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RANDOM FIELDS OF BOUNDED VARIATION AND COMPU-

TATION OF THEIR VARIATION INTENSITY

BRUNO GALERNE,∗ Université Paris Descartes

Abstract

The main purpose of this paper is to define and characterize random fields

of bounded variation, that is random fields with sample paths in the space

of functions of bounded variation, and to study their mean total variation.

Simple formulas are obtained for the mean total directional variation of

random fields, based on known formulas for the directional variation of

deterministic functions. It is also shown that the mean variation of random

fields with stationary increments is proportional to the Lebesgue measure, and

an expression of the constant of proportionality, called the variation intensity,

is established. This expression shows in particular that the variation intensity

only depends on the family of two-dimensional distributions of the stationary

increment random field. When restricting to random sets, the obtained results

give generalizations of well-known formulas from stochastic geometry and

mathematical morphology. The interest of these general results is illustrated

by computing the variation intensities of several classical stationary random

field and random set models, namely Gaussian random fields and excursion

sets, Poisson shot noises, Boolean models, dead leaves models, and random

tessellations.
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1. Introduction

This paper focuses on the definition and characterizations of random fields (r.f.)

of bounded variation, that is, r.f. having their paths in the space of functions of

bounded variation, as well as to provide explicit formulas for the computation of their

mean total variation. Its motivations stem from the modeling of textures by r.f. in

image processing where functions of bounded variation are an important model. The

functional space BV (U) of functions of bounded variation defined over some open set

U ⊂ Rd is a subspace of L1(U) for which the functions are weakly differentiable in

the sense that their distributional derivative Df can be represented by a finite Radon

measure over U [2]. The total variation of f ∈ L1(U) is then defined by |Df |(U), the

total variation of the vector-valued measure Df , if f ∈ BV (U), and by +∞ otherwise.

Ever since the seminal paper of Rudin, Osher and Fatemi [23], the total variation

has been widely used for various tasks in image processing such as denoising, zooming,

deconvolution, etc. (see e.g. [3] and the references therein). Concerning textures, the

total variation generally appears in the problem of decomposing on image in a cartoon

part (or geometric part) and a textural part following the framework proposed by

Meyer [20]. For this problem it is considered that the total variation of a textural

part should be high or even infinite. Yet, to the best of our knowledge little is known

on the total variation of classical texture models such as Gaussian r.f. , shot noises,

dead leaves models... However, for the later germ-grain models, the r.f. correspond

to random geometric images with few contours, and intuitively their total variation

should depend on the geometry of the grains. Hence it is natural to ask the following

question: What is the mean total variation of classical germ-grain models?

This paper provides an answer to this question by introducing general definitions

and characterization results for r.f. of bounded variation. To the best of our knowledge

r.f. of bounded variation over Rd have never been studied for d ≥ 2, with the exception

of the short paper [15] and the very recent paper [5] that studies the excursion sets of

shot noise r.f. While the present work was motivated by image modeling, its results are

presented in an arbitrary dimension d ≥ 1 and are not limited to this field. Indeed the

results are of potential interest in any subject of applied probability where piecewise

smooth r.f. are at hands such as stochastic geometry (with e.g. Boolean random
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functions or colored tessellations, see Section 6.2). In comparison, the notions of

regularity that are often considered in applied probability such as Hölder continuity

does not allow for discontinuities in the r.f. sample paths.

Let us now detail the main results of the paper. For a r.f. f , our general strategy

is first to deal with directional variations |Duf |, u ∈ Sd−1, and then integrate over all

directions u ∈ Sd−1 to obtain results on the variation |Df |. The advantage of dealing

with directional variations is that it gives simple expressions only involving difference

quotients, and it also provides additional information on the anisotropy of the r.f.

f . The first section of this paper is devoted to deterministic functions of bounded

directional variation. Relations between the directional variation |Duf | of a function f

and the integral of its difference quotients are emphasized, yielding to the fundamental

relation

|Duf | (U) = lim
r→0

∫
U	[0,ru]

|f(x+ ru)− f(x)|
|r|

dx,

for any open set U ⊂ Rd. After this preliminary study of deterministic functions of

bounded directional variation, r.f. of (locally) bounded (directional) variation are

defined and characterized in Section 3. In particular, one defines the directional

variation intensity measure ΘVu
(f, ·) of a r.f. f as the expectation of the directional

variation of f , and it is shown that

ΘVu (f, U) = E(|Duf |(U)) = lim
r→0

∫
U	[0,ru]

E (|f(x+ ru)− f(x)|)
|r|

dx.

A particular interest is then given to r.f. f with stationary increments having locally

bounded (directional) variation in Section 4. If f is such a r.f. , it is proved that the

mean directional variation of f on every domain U is proportional to the Lebesgue

measure of U . Denoted θVu
(f), the constant of proportionality is called the directional

variation intensity of f and is given by the following practical formula:

θVu(f) = lim
r→0

E(|f(ru)− f(0)|)
|r|

. (1)

In particular, the directional variation intensity θVu(f) only depends on the family of

two-dimensional distributions of the stationary increment r.f. f .

As mentioned above, we are aware of only one general result on the variation of r.f.

which is due to Ibragimov [15]. Ibragimov’s theorem shows that if a r.f. is Lipschitz

in mean then f has a.s. locally bounded variation. We improve Ibragimov’s theorem
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by giving the optimal bound on the (directional) variation intensity measure and we

establish that the converse of Ibragimov’s theorem holds when the r.f. has stationary

increments: a locally integrable stationary increment r.f. has bounded variation with

a finite variation intensity if and only if it is Lipschitz in mean.

By definition, the variation of an indicator function is its perimeter [2]. Hence as

a particular case of our results on the mean variation of r.f. , in Section 5 we derive

formulas for the mean perimeter of random sets first established by the author in [10],

and originally due to Matheron [19, 18]. In particular, the specific directional variation

of a stationary random set X ⊂ Rd is given by

θVu
(X) = 2 lim

r→0

νX(ru)

|r|
, (2)

where νX(y) = P (y ∈ X, 0 /∈ X) is the variogram of X. In addition, mean coarea

formulas for mean total variation are established.

Finally, Section 6 illustrates the interest of the general formulas (1) and (2) by

computing the variation intensity of several classical stationary r.f. models. We first

study the variation of stationary Gaussian r.f and the perimeter of their excursion sets.

It is shown that a Gaussian r.f. fG has finite variation intensity if and only if the one-

dimensional restrictions of its covariance are twice differentiable at 0. According to [24],

this condition also implies that the sample paths of fG are a.s. in the Sobolev space

W 1,1
loc (Rd) which shows that functions of bounded variation are not an interesting model

for Gaussian r.f. The second part of Section 6 provides expressions of the directional

and non directional variation intensities of several r.f. associated with germ-grain

models namely: Poisson shot noise of random sets, Boolean models, colored dead leaves

r.f. , and colored tessellations. A germ-grain model defines a r.f. by combining colored

random sets according to an interaction principle (addition, supremum, occultation...).

These constructions result in r.f. models that present numerous discontinuities along

the geometric contours of the grains. For these models, the obtained formulas explicitly

clarifies the somewhat intuitive relation between the geometry of the grains X and the

total variation of the r.f. Moreover, they show that for all the considered germ-grain

models, there are only two geometric features of influence on variation intensity: the

mean perimeter and the mean Lebesgue measure of the grains.
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2. Functions of bounded directional variation and difference quotients

This section gathers several necessary results from the theory of functions of bounded

variation, with a particular interest in functions of bounded directional variation. For

a general treatment of the subject we refer to the textbook of Ambrosio, Fusco and

Pallara [2]. Some basic definitions are recalled and the relations between the directional

variation of a function and the integral of its difference quotients are emphasized.

Notation For any open subset U ⊂ Rd, B(U) denotes the set of Borel subsets of

U , and we write V b U if V ⊂ U is open and relatively compact in U . L1(U) (resp.

L1
loc(U)) denotes the space of integrable (resp. locally integrable) functions over U .

C0(U,R), C1(U,R), and C∞(U,R) denote the space of functions from U to R that are

respectively continuous, continuously differentiable, and infinitely differentiable. The

vector field spaces C0(U,Rd), C1(U,Rd), and C∞(U,Rd) are defined similarly. The

spaces C0
c (U,R), C∞c (U,Rd), etc. denote the spaces of functions or vector fields that

have a compact support. Sd−1 denotes the unit Euclidean sphere in Rd. If ϕ ∈ C1 (U,R)

and u ∈ Sd−1, we write ∂ϕ
∂u (x) = 〈∇ϕ(x), u〉, x ∈ Rd, for the directional derivative of

ϕ in the direction u. Hd−1 denotes the Hausdorff measure of dimension d− 1.

Within the remaining of this section U denotes an open set of Rd.

Definition 1. (Functions of bounded (directional) variation.) Let f ∈ L1(U). f is a

function of bounded variation in U if the distributional derivative of f is representable

by a finite Radon measure, i.e. if there exists a Rd-valued Radon measure, noted Df =

(D1f, . . . ,Ddf), such that |Df |(U) < +∞ and for all ϕ = (ϕ1, . . . , ϕd) ∈ C∞c (U,Rd)

∫
U

f(x) divϕ(x)dx = −
d∑
i=1

∫
U

ϕi(x)Dif(dx).

Let u ∈ Sd−1. f is a function of bounded directional variation in U in the direction

u if the directional distributional derivative of f in the direction u is representable by

a finite Radon measure, i.e. if there exists a signed Radon measure, noted Duf , such

that |Duf |(U) < +∞ and for ϕ ∈ C∞c (U,R)∫
U

f(x)
∂ϕ

∂u
(x)dx = −

∫
U

ϕ(x)Duf(dx).
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The vector space of all functions of bounded variation in U (resp. bounded direc-

tional variation in U in the direction u) is denoted by BV (U) (resp. BVu(U)).

A function f ∈ L1
loc(U) has locally bounded variation in U (resp. locally bounded

directional variation in U in the direction u) if f ∈ BV (V ) (resp. f ∈ BVu(V )) for all

open sets V b U . The corresponding space is denoted by BVloc(U) (resp. BVu,loc(U)).

If f ∈ BV (U) then |Df |(U) is called the variation of f in U . Similarly, if f ∈

BVu(U), |Duf |(U) is called the directional variation of f in the direction u in U . There

is of course a strong relation between the spaces BV (U) and BVu(U). As discussed

in [8] and [10, Proposition 8] for a function f ∈ L1(U) there is equivalence between

(i) f ∈ BV (U), (ii) f ∈ BVu(U) for all u ∈ Sd−1, and (iii) For all vectors ei of the

canonical basis, f ∈ BVei(U). In addition, if f ∈ BV (U) we have for all measurable

sets A ∈ B(U), one has the two identities

Duf(A) = 〈Df(A), u〉 =

d∑
i=1

uiDif(A), u = (u1, . . . , ud) ∈ Sd−1, (3)

|Df |(A) =
1

2ωd−1

∫
Sd−1

|Duf |(A)Hd−1(du), (4)

where ωd−1 denotes the Lebesgue measure of the unit ball in Rd−1.

Remark 1. In consequence of Equation (3), the maps u 7→ Duf(A) and u 7→ |Duf |(A)

are continuous on Sd−1 for all fixed A ∈ B(U) as soon as f ∈ BV (U).

In what follows, given a function f ∈ L1(U) and a direction u ∈ Sd−1, we will

consider difference quotients of the form x 7→ f(x+ru)−f(x)
r for some r 6= 0. Such

functions are not defined on the whole domain U but on U ∩ (−ru + U). Since we

will typically attempt at letting r tends to zero, we will restrict further this domain of

definition to the one of points x such that the whole segment [x, x+ ru] is included in

U . This set is denoted by U 	 [0, ru] = {x ∈ U, [x, x+ ru] ⊂ U}.

Notation for difference quotient Since directional difference quotients will be

central in the remaining of the paper, we adopt the following short notation

f(x; ru) =
f(x+ ru)− f(x)

r
, x ∈ U, r ∈ R \ {0}, u ∈ Sd−1,

for a function or a r.f. f .
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Lemma 1 and Theorem 1 below extend Proposition 11 of [10] to the case of integrable

functions defined over an arbitrary domain U (and not only Rd as in [10]). Because of

this general domain U , the use of standard approximation by convolution is discarded,

and we thus propose adapted proofs.

Lemma 1. Let u ∈ Sd−1. Then for all functions f ∈ BVu(U) and r 6= 0,∫
U	[0,ru]

|f(x; ru)|dx ≤ |Duf |(U).

Proof. The proof is an adaptation of the one of Lemma 3.24 p. 133 of [2]. Let us

first suppose that f ∈ C1(U). Then, one has∫
U	[0,r]

|f(x; ru)|dx =

∫
U	[0,ru]

∣∣∣∣∫ 1

0

∂f

∂u
(x+ rtu)dt

∣∣∣∣ dx ≤ ∫ 1

0

∫
U	[0,ru]

∣∣∣∣∂f∂u (x+ rtu)

∣∣∣∣ dxdt
≤
∫ 1

0

|Duf | (rtu+ U 	 [0, ru]) dt.

Now for all t ∈ [0, 1], rtu + U 	 [0, ru] ⊂ U and thus, |Duf | (rtu+ U 	 [0, ru]) ≤

|Duf |(U). Hence the lemma is valid for f ∈ C1(U). This inequality extends to all

functions in BVu(U) thanks to the density of smooth functions in BVu(U): for all

f ∈ BVu(U) there exists a sequence (fn)n, fn ∈ C1(U), such that (fn) tends to f

in L1(U) and the total directional variation |Dufn|(U) =
∫
U

∣∣∣∂fn∂u ∣∣∣ tends to |Duf |(U)

(using the directional equivalent of [2, Theorem 3.9 p. 122]).

Let us recall the definition of weak∗ convergence for signed Radon measure [2, p.

26-27]. Let C0
0(U,R) denote the closure of the space of continuous and compactly

supported functions C0
c (U,R) for the sup norm. Then one says that a sequence (µn)n∈N

of signed Radon measure on U weak∗ converges to the signed Radon measure µ if for

every ϕ ∈ C0
0(U,R), lim

n→+∞

∫
U

ϕ(x)µn(dx) =

∫
U

ϕ(x)µ(dx). The next theorem provides

a characterization of functions of finite directional variation in terms of difference

quotient.

Theorem 1. Let u ∈ Sd−1 and f ∈ L1(U). The three following assertions are

equivalent:

(i) f ∈ BVu(U).

(ii) The family of signed measures µr : A 7→
∫
U	[0,ru]

f(x; ru)1A(x)dx, A ∈ B(U),

r 6= 0, weak∗ converges to some signed Radon measure µ as r → 0.
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(iii) lim inf
r→0

∫
U	[0,ru]

|f(x; ru)|dx < +∞.

If any of these assertions holds, then µ = Duf and

|Duf |(U) = lim
r→0

∫
U	[0,ru]

|f(x; ru)|dx. (5)

Besides, Formula (5) is also valid in the degenerate case: f is not in BVu(U) if and

only if lim
r→0

∫
U	[0,ru]

|f(x; ru)|dx = +∞.

Proof. Let us begin with a preliminary observation: For all ϕ ∈ C1
c (U,R),

lim
r→0

∫
U

ϕ(x)µr(dx) = −
∫
U

∂ϕ

∂u
(x)f(x)dx. (6)

Indeed, for ϕ ∈ C1
c (U,R) and r 6= 0,∫

U

ϕ(x)µr(dx) =

∫
U	[0,ru]

ϕ(x)
f(x+ ru)− f(x)

r
dx

=
1

r

∫
U	[−ru,0]

ϕ(x− ru)f(x)dx− 1

r

∫
U	[0,ru]

ϕ(x)f(x)dx

=

∫
U

ϕ(x− ru)1U	[−ru,0](x)− ϕ(x)1U	[0,ru](x)

r
f(x)dx.

Hence, since for all x ∈ U ,

lim
r→0

ϕ(x− ru)1U	[−ru,0](x)− ϕ(x)1U	[0,ru](x)

r
= −∂ϕ

∂u
(x)

and for all r such that |r| is small enough such that supp(ϕ) ⊂ U 	 [0, ru],

ϕ(x− ru)1U	[−ru,0](x)− ϕ(x)1U	[0,ru](x)

r
f(x) =

ϕ(x− ru)− ϕ(x)

r
f(x) ≤

∥∥∥∥∂ϕ∂u
∥∥∥∥
∞
f(x) ∈ L1(U),

one obtains (6) by dominated convergence.

We will prove (i)⇒ (iii)⇒ (ii)⇒ (i). (i)⇒ (iii) is immediate thanks to Lemma 1.

Let us show (iii) ⇒ (ii). Remark that for all r 6= 0,
∫
U	[0,ru]

|f(x; ru)|dx = |µr|(U).

Since by hypothesis lim infr→0 |µr|(U) < +∞, there exists a sequence (rn) converging

to 0 such that limn→+∞
∫
U	[0,ru]

|f(x; rnu)|dx = lim infr→0 |µr|(U) < +∞. Hence

the sequence (|µrn(U)|)n∈N is convergent, and in particular it is bounded. By weak∗

compactness [2, Theorem 1.59 p. 26], there exists a subsequence (rnk
)k∈N such that

(µrnk
) weak∗ converges to some signed Radon measure µ. Hence, by definition of the

weak∗ convergence, for all ψ ∈ C0
c (U,R),

∫
U
ψ(x)µ(dx) = limk→+∞

∫
U
ψ(x)µrnk

(dx).
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But, according to (6), for all ϕ ∈ C1
c (U,R),

∫
U
ϕ(x)µ(dx) = −

∫
U
∂ϕ
∂u (x)f(x)dx =

limr→0

∫
U
ϕ(x)µr(dx). By the density of C1

c (U,R) in C0
0 (U,R) for the uniform con-

vergence, the above equality
∫
U
ϕµ = lim

∫
U
ϕµr extends to all ϕ ∈ C0

0 (U,R), which

shows that the whole family (µr) weak∗ converges to µ.

Let us now show that (ii) ⇒ (i). Since (µr) weak∗ converges to µ and according

to (6), for all ϕ ∈ C1
c (U,R),

∫
U

ϕ(x)µ(dx) = lim
r→0

∫
U

ϕ(x)µr(dx) = −
∫
U

∂ϕ

∂u
(x)f(x)dx

that is f ∈ BVu(U) and Duf = µ.

It remains to show Equation (5). Thanks to the inequality of Lemma 1, it is enough

to show that |Duf |(U) ≤ lim inf
r→0

∫
U	[0,ru]

|f(x; ru)|dx. But this inequality translates

in |µ|(U) ≤ lim inf |µr|(U) which is immediate since the total variation application

ν 7→ |ν|(U) is lower-semicontinuous with respect to the weak∗ convergence [2, Theorem

1.59 p. 26].

3. Random fields of bounded variation

Within this section, U denotes an open set of Rd. Following the generally approved

definition, a random field (r.f.) of Rd is a family of random variables ξx : (Ω,A) →

(R,B(R)) indexed by x ∈ Rd. However, the study of the variation of a r.f. requires

more constraint, namely that the r.f. sample paths are integrable functions.

Definition 2. (Integrable random fields.) Let (Ω,A,P) be a probability space. An

integrable random field f defined on U is a random element of L1(U), that is a

measurable map f : (Ω,A) → (L1(U),B(L1(U))), where L1(U) is endowed with the

Borel σ-algebra of the L1(U)-convergence. Similarly a locally integrable random field

f defined on U is a random variable of L1
loc(U).

We will speak of a.s. integrable random field to allow the function f to be outside

L1(U) with probability 0. Let us observe that if f is an integrable r.f., then the

integrals ω 7→
∫
Rd f(ω, x)ϕ(x)dx, ϕ ∈ C0

c

(
Rd,R

)
, are well-defined random variables

and thus fLd defines a unique signed Radon measure. Let us also remark that if

f :
(
Ω× Rd,A⊗ B(Rd)

)
→ (R,B(R)) is a jointly measurable r.f. such that its sample

paths are almost surely integrable, then f defines an integrable r.f. in the sense of the

above definition
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Definition 3. (Random fields of bounded (directional) variation.) An a.s. integrable

r.f. f ∈ L1(U) is a random field of bounded variation in U if there exists some random

Rd-valued Radon measure Df = (D1f, . . . ,Ddf) such that |Df |(U) is a.s. finite and

for all ϕ = (ϕ1, . . . , ϕd) ∈ C∞c
(
U,Rd

)
,

∫
U

f(x) divϕ(x)dx = −
d∑
i=1

∫
U

ϕi(x)Dif(dx) a.s.

Let u ∈ Sd−1. An a.s. integrable r.f. f ∈ L1(U) is a r.f. of bounded directional

variation in U in the direction u if there exists some random signed Radon measure

Duf such that |Duf |(U) is a.s. finite and for all ϕ ∈ C∞c (U,R),∫
Rd

f(x)
∂ϕ

∂u
(x)dx = −

∫
Rd

ϕ(x)Duf(dx).

An a.s. locally integrable r.f. f ∈ L1
loc(U) is a r.f. of locally bounded variation in U

(resp. r.f. of bounded directional variation in U in the direction u) if for all V b U the

restriction of f to V is a r.f. of bounded variation in V (resp. of bounded directional

variation in V in the direction u).

Definition 4. ((Directional) variation intensity measures.) For a r.f. f of

locally bounded variation in U , the intensity measure of the variation |Df |, that is

the measure A 7→ E (|Df |(A)), is called the variation intensity measure of f and is

denoted ΘV (f, ·). Similarly, for a r.f. f of locally bounded directional variation in U

in the direction u ∈ Sd−1, the intensity measure of the variation |Duf |, that is the

measure A 7→ E (|Duf |(A)), is called the directional variation intensity measure of f

in the direction u and is denoted ΘVu(f, ·).

The variation intensity measure is an important characteristic of a r.f. f of bounded

variation: for all measurable sets A, ΘV (f,A) is the mean variation of f in A. The mean

variation ΘV (f, U) on the whole domain U will be called the mean total variation of f

and ΘVu
(f, U) will be called the mean total directional variation of f in the direction

u. One easily establishes the analog of Equation (4) for the case of r.f. of bounded

variation.

Proposition 1. (Integral geometric formula for directional variation intensity mea-

sures.) Let f be a r.f. of bounded variation in U . Then f is a r.f. of bounded
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directional variation in U for all directions u ∈ Sd−1, and for all A ∈ B(U),

ΘV (f,A) =
1

2ωd−1

∫
Sd−1

ΘVu(f,A)Hd−1(du).

Proof. As for Proposition 8 of [10], if Df is a random Rd-valued Radon measure

representing the distributional derivative of f then 〈Df, u〉 is a random signed Radon

measure which represents the directional distributional derivative of f . Hence f is a

r.f. of bounded directional variation in U for all directions u ∈ Sd−1. The integral

geometric formula is obtained in applying Fubini theorem to Formula (4).

The next proposition shows that the proposed definition of r.f. of bounded variation

is equivalent with a more instinctive one: a r.f. has bounded variation if its sample

paths have a.s. bounded variation.

Proposition 2. (Sample paths of r.f. of bounded variation.) Let f : Ω× U → R be a

jointly measurable r.f. such that f(ω, ·) ∈ L1(U) a.s. and let u ∈ Sd−1. Then f is a r.f.

of bounded directional variation in U in the direction u (in the sense of Definition 3)

if and only if its sample paths x 7→ f(ω, x) are in BVu(U) for P-a.e. ω ∈ Ω. Similarly,

f is a r.f. of bounded variation in U if and only if its sample paths x 7→ f(ω, x) are in

BV (U) for P-a.e. ω ∈ Ω.

Proof. Let us first show the equivalence for r.f. of bounded directional variation. The

direct sense is immediate from the definition: since Duf is a.s. a Radon measure, the

sample paths are a.s. in BVu(U). Conversely, note Ω′ ⊂ Ω the set of ω ∈ Ω for which

x 7→ f(ω, x) are in BVu(U). Then, for all ω ∈ Ω′, there exists a signed Radon measure

µ(ω, ·) such that for all ϕ ∈ C∞c (U,R),
∫
U
f(ω, x)∂ϕ∂u (x)dx = −

∫
U
ϕ(x)µ(ω, dx). The

only difficulty is to ensure that ω 7→ µ(ω, ·) is a well-defined random signed Radon

measure, that is a measurable map. Let (rn) be a sequence converging to 0. According

to Theorem 1, for all ω ∈ Ω′, µ(ω, ·) is the weak∗ limit of the sequence of signed Radon

measures

µrn(ω,A) =

∫
U	[0,ru]

f(ω, x+ rnu)− f(ω, x)

rn
1A(x)dx, A ∈ B(U).

Hence µ is measurable since it is the a.s. limit of the weak∗ convergent sequence of

random signed Radon measures (µn)n∈N. The corresponding equivalence for r.f. of
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bounded variation is straightforward using the fact that f(ω, ·) ∈ BV (U) if and only

if BVei(U) for all ei in the canonical basis.

Remark 2. (Notation.) Proposition 2 extends directly to r.f. of locally bounded

variation and locally bounded directional variation. In view of Proposition 2 we will

use the notation f ∈ BV (U) a.s., f ∈ BVu,loc(U) a.s., etc. to express that a r.f. f has

bounded variation, locally bounded directional variation, etc.

Let us transcript Theorem 1 in the case of r.f. to establish an integral expression of

the total variation intensity.

Proposition 3. (Characterization of r.f. of bounded directional variation.) Let f ∈

L1(U) a.s. and u ∈ Sd−1. Then the three following assertions are equivalent:

(i) f ∈ BVu(U) a.s.

(ii) lim inf
r→0

∫
U	[0,ru]

|f(x; ru)|dx < +∞ a.s.

(iii) lim
r→0

∫
U	[0,ru]

|f(x; ru)|dx exists and is finite a.s.

If any of these conditions holds, then the total variation intensity is

ΘVu
(f, U) = lim

r→0

∫
U	[0,ru]

E(|f(x; ru)|)dx. (7)

Proof. The characterization is a consequence of Theorem 1. Let us now turn to the

expression of the total variation intensity. According to Theorem 1, limr→0

∫
U	[0,ru]

|f(x; ru)|dx =

|Duf |(U) a.s. and by Lemma 1 for all r 6= 0,
∫
U	[0,ru]

|f(x; ru)|dx ≤ |Duf |(U) a.s.

Hence if the r.v. |Duf |(U) is integrable, Formula (7) is obtained by dominated con-

vergence and Fubini theorem. If E (|Duf |(U)) = ΘVu (f, U) = +∞, then Formula (7)

is still valid since by Fatou lemma

+∞ = ΘVu (f, U) = E

(
lim inf
r→0

∫
U	[0,ru]

|f(x; ru)|dx

)
≤ lim inf

r→0
E

(∫
U	[0,ru]

|f(x; ru)|dx

)
.

Remark 3. (Degenerate case.) Formula (7) can be extended to the degenerate case

where the limit on the right-hand side is infinite. However let us specify that this

degenerate case is more subtle than in the deterministic case (see Theorem 1). Indeed

there are two different cases for which the limit of Formula (7) is infinite: either the
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r.f. f is not of bounded variation or f is of bounded variation but its total variation

|Duf |(U) has infinite expectation. In both cases, it is coherent to say that the mean

total variation of the process is infinite. This convention will be used in the remaining

of the paper.

As mentioned in the introduction, we are aware of only one result dealing with the

variation of r.f. defined over Rd for d ≥ 2. This result due to Ibragimov [15] gives a

sufficient condition for a r.f. to be of bounded variation.

Theorem 2. (Ibragimov’s theorem [15].) Let U b Rd and let f : Ω × U → R be

a measurable and separable random field. Suppose that there exists x0 ∈ U such

that E (f(x0)) < +∞ and that there exists K > 0 such that for any x, y ∈ U ,

E (|f(x)− f(y)|) ≤ K|x − y|. Then the realizations of f are a.s. in BV (U), and

there is a constant C > 0 such that for all A ∈ B(U) ΘV (f,A) ≤ CLd(A).

Let us establish results similar to Ibragimov’s theorem for both r.f. of bounded

variation and r.f. of bounded directional variation.

Proposition 4. (A sufficient condition for locally bounded directional variation.) Let

f : Ω× U → R be a jointly measurable r.f. such that f(ω, ·) ∈ L1
loc(U) a.s.

(i) (directional case) Let u ∈ Sd−1. Suppose that there exists a constant K > 0 such

that for all r ∈ R and x ∈ U 	 [0, ru],

E (|f(x+ ru)− f(x)|) ≤ K|r|. (8)

Then f is a r.f. of locally bounded directional variation in the direction u and for

all W b U , ΘVu
(f,W ) ≤ KLd(W ).

(ii) (non directional case) Suppose that there exists a constant K > 0 such that for

all x, y ∈ U , E (|f(x)− f(y)|) ≤ K|x − y|. Then f is a r.f. of locally bounded

variation, and for all W b U , ΘV (f,W ) ≤ dωd

2ωd−1
KLd(W ).

Proof. Let W b U . By Fatou lemma and Fubini theorem

E

(
lim inf
r→0

∫
W	[0,ru]

|f(x; ru)|dx

)
≤ lim inf

r→0
E

(∫
W	[0,ru]

|f(x; ru)|dx

)
≤ K lim inf

r→0
Ld(W 	 [0, ru]) ≤ KLd(W ) < +∞.
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In particular, lim inf
∫
W	[0,ru]

|f(x; ru)|dx < +∞ a.s. and thus f ∈ BVu(W ) a.s. by

Proposition 3. This is valid for all W b U , and thus f ∈ BVu,loc(U) a.s. The inequality

ΘVu
(f,W ) ≤ KLd(W ) is immediate using Formula (7).

Now for the non directional case, if for all x, y ∈ U , E (|f(x)− f(y)|) ≤ K|x−y|, then

the first part of the proposition shows that f has a.s. bounded directional variation in

the d directions of the canonical basis, and thus f ∈ BV (U) a.s. In addition, for all

W b U and for all u ∈ Sd−1, ΘVu
(f,W ) ≤ KLd(W ). Hence, by Proposition 1, for all

U b Rd,

ΘV (f,W ) =
1

2ωd−1

∫
Sd−1

ΘVu
(f,W )Hd−1(du) ≤ dωd

2ωd−1
KLd(W ),

where we used that Hd−1
(
Sd−1

)
= dωd.

In the following, Property (8) will be referred to as Lipschitzness in mean in the

direction u. Let us specify that the upper bounds given in Proposition 4 are optimal.

Indeed, as it will be shown later (see Corollary 1), any r.f. f with stationary increments

and having locally bounded directional variation satisfies ΘVu
(f,W ) = KLd(W ) for

some constant K (and the upper bound on ΘV (f,W ) is shown to be reached for

isotropic r.f. with stationary increments).

4. Variation intensity of random fields with stationary increments

Let f : Ω × Rd → R be a jointly measurable r.f. f is said to have stationary

increments or to be a stationary increment random field, if for all y ∈ Rd, both r.f.

x 7→ f(x+y)−f(y) and x 7→ f(x)−f(0) have the same finite-dimensional distributions.

The next theorem, which constitutes the main result of the paper, defines and gives an

expression of the directional variation intensity θVu
(f) of a stationary increment r.f. f .

Theorem 3. (Definition and computation of the (directional) variation in-

tensity of stationary increment r.f..) Let u ∈ Sd−1 and let f : Ω × Rd → R be a

jointly measurable stationary increment r.f. such that f ∈ L1
loc(Rd) a.s. The following

assertions are equivalent:

(i) f ∈ BVu,loc(Rd) a.s. and its directional variation intensity measure ΘVu (f, ·) is

locally finite.
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(ii) f ∈ BVu,loc(Rd) a.s. and its directional variation intensity measure ΘVu (f, ·) is

proportional to the Lebesgue measure: there exists a constant θVu
(f) ≥ 0 such

that for all A ∈ B(Rd), ΘVu
(f,A) = θVu

(f)Ld(A).

(iii) lim inf
r→0

E(|f(0; ru)|) < +∞.

(iv) lim
r→0

E(|f(0; ru)|) exists and is finite.

If any of the above assertions holds, the constant of proportionality θVu
(f) is given by

θVu
(f) = lim inf

r→0
E(|f(0; ru)|) = lim

r→0
E(|f(0; ru)|)

and is called the directional variation intensity of f in the direction u.

Regarding non directional variation, f ∈ BVloc(Rd) a.s. with a locally finite varia-

tion intensity measure ΘV (f, ·) if and only if for all u ∈ Sd−1 the limit lim
r→0

E(|f(0; ru)|)

exists and is finite. In this case the variation intensity measure ΘV (f, ·) is proportional

to the Lebesgue measure, and the constant of proportionality θV (f), called the variation

intensity of f , is given by

θV (f) =
1

2ωd−1

∫
Sd−1

θVu
(f)Hd−1(du) =

1

2ωd−1

∫
Sd−1

lim
r→0

E(|f(0; ru)|)Hd−1(du) (9)

= lim
r→0

1

2ωd−1

∫
Sd−1

E(|f(0; ru)|)Hd−1(du).

Proof. We will show the following chain of implications: (ii)⇔ (i)⇒ (iv)⇒ (iii)⇒

(i). First remark that (iv) ⇒ (iii) and (ii) ⇒ (i) are trivial. Remark that since f has

stationary increments, thanks to Fubini theorem for all U b Rd and r 6= 0,

E

(∫
U	[0,ru]

|f(x; ru)|dx

)
= E(|f(0; ru)|)Ld(U 	 [0, ru]). (10)

Let us show (i) ⇒ (iv) and (i) ⇒ (ii). Suppose that f ∈ BVu,loc(Rd) a.s. and that

ΘVu (f, ·) is locally finite. Let U b Rd. According to Lemma 1,
∫
U	[0,ru]

|f(x; ru)|dx ≤

|Duf |(U). By hypothesis, |Duf |(U) is an L1-r.v. Hence, one can apply the reverse
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Fatou lemma,

lim sup
r→0

E(|f(0; ru)|)Ld(U) = lim sup
r→0

E(|f(0; ru)|)Ld(U 	 [0, ru])

= lim sup
r→0

E

(∫
U	[0,ru]

|f(x; ru)|dx

)

≤ E

(
lim sup
r→0

∫
U	[0,ru]

|f(x; ru)|dx

)
≤ E (|Duf |(U)) = ΘVu (f, U) < +∞.

Besides, by Fatou lemma,

ΘVu
(f, U) = E (|Duf |(U)) = E

(
lim inf
r→0

∫
U	[0,ru]

|f(x; ru)|dx

)
≤ lim inf

r→0
E(|f(0; ru)|)Ld(U 	 [0, ru])

≤ lim inf
r→0

E(|f(0; ru)|)Ld(U).

Hence we have shown that for all U b Rd,

lim sup
r→0

E(|f(0; ru)|)Ld(U) ≤ ΘVu
(f, U) ≤ lim inf

r→0
E(|f(0; ru)|)Ld(U).

This shows that E(|f(0; ru)|) has a finite limit, say θVu(f), and that for all bounded

open sets U , ΘVu
(f, U) = θVu

(f)Ld(U). This equality extends to all Borel sets A ∈

B(Rd) and thus ΘVu
is proportional to the Lebesgue measure.

It remains to show (iii)⇒ (i). Thanks to Fatou lemma and Equation (10),

E

(
lim inf
r→0

∫
U	[0,ru]

|f(x; ru)|dx

)
≤ lim inf

r→0
E(|f(0; ru)|)Ld(U 	 [0, ru])

≤ Ld(U) lim inf
r→0

E(|f(0; ru)|) < +∞.

In particular, lim infr→0

∫
U	[0,ru]

|f(x; ru)|dx is almost surely finite, and thus by Propo-

sition 3 f ∈ BVu(U) a.s. This is valid for all U b Rd, and thus f ∈ BVu,loc(Rd) a.s. Be-

sides, by Formula (5), the above equation reads ΘVu (f, U) ≤ lim infr→0 E(|f(0; ru)|)Ld(U) <

+∞, and thus ΘVu (f, ·) is locally finite.

Regarding non directional variation, the results is a straightforward consequence of

the above equivalence and Proposition 1 which becomes Formula (9) in this context.

The fact that the limit and the integral commute follows from the bounded convergence
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theorem using the bound

E(|f(0; ru)|) ≤ θVu(f) Ld(B(0,1))
Ld(B(0,1)	[0,ru])

≤ θVu(f) 1
(1−R)d

, r ∈ [−R,R] \ {0}, R < 1,

given by Lemma 1 and Theorem 3.

Remark 4. (Degenerate Case.) As for Proposition 3, one extends the definition of

θVu(f) to the degenerate case where limr→0 E(|f(0; ru)|) = +∞.

Let us remark that the directional variation intensities θVu
(f), u ∈ Sd−1, and the

variation intensity θV (f) only depend on the two-dimensional distributions of the

stationary increment r.f. f . In addition, if the r.f. f has almost surely C1 sample

paths, then one simply has θV (f) = E(‖∇f(0)‖) and θVu
(f) = E(|〈∇f(0), u〉|).

To finish this section, it is shown that the directional Lipschitzness in mean intro-

duced in Section 3 is a necessary and sufficient condition for stationary increment r.f.

having finite directional variation intensity.

Corollary 1. (Directional Lipschitzness in mean of stationary increment r.f..) Let

u ∈ Sd−1 and f : Ω×Rd → R be a jointly measurable stationary increment r.f. such that

f ∈ L1
loc(Rd) a.s. Then for all x ∈ Rd and r ∈ R, E (|f(x+ ru)− f(x)|) ≤ θVu(f)|r|.

Proof. First, since f has stationary increments, for all x ∈ Rd and r ∈ R, E (|f(x+ ru)− f(x)|) =

E (|f(ru)− f(0)|). Let r 6= 0 and ρ > 0. By Lemma 1,∫
B(0,ρ)	[0,ru]

|f(x; ru)|dx ≤ |Duf | (B(0, ρ)) a.s.

Hence, by Fubini theorem E(|f(0; ru)|)Ld(B(0, ρ) 	 [0, ru]) ≤ θVu
(f)Ld(B(0, ρ)) and

thus, E(|f(0; ru)|) ≤ θVu(f) Ld(B(0,ρ))
Ld(B(0,ρ)	[0,ru])

. Letting ρ → +∞ one obtains the an-

nounced inequality.

Remark 5. Combining the results of Proposition 4 and Corollary 1 we obtain that

a stationary increment r.f. has finite directional variation intensity if and only if it

is directionally Lipschitz in mean. Let us also mention that a local Lipschitzness in

mean in a neighborhood of the origin is sufficient. Indeed, if there exists a constant

K > 0 and a real R > 0 such that for all r ∈ [0, R), E (|f(ru)− f(0)|) ≤ K|r| then

θVu(f) = lim infr→0 E(|f(0; ru)|) ≤ K < +∞.
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As already mentioned in Section 3, Corollary 1 shows that the first upper bound

of Proposition 4 becomes an equality for any stationary increment r.f. of bounded

directional variation having a finite directional variation intensity.

5. The case of random sets

In this section we apply the general results of the previous sections to the special case

of random indicator functions. This enables to obtain all the results of [10] linking the

covariogram and the mean perimeter of sets as direct corollaries (let us recall that these

formulas were first established by Matheron and are widely stated in the mathematical

morphology literature [19, 26, 18]).

The classical framework for the study of random sets is the one of random closed sets

(RACS) [21]. The framework of random integrable functions gives another framework

for random sets, namely the one of random measurable sets (RAMS). We refer to [12]

for a discussion regarding the links between RAMS and RACS. By definition a RAMS

X is a measurable map X : (Ω,A)→
(
B(Rd),B(B(Rd))

)
where B(B(Rd)) denotes the

Borel σ-algebra induced by the local convergence in measure (The local convergence

in measure of a sequence (A)n towards A simply corresponds to the convergence in

L1
loc(Rd) of the indicator functions 1An towards 1A). Let us recall that the (variational)

perimeter Per(A) of a measurable set A is defined as Per(A) = |D1A| (Rd) if 1A ∈

BV (Rd), and Per(A) +∞ otherwise. Similarly the directional variation Vu(A) in the

direction u ∈ Sd−1 of A is Vu(A) = |Du1A| (Rd) if 1A ∈ BVu(Rd) and +∞ otherwise.

Let us first consider a RAMS X for which E(Ld(X)) < +∞. The mean covariogram

γX of X is the function γX : Rd → [0,∞[ defined by

γX(y) = E
(
Ld (X ∩ (y +X))

)
=

∫
Ω×Rd

1X(ω)(x)1X(ω)(x+ y)P(dω)dx.

Thanks to the identity γX(0)−γX(y) = 1
2E
(∫

Rd |1X(x+ y)− 1X(x)| dx
)

due to Math-

eron [10], the identity of Proposition 3 becomes

lim
r→0

γX(0)− γX(ru)

|r|
=

1

2
E (Vu(X)) . (11)

Noting (γuX)
′
(0) = lim

r→0+

γX(ru)− γX(0)

r
, by integration over all the directions u ∈
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Sd−1 and by applying the dominated convergence theorem one has

− 1

ωd−1

∫
Sd−1

(γuX)
′
(0)Hd−1(du) = E (Per(X)) .

Hence the main results of [10] are also valid in the more general framework of RAMS

(see also [12] for equivalent formulas for local covariogram).

Let us now discuss the case of stationary random sets. We call stationary any

random setX : Ω→ B(Rd) such that the map (ω, x) 7→ 1X(ω)(x) is a jointly measurable

and stationary r.f. A stationary random set is said to be of locally bounded variation

if the stationary r.f. 1X : (ω, x) 7→ 1X(ω)(x) is of locally bounded variation, and

one defines similarly random sets of locally bounded directional variation. One writes

θV (X) := θV (1X) which is referred to as the variation intensity or the specific variation

of the stationary random set X. Similarly, θVu
(X) := θVu

(1X) is called the directional

variation intensity or the specific directional variation in the direction u. Let X be a

stationary random set. The variogram νX of X is the function νX : Rd → R defined by

νX(y) = P (y ∈ X, 0 /∈ X). Remark that since X is a random set, |1X(ru)− 1X(0)| ∈

{0, 1}, and thus, E(|1X(ru)− 1X(0)|) = P(ru ∈ X, 0 /∈ X) + P(ru /∈ X, 0 ∈ X) =

2νX(ru). By Theorem 3, for all u ∈ Sd−1 the limit (νuX)
′
(0) := lim

r→0

1

|r|
νX(ru) ∈

[0,+∞] exists, and the specific directional variation θVu
(X) is given by

θVu(X) = 2 (νuX)
′
(0) = 2 lim

r→0

1

|r|
P (ru ∈ X, 0 /∈ X) , (12)

showing that the specific directional variation is twice the directional derivative of the

variogram at the origin [10]. Integrating over all directions, one obtains that

θV (X) =
1

ωd−1

∫
Sd−1

(νuX)
′
(0)Hd−1(du). (13)

This shows that Theorem 17 of [10] extends to jointly measurable stationary indicator

functions that are not necessarily closed sets.

To finish this section, let us establish a mean corea formula for random excursion

sets. First let us recall the coarea formula for deterministic functions. In what follows,

U is an open subset of Rd. Recall that for any measurable set A, one defines the

perimeter of A in U as the variation of the indicator function 1A in U , and one writes

Per(A,U) := |D1A|(U). Similarly, one defines Vu(A,U) := |Du1A|(U) the directional

variation of A in U . If f : U → R is a measurable function and t ∈ R, {f > t} denotes

the set {x ∈ U, f(x) > t} and is called the (upper) level set of level t of f .
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Proposition 5. (Coarea formula.) Let f ∈ L1(U). Then f ∈ BV (U) if and only

if the sets {f > t} are of finite perimeter for L1-a.e. t ∈ R and the function t 7→

Per ({f > t}, U) is in L1(R), and in this case |Df |(U) =
∫ +∞
−∞ Per ({f > t}, U) dt.

We refer to [2, p. 145] for the proof of the coarea formula. Let us mention that the

coarea formula remains valid if the upper level sets are replaced by other level sets:

{f ≥ t}, {f < t} or {f ≤ t}. Besides, a coarea formula also holds for directional

variation: |Duf |(U) =
∫ +∞
−∞ Du ({f > t}, U) dt, u ∈ Sd−1. Using the coarea formula,

one obtains a relation between the variation intensity ΘVu (f, U) = E (|Duf |(U)) of f

and the variation intensity of its level sets.

Proposition 6. (Coarea formula for total variation intensity.) Let f be a r.f. a.s. in

L1(U), and let u ∈ Sd−1. Then f ∈ BVu(U) a.s. with finite mean total directional

variation ΘVu
(f, U) if and only if for L1-a.e. t ∈ R its level sets {f > t} have a.s.

finite directional variation in U in the direction u and t 7→ ΘVu
({f > t}, U) is in

L1(R), and in this case ΘVu (f, U) =
∫ +∞
−∞ ΘVu ({f > t}, U) dt. Similarly, f ∈ BV (U)

a.s. with finite mean total variation if and only if for L1-a.e. t ∈ R its level sets

{f > t} have a.s. finite variation and t 7→ ΘV ({f > t}, U) is in L1(R), and in this

case ΘV (f, U) =
∫ +∞
−∞ ΘV ({f > t}, U) dt.

Proof. The proof consists in applying Fubini and Lebesgue theorem. First, let us

justify that the function g : Ω× U × R→ {0, 1} defined by g(ω, x, t) = 1{f>t}(ω, x) is

measurable. Let (tn)n∈N be a dense sequence of R, then one easily checks that

g−1(1) =
⋃
n∈N
{(ω, x), f(ω, x) > tn} × (tn,+∞),

which is in the product σ-algebra A ⊗ B(U) ⊗ B (R) since f is jointly measurable.

Second, we have the following elementary identity

|f(ω, x+ ru)− f(ω, x)| =
∫ +∞

−∞

∣∣1{f>t}(ω, x+ ru)− 1{f>t}(ω, x)
∣∣ dt.

Hence, by Fubini theorem∫
U	[0,ru]

E (|f(x+ ru)− f(x)|) dx =

∫ +∞

−∞

∫
U	[0,ru]

E
(∣∣1{f>t}(x+ ru)− 1{f>t}(x)

∣∣) dxdt.
Let us now suppose that for L1-a.e. t ∈ R the level sets {f > t} have a.s. finite direc-

tional variation in the direction u and that t 7→ ΘVu ({f > t}, U) is in L1(R). Then,
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by Proposition 3, limr→0

∫
U	[0,ru]

E
(∣∣1{f>t}(x; ru)

∣∣) dx = ΘVu ({f > t}, U) for L1-

a.e. t, and by Lemma 1,
∫
U	[0,ru]

E(|f(x; ru)|)dx ≤ ΘVu
({f > t}, U) ∈ L1(R). Hence

Lebesgue theorem applies and limr→0

∫
U	[0,ru]

E(|f(x; ru)|)dx =
∫ +∞
−∞ ΘVu

({f > t}, U) dt <

+∞. By Proposition 3 one deduces that f has a.s. bounded directional variation and

that ΘVu (f, U) =
∫ +∞
−∞ ΘVu ({f > t}, U) dt. Let us now prove the converse implication.

Suppose that f ∈ BVu(U) a.s. with ΘVu
(f, U) < +∞. Then, by Fatou lemma and

Fubini theorem∫ +∞

−∞
lim inf
r→0

∫
U	[0,ru]

E
(∣∣1{f>t}(x; ru)

∣∣) dxdt ≤ lim inf
r→0

∫
U	[0,ru]

E(|f(x; ru)|)dx = ΘVu (f, U) < +∞.

In particular, for L1-a.e. t ∈ R, lim infr→0

∫
U	[0,ru]

∣∣1{f>t}(x; ru)
∣∣ dx < +∞ a.s.

Hence, for L1-a.e. t ∈ R, Proposition 3 ensures that {f > t} has a.s. locally bounded

variation in U in the direction u, and that ΘVu
({f > t}, U) = limr→0

∫
U	[0,ru]

E
(∣∣1{f>t}(x; ru)

∣∣) dx.

Besides, the above inequality shows that
∫ +∞
−∞ ΘVu ({f > t}, U) ≤ ΘVu (f, U) < +∞,

that is t 7→ ΘVu
({f > t}, U) ∈ L1(R). To finish, the case of non directional variation

easily follows from the integral geometric formula of Proposition 1 and Fubini theorem.

Remark 6. Since the level sets {f > t}, t ∈ R, of a stationary r.f. f are stationary

random sets, when dealing with stationary r.f. , Proposition 6 gives a similar results

for variation intensities, that is,

θVu
(f) =

∫ +∞

−∞
θVu

({f > t})dt and θV (f) =

∫ +∞

−∞
θV ({f > t}) dt. (14)

6. Illustration: variation intensities of some classical random field models

This section illustrates the different results of Section 4 and 5 by computing the

variation intensities of various r.f. and random set models, namely Gaussian random

fields, Gaussian excursion sets, Poisson shot noise of random sets, Boolean models,

colored dead leaves r.f. , and colored tessellations. Most of the obtained formulas

remains valid in the degenerate cases, and thus provides a characterization for the

finiteness of the variation intensities of the considered r.f. or random set models.

6.1. Gaussian random fields and Gaussian excursion sets

A jointly measurable r.f. fG is a stationary Gaussian r.f. with mean µ ∈ R and

covariance function C : Rd → R if for all p ∈ N, x1, . . . , xp ∈ Rd, and w1, . . . , wp ∈ R
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the r.v.

p∑
i=1

wifG(xi) is normal with mean

p∑
i=1

wiµ and variance

p∑
i,j=1

wiwjC(xj − xi).

Let us mention that the measurability assumption is not restrictive since in what

follows we will only consider stationary Gaussian r.f. whose covariance function is

regular at the origin, and as soon as the covariance function C is continuous in 0, the

r.f. is continuous in probability and thus it has a measurable version [13, p. 171].

For all t ∈ R, we consider the random set {fG > t}, called Gaussian excursion set,

and we denote by νt its variogram, that is the function defined for all y ∈ Rd by

νt(y) = P (fG(y) > t, fG(0) ≤ t). As shown in [18, Proposition 16.1.1],

νt(y) =
1

π

∫ arcsin

(√
C(0)−C(y)

2C(0)

)
0

exp

(
− t2

2C(0)

(
1 + tan2 s

))
ds. (15)

From this expression Lantuéjoul asserts that the excursion sets of fG have finite

“specific perimeter” if and only if C(0) − C(y) is proportional to |y|2 [18, p. 207].

Our next proposition completes this observation in computing the expression of the

specific variations of the Gaussian excursion sets {fG > t}, as well as the variation

intensity of the Gaussian r.f. fG.

Proposition 7. (Variation intensity of stationary Gaussian r.f..) Let fG be a station-

ary Gaussian r.f. with mean µ and covariance C, and let u ∈ Sd−1.

(i) (variation intensity) fG has finite directional variation intensity θVu(fG) in the

direction u if and only if the one-dimensional restriction of the covariance Cu :

r 7→ C(ru) is twice differentiable at 0, and in this case, noting C ′′u(0) the second

derivative in 0 of Cu, θVu
(fG) =

√
−2C ′′u(0)

π
. Consequently, fG has finite

variation intensity θV (fG) if and only if for all u ∈ Sd−1 the one-dimensional

restrictions of the covariance Cu : r 7→ C(ru) are twice differentiable at 0, and in

this case, θV (fG) =
1

2ωd−1

∫
Sd−1

√
−2C ′′u(0)

π
Hd−1(du).

(ii) (variation intensity of excursion sets) For all t ∈ R, {fG > t} has finite spe-

cific directional variation in the direction u if and only if the one-dimensional

restriction Cu of the covariance is twice differentiable at 0, and in this case,

θVu
({fG > t}) =

√
−2C ′′u(0)

π

1√
2πC(0)

exp

(
− t2

2C(0)

)
= θVu

(fG)pfG(t),
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where pfG(t) = 1√
2πC(0)

exp
(
− t2

2C(0)

)
is the first-order density of the r.f. fG.

Consequently, {fG > t} has finite specific variation in the direction u if and only

if for all u ∈ Sd−1 the one-dimensional restrictions Cu : r 7→ C(ru) are twice

differentiable at 0, and in this case, θV ({fG > t}) = θV (fG)pfG(t).

Proof. This is a straightforward application of Theorem 3. For all u ∈ Sd−1

and r ∈ R, fG(ru) − fG(0) follows a normal distribution with mean 0 and vari-

ance 2(C(0) − C(ru)), and thus E (|fG(ru)− fG(0)|) = 2√
π

√
C(0)− C(ru). Hence,

limr→0 E(|fG(0; ru)|) exists if and only if C(0)−C(ru)
r2 admits a limit in 0, that is if

and only if Cu : r 7→ C(ru) is twice differentiable at 0 with C ′u(0) = 0. But

since Cu is even, if it is differentiable at 0 then necessarily C ′u(0) = 0. As for the

expression of θVu(fG), note that limr→0
C(0)−C(ru)

r2 = −C
′′
u (0)
2 , hence by Theorem 3

θVu
(fG) = limr→0 E(|fG(0; ru)|) =

√
−2C′′u (0)

π . The case of non directional variation

follows by Formula (9).

Let us now consider excursion sets. By Formula (12), θVu({fG > t}) = 2 limr→0
νt(ru)
|r| .

The function h : x 7→ 1
π

∫ arcsin(x)

0
exp

(
− t2

2C(0)

(
1 + tan2 s

))
ds is C1 at x = 0 and

h′(0) = arcsin′(0)
1

π
exp

(
− t2

2C(0)

(
1 + tan2(arcsin(0))

))
=

1

π
exp

(
− t2

2C(0)

)
.

Hence, thanks to Formula (15) one deduces that

θVu
({fG > t}) = 2 lim

r→0

νt(ru)

|r|
=

2

π
exp

(
− t2

2C(0)

)
lim
r→0

√
C(0)−C(ru)

2C(0)r2 =
2

π
exp

(
− t2

2C(0)

)√
−C′′u (0)
4C(0) .

Remark 7. (Regularity of Gaussian r.f.) It is worth noticing that the necessary and

sufficient condition for a stationary Gaussian r.f. to be of locally bounded variation

implies a stronger regularity on the sample paths than just being of locally bounded

variation. First, the differentiability at the origin of the covariance implies that there

exists ρ > 0 and K > 0 such that for all x ∈ B(0, ρ), C(0) − C(x) ≤ K|x|, and

thus the sample paths of stationary Gaussian r.f. fG are Hölder continuous for all

exponents s < 1
2 (see [6, Proposition 5.2] that summarizes results from [1]). In addition,

according to [24], if the covariance function C is twice differentiable at the origin in

every direction, then the sample paths of a stationary Gaussian r.f. fG are a.s. in

the Sobolev space W 1,2
loc (Rd) ⊂ W 1,1

loc (Rd). Hence by Proposition 7, θV (fG) < +∞

implies that fG ∈ W 1,1
loc (Rd) a.s., and consequently its variation |DfG| is absolutely
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continuous with respect to the Lebesgue measure. Hence, if fG ∈ BVloc(Rd) a.s. and

has a finite variation intensity, then it is a “smooth” function among the functions

of locally bounded variation since its variation measure DfG has neither a jump part

nor a Cantor part (see [2, Section 3.9] for more details on the decomposition of the

variation measure Df of functions of bounded variation). This shows that the space

of functions of locally bounded variation is not of interest for stationary Gaussian r.f.

Remark 8. (Regularity of Gaussian excursion sets.) For all t ∈ R we have

θVu({fG > t}) = θVu(fG)pfG(t) and θV ({fG > t}) = θV (fG)pfG(t),

and one can check that the coarea formulas of Equation (14) hold. These formulas show

that the regularity of a stationary Gaussian r.f. corresponds to the one of its level sets:

a stationary Gaussian r.f. has finite variation intensity if and only if all its level sets

have finite variation intensities if and only if at least one of its level sets has finite

variation intensity. Let us also note that the formula θV ({fG > t}) = θV (fG)pfG(t)

is in accordance with the “Rice formula for the expectation of the geometric measure

of level set” derived by Azäıs and Wschebor [4, Theorem 6.8]. Indeed, under some

smoothness assumption on the paths of fG, thanks to the stationarity of fG one has [4,

Theorem 6.8] E(Hd−1({y, fG(y) = t} ∩ (0, 1)d)) = E(‖∇f(0)‖|f(0) = t)pfG(t). But

since for a stationary Gaussian r.f. , ∇f(0) and f(0) are independent, one gets

E(Hd−1({y, fG(y) = t}∩(0, 1)d)) = E(‖∇f(0)‖)pfG(t) = θV (fG)pfG(t) = θV ({fG > t}).

6.2. Germ-grain models

In this section we compute the variation intensities of several germ-grain models

under very broad assumptions for the grain distribution. A germ-grain model defines

a r.f. by combining a collection of colored random sets given as a marked Poisson

process according to an interaction principle (addition, supremum, occultation,...).

The random sets are called the grains while the random sets location are called the

germs [29, 18]. Although most of the models evoked here could be defined using

RAMS to define the grains (see also the recent paper of Rataj regarding random sets

of finite perimeter [22]), we prefer to use the classical framework of RACS to simplify

the presentation.
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6.2.1. Poisson shot noise Let us first consider the Poisson shot noise model that is

obtained in summing random functions placed on the points of a Poisson process. More

formally, the Poisson shot noise associated with the independently marked Poisson

process Π = {(xj , κj)} ⊂ Rd ×K and the impulse function h : Rd ×K → R is the r.f.

fSN defined by

fSN(x) =
∑

(xj ,κj)∈Π

h(x− xj , κj),

where Π = {(xj , κj)} ⊂ Rd × K is an independently marked Poisson process having

intensity measure λLd ⊗ Pκ, λ > 0 and Pκ is the probability distribution of the marks

(see e.g. [18]). The impulse function h : Rd × K → R is supposed to be Ld ⊗ Pκ-

integrable, which ensures that fSN has finite expectation by Campbell theorem (see

e.g. [17]). We first show that if the impulse function h has a finite mean total variation

then fSN has locally bounded variation and its variation intensity is finite.

Proposition 8. (Bounds on the variation intensities of Poisson shot noises.) Let

u ∈ Sd−1 and suppose that h(·, κ) ∈ BVu(Rd) Pκ-a.s. with E
(
|Duh(·, κ)|(Rd)

)
< +∞.

Then the shot noise fSN has locally bounded directional variation in the direction

u and θVu
(fSN) ≤ λE

(
|Duh(·, κ)|(Rd)

)
. Consequently, if h(·, κ) ∈ BV (Rd) Pκ-a.s.

and E
(
|Dh(·, κ)|(Rd)

)
< +∞ then fSN has locally bounded variation and θV (fSN) ≤

λE
(
|Dh(·, κ)|(Rd)

)
.

Proof. Let u ∈ Sd−1 and r ∈ R. Using triangular inequality and Campbell theorem

(see e.g. [17]),

E (|fSN(ru)− fSN(0)|) ≤ E

 ∑
(xj ,κj)∈Π

|h(ru− xj , κj)− h(−xj , κj)|


≤ λ

∫
Rd×K

|h(ru− x, κ)− h(−x, κ)| dxPκ(dκ)

By Lemma 1 with U = Rd, Pκ-a.s.
∫
Rd |h(ru− x, κ)− h(−x, κ)| dx ≤ |Duh(·, κ)|(Rd)|r|.

Hence E (|fSN(ru)− fSN(0)|) ≤ λE
(
|Duh(·, κ)|(Rd)

)
|r|, that is fSN is directionally

Lipschitz in mean. By Proposition 4, one concludes that fSN is a.s. in BVu,loc(Rd)

and θVu(fSN) ≤ λE
(
|Duh(·, κ)|(Rd)

)
. The upper bound on θV (fSN) is obtained in

integrating over all directions u ∈ Sd−1.
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Proposition 8 simply establishes that the mean variation of the sum is lower than

the sum of the mean variations. It only gives an upper bound on the variation

intensity of the Poisson shot noise. Biermé and Desolneux [5] recently studied the

mean perimeter of excursion sets of Poisson shot noise models within the framework

of functions of bounded variation with more specific techniques. Under the hypothesis

that the functions h(·, κ) have no Cantor part, they obtained an expression for the mean

variation intensity of Poisson shot noises [5, Theorem 3] which is the sum of two terms:

one term for the approximate differential of fSN [2] and one from the jump part of fSN.

This second term is explicit and results from the observation that the jump part of

fSN is the sum of the jump parts of the derivatives Dh(·−xj , κj). Consequently, when

the functions h are indicator functions of sets of finite perimeter, the upper bound of

Proposition 8 is reached, and thus Proposition 8 cannot be improved in general. The

following proposition sums up this observation.

Proposition 9. (Variation of shot noises of random indicator functions.) Consider a

shot noise of the form

fSN(x) =
∑

(xj ,aj ,Xj)∈Π

aj1(x ∈ xj +Xj),

where the Poisson process Πλ has intensity measure λLd ⊗ PX ⊗ Pa, λ ≥ 0, PX a

probability distribution over the set F of closed subsets of Rd, and Pa ∈ L1(Ω). Suppose

that the RACS X ∼ PX has finite mean Lebesgue measure and finite perimeter. Then

fSN has a.s. bounded variation and

θV (f) = λE(|a|)E(Per(X)) and θVu
(f) = λE(|a|)E(Vu(X)), u ∈ Sd−1.

Proof. The formula θV (f) = λE(|a|)E(Per(X)) is given by [5, Theorem 3]. By

Proposition 8, this implies that θVu(f) = λE(|a|)E(Vu(X)) for Hd−1-almost all u ∈

Sd−1. We conclude that it is true for all u using a continuity argument (see Remark 1).

6.2.2. Boolean models We now turn to the computation of the variation intensities of

Boolean models. Recall that the homogeneous Boolean random set with intensity λ and

grain distribution PX is the stationary random closed sets (RACS) ZB defined by ZB =⋃
j∈N

xj + Xj where {(xj , Xj)} is an independently marked stationary Poisson process
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in the space Rd × F having intensity measure λLd ⊗ PX , λ ≥ 0 (see e.g. [29, 18, 25]).

Starting from the well-known expression of the variogram of the Boolean set ZB, it has

been shown in [10] using Formula (12) that

θVu(ZB) = λE (Vu(X)) exp
(
−λE

(
Ld (X)

))
, u ∈ Sd−1,

θV (ZB) = λE (Per(X)) exp
(
−λE

(
Ld (X)

))
. (16)

As discussed in [10], let us recall that Equation (16) is valid for any grain distribution

PX and that it generalizes known results for Boolean models with convex grains [25,

p. 386]. Similar generalizations involving intensity of surface measures deriving from

Steiner formula have recently been established [14, 31], under some technical hypothe-

ses on the RACS X. The above formulas are similar but not identical since the outer

Minkowski content of a set differs from its (variational) perimeter [30].

Several r.f. models can be considered as generalizations of Boolean random sets [27].

Here we consider a simple example called random Boolean islands. Let Φ = {(xj , Xj , aj)}

be an independently marked Poisson process taking values in Rd × F × [0,+∞) and

having intensity measure λLd ⊗ PX ⊗ Pa, λ ≥ 0. We define the Boolean random field

fB associated to this process by fB(y) = sup ({0} ∪ {aj , y ∈ xj +Xj}). Remark that

with this model, the colored random sets are superimposed according to a hierarchy:

the lighter sets are placed above the darker ones. Note that if aj = 1 a.s., then fB

is the indicator function of the Boolean random set ZB. More generally, the upper

level sets of fB are Boolean random sets: indeed, for all t ≥ 0, {y, fB(y) > t} is the

Boolean model associated with the Poisson process
∑

Φ 1 (aj > t) δxj ,Xj
. Relying on

this observation, one deduces an expression of the variation intensities of Boolean r.f.

using the coarea formula for variation intensities.

Proposition 10. (Variation intensities of Boolean random fields.) Let fB be the

Boolean r.f. with Poisson intensity λ, grain distribution PX , and gray-level distribution

Pa. Let X denote a RACS with distribution PX and let a denote a r.v. with distribution

Pa. Then,

θVu (fB) = λE (Vu(A))

∫ +∞

0

Pa({a > t}) exp
(
−λE

(
Ld (X)

)
Pa({a > t})

)
dt, u ∈ Sd−1,

θV (fB) = λE (Per(A))

∫ +∞

0

Pa({a > t}) exp
(
−λE

(
Ld (X)

)
Pa({a > t})

)
dt.
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Proof. {y, fB(y) > t} is the Boolean model associated with the Poisson process∑
Φ 1 (aj > t) δxj ,Xj

. This Poisson process has grain distribution PX and intensity

λPa({a > t}). Hence θVu
({fB > t}) = λE (Vu(A))Pa({a > t}) exp

(
−λE

(
Ld (X)

)
Pa({a > t})

)
.

The expressions for θVu
(fB) and θV (fB) are obtained using the coarea formula for

variation intensities (see Equation (14)).

6.2.3. Colored dead leaves model The dead leaves model [9, 16, 7], also initially intro-

duced by Matheron, is a germ-grain model where the interaction rule is occultation,

that is where the grains xj +Xj hide each other. For this germ-grain model the grains

are chronologically ordered by a time tj ∈ (−∞, 0), called falling time. The leaves

are the points of the Poisson process Φ = {(tj , xj , Xj , aj)} ⊂ (−∞, 0) × Rd × F × R

with intensity measure L1 ⊗ Ld ⊗ PX ⊗ Pa. For each leaf (tj , xj , Xj , aj), the random

set xj + Xj associated with the random color aj is partially or totally hidden by its

subsequent leaves, that is the leaves which fall after t = tj . In the end, at time t = 0

the only remaining part of xj +Xj is the visible part Vj , that is the set

Vj = (xj +Xj) \

 ⋃
(tk,xk,Xk,ak)∈Φ, tk>tj

xk +Xk

 .

As soon as E(Ld(X)) > 0, the whole Euclidean space Rd is covered by the random sets

xj + Xj , and consequently each point y ∈ Rd belongs to a unique visible part. The

colored dead leaves r.f. fCDL is the r.f. defined in assigning to each y ∈ Rd the color

aj of the unique visible part Vj such that y ∈ Vj . More formally, fCDL is defined by

fCDL(y) =
∑

(tj ,xj ,Xj ,aj)∈Φ

aj1(y ∈ Vj),

but note that for each point y the above sum has only one non null term. Even though

occultation between objects is also observable with Boolean r.f. , colored dead leaves

r.f. vary from this first model: here the ordering of the objects is not related to their

gray-level, and the whole domain is by construction fully covered by objects.

The next proposition gives the variation intensities of this r.f. model. Relying on

Theorem 3, it consists in computing E (|fCDL(ru)− fCDL(0)|). To do so one should

Our definition of the visible parts Vj is slightly different from the one of [7]. This is because we

do not enforce the visible parts to be closed sets.
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consider the set of leaves that cover (or hit) the two points 0 and ru (or both). Let us

consider the restriction Φ{0,ru} of the leaves of Φ which hit the set {0, ru}, that is

Φ{0,ru} = {(tj , xj , Xj , aj) ∈ Φ, xj +Xj ∩ {0, ru} 6= ∅} .

According to [11, Proposition 5], Φ{0,ru} is an independently marked Poisson process

with ground process
{
tj , (tj , xj , Xj , aj) ∈ Φ{0,ru}

}
of intensity 2γX(0)−γX(ru) (where

γX denotes the mean geometric covariogram of X) and marks (xj , Xj , aj). The

marks aj are i.i.d. with distribution Pa, and are independent of (xj , Xj). As for the

distribution of the marks (xj , Xj) we are only interested in the following probabilities.

P ({0, ru} ⊂ xj +Xj) =
Ld ⊗ PX ({(x,X), {0, ru} ⊂ x+X})
Ld ⊗ PX ({(x,X), {0, ru} ∩ x+X 6= ∅})

=
γX(ru)

2γX(0)− γX(ru)
.

and, by symmetry and complementarity,

P (0 ∈ xj +Xj and ru /∈ xj +Xj) = P (ru ∈ xj +Xj and 0 /∈ xj +Xj) =
γX(0)− γX(ru)

2γX(0)− γX(ru)
.

In addition, if one denotes by (t0, x0, X0, a0) the last leaf of Φ{0,ru}, that is, the

leaf such that t0 = sup
{
tj , (tj , xj , Xj , aj) ∈ Φ{0,ru}

}
, then (x0, X0, a0) has the same

distribution as any mark (xj , Xj , aj) of Φ{0,ru}, the shifted Poisson process Φt0 =

{(t− t0, x,X, a), (t, x,X, a) ∈ Φ and t < t0} has the same distribution as Φ, and (x0, X0, a0)

and Φt0 are independent.

Proposition 11. (Variation intensities of the colored dead leaves r.f..) Suppose that

0 < E(Ld(X)) < +∞ and that a ∈ L1(Ω). Let a1 and a2 be two independent r.v. with

distribution Pa. Then for all u ∈ Sd−1,

θVu
(fCDL) = E(|a1 − a2|)

E (Vu(X))

E (Ld(X))
, and θV (fCDL) = E(|a1 − a2|)

E (Per(X))

E (Ld(X))
.

Proof. Let us first compute the expectation E (|fCDL(ru)− fCDL(0)|) for r ∈ R and

u ∈ Sd−1. If the points ru and 0 are in the same visible part Vj , then fCDL(ru) =

fCDL(0). Otherwise, if ru and 0 are in different visible parts, then both fCDL(ru) and

fCDL(0) have distribution Pa and they are independent. Hence,

E (|fCDL(ru)− fCDL(0)|) = E (|a1 − a2|)P ({ru and 0 belong to different visible parts}) .

Now, ru and 0 belong to different visible parts if the last leaf covering either ru or 0
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does not cover both points. Noting x0 +X0 the last leaf of Φ{0,ru}, we have

P ({ru and 0 belong to different visible parts})

= P (0 ∈ x0 +X0 and ru /∈ x0 +X0) + P (ru ∈ x0 +X0 and 0 /∈ x0 +X0)

= 2
γX(0)− γX(ru)

2γX(0)− γX(ru)
.

Hence, by Theorem 3 and Equation (11)

θVu (fCDL) = lim
r→0

E(|fCDL(0; ru)|) = E (|a1 − a2|) lim
r→0

2
γX(0)− γX(ru)

|r|
1

2γX(0)− γX(ru)

= E(|a1 − a2|)
E (Vu(X))

E (Ld(X))
.

Integrating over all directions gives the expression of θV (fCDL).

Remark 9. The expression of the variation intensity θV (fCDL) = E(|a1−a2|)E(Per(X))
E(Ld(X))

is in accordance with our expectation: Indeed, E(|a1−a2|) is the mean contrast between

two distinct visible parts, whereas the ratio E(Per(X))
E(Ld(X))

is known to be the mean length

of cell boundary per unit area when the RACS are random polygons [9]. Let us also

mention that the variation intensity of the transparent dead leaves random field defined

in [11] can be computed using the same technique and that it takes the same form with

a different contrast term depending on the degree of transparency.

6.2.4. Colored tessellations A colored tessellation is the r.f. obtained in assigning a

random color to each cell of a random partition of the plane. The interaction principle

which is at work for colored tessellations is arguably juxtaposition.

A (random) tessellation is a random partition
⋃
j Cj = Rd of the Euclidean space Rd,

the sets Cj being called cells of the tessellation. Even though random tessellations have

been widely studied, there lacks a general acknowledged definition. This is principally

because most studied tessellation models only involve convex cells. Nevertheless,

tessellations can be constituted of non convex (and even non connected) cells, such as

the tessellation corresponding to the dead leaves model defined in [7]. Following [28, 7],

we consider a quite general definition: A (random) tessellation is a point process

T =
∑
j δCj taking values in the set K′ of non empty compact sets and which satisfies

Up to our slightly different definition of the visible parts, this probability is also given by the

general Formula (12) of [7].
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the following additional properties: 1) For all compact sets K, the number of sets Ci

intersecting K is finite; 2) For all j 6= k, intCj ∩ intCk 6= ∅; 3)
⋃
j Ck = Rd; 4) For all

j, Ld (∂Cj) = 0. With these conditions, a.e. point x ∈ Rd belongs to a unique cell

Cj . We will only consider stationary tessellations, that is tessellations such that for all

x ∈ Rd,
∑
j δx+Cj

d
=
∑
j δCj . Thanks to the stationarity, for these tessellations every

point x ∈ Rd a.s. belongs to a unique cell Cj .

Given a stationary tessellation T =
∑
j δCj

one defines a stationary r.f. fT by

associating a random intensity aj ∈ R to each cell Cj . The real r.v. aj are i.i.d. with

common distribution Pa. More formally, the colored tessellation Tc associated to the

tessellation T and with color distribution Pa is the independently marked point process

Tc =
∑
j δ(Cj ,aj), where the marks aj have common distribution Pa. If µ denotes the

intensity measure of the point process
∑
j δCj

, then Tc =
∑
j δ(Cj ,aj) has intensity

measure µ ⊗ Pa. Its associated r.f. fT is defined as follows: fT (x) = aj where aj is

the color of the a.s. unique cell Cj containing x. Note that fT can also be defined as

a sum over the marked point process fT (x) =
∑
j aj1 (x ∈ Cj).

Before establishing the expression of the variation intensities of fT we need to

introduce the fundamental notion of typical cell. First, one interprets a stationary

tessellation as a point process in Rd marked with random sets by introducing a centroid

map. Recall that K′ denotes the set of non empty compact sets of Rd. A centroid map

is a measurable application z : K′ 7→ Rd such that z(x + C) = x + z(C). Second,

given a centroid map z, any stationary tessellation T =
∑
j δCj is decomposed into the

stationary marked point process
∑
j δ(z(Cj),Cj−z(Cj)). According to [25, Section 4.1],

one deduces that for any stationary tessellation T there exists a distribution Q over

K′0 = {K ∈ K′, z(K) = 0} such that for all measurable functions f : K′ 7→ R+,

E

∑
j

f(Cj)

 =
1

E (Ld(C))

∫
K0

∫
Rd

f(x+K)dxQ(dK), (17)

where, by definition, Q is the distribution of the typical cell of T denoted by C ∼

Q. The key result to compute the variation intensity of randomly colored stationary

tessellations is the following proposition† .

† Proposition 12 is stated without proof in [18]. The proof reproduced below was personally

communicated to the author by Pr. Pierre Calka.
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Proposition 12. (Stationary tessellations and mean covariogram.) Let T =
∑
j δCj

be a stationary tessellation and let γC : h 7→ E (C ∩ (h+ C)) be the mean covariogram of

its typical cell C. Then for all h ∈ Rd, P ({0 and h belong to the same cell}) =
γC(h)

γC(0)
.

Proof. Denote ρ(h) = P ({0 and h belong to the same cell}). First, by stationarity

ρ(h) = P ({−h and 0 belong to the same cell}). Second, remark that for all C ∈ K,

{0,−h} ⊂ C ⇐⇒ 0 ∈ C ∩ (h + C). Hence applying Formula (17) with K 7→

1(0 ∈ K ∩ (h+K)),

ρ(h) = E

∑
j

1 (0 ∈ Cj ∩ (h+ Cj))


=

1

E (Ld(C))

∫
K0

∫
Rd

1 (0 ∈ (x+K) ∩ (h+ x+K)) dxQ(dK)

=
1

γC(0)

∫
K0

∫
Rd

1 (−x ∈ K ∩ (h+K)) dxQ(dK)

=
1

γC(0)

∫
K0

Ld(K ∩ (h+K))Q(dK) =
γC(h)

γC(0)
.

Proposition 13. (Variation intensities of colored tessellations.) Let Tc =
∑
j δ(Cj ,aj)

be a randomly colored stationary tessellation, let fT be its associated stationary r.f. ,

and denote by C the typical cell of T . Let a1 and a2 be i.d.d. r.v. with distri-

bution Pa. For all u ∈ Sd−1, θVu
(fT ) = E (|a1 − a2|) 1

2
E(Vu(C))
E(Ld(C)) , and θV (fT ) =

E (|a1 − a2|) 1
2
E(Per(C))
E(Ld(C)) .

Proof. Let us compute E (|fT (ru)− fT (0)|). We have |fT (ru)− fT (0)| = |ak − aj |

if 0 ∈ Cj and ru ∈ Ck with j 6= k, and 0 if 0 and ru belong to the same cell. By

Proposition 12, and since for j 6= k, aj and ak are independent, E (|fT (ru)− fT (0)|) =

E (|a1 − a2|)P ({0 and ru are in different cells}) = E (|a1 − a2|) γC(0)−γC(ru)
γC(0) . By For-

mula (11) applied with X = C and Theorem 3, θVu (fT ) = E (|a1 − a2|) 1
2
E(Vu(C))
E(Ld(C)) .

Integrating over all directions one obtains the expression of θV (fT ).

Observe that the formula θV (fT ) = E (|a1 − a2|) 1
2
E(Per(C))
E(Ld(C)) is in accordance with

our expectation: Indeed, E (|a1 − a2|) is the mean contrast between two adjacent cells

whereas 1
2
E(Per(C))
E(Ld(C)) is known to be the mean length of tessellations boundary per unit

area [25, Section 10.1].
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