretize the Navier-Stokes equations (2.1)�(2.2) written in the ALE onservativeform [38℄. With our boundary onditions (2.6)�(2.7), it is given, for any t ∈ [0, T ], by2Free software under LGPL liense, jointly developed in four institutions: Éole Polytehnique Fédéralede Lausanne (Switzerland), Politenio di Milano (Italy), Inria Paris-Roquenourt (Frane) and EmoryUniversity (USA), see http://www.lifev.org/
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̺�u d

dt

∫

Ωt

u · β(t,x) dx+ ̺�u ∫
Ωt

[(u−w) · ∇xu] · β dx

− ̺�u ∫
Ωt

(divw)u · β dx+ η

∫

Ωt

∇xu : ∇xβ dx+

∫

Ωt

p(divβ) dx =

∫

Ωt

F · β dx,

∫

Ωt

(divu)µ(t,x) dx = 0,where β and µ are suitable test funtions (transported by the ALE mapping At fromreferene test funtions), satisfying β = 0 on the wall and on the inlets.We hoose a bakward Euler sheme and a semi-impliit treatment of the onvetiveterm. In the simpler ase of a �xed domain, it redues to a standard semi-impliit Eulersheme.For the spae disretization, we use a Lagrange �nite element method. For a harater-isti size h > 0, onsider a tetrahedri mesh of Ω0, denoted by
T h
0 =

Mh
⋃

i=1

Kh
0,i,where eah Kh

0,i is a tetrahedron. For eah t, the tetrahedri mesh T h
t of Ωt is the union of

Mh tetrahedra whose verties are transported from the referene on�guration T h
0 by thedisrete ALE mapping Ah

t . This mapping should preserve the tetrahedri struture of themesh, see [38℄ for details.Then we de�ne the basis funtions, at eah time tn, (ϕn
k)1≤k≤Nh

for veloities, and
(ψn

ℓ )1≤ℓ≤Ph
for pressures, transported from P1−P1 referene basis funtions on T h

0 . Oneagain, Ah
t should preserve the hosen �nite element spae. Due to the hoie of a P1− P1setting, we use a stabilized formulation, that we do not detail here.Then, at time tn, we approximate the unknowns on T h

tn by
un(x) =

Nh
∑

k=1

unkϕ
n
k(x), pn(x) =

Ph
∑

ℓ=1

pnℓ ψ
n
ℓ (x),for any x ∈ Ωtn . The unknowns then beome the following olumn vetors

Un = (un1 , . . . , u
n
Nh

)T, Πn = (pn1 , . . . , p
n
Ph
)T.Consequently, from tn to tn+1, we have to solve the following linear system

[

Dn+1 (Bn+1)T
Bn+1 0

] [

Un+1

Πn+1

]

=

[

Fn

0

]

+
̺�u
∆t

[

MnUn

0

]

, (3.1)where
Bn =

(

−

∫

Ωtn

ψn
i ∇x · ϕn

j dx

)

1≤i≤Ph,1≤j≤Nh

,

Mn =

(
∫

Ωtn

ϕn
i · ϕn

j dx

)

1≤i,j≤Nh

,

Fn =

(
∫

Ωtn

F n ·ϕn
i dx

)T
1≤i≤Nh

,

Dn+1 =
̺�u
∆t

Mn+1 − ̺�uCn+1/2 + ηAn+1,with
An =

(
∫

Ωtn

∇xϕ
n
i : ∇xϕ

n
j dx

)

1≤i,j≤Nh

,

Cn+1/2 =

(

Nh
∑

k=1

(unk −wn+1
k )

[

∫

Ω
tn+1

(

ϕn+1
k · ∇xϕ

n+1
j

)

·ϕn+1
i dx

])

1≤i,j≤Nh

.



MODELLING AND NUMERICS FOR RESPIRATORY AEROSOLS 7The de�nition of F n on Ωtn is given in 3.3 below.The semi-impliit treatment of the onvetive term appears in the expression of Cn+1/2,where unk is used with the basis funtions at time tn+1. In the same way, note that (3.1)involves nodal quantities at time tn+1. In partiular, vetors in the right-hand side of(3.1), are de�ned using the �nite element oordinates of quantities on Ωtn , and furthertransported by the ALE mapping on Ωtn+1 (on the orresponding nodes).3.2. The Vlasov equation. Unlike the �nite element method, the partile method doesnot provide an approximation of f on the mesh nodes. More preisely, the distributionfuntion is omputed as a weighted sum of Dira masses in the positions and veloities ofthe numerial partiles, i.e., in a measure sense,
f(t,x,v) =

Nnum
∑

p=1

ωpδxp(t) ⊗ δvp(t)(x,v),where the number of numerial partiles Nnum is initially hosen by the user, ωp is alled therepresentativity of numerial partile p, and t 7→ (xp(t),vp(t)) is the trajetory, in the phasespae, of p. Hene, we just have to ompute the harateristis to get an approximationof f from its initial datum. Note that, as soon as xp(t) does not belong to Ωt any longer,that means that partile p is deposited on Γwall
t or went out of the domain through Γin

t or
Γout
t . From a numerial point of view, Nnum is not modi�ed but the outgoing partiles arenot treated any more.For pratial purposes, Nnum is very small with respet to the average number of physialaerosol partiles Naero, whih makes the omputations muh less ostly. In fat, we anwrite

Naero = Nnum
∑

p=1

ωp,whih gives an order of magnitude of ωp. For instane, if we hoose Naero = 1010 (see 2.3)and Nnum = 103, we ould set ωp = 107 for all numerial partiles. The relevane of suha hoie is disussed later in Setion 5.As long as the partile p remains in the domain, its oordinates in the spae phase solvethe Cauhy problem
ẋp(t) = vp(t), v̇p(t) = a(t,xp(t),vp(t)), 0 ≤ t ≤ T,with hosen initial data xp(0) and vp(0). This problem is solved with a �rst-order semi-impliit Euler sheme

vn+1
p = vn

p +∆t ãn+1/2, xn+1
p = xn

p +∆tvn+1
p , (3.2)where ãn+1/2 is the drag aeleration depending on quantities at both times tn and tn+1.This is explained in the next subsetion, beause it is related to the oupling between bothphases.Eventually, we must emphasize that this method needs averaging, sine it relies onstatistial physis. Indeed, if the partiles are injeted with a uniform distribution at Γin

t ,we must proeed with several initial numerial distributions and take the omputationsaverage to loate the deposition areas, for instane.Remark 6. As we already stated, we only desribe the sheme (and the model) for amonodispersed (in radius) aerosol. It is of ourse possible to onsider numerial partileswith various radii. Hene, it is possible to reprodue the radius distribution of the partilesin the aerosol. It is very useful when one a priori knows how an aerosol nebulizer generatespartiles. Of ourse, if one takes into aount the size hanges of aerosol partiles due tothe air humidity [33℄, this strategy must be adapted.



8 L. BOUDIN, C. GRANDMONT, A. LORZ, AND A. MOUSSA3.3. The oupling. Let us now fous on the oupling between the Vlasov and Navier-Stokes equations. We here hoose to use an expliit time marhing sheme, so that the�uid and aerosol parts are basially solved one per time step. It enables to redue theomputational ost. Nevertheless, it may lead to stability issues we investigate afterwards.Note that, as already stated, the proof of existene of weak solutions in [11℄ is based onthe same kind of deoupling strategy. The whole proess is quite similar to the ones in [40℄or [27℄.We assume that, at time tn, Un, Πn, (xn
p )1≤p≤Nnum, (vn

p )1≤p≤Nnum and Fn are known.Of ourse, when n = 0, F 0 must be �rst omputed from the initial data before starting thetime loop. Then we solve (3.1) to obtain Un+1 and Πn+1. Next, to advane the aerosol intime, we ompute a disrete partile aeleration denoted by ãn+1/2 and de�ned by
ãn+1/2 =

6πηr

m
(ũn+1(xn

p )− vn+1
p ),where the quantity ũn+1(xn

p ) is the �uid veloity at the position of partile p, at theprevious time step. Sine the �uid veloity is only known at mesh points, we need tointerpolate it in order to evaluate ũn+1(xn
p ).Note that xn

p ∈ Ωtn and that Un+1 lies in Ωtn+1 . First, partile pmay not be in Ωtn+1 anymore. In this ase, the partile is onsidered to be deposited, hene taking the boundaryondition of f on Γwallt into aount. Seond, we have to �nd out in whih ell partile p is,and its assoiated baryentri oordinates. This is possible thanks to a loating algorithm[26℄. Note that, apart from the initial loating proesses, this algorithm should onvergein a very small number of iterations, so it is not so ostly. Third, we perform a linearinterpolation of Un+1 on the mesh points at time tn+1 to get ũn+1(xn
p ).One we know ãn+1/2, we ompute vn+1

p and xn+1
p thanks to (3.2), and eventually F n+1,as

F n+1(x) = −m

Nnum
∑

p=1

ωp
6πηr

m

(

ũn+1(xn+1
p )− vn+1

p

)

δ
x
n+1
p

(x), x ∈ Ωtn+1 .Note that, to ompute F at time tn+1, we do not use ãn+1/2. Consequently, the numerialtotal momentum is not onserved any more, whih may imply stability issues.Remark 7. The �uid time step may not be suitable to preisely follow the disrete partiletrajetories. As seen on Figure 2, without subyling, the partile goes aross several ellsduring a same time step, whereas the high �uid veloity on the blak nodes spins the partiletrajetory. In this ase, one should introdue a time subyling strategy.

Figure 2. A partile with (solid line) and without (dashed line) time subyling.



MODELLING AND NUMERICS FOR RESPIRATORY AEROSOLS 9Remark 8. In order for the retroation term to be more aurate, we may use the smallestsubyle time step for the �uid phase too. Indeed, eah partile may be able to exhange itsmomentum with the �uid in eah ell it goes aross.In what follows, we numerially study auray and stability properties of our sheme.Sine we aim to model the aerosol deposition in the human lung, the air is hosen as theambient gas at temperature 310K, so that ̺�u = 1.204 × 10−3 g.m−3 and η = 1.85 ×
10−4 g m−1 s−1. The previous values an be found, for instane, in [1℄.We �rst investigate in Setion 4 the no-retroation ase in a �xed domain. We areinterested, for instane, in sensitivity with respet to the mesh size, time step, initialpartile loations. Then, in Setion 5, we perform the same kind of tests in the retroationase, again in a �xed domain. We moreover fous on representativity issues appearingwhen dealing with the retroation term. Finally, Setion 6 is dediated to the movingdomain ase without retroation. In partiular, we exhibit an exat solution to (2.1)�(2.2)and ompare it with our numerial solution. In every ase, one of the main issues is toaurately predit the deposition map of the aerosol. We onlude our study by using ournumerial ode on a typial lung geometry.4. Numerial tests without retroationWe �rst fous on the behaviour of our numerial ode when the ation of the partiles onthe �uid is negleted. We onsider an orthonormal system (O,e1,e2,e3). The omputa-tional domain is a ylinder of axis (O,e3), length L = 5 m and radius R = 0.2 m, entredat O. The air�ow follows the Poiseuille law, with veloity u going along the ylinder axis,i.e.

u(t,x) = U

(

1−
x1

2 + x2
2

R2

)

e3, U ≥ 0.In partiular, u does not depend on t and x3, only on the transverse oordinates x1 and
x2.Partiles evolve in the air�ow. They have the same radius r, mass density ρp, and areinjeted in the �uid at time Tinj = 0.2 s with the same initial veloity V 0. Fig. 3 sums upthe situation.

O

e1

e3

e2

u(t,x)�uid �ow
L/2

V 0

V 0

b

R

Figure 3. Initial veloity V 0 for the omputations : solid line for 4.1,dashed line for 4.2 and following.4.1. Behavior of the partile veloities. In order to validate the harateristis methodimplementation in our ode, let us onsider here the ase when there is only one numerialpartile in the �uid. The Stokes law allows to obtain an analyti expression of the partileveloity. Sine there is no ation of the partile on the �uid, the partile asymptotiallyfollows the streamlines of the �uid. From the analyti form of the �uid veloity, we an



10 L. BOUDIN, C. GRANDMONT, A. LORZ, AND A. MOUSSAdedue one for the partile veloity. Let us denote by X(t) and V (t) the loation andveloity of the partile at time t, and hoose V 0 = V 0 e3, V 0 ∈ R. Consequently, at eahtime t, V (t) is parallel to the line Re3. Its oordinate V (t) along this line is then given by
V (t) =

[

V 0 + u(X(t)) · e3

∫ t

Tinj es/ττ ds

]

e−t/τ ,where
τ :=

2r2ρp
9η

.Hene, we get
V (t) = u(X(t)) · e3 + [V 0 − u(X(t)) · e3]e

−(t−Tinj)/τ , (4.1)as long as the partile remains in the ylinder.4.1.1. Motionless �uid. We �rst assume that the �uid does not move, i.e. U = 0. Conse-quently, (4.1) beomes
V (t) = V 0e−(t−Tinj)/τ ,the �uid slows down the partile. For standard physial parameters (water droplet in theair), the relaxation time τ is very small. Sine we are only interested in the ode validation,let us use a non realisti mass density for the partile, i.e. 10 g/m3, to allow, in the sametime, a signi�ant relaxation time and a small partile Reynolds number.
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0.1 m away (in the radial diretion). Let us take V 0 = −0.1 m/s, opposite to the �uid�ow. Then Fig. 5 shows again the very good agreement between the analyti and numerialveloities of the partile.In the remainder of this setion, we investigate the numerial sensitivity of our shemewith respet to various parameters of the omputations, suh as the mesh, the time step,et. We study an aerosol with 3000 numerial partiles sharing the same initial transverseveloity V 0 = V 0 e1 with V 0 = 6.5 m/s. Fig. 3 may again allow to understand thesituation. The hosen �nal time is 1.4 s. Twenty di�erent initial spae distributions of
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Figure 5. Analyti/numerial veloities for a partile on the axis and an-other one 0.1 m away from the axis.
3000 numerial partiles are used for the partile method: they are uniformly drawn insidea disk of radius 0.16 m at x3 = −L/2. All the partiles have the same radius, i.e. 50µm.4.2. Mesh sensitivity. We onsider seven di�erent meshes, from approximately 10, 000tetrahedra to 640, 000. More preisely, we give, in Table 1, the number of tetrahedra anda orresponding average ell size value (h) obtained as the ube root of the ratio betweenthe ylinder volume and the number of ells.Number of ells 9, 954 28, 800 67, 200 80, 136 130, 200 295, 416 645, 150

h (in m) 0.0398 0.0279 0.0211 0.0199 0.0169 0.0128 0.0099Table 1. Various meshes under study.Due to omputational osts, the range of explored ell sizes is narrowed between 0.01and 0.04. We perform the simulations for all seven di�erent meshes with 20 di�erent initialdistributions of partiles, with a time step ∆t = 0.0027 s. The �nest mesh omputation istaken as the referene one.First, we onsider a given initial partile distribution. For eah numerial partile, wereover the time evolution of the distane between its referene position and the onesobtained using oarser meshes. Then we ompute the average of this distane with respetto all the numerial partiles. We iterate this proess for eah of the 20 initial partiledistributions, whih allows to de�ne the average distane as a statistial quantity. Forinstane, in Fig. 6, the average partile distane between omputations on meshes 80 and640 is shown, as well as the assoiated standard deviation.After an initial phase, we observe a linear growth of the average distane error. Hene,the growth ratios are quantities of interest. They an be seen as line slopes. In Fig. 7,we plot the slope values with respet to the typial ell size h, and one again with thestatistial error.Our numerial sheme behaves with a remarkable statistial stability. On the depositionphenomenon, the variation of the average fration of deposited partiles (and the standarddeviation) at �nal time does not seem signi�ant in terms of meshes, see Fig. 8. Theperentage of 54.7% is learly a satisfying value, and we an note that using a oarsermesh seems to overestimate the deposition e�et a little.Eventually, when fousing on the oarsest and the �nest meshes, let us emphasize thatthe maximal distane between the positions of the same partile at deposition time in thetwo di�erent meshes is only 0.015 m.
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∆t/2 and ∆t. We then ompute the distane between the loations of eah numerialpartile in the referene situation and one of the two others, at eah multiple of ∆t, up to�nal time 1.4 s, and take the average over all the partiles.
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time (s)Figure 9. Comparisons on averaged partile loations on (a) ∆t and∆t/4,(b) ∆t/2 and ∆t/4.Then Fig. 9a�b respetively show the average (over the 20 randomly drawn spae initialdistributions) position errors for ∆t/4 and ∆t, and ∆t/4 and ∆t/2, respetively. As usual,the average and the standard deviation are displayed. Both results are satisfatory beausethe errors seem to have a linear behaviour with respet to physial time t.Furthermore, we an hek the number of deposited partiles does not depend on thetime step in the previous tests. More preisely, the maximal distane between the impatpositions in omputations with ∆t/4 and ∆t/2 is 0.004 m and in omputations with ∆t/4and ∆t is 0.008 m.Notie that this stability behavior for the deposition of partiles is learly related tothe subyling strategy mentionned in Remark 7, that we systematially used in theseomputations. Without the re�nement of the time step for the partiles, some of themould ignore arti�ially the boundary layer of the �uid, going through several ells in onetime step and go out of the mesh. This would indeed be an artefat sine, reduing thetime step, these partiles would start to pereive more aurately the veloity of the �uidnear the boundary, whene reduing the deposition ratio.4.4. Sensitivity with respet to the initial partile loations. This test fouses onthe sensitivity with respet to the initial spae distribution of the numerial partiles. Wehoose ∆t = 0.0027 s and onsider every mesh from Table 1. For a given initial on�gu-ration of partiles, we perturb the partile loations in the following way. Eah partileis randomly (with a uniform law) reloated in a small disk of radius h/2 entred at thepartile initial position. The small radius value ensures that the partile remains in theylinder after the perturbation. Let us emphasize that the perturbation depends on theonsidered mesh, through h.We perform the omputations for 20 di�erent perturbations of the same kind, and even-tually ompute the maximal distane between the loations of the partiles at �nal timewith respet to the referene on�guration, averaged on the 20 draws. Fig. 10 shows aremarkable stability with respet to the perturbation of the initial distribution.5. Numerial tests with retroationIn this setion, the partiles exert a retroation fore on the �uid, and the ouplingbetween the Navier-Stokes and Vlasov equations is strong. The retroation e�et wasalready disussed in a two-dimensional setting [13℄: there were situations when F ouldnot be negleted at all (big and numerous partiles, high initial relative partile veloities).
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MODELLING AND NUMERICS FOR RESPIRATORY AEROSOLS 155.2. Representativity of the numerial partiles. In this subsetion, we disuss thenumerial approximation of the retroation term, and mainly the in�uene of the partilerepresentativity. First, we deal with a given number Nnum of numerial partiles. Weinvestigate the behaviour of the total kineti energy (of the oupled system) for variousvalues of the representativity. This implies that we do not use the same number of physialpartiles in eah numerial experiment. Next, we aim to exhibit an optimal value of therepresentativity for a given realisti total number partiles.5.2.1. Representativity issues for a given number of numerial partiles. We injet 3000numerial partiles with axial veloity 3 m/s at z = 0.2 in a disk with radius 0.12 m,and we onsider an initially motionless �uid. The boundary onditions are hosen as inProposition 4. Sine retroation is taken into aount, the �uid veloity should be nonzero near the partiles shortly after the injetion. Aording to Proposition 4, the totalkineti energy should derease. The omputations are �rst performed for a hosen timestep equal to 0.0027 s, and various representativities. In Fig. 12, we observe that the totalkineti energy does not derease when representativity, and onsequently the number ofphysial partiles, grow.
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3e6Figure 12. Total kineti energy for various representativities, with ∆t = 0.0027.Moreover, performing the same test for the larger time step 0.004 s, we observe in Fig. 13that the total kineti energy does not derease anymore for ωp = 5.106, whereas it did for

∆t = 0.0027.This numerial behaviour may be explained by the expliit treatment of the retroationas a soure term in the Navier-Stokes equations. This expliit treatment may indue anunphysial energy prodution. More preisely, when omputing veloity and pressure at
tn+1, the soure term writes

F n(x) = −m

Nnum
∑

p=1

ωp
6πηr

m

(

ũn(xn
p )− vn

p

)

δxn
p
(x), x ∈ Ωtn ,where ωp learly appears as a key parameter. Furthermore, the omparison between bothases with two di�erent time steps suggests the existene of a CFL-like ondition involvingthe produt ωp∆t among others.



16 L. BOUDIN, C. GRANDMONT, A. LORZ, AND A. MOUSSA

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 10000

 1e+06

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45

ki
ne

tic
 e

ne
rg

y

time (s)

5e6
3e6Figure 13. Total kineti energy for two �ritial� representativities, with

∆t = 0.004.5.2.2. Representativity issues for a given number of physial partiles. In this subsetion,the number of physial partiles is onstant: 1010, whih is realisti for a standard nebu-lizer. We aim to determine how many numerial partiles should be involved to representthose physial partiles. By hoosing very few numerial partiles with a huge represen-tativity in our omputations, the spae distribution of the aerosol partiles may not welltaken into aount. Consequently, the aerosol retroation, whih only has a loal e�et,ould be underestimated, leading to a non physial behaviour. Hene, the number of nu-merial partiles should be a ompromise between both the numerial ost and the spaedistribution of the partiles in the �uid.Here we onsider three ases:
• 100 numerial partiles, eah representing 108 physial partiles,
• 1000 numerial partiles, eah representing 107 physial partiles,
• 10, 000 numerial partiles, eah representing 106 physial partiles.The 1000 and 10, 000-partile test ases are obtained thanks to perturbation of the 100-partile one. More preisely, we build a random distribution of 100 partiles in a disk ofradius 0.06 m at z = 0.2. Then we reate a new distribution by replaing eah of the 100partiles by 10 partiles randomly hosen in a disk of radius 0.06 m around them. Thisproess is repeated to get the 10, 000-partile situation from the 1000 one.We hek the �uid veloity at two di�erent mesh nodes lose to the z-axis, near the initialloation of the partiles at z = 0.238095, and away from this same loation at z = 0.595238.More preisely, in Fig. 14�15, we show the numerial error on the �uid veloity norm atboth nodes, omparing the 1000-partile ase with the other ones. In both situations, theresults are quite similar when dealing with 1000 and 10, 000 partiles, whereas they aresigni�antly di�erent when dealing with 1000 and 100 partiles. Consequently, it is �rstlear that the hoie of 100 numerial partiles is not relevant to represent 1010 physialpartiles. Seond, sine the error between the 1000 and 10, 000-partile situations remainssmall (of order of magnitude 10−2 m/s), the hoie of 1000 numerial partiles appearsas a good ompromise in terms of numerial ost and auray. Note that the tests havebeen performed for several partile draws, and the standard deviation in any ase is upper-bounded by 10−6. 6. Numerial tests in a moving domainLet us now investigate the moving domain situation. At initial time, the domain is theylinder from Figure 3. We study a ase where the domain motion and the �uid behaviouran be analytially omputed, see Proposition 9 and its proof within Appendix B. The
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Figure 15. Fluid veloity error away from the partiles w.r.t. time, om-parison with 1000 numerial partiles.onsidered time dependent domain is given, for any t, by
Ωt =

{

(κ(t)r cos θ, κ(t)r sin θ, ζz(t)) | 0 ≤ r ≤ R, 0 ≤ θ ≤ 2π,−L ≤ 2z ≤ L
}

,where we set
κ(t) = exp(λt), with λ = log(0.9)/1.4 ≃ −0.075.A solution to the Navier-Stokes equations writes, using ylindrial oordinates,

u(t, r, z) = urer + uzez =
κ̇(t)

κ(t)
rer − 2

κ̇(t)

κ(t)
zez ,

p(t, r, z) = −
r2

2

κ̈(t)

κ(t)
−

z2

κ(t)2
[

3κ̇(t)2 − κ̈(t)κ(t)
]

.We heked that the Navier-Stokes ALE solver aurately reprodued the previous solution.Indeed, using the oarsest mesh and time step, the error on the �uid veloity is at most oforder 7.10−3 m/s.We an also obtain the trajetory, in the phase spae, of eah numerial partile in asemi-analytial way, thanks, for instane, to the python funtion expm. Let us use againthe notations X(t) and V (t) introdued in 4.1. Note that V does not remain parallel to
ez anymore. We an write

Ẋ(t) = V (t), V̇ (t) = −
1

τ
(V (t)− u(t,X(t))),where we arbitrarily set τ = 2: it may not be a physial value, but allows to study thepartile trajetory in a reasonable time sale. The previous di�erential system an be



18 L. BOUDIN, C. GRANDMONT, A. LORZ, AND A. MOUSSArewritten with matrix notations and solved by omputing a matrix exponential, i.e.
(

X(t)
V (t)

)

= exp(At)

(

X(0)
V (0)

)

,where
A =

(

0 I3
A1 −I3/2) , A1 =

λ

2





1 0 0
0 1 0
0 0 −2



 ,and I3 denotes the identity matrix of R3.In what follows, we perform various numerial experiments without retroation to in-vestigate the solver e�ieny when taking the mesh motion into aount. Our numerialsheme uses a deoupling method, where the �uid-aerosol system and the domain aresequently solved one per time step. At eah time step, we proeed in the following way:1. move the domain,2. solve the �uid equation,3. loate and move the partiles thanks to (3.2).Other impliit or expliit strategies may have been onsidered. In partiular, the orderof the di�erent steps is a ruial issue with respet to the partile deposition. Hene, wehek that the hosen strategy is e�ient by omparing our numerial solution with thesemi-expliit one, see Fig. 16.
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∆t/2 and ∆t. 7. Conlusions and prospetsIn this paper, we proposed a model to desribe the interation of a thin spray in aninompressible visous �ow in order to aurately predit the aerosol deposition and possi-bly take into aount the aerosol retroation on the �uid and/or some wall motion. A non



20 L. BOUDIN, C. GRANDMONT, A. LORZ, AND A. MOUSSAlinear oupled Vlasov-Navier-Stokes system was thus onsidered and expliitly disretizedin time. For the spae approximation, a PIC method was used for the kineti equation,whereas an ALE �nite element method was onsidered for the �uid part. We numeriallydemonstrated the stability of our sheme in various situations: �xed or moving domains,with or without retroation. In partiular, we highlighted the existene of a CFL-likeondition in the retroation ase. Note that our numerial simulations showed very goodonvergene properties for the deposition rate, with respet to the mesh size for instane.One ruial point here lies in the sub-yling strategy used to advane the partiles in time,enabling an aurate predition of the deposition phenomenon, whih is a ruial issue ofour study. We also want to underline that onsidering a kineti modelling of the aerosol isappropriate in this ontext: a phase �eld desription, even if numerially less ostly, doesnot allow an easy desription of deposition, whereas following eah individual partiles maybe too expansive, in partiular when retroation is not negligible. Consequently, our modeland our expliit numerial strategy represent a good ompromise and are a good andidateto perform e�ient in silio experiments of aerosol deposition in omplex situations suhas lung modelling. Appendix A. About the drag foreIn [40℄, O'Rourke gives a general expression of the drag fore of the air on the aerosol.In terms of aeleration, it reads, for any t, x and v,
a(t,x,v) =

πr2

8m
̺�uCD|u(t,x)− v|(u(t,x)− v), (A.1)where CD is a dimensionless parameter alled the drag oe�ient. This oe�ient is semi-empirially omputed using the partile Reynolds number, whih allows to measure theratio between inertia and visosity fores on the partile:Rep := 2

η
̺�ur|u− v|.Then CD, whih also depends on u and v, is given by Shiller and Naumann's law [14℄, alsoused in [24, 27℄, in the KIVA odes [5, 4, 2, 3, 41℄ and for omplex �uid-partile mixtures[12, 35℄:

CD =











24Rep (1 + 1

6
Rep2/3) , if Rep < 1000,

0.424, if Rep ≥ 1000.When Rep is small, whih is the ase in the respiration framework, one an also use
CD = 24/Rep, see [29℄. This formula immediately allows to reover the Stokes law from(A.1).Appendix B. Analyti solutions to the inompressible Navier-StokesequationsIn this setion, we derive analyti solutions to the inompressible Navier-Stokes equa-tions without soure terms in a presribed moving domain, whih is initially a ylinder.Using the ylindrial oordinates (r, θ, z) and the assoiated basis (er,eθ,ez) (where
e3 = ez), the ylinder at initial time is given by

C =
{

(r cos θ, r sin θ, z) | 0 ≤ r ≤ R, 0 ≤ θ ≤ 2π,−L ≤ 2z ≤ L
}

,and we an write u with the form u(t, r, θ, z) = urer + uθeθ + uzez. Assuming that udoes not depend on θ anymore and uθ = 0, u satis�es
u(t, r, z) = urer + uzez . (B.1)The inompressible Navier-Stokes equations then beome

∂tur + ur∂rur + uz∂zur = −∂rp+

[

1

r
∂r (r∂rur) + ∂2zzur −

ur
r2

]

, (B.2)
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∂tuz + ur∂ruz + uz∂zuz = −∂zp+

[

1

r
∂r (r∂ruz) + ∂2zzuz

]

, (B.3)
1

r
∂r(rur) + ∂zuz = 0. (B.4)Those equations hold in the time-depending domain C(t) obtained from C(0) := C thanksto a transformation to be determined. Let κ ∈ C2(R+;R

∗
+) suh as κ(0) = 1. Consider apoint loated at ylindrial oordinates (r, θ, z) at initial time. We look for the displaementof this point taking the form (κ(t)r, θ, ζz(t)) (ylindrial oordinates), where ζz is smoothenough and ζz(0) = z. The latter funtion ζz, −L/2 ≤ z ≤ L/2, must still be de�ned.With that kind of displaements, C(t) is no longer a ylinder but keeps the symmetry axis

(Oz) and remains entred at the origin.In order to simplify again the omputations, we assume that u is suh that ur does notdepend on z and remains zero on the axis. Let us now write the boundary ondition onthe wall. The �uid and the wall share the same veloity. This ensures that
ur(t, κ(t)R) = κ̇(t)R, (B.5)

uz(t, κ(t)R, ζz(t)) = ζ̇z(t). (B.6)The simplest possibility for (B.5) to hold is then
ur(t, r) =

κ̇(t)

κ(t)
r. (B.7)We still have to speify uz, p, and ζz for eah z ∈ [−L/2, L/2].Equation (B.4) implies

∂zuz = −
1

r
∂r(rur) = −2

κ̇

κ
.A onvenient uz is then not depending on r, and has the form

uz(t, r, z) = −2
κ̇(t)

κ(t)
z + v(t), (B.8)where v is a C1 arbitrary funtion of t and has the dimension of a veloity. Note that van also depend on r, but that dependene is not useful here. We an now use (B.7)�(B.8)in (B.2) and obtain an equation on p

−∂rp = r
κ̈

κ
.Consequently, p has the form

p(t, r, z) = −
r2

2

κ̈(t)

κ(t)
+ q(t, z),where q depends on t and z, and has the dimension of a pressure, up to the air massdensity. Eventually, (B.3) allows to identify a onvenient funtion q. Indeed, we an write

∂zq(t, z) +
2z

κ(t)2
[

3κ̇(t)2 − κ̈(t)κ(t)
]

= −v̇(t) + 2
κ̇(t)

κ(t)
v(t).Hene, up to a onstant, p satis�es

p(t, r, z) = −
r2

2

κ̈(t)

κ(t)
−

z2

κ(t)2
[

3κ̇(t)2 − κ̈(t)κ(t)
]

+

[

2
κ̇(t)

κ(t)
v(t)− v̇(t)

]

z. (B.9)Eventually, (B.6) gives the following Cauhy problem on ζz, whih has a unique solutionon R+,
ẏ = −2

κ̇

κ
y + v, y(0) = z. (B.10)Let us now sum up the result we just proved.



22 L. BOUDIN, C. GRANDMONT, A. LORZ, AND A. MOUSSAProposition 9. Let v ∈ C1(R+;R), κ ∈ C2(R+;R
∗
+) with κ(0) = 1. For any z ∈

[−L/2, L/2], onsider the unique solution ζz to Cauhy problem (B.10). Set, for any t ≥ 0,
C(t) =

{

(κ(t)r cos θ, κ(t)r sin θ, ζz(t)) | 0 ≤ r ≤ R, 0 ≤ θ ≤ 2π,−L ≤ 2z ≤ L
}
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