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Abstract

Let (&;)icz be a stationary Harris recurrent geometrically ergodic Markov chain on a count-
ably generated state space (E,B). Let f be a bounded and measurable function from E into R
satisfying the condition E(f(£p)) = 0. In this paper, we obtain the almost sure strong approxi-
mation of the partial sums S, (f) = > i, f(&) by the partial sums of a sequence of independent
and identically distributed Gaussian random variables with the optimal rate O(logn).

1 Introduction and main result

This paper focuses on a Komlés-Major-Tusnady type strong approximation for additive func-
tionals of Markov chains. We first recall the famous Komlos-Major-Tusnady theorem (1975
and 1976): let (X;)i>0 be a sequence of independent and identically distributed (iid) centered
real-valued random variables with a finite moment generating function in a neighborhood of 0.
Set 02 = Var X; and S, = X7 + X2 + --- + X,,. Then one can construct a standard Brownian
motion (Bi)¢>0 in such a way that

IP’(sup |Sk —oBi| > x + clogn) < aexp(—bz), (1.1)
k<n

where a, b and ¢ are positive constants depending only on the law of X;. From this result,
the almost sure approximation of the partial sum process by a Brownian motion holds with
the rate O(logn). It comes from the Erdés-Rényi law that this result is unimprovable. This
result has been later extended to the multivariate case by Einmahl (1989), who obtained the
rate O((logn)?) in the almost sure approximation of partial sums of random vectors with finite
moment generating function in a neighborhood of 0 by Gaussian partial sums. Next Zaitsev
(1998) removed the extra logarithmic factor and obtained (1.1) in the case of random vectors.
We refer to Gotze and Zaitsev (2009) for a detailed review of the results on this subject.

We now come to the framework of this paper. Let (&,) be an irreducible and aperiodic
Harris recurrent Markov chain on a countably generated measurable state space (E,B). We
will consider only chains which are positive recurrent and 7 will exclusively denote the (unique)
invariant probability measure of (&,). In that case the transition probability P(x,.) of the
Markov chain satisfies the following minorization condition: there exists some positive integer



m, some measurable function h with values in [0, 1| with 7(h) > 0, and some probability measure
v on E, such that
P"(x,A) > h(x)v(A). (1.2)

In order to avoid additional difficulties, we will assume throughout the paper that the above
condition holds true with m = 1. Let then Q(z,-) be the sub-stochastic kernel defined by

Q=P—-hov. (1.3)

Under assumption (1.2), proceeding as in Nummelin (1984), we can define an extended chain
(&n, Up) in E'X|0, 1] as follows. At time 0, Uy is independent of £y and has the uniform distribution
over [0, 1]; for any nonnegative integer n,

Q(z, A)

T—hz) = P((x,y), A) (1.4)

P(gnJrl €A | gn =uz,U, = y) = 1y§h(w)y(‘4) + 1y>h(;r)
and Uy is independent of (€ni1,&n,Uyn) and has the uniform distribution over [0,1]. Then
the kernel P of the extended chain is equal to P ® A (here A denotes the Lebesgue measure
on [0, 1]). This extended chain is also an irreducible and aperiodic Harris recurrent chain, with

unique invariant probability measure 7 ® A. It can easily be seen that (£,) is an homogenous
Markov chain with transition probability P(z,.). Define now the set C' in E x [0, 1] by

C ={(z,y) € E x[0,1] such that y < h(x)}. (1.5)

For any (z,y) in C, P(§,41 € A | &, = 2,U, = y) = v(A). Since 7 ® A(C) = 7(h) > 0, the set
C' is an atom of the extended chain, and it can be proven that this atom is recurrent.
Everywhere in the paper, we shall use the following notations: P, (respectively P¢) will
denote the probability measure on the underlying space such that & ~ 7 (resp. (&, Up) € O),
and E.(-) will denote the P -expectation (resp. E¢(-) the Po-expectation).
Define now the stopping times (T})r>0 by

Ty =inf{n >1:U, < h(&,)} and T} =inf{n > T}_1:U, < h(&,)} for k> 1, (1.6)

and the return times (7 )k>0 by
e =T — Th1. (1.7)

Then Tp is almost surely finite and the return times 74 are iid and integrable. Moreover, from
the strong Markov property, it is well known that the random vectors (&7, 41, - - ., &r, ) (k>0)
are identically distributed and independent. Their common law is the law of (&1, ...,&7,) under
the probability Po. Let then

Su(f) = 1 (&) (1.8)
k=1

From the above property, for any measurable function f from FE into R, the random vectors
(ks ST, (f) — S7,_, (f)) k>0 are independent and identically distributed. This fact was used in
Cséaki and Csorgo (1995) to get strong approximation results for the partial sums S, (f) under
moment assumptions on the return times 7. Let us recall their result. Assume that the chain
satisfies (1.2) with m = 1. If the random variables St, (| f|) — S7,_, (| f|) have a finite moment of

order p for some p in ]2, 4] and if the return times 75, satisfy E(T,f / 2) < o0, then one can construct
a standard Wiener process (W;);>0 such that

S (f)—nm(f)—o(f) Wn = O(ay) a.s., with o%(f) = hgﬂ%VarSn(f) and a, = n'/Plogn. (1.9)

Note that the above result holds true for any bounded function f only if the return times have
a finite moment of order p. The proof of Cséki and Csorgo (1995) is based on the regeneration



properties of the chain, on the Skorohod embedding and on an application of the results of
Komlés, Major and Tusnady (1975) to the partial sums of the iid random variables Sz, (f) —
St,.(f), k> 0. Since the moments of the return times essentially play the same role as the
moments of the random variables in the case of iid random variables, it seems clear that such
a result is optimal, up to a possible power of logn. However this result has not been extended
to the case p > 4. By contrast the strong approximation of the renewal process associated to
the chain holds with the optimal rate O(n'/P) if E(77) < oo, for any p > 2. Furthermore, if
the chain is geometrically ergodic, then the strong approximation of the renewal process holds
with the rate O(logn) (see Corollaries 3.1 and 4.2 in Csérgd, Horvath, and Steinebach (1987)
for these results).

We now recall some possible methods to get strong approximation results. Some of these
methods are based on the ergodicity properties of the Markov chain. For positive measures p
and v, let |u — v|| denote the total variation of p — v. Set

ﬁn:/EHP”(x,.)—WHdw(az). (1.10)

The coefficients 3, are called absolute regularity (or S-mixing) coefficients of the chain. Then,
as proved by Bolthausen (1980 and 1982), for any p > 1,

Ec(T§) < oo if and only if an_Qﬁn < 00. (1.11)
n>0

The second part of (1.11) is also called a weak dependence condition. Under a mixing condi-
tion which is more restrictive than (1.11) in the context of Markov chains, Shao and Lu (1987)
obtained (1.9) with the rate a, = O(n*/P(logn)®) for some ¢ > 1 for p in ]2,4]. Their proof
was based on the so-called Skorohod embedding. Recently, using a direct method based on con-
structions via quantile transformations, as in Major (1976), Merleveéde and Rio (2012) improved
the results of Shao and Lu (1987). For p in |2, 3[, they obtained (1.9) under the ergodicity
condition (1.11) with the better rate a, = n'/?(logn)®=2/(P) The results of Merlevéde and
Rio (2012) involve more general weak dependence coefficients than the coefficients 3, so that
their result applies also to non irreducible Markov chains and to some dynamical systems. In
the context of dynamical systems, Gouézel (2010) used spectral methods to construct coupling
with independent random variables and applied then strong approximation results for partial
sums of independent random vectors to get rates of the order of n'/? for p in |2,4[ in (1.9). The
techniques used in these papers are suitable for Markov chains or non trivial dynamical systems,
including the Liverani-Saussol-Vaienti map. Nevertheless the applied tools limit the accuracy to
the rate O(n'/%).

Recently, for stationary processes that are functions of iid innovations, Berkes, Liu and Wu
(2014) obtained (1.9) with the rate O(n!/?) for any p > 2 provided that the inovations have finite
moments of order p and the process has a fast enough arithmetically decay of some coupling
coefficients. Moreover they give some application to nonlinear time series (see Example 2.2).
However their condition (2.15) is too restrictive (even for functional autoregressive processes)
and they do not give estimates of their coupling coefficients for more general Markov chains.

In this paper we are interested in general Harris recurrent Markov chains. Our aim is to
obtain the optimal rate O(logn). Recall that, in the dependent case the rate o(n'/?) has never
been surpassed. In order to get better rates of approximation, we will assume thoughout the
paper that the Markov chain is geometrically ergodic, which means that (see Theorem 2.1 in
Nummelin and Tuominen (1982))

Brn = O(p™) for some real p with 0 < p < 1, (1.12)

where f3,, is defined in (1.10). Note now that P(7; > n) = Po(Tp > n) = vQ"(1) and in addition
P (Ty > n) = Q"1 (1) + vQ"(1)7(h) where Q is defined by (1.3). Therefore, condition (1.12)



together with Corollary 2.4 and Lemma 2.8 in Nummelin and Tuominen (1982) imply that both
P(r1 > n) and P(Tp > n) decrease exponentially fast. Hence, if (1.12) holds there exists a
positive real § such that

E(e'™) < oo and Ew(etTo) < oo for any |t]| < 4. (1.13)

We will use this fact together with a strategy inherited from the papers of Bolthausen (1980
and 1982) to get the optimal rates of strong approximation in that case: we will apply a
strong approximation result of Zaitsev (1998) to the multidimensional partial sum process
(T, — To, ST, (f) — S73,(f)) rather than the initial theorems of Komlds, Major and Tusnady
(1975 and 1976). This method enables us to get the optimal rate of convergence. Let us now
give our main result.

Theorem 1.1. Let (§,) be a stationary, irreducible and aperiodic Harris positive recurrent
Markov chain on E, with invariant probability measure w. Assume that the chain satisfies (1.2)
with m = 1 and the geometric ergodicity condition (1.12). Let g be any bounded measurable
function from E x [0,1] to R such that m @ A(g) = 0 and let Sp(g9) = > p_; 9(&k, Ux). Let
P=P@\ If
o*(9) =T ®AN¢*) +2) 7 A(gP"g) >0,
n>0

then there exists a standard Wiener process (Wy)i>0 and positive constants a, b and ¢ depending
on g and on the transition probability P(x,-) such that, for any positive real x and any integer
n > 2,

IP’W(sup |Sk(g) — o(g)Wy| > clogn + a:) < aexp(—bz). (1.14)
k<n

We now give in a separate corollary the application of this result to additive functionals of
the initial chain. The proof, being immediate, will be omitted.

Corollary 1.1. Let (&,) be a stationary, irreducible and aperiodic Harris positive recurrent
Markov chain on E, with invariant probability measure w. Assume that the chain satisfies (1.2)
with m = 1 and the geometric ergodicity condition (1.12). Let f be any bounded measurable
function from E to R such that 7(f) =0 and let Sp(f) =Y p_q f(&k). If

A(f) =m(f)+2> w(fP"f) >0,

n>0

then there exists a standard Wiener process (Wy)i>0 and positive constants a, b and ¢ depending
on f and on the transition probability P(x,-) such that, for any positive real x and any integer
n > 2,

Pﬁ(iup |1Sk(f) = o(f)Wy| = clogn + x) < aexp(—br). (1.15)

Remark 1.1. Corollary 1.1 may be generalized to the nonstationary case. Let p be any law on
E such that

/ |P"(x,.) — ||du(x) = O(r"™) for some r < 1.
E

Corollary 2.4 and Lemma 2.8 in Nummelin and Tuominen (1982) ensure that P,(Ty > n)
decreases exponentially fast. Consequently the proof of Theorem 1.1 extends to the Markov chain
(&n) with transition probability P and initial law p without modification.



2 Proof of Theorem 1.1

Before proving our main result, we give an idea of the proof. The constants v, ¥, A and =~
appearing below will be specified in Subsection 2.3. For any i > 1, let

T;

Xi= > g(& ).

(=T; _1+1

The random variables (Xj, 7;)i>0 are independent and identically distributed. Let then « be the
unique real such that Cov(Xy — a7y, 7,) = 0. Applying the multidimensional extension of the
results of Komlos Major and Tusnady (1976), which is due to Zaitsev (1998), we obtain that
there exist two independent standard Brownian motions (B;); and (Bt)t such that

St.(g9) — a(T, — nE(1)) — vB, = O(logn) a.s. and T, — nE(ry) — 0B, = O(logn) a.s.

Next, using the Komlés-Major-Tusnady strong approximation theorem, one can construct a
Poisson process N with parameter A from B in such a way that

nE(r1) + 9B, — YN (n) = O(logn) a.s.
For this Poisson process,

Syn@m)(9) — ayN(n) + anE(r1) — vB, = O(logn) a.s.

The processes (B;); and (INV;); appearing here are independent. From the above result one can
deduce that
Sn(9) = vBN-1(n/y) +an — aE(r)N~Y(n/v) + O(logn) a.s. (2.1)

If v = 0, which corresponds to the case of renewal processes, then

S,(9) = an — aE(t1)N~Y(n/v) + O(logn) a.s.

Up to some multiplicative constant, the process on right hand is a partial sum process associated
to iid random variables with exponential law. Hence, using the Komlés-Major-Tusnady strong
approximation theorem again, one can construct a Brownian motion W such that

an — aE(m)N~(n/v) = W, + O(logn) as. , (2.2)

which leads to the expected result. Notice that the Brownian motion w depends only on the
Poisson process N and on some auxiliary atomless random variables independent of the o-field
generated by the processes B and N.

If v#0and a =0, (2.1) ensures that
Sn(g) = vBN-1(n/) + O(logn) a.s.

As noted by Csorgd, Deheuvels and Horvath (1987), since the renewal process of the Poisson
process is the partial sum process associated to independent random variables with exponential
law, the above compound process is a partial sum process associated to iid random variables
with a finite Laplace transform, and consequently, one can construct a Brownian motion W such
that

By-1(n/y) — Wn = O(logn) as.,

which leads to the expected result. However the Brownian motion W depends on N. It follows
that, in the case a # 0 and v # 0, the so constructed processes W and W are not independent.



Then the construction of Csoérgd, Deheuvels and Horvath (1987) cannot be used to prove our
theorem.

In order to perform the exact rate in the case a # 0, it will be necessary to construct a
Brownian motion W* independent of NV in such a way that

By = Win@) = O(logn) as. (2.3)

Since W* is independent of N, it will also be independent of W. Then, using (2.1) and (2.2),
we will get that B -
Sn(g) =Wy 4+ W, + O(logn) a.s.

which will imply our strong approximation theorem. The proof of (2.3) will be done in Subsection
2.2. Then, starting from this fundamental result, we will prove the main theorem.

2.1 Some technical lemmas

Lemma below follows from the classical Cramér-Chernoff calculation (see also, for instance,
Lemma 1 in Bretagnolle and Massart (1989)).

Lemma 2.1. Let Z be a real-valued random variable with Poisson distribution of parameter m.
Then, for any positive x and any sign €, we have

P(e(Z —m) > z) < exp (— mh(ez/m)) .
where
h(t)=(1+t)log(l+t)—t fort>—1 and h(t)=+4oc fort < —L. (2.4)
Next lemma follows once again from the classical Cramér-Chernoff calculation together with

the Doob maximal inequality.

Lemma 2.2. Let (N(t):t > 0) be a real-valued homogeneous Poisson process of parameter m.
Then, for any positive reals x and s, we have

P(igg IN(t) — tm| > z) < exp ( —msh(z/(ms))) + exp ( — msh(—z/(ms))) .

where h(-) is defined by (2.4).

Lemma 2.3 below is due to Tusnady in his Phd-thesis (see Bretagnolle and Massart (1989)
for a complete proof of it).

Lemma 2.3. Let & be a random variable with law N(0,1), ® its distribution function and @,
the distribution function of a Binomial law B(m,1/2). Let By, = 2®,1(®(£)) — m where ®,,} is
the generalized inverse of ®,,. Then the following inequality holds:

|Bin| <2+ [¢lVm.

2.2 A fundamental lemma

The main new tool for proving Theorem 1.1 is the lemma below.

Lemma 2.4. Let (B;);>0 be a standard Brownian motion on the line and {N(t) : t > 0} be
a Poisson process with parameter X > 0, independent of (Bt)¢>0. Then one can construct a
standard Brownian process (Wy)e>0 independent of the Poisson process N(-) and such that, for
any positive integer n > 2 and any positive real x,

1
]P’(su By, — —=W > (C'lo n—i—x)SAeX —Buzx),
kglﬂ VY NG| g p(—DBxz)
where A, B and C are positive constants depending only on A\. Furthermore (Wy)i>0 may be
constructed from the processes (Bi)i>0, N(-) and some auziliary atomless random variable §
independent of the o-field generated by the processes (Bi)i>0 and N(-).



Proof. For j € Z and k € N, let

€jk = 2_j/2(1}k2j,(k+%)2j} = 1y 1y27 (k1)29) 5
and

Yk = /0 &k(t)dB(t) = 277/2(2B ;119 — By — Byayai) -

Note that (€;x);ez k>0 is a total orthonormal system of ?2(R). Hence for any t € R*, B can be

Bi=> > (/Ot éj,k:(t)dt> Yig - (2.5)

JEZ k>0

For any j € Z and k € N such that N (k27) < N((k + )27) < N((k +1)27), let

written as

~ —1/2
Fia = ! (B30 k2, N ((h-2)200) — BRI (k22 N (R4 1)2)]) 5

where
ag = N((k+ 3)%) = Nk, by = N((k+ 1)2%) ~ N((k + 5)2),
and
Cjk = aj,kbj’k(aj,k + bj,k) .
For j € Z, let E; = {k € N : N(k27) < N((k+ 3)2/) < N((k+ 1)27)}, and notice that
(fjk)jezker; is an orthonormal system whose closure contains the vectors 1jg n(sy for t € RT
and then the vectors 1jg 4 for £ € N*. With the convention f; ) = 0 if k ¢ Ej;, we then set

W, = Z Z (/0Z fj7k(t)dt) Yj ) for any £ € N* and Wy =0. (2.6)

JEZ k>0

Since conditionally to N(-), (fj,k)jez,lceEj is an orthonormal system and (Y ) is a sequence of
iid standard Gaussian random variables, independent of N (), one can easily check that, condi-
tionally to N(-), (We)>0 is a Gaussian sequence such that Cov(Wy, W,,,) = £ Am. Therefore this
Gaussian sequence is independent of the Poisson process N(-). By the Skorohod embedding the-
orem, there exists a standard Wiener process (IW;); which coincides with the Gaussian sequence
(Wy) at integer values. Furthermore this Wiener process can be constructed from the Gaussian
sequence and an auxiliary atomless random variable § independent of the o-field generated by
the processes (Bt)¢>0 and N ().

Let ¢; and ¢y be two positive reals such that

wnd 1765(2 + v/2)?

co > Cg 1= w (2.8)
Let ng be the smallest integer such that ng > ¢; and

nog — c1 log(ng) —c2 > 0. (2.9)

The lemma will be proven if we can show that there exist positive constants a and b depending
only on A, such that for any n > max(2°, ng),

P(sup |By — )\_I/QWN(k)| > 3¢y logn + 3coz) < ae . (2.10)
k<n



Indeed, for any integer n in [2, max(2°,ng)], it can be easily shown that the conclusion of the
lemma holds. From now on, n is a positive integer such that n > max(2°,ng). To prove (2.10),
we first define jy as the smallest integer such that

290 > ¢1logn + oz, (2.11)

where ¢; and ¢y are positive reals satisfying (2.7) and (2.8) respectively. Now, let K be the
integer such that 25-1 + 1 < n < 2%, Notice that

IP’(sup|Bk—)ﬁl/2WN(k)| > 3 logn+302x) < P( sup ’B&jo _Afl/ZWN(ZQjO)‘ > logn+02m)

k<n 1<e<2K =30
+P(  sup sup | By — Byaio| > c1logn + cox)
0<£<2K =0 —1 £290 <k<(£+1)270
+ IP( sup sup W)y — Wiezioy| = M/2(eplogn + ). (2.12)

0<¢<2K—do —1 290 <k<(£+1)270

But, by Lévy’s inequality,

IP’( sup sup | B, — Bygjo| > c1logn + CQx)
0<#<2K —do —1 4290 <k<(£+1)290
2K—jo—1
< Z P( sup | Bk — Baio| > c1logn + cox)
1—0 0270 <k<(£+1)270
) 2K —jo+2 A
< 2K_J°+1]P’(\B2jo| > c1logn + czm) < eXp(—Z_(]OH)(q logn + CQ:U)2) .
V2T
Using the definition (2.11) of jo, it follows that
P( sup sup |Br — Baio| > c1logn + cox)
0<e<2K—do —1 £290 <k<(£+1)270
93 pl—ci/4

exp(—cox/4). (2.13)

<
~V2n x (c1logn + cox)3/2

Next,
P( sup sup Wy — Wiveaioy| > A2 (e logn + ca))
0<¢<2K =30 —1 0290 <k<(0+1)270
2K—jo—1
< ) P( sup W) = Wgeaioy)| = A2 (c1 logn + o))
/=0 0230 <k§(€+1)2j0
<2K=op( sup Wy > A% (crlogn + o))
0<t<A2i0+1
2K-jo—1
+ > P sup IN (k) — N(£200)] > A27o+1) |
—0 270 <k<(£+1)290

Using once again Lévy’s inequality and the definition (2.11) of jo, we get

2NTIOP( sup Wi 2> AV (erlogn + eaw))
0<t<A270+1
91+j0/2 ( (c1logn + 0233)2)
ex - -
Vrleilogn + cr) F 2002
n1—01/8

23
< — X
— VT (c1logn + caw)3/?

exp(—cox/8).



On another hand, by Lemma 2.2,

P( sup N(k) > 2°0"1) <P( sup [N(k) — k| > A\27°) < exp (— A27°h(1)).

1<k<290 1<k<290

Hence, by using (2.11),

o " nlf)\cl/?)
27 TIop N(k) > \27° <2— —-A 3).
(lgskugpy0 (k) > ) < 2 orn T o P Aet/3)
So, overall,
P( sup ~osup Wy — WN(52j0)| > )\1/2(01 logn + czx))
0<e<2K—d0 —1 £270 <k< (£+1)270
23 nl—cl/8 nl—)\cl/?)

exp(—coz/8) + 2 exp(—Acoz/3). (2.14)

<— X — _
—Vm clogn+ cox c1logn + cox

Therefore, starting from (2.12) and considering the upper bounds (2.13) and (2.14), we derive
that to prove the lemma, it suffices to show that there exist positive constants A; and By
depending only on ), such that for any n > max(2°,ng),

IP’( sup ‘ijo — )\_1/2WN(€2j0)’ > c1logn + CQx) < Aj exp(—Bix). (2.15)
1<e<2K—jo

In the rest of the proof, we shall prove the inequality above.
Taking into account (2.5) and (2.6), we first write that, for any ¢ € N*,

Bigio = AP Wiy = D> (/0 &jk(t)dt — )\_1/2/0

Jj=jo k=0

¢240 N(€290)

fj,k(t)dt> Yik-

Notice that if £270 ¢]k27, (k + 1)27[ then

£2790 N(£290) _
/ &, (t)dt = / (B)dt = 0.
0 0

Therefore setting

4 = [277],
we get
£2790 N(e290) _
Bigio = AP W(aioy = 3 (/ €je; (t)dt — >\_1/2/ fit; (t)dt) Yik-
i>jo 70 0
Setting . '
(290 — ;23
tj=—
27

this leads to ~ ~
Byyio = NP Wiiaioy = O UiiYik + D VieYik

J=>Jo J=>Jo
where ﬁij = UM]. ltj6]0,1/2] with
. bio ‘ 4
o= 20124 \TY2 L (N(0200) — N(4;2 2.1
Ui, j \/CjTj( (£270) — N(¢;27)) (2.16)



and ‘7j,k = Vj’gj 1tj€]1/2,1[ with
. . aie.biyg. _ a;yp. . 1. .

Vig =21/2(1 — ;) = \7V/22 0 4 N2 00 (N (0270) — N((0; + =)27)) . 2.17

7l ( ]) \/% m( ( ) ((] 2) )) ( )

It follows that

]P’( sup  |Bygio — )\*1/2WN(421-0)\ > ¢ logn+cza:)
1<e<2K =30
‘B&jo — )\_I/QWN(&JO)’ > ¢y logn + CQx)

< g ( sup
k—=jo 0:2k<g2i0<2k+1-1

K 2ktl—jo_1

< Z Z ]P’(’ Z (ﬁﬂj + ‘7]-,@].)1/]-,@].’ > logn—i—ch) .

k=jo ¢=2k—Jo Jj=Jjo

Recall now that (Y} x)j>o0x>1 is a sequence of standard centered Gaussian random variables that
are mutually independent. In addition this sequence is independent of (N (t),¢ > 0). Therefore,

(| G+

J=Jjo
gIP( > (Uje, + Vi) Y,

logn + 6230)

jg +V ) <cllogn+02x>

J >J0

Jj=jo
+ P( Z (ﬁj,gj + ‘A}j[j)2 > cilogn + Czw)
Jj=>jo
2(2m)"1/2 - -
(27) e~ (c1lognteaz)/2 | IP’( Z (Uj,gj + V»,ej)Q > cylogn + 0295) .

<
~ Veilogn + cox i

So, overall, by using (2.11) and the fact that 2% < 2n,

B 8(27T)—1/2n1—61/2 B
e Y ) /2
‘B@]O A WN(@]O)‘ > cplogn + cyv) < (e logn + CQx)3/26 coT

]P’( sup
1<0<2K—jo
K 2ktl-jo_1
+ Z Z IP( Z (Uje, + VM].)2 > c1logn + 02m> . (2.18)
k=jo ¢=2k—Jo J=Jjo
Let now
Orjo = Oa,t,jo N Obtjo > (2.19)
where

(A2971) for all j > jol},

L\DM—~

Ourtjo = {ajg (>\23 1) for all j > jo} N {a]g

and
(X277 for all § > jo}.

M\H

3 )
Onejo = {bju, < 5(AQJ—I) for all j > jo} N {bj,, >

We have
Z]P) e, > 2] 1 ZP aje, < 2] 1))

af,jo
jzjo >0
Hence, by Lemma 2.1,
P(650) < D ((exp (= A2 h(27h) +exp (— 22 Mh(-271)) )
J=jo

10



Therefore,

) 80 )
Coio) S2 Y exp(—A27/20) < s &P (—A27°/40).
jzjo

A similar bound is valid for P(©f, ). Hence by (2.11),
K 2k+1-jo—1

5 x 27 _
Z Z P(©7,,) < NerTogn +c x)2n1 Act/40 exp(—Aeaz/40) . (2.20)
k=jo ¢=2F—J0 1i08 2

Starting from (2.18) and taking into account the upper bound (2.20), we infer that to prove
(2.15) and then the lemma, it suffices to show that there exist two positive constants Az and Bs
such that, for any n > max(2°, ng),

K 2ktl-do_1

S P(Y T+ Vi) Zcrlogn + o, O, ) < Asexp(—Baz),  (221)

k=jo ¢=2k—Jo Jj=Jjo

for any ¢; > &; and any c3 > ¢, where ¢; and ¢ are defined in (2.7) and (2.8) respectively.
To prove the inequality (2.21), we first notice that, by definition of Uje; and Vg,

Z (ﬁﬂj + ‘73'74;‘)2 = Z ﬁj%fj + Z ‘712@
Jj=jo Jj=jo Jj=jo

and that if k € {jo,..., K} with ¢ € [28=Jo 2k+1=o[AN, then ¢; = 0 for any j > k + 1, and
t; < 1/2 for any j > k + 2. Therefore,

2(k+4)
- U N
Yo Uiy +Vig) = Y (Ui, + > (2.22)
J=jo J=Jo j>2 k+4)

In the rest of the proof, if it is not specified, k and ¢ are two integers such that k € {jo,..., K}
and £ € [2F=Jo 2FF1=Jo[ On the set Oy,

2k+1

Y L
-2

’UA,O \ = 9j /2

+3v22° J/QN(/\ ),

leading to

2(9k+1 2(9k+1
Z U20—14+9N(2k )Si4+N(2k )'
> alerd) 2 A\222k+5 2 A\2922k+1
Jjz

Hence, for any y > 274,

N 2k+1
Z UZo >y, @é,jo> < P()\(Qkﬂ) >\ (y— 2*4)/2> :
>2(k+4)

Next, if \/(y —274)/2 > 3/2, by Lemma 2.1,

PN 2 iy 73) < B(NeH) - a2t 2 a0t)

< exp(=A2F1h(1/2)) < exp(—A2F/20),
and taking into account (2.11),
K 2k+1-do—1

5 x 24
> > 2% /20 1=2e1/40 oy p (= Acow /40) .
' ‘ exp( / ) )\( 110gn+02$)2n eXp( CQI'/ )
k=jo ¢=2k—Jo

11



So, overall, starting from (2.22) and taking into account the considerations above, we get, for
any n > 10,

K 2k+l-do—1
~ =2
> 3 B(X G+ i) zcrlosn+car. 00,
k=jo ¢=2k—Jo Jzjo
ok+1-jg_1 2(k+4)
~ =2
< Z > IP( Y (U, +Vig,) 2(61—2)10gn+02937@e,j0>
k=jo ¢=2k—Jo J=jo
5 x 24

Ay logn + 6296)2”17/\01/40 exp(—Acpz/40). (2.23)

We prove now that, for any n > 2°, and any ¢; > & where ¢ is defined in (2.7),

K 2ktl=jo_1 2(k+4)

Z Z [P’( Z (ﬁﬁgj +‘7j?gj) > (1 —2) 10gn+62x,®g7j0)

k=jo ¢=2F—70 J=jo
4 AV2 —1)?
<% (_M) (2.24)
c1logn + cox 1765(2 + v/2)2
Clearly taking into account the restriction on c¢; and the fact that co > %, the inequality

(2.21), and then the lemma, will follow from (2.23) and (2.24). To prove (2.24), we first write

the following decomposition
1 (a"g, —b‘7g.)2
\/aj’fj +bje; — T S

aje; T i 2a5y, aje; + bje;

bje, 1
Gt 2a5

4aj7£j bjzej

Therefore

1 \/7 1 ‘ajé- _bj€~| bjf' 1 /
a'7£-+b'7£-— ] g S ] S a.7£‘+b.7£__ 2.95
2a‘j,£j %5 J 2aj7€j /aj,fj +bj,€j m 2aj,€j %5 k5 ( )

Set, for any 7 > 0 and k& > 0,

I = N((k+ 1)27) — N(k27). (2.26)
Recalling the definition (2.16) of Ujx and noticing that aj¢, + bje, = I, we then get

_ 1/2 1
(U, | < A TV2IL2 — 2972

1 . . 0. —bje | N(£290) — N(0;27
AT 1/2111/27( (5210)—N(ej2ﬂ))—tj‘+‘ ity — bty | N(E2) = N(4%)
)\1/21—[]1/2 QCL]‘,gj
7]

Whence, using the fact that, for t; €]0,1/2], N (£270) — N(¢;27) < a;,, we infer that
~ - 1/2 j 1/2—
U | < 1A 1/2Hj,/gj — 291, 0179 + (2>\1/2Hj7/gj) Haje; = bje; 110,172

+2j/2‘7

- (N(£270) — N(£;27)) — fj‘ltje]o,l/zJ :
It

Moreover using the fact that, on the set Oy j,, a; ¢, > 2772 and e, = aje; +bje, = X271 we
get that, on the set Oy,

N e L -
[Uje;| <A 1/2Hj7/£j - 2j/2|1t]-€}0,1/2] +27UHD/2) lfaj,ﬁj —bje; 114, €10,1/2)
+ 21N N (0270) — N (0;27) — 2tja0, |1y e00.0/2) - (2:27)

12



On another hand, permuting the roles of a;,, and of b;,, in (2.25), we get

1 1 |bje, —aje, Qiy. 1
>/ iy — bty Giul o tib e,
2bj0, 2bj0;  /Uju VGt — 2bjy,

where we recall that Hﬂj =aje; + bﬂj. Since

. Qg p. . .
Vig = 2121 — t;) — —ZLXTY2(N((4; +1)27) — N(£27))
J:t5 J m ( J )
it follows that for any t; €]1/2,1],
—1/2171/2 _ oj/2 1212 1L
Vil < (L= t)AV2ILy) — 2724 AV Hj,ej‘m(
|aj.e; = bje;| N((¢; +1)27) — N(¢27)
/\1/21'[;/5 2bj

N((£; +1)27) = N(e27)) = (1 = 1;)]

Whence, using the fact that, for t; €]1/2,1[, N((¢; + 1)27) — N(¢27°) < b; ., we infer that

nd _ 2 i /9 ‘aj,fj - bjﬁfj‘
Vi, | < A 1/21_1]1-/@. — 221, gy g+ 22— o
’ A} J ) 1/2 1/2 J ’
271/ HM]’
1

o+ 2072|  (N (6 + 1)27) = N(27)) = (1= 1)1, /o

2bj

Since, on the set Oy j,, bj s, > A27=2 and e, > X271 we get that, on the set Or,jos

Vis| < NI = 23121, o+ 272X ag, — b [y g
+ 21NN (6 + 1)27) = N(£270)) — 2(1 — t)bje, | Le,ep1 /21 -
Notice now that
N((£; +1)27) = N(£27°)) = 2(1 — 1;)bse,
= N((t+1)27) = N(£;27) + 25(bje, = a0,) = 2bje, — (N(27) = N(£27) = 2tja;,)
= (2t; — 1)(bj¢, — aje;) — (N(£27°) — N(€;27) — 2t;a;y,) -
So, overall, on the set Oy j,,

_ - . o -
Vi, | < AP = 272 Ly g o+ 270222 - DA aje, — b, Ly ey
+ 21N N (0270) — N(0;27) = 2tja0, | 1y,ep1/21( - (2:28)

Taking into account (2.27) and (2.28), it follows that, on the set Oy,
~ ~ _ 1/2 ‘ - —j
Ui, + Vie, <30 1/2Hj,/€j =222 4 24 x A2 x 27 [az; — bjg, |
+12 % A2 x 279 [N (£27°) — N(;27) — 2tja;, ).

Therefore, on the set Oy,

2(k+4) 2(k+4) 2(k+4)
72 72 —1/2771/2 /212 -2 —j 2
Do Uk + Vi) <3 >0 VALY 2P 124 x A7 Y 27 g, — by
J=Jo J=Jo J=Jjo
2(k+4)
+12x A2 ) 279 N(0270) — N(4;27) — 2t5a5,,]7,  (2.29)
J=jo+1

13



the last sum starting at j = jo + 1 since €j02j0 = (270 and tj, = 0.

To handle the terms in the inequality above we shall introduce the following double indexed
sequence (& x);j>0k>0 of Gaussian random variables. Let ® be the distribution function of
a standard real-valued Gaussian random variable and ®,, be the distribution function of the
Binomial law B(n,1/2). Let (0;k)j>0k>0 be a sequence of iid random variables with uniform
law on [0, 1], independent of the Poisson process N(-). For any j € N* and k € N, let

Eip=2"" (‘I)Hj,k(ﬂj—l,% —0) + 65 (P, , (1 08) — i, (TLj—1 2 — 0))) ; (2.30)

where we recall that the II; ;s have been defined in (2.26). Note that, conditionnally to the
sigma algebra, say F;, generated by the random variables {II; : kK > 0} and {d; : i < j,k > 0}
the random variables (§; x)k>0 are independent with law N (0, 1). By recurrence, it follows that
for any positive integer mog, (£ k)j<mo k>0 is a sequence of independent random variables with
law A(0,1), and therefore (& k) >0,k>0 is a sequence of iid standard real-valued Gaussian random
variables. Moreover according to Lemma 2.3,

1 1/2
[Tjo10 = ST < 14 H lgikl. (2.31)
Since limy;, 00 27" 1L, ¢,, = A almost surely, we have
2(k+4) , 2(k+4) / —me1 ) 2
—1/2y71/2 /212 -1 712 l—m= 1/2
SO I PP =a 3 (Y @ m 2, )
J=Jjo Jj=jo m2j
But .
/2 _g1/2pl/? _ e =27 1,604 (2.32)
m7 m m+1lmy1 T 11/2 _ 1/2 ’ '
Hm,ﬁm +2 1/2Hm+1,€m+1
Notice now that €, 1 = [(;,/2]. Therefore, setting
~ 1
I =110k — §Hj,k ; (2.33)
we have B
Hm,fm - 2_1Hm+1,€m+1 = (_l)gmHm+1’em+1 . (234)

In addition, recall that on the set Oy j,, Lo, = aj ¢, +bje, > A27/~1. Hence, starting from (2.32)
and using (2.34) and (2.31), we get that, on the set O,

1/2 1/2 - —(m—
‘Hn{,ﬂm B 1/2Hn{+1 Z7n+1} <A 1/22 o 1)/2 \f‘gm+1 €m+1‘
Whence, on the set Oy,
_ 1/2 j - ﬂ
S 1/2Hj7/£j _2il2P <31 Y (ZQ 2 (\—1/29—(m— 1)/2+7‘€m+”m+1‘))
J=jo Jj=jo m2j
2(k-+4)
2v/2
=2y ( 272+ — N2 e, zm+1!)
J=jo ﬁ \[m>3
2(k+4)
<ATx oISzt N Ty L,
Jj=jo i>j m2j
2(k-+4)
<A x 270 LA 1(24 ) Z > 2
Jj=jo m2j

14



Therefore, on the set Oy j,,

o(k+4) 2(k+4) m
SRR S 2022 < AR it a2 4 VD) S S 2 e
i=jo m=jo j=jo

2(k+4)

2V ) 22 1l -

m>2k+9 j=jo
This leads, by taking into account (2.11), to

2(k+4) 2(k+4)

5
—1/2771/2 _ 5j/2)2 2
Z A Mg =2 Lo, < ANy logn+02:n) 2+ V2? Z Emi1 Amt1
j=jo m=jo
2 k+4
-1 2
@+V2? Y Gt (239)
m>2k—+9
On another hand,
2 2 1 2
|aj7€j o ij£]| = |2aj7€j B H]vé.?’ = 4|Hj_172£j - 7Hj7£j

2

Therefore by using (2.31) and the fact that on the set ©y o, ITj,, < 3\ x 2771, we derive

2(k+4) 2(k+4)
i 2 1—j3 —2¢2
le,,, Z 27 |aj g, — bje,* < 4 Z (2" +3xx 272, ),
J=Jo J=Jo

leading, by taking into account (2.11), to

2(k+4) 2(k+4)

16

2

19“0 JZ] 2- |CZJE j,£j| Sm ]E] 5]5 (2.36)
0 0

To handle now the last term in the right-hand side of (2.29), we first note that ¢270 = ¢, 270,
and write the following decomposition
J

N(£290) = N(;27) = 2tja50, = > (N(lm-12""") = N(lm2™) = (bm12™ " = £m2m>;ﬁi) :

m=jo+1

Since £y, = [lm-1/2], ln—12™"1 # £,2™ only if £,,_1 = 20, + 1 and in this case £,,,_12™ ! —
£, 2™ = 2m~1 Therefore, using the notation (2.26) and that aje; = Ij_1,2¢;, we have

J
N(£27) =N (0;27)=2t;a50, = > Lo jom-1z0,9m (N((2m+1)2™ ) =N (£n2™) =27 a )
m:j0+1

J j—1
1 1 1
Z 1£m,12m*1¢£m2m (Hmfl,%m - §Hm,€m + Z W(Hu,fu - §Hu+l,€u+1)
m=jo+1 u=m

11
+ 5 (G, — o))
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Using the notation (2.33) and the relation (2.34), we then derive

N(£270) — N (¢;27) — 2t i,

Jj—1 1
Z Lo 12m=124,, 2’”( m T Z u+1 —m u+174u+1 - 2j—mva£j)'
m=j0+1 u=m

Therefore by (2.31),
‘N(ijo) — N(EJQJ) — 2tjajygj ’

J J
1
3t (5 g I ) +

m=jo+1 u=m

J J
) 1 /2
<2+ Z Z Qu—m u/fu’é:“f -

m=jo+1u=m

1

L ST )

It follows that

2(k+4)
» , , 2
le,, Z 2 j|N(£2j0)_N(€j2j)_2tjaﬂj‘
Jj=jo+1
2(k+4) 2 2(k+4) J J om 2
= 1D DIE R YD DI (D DD D=1 )
_j0+1 J=jo+1 m=jo+1u=m

since on the set O jy, Wy, = Qur, + bue, < 3\ x 2471, Hence by taking into account (2.11)
and by using Cauchy-Schwarz’s inequality,

2(k+4)
lo,, Y 277IN(2°)— N(£;2) — 2t;a;,|
J=jo+1
2(k+4) j
32(k + 4)2 2 2
< ZEED o Y (Y 2e)
crlogn + 0233 Jj= ]0+1 u=jo+1
2(k+4)
32(k + 4)?
_ 22\ 12\ 21/2 2u/2 2
closntas T X H Z Z St
J ]0+1 1=jo+1 u=jo+1
2(k+4) J
32(k + 4)? 1
< 22FTH 122+ 2)) 2u/2¢2
~ crlogn + e +12(2+v2) Z Z Sut
—J0+1 u=jo+1
Therefore
2(k+4) 2 2(k+4)
. . . 2 32(k + 4) 2 2
lo,, > 277|N(2°) — N(£;2) — 2ta;4,| < ologn +or TR V2PA D&,
j=jo+1 u=jo+1
(2.37)

Hence starting from (2.29) and considering the upper bounds (2.35), (2.36) and (2.37), we derive

2(k+4)

]P’( Z ) > (e1 — 2)logn + cox, @&jo)
J=jo
2(k+4)
< IP’(A4 S A ST R s (e - 2)logn + o A3) .
m=jo—1 m>2k+9
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where
3x294+16x24 32 x12(k +4)?

A2(ci1logn + cox)  A2(cqlogn + cox)’
Ag=32"124 4 (24+V2)2 + (12)? x (24 v2)?) and A5 = 3271 x 28 (2 4+ V2)?.
Recall that k < K. Hence k < 1+ (logn)/(log2). Therefore if n > 2°, we get

Ag =

(k +4) (logn)?. (2.38)

< 4
(log 2)2
Whence, if n > 27,

(30 4 32 x 12)(k + 4)? - 1656 x (logn)? _ 1656 x (logn)
A2(erlogn +cox)  — A2(log2)2(cqlogn + cox) =  A2¢q(log2)?

Az <

Therefore if n > 2° and we take ¢; such that

1656
> 3, 2.39
1 > max (3, )\2(log2)2) , (2.39)
we get Az < logn implying that
2(k+4)
]P’( Z ) > (e1 — 2)logn + cox, @g@)
J=jo—1
2(k+4)
< IP’(A4 S i, F A2 S 22 > (o - 3)logn + 02;;;) . (2.40)
m=jo—1 m>2k+9

Notice now that for any 0 < ¢t < (244)7 1,

2(k+4) e
Eexp (A“t i Emi1 ‘fm“) - (1 —12tA4)k+4 e (2t1A j(];tjlf)) ’

m=jo—1

where, for the last inequality, we have used that —log(l —u) < 7%

“— for any u € [0, 1] and that
jo > 2 since ¢; > 3 and n > 4. On another hand, for any 0 < ¢ < ( 7/2A5)

1 1/2
E exp (Ast Z 2k m/2fm+1 EmH) = H ( . 2) .
m>2k+9 makyo 1T 2tAs X 2 "

Using once again the fact that —log(1 —u) < %

— for any u € [0, 1, we get that

SR 1 ) oAU As x 2k—m/2 tAs(V2+1) x 273

Og( ) S k—mj2 = 72
mSZhe0 1 — 2tAs x 2k—m/ +91—2tA5><2 m/ 1 —2-7/2tA;

Since 2772 A5 < 24y, it follows that, for any 0 < t < (244)7 !,

E exp (A5t Z 2k7m/253n+17€m+1) < oxp (tAs(\/§+ 1) x 2—4> |

1—2tAy
m>2k+9

So, overall, for any 0 < ¢t < (244)7 1,

2(k-+4)
2A4k + A
E exp (tA4 Z gﬁwumﬂ + Ast2k Z 2" m/2fm+1 £m+1> < exp < ( 1 j 2UA 6)) ’
mejo—1 m>2k+9 !
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where

AG = 8A4 —|—A5(\/§—|— 1) X 2_4.
Therefore, starting from (2.40), we get, if n > 2° and ¢; satisfies (2.39),

2(k+4)
P( Z Z (c1 —2)logn + coz, @g’jo)
J=jo
w)

< inf  exp ( —tler = 3)logn + ep7) + ===

0<t<(244)1
Hence, if (¢; — 3)logn > 2A4k + As,

2(k+4)
IP’( Z ) > (e1 — 2)logn + cox, @f7j0)

J=Jo

(fer =g+ eor = V2T A )

< _
= &P ( 2A4

Let
A7 =3 x 148 x A1 (2 +v2)2.

Notice that Ay < A7 and Ag < 9A7. Therefore 244k + Ag < 9A7(k + 4)/4. Hence, if n > 25,
and if ¢; > 3 4+ 9A7/(log2), taking into account (2.38), we get

244k 4+ Ag < (logn) < (e 2_ 3) (logn) .

A7
2(log 2)

So, overall, if

3996(2 ++v/2)2 1656 >

> 3
€1 = max ( + A(log?2) 7 A2(log2)?

then for any n > 2°,

2(k+4)
P( Z ) > (Cl *2) logn+02x,@g,j0)

J=Jo

(V2—=1)2((c1 — 3)logn + czx)) ‘

< _
= OXp ( 4A,

This last inequality leads to (2.24) as soon as ¢; > ¢ where ¢ is defined in (2.7), taking into
account that 444 < 1765 x A71(2 4+ v/2)? and 27 satisfies (2.11). This ends the proof of the
lemma.

2.3 Proof of Theorem 1.1

Notice first that it suffices to prove the result for any positive real = such that z < 2n||g||eo-
Indeed since |Sk(g)| < k||g||o for any positive integer k, it follows, by Lévy’s inequality, that for
any standard Wiener process (W:):>0 and any real x > 2n||¢||c,

P(sup[Si(9) — 0(0)Wi| > clogn + ) < 28 (lo(9)Wa| > 2/2)

42  o(g)yn a2 2v20(g) 012 o 2|9l
=7 T exp 8a2<>) lglloov/T 4l 4a2<g>)'
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Therefore, to prove the theorem, it suffices to show that there exists a standard Wiener process
(Wi)e>0 such that (1.15) holds for any positive real z satisfying z < 2n||g|/sc. From now on, x
will be a positive real satisfying the latter condition.

For any i € N*, let
T;

Xi= > 9.
(=T; 1+1
With this notation Ele X; = St.(g9) — S,(9). Let 74 be defined by (1.7). Notice that
(k> X )k>1 forms a sequence of iid random vectors. In addition for any k, E(X}) = 0 since
7 ® A(g) = 0. We can assume without loss of generality that Var(r) > 0. Indeed if Var(r;) =0
then 77 is almost surely equal to some positive integer d. Then 7; = d almost surely for any
positive integer ¢, which implies that T}, = kd + Ty almost surely. The result follows then easily
from the Komlos-Major-Tusnady theorem applied to the above sequence (X;);>0 and the fact
that Ty has a finite Laplace transform in a neighborhood of 0.

We now assume that Var(r;) # 0. Let

_ Cov(ry, X1)

Var(7y) (241)

It follows that (75, X — (7% —E(7%)))k>1 is a sequence of iid random vectors such that, for any
k € N*,
Cov(7k, Xi — (e — E(m))) = 0.

Let
v? = Var (X1 — a(my — E(71))) . (2.42)

As it was recalled in the introduction, under the condition (1.12), the return times 74 have finite
Laplace transform on some neighborhood of 0 (see (1.13)). Since g is assumed to be bounded,
the random variables Xy, — a(7; —E(7)) also a finite Laplace transform on some neighborhood
of 0. More precisely, by (1.13),

E(e!®1-am=EmN)) < aBr)E (otligletloahn) < o6 for any |t| < 5(]|glloo + laf) 7.

Taking into account all the considerations above mentioned, we can apply Theorem 1.3 in Zaitsev
(1998) to the multivariate sequence of iid random variables (7, X —a (7, —E(7%))) k>0 to conclude
that there exists a sequence (Y;, Z;)i>1 of independent random variables in R? such that (Yi)i>1
is independent of (Z;)i>1,

L(Y;) = N(0,v?) , £(Z;) = N(0,Var(r)),

and satisfying, for some positive constants C1, A; and By depending on g and on the transition
probability P(z,-), the following inequalities: for any integer n > 2,

k
P(zgp |57,.(9) — S, (9) — Ty, — To — KE(71)) —Z Yi| > Cylog n+a:) < Ajexp(—Bix), (2.43)
=n i=1

and i
]P’(sup |Tk — Ty — kE(m1) — Z ZZ-‘ > Cylogn + x) < Ajexp(—Biz). (2.44)
k<n i=1
Using the Skorohod embedding theorem, we can then construct two independent standard
Wiener processes (B;):>0 and (B;)¢>0 such that for any positive integer k,

k

k
vB = ZY" and \/V&I‘(Tl)Bk = ZZZ-.
i=1

=1
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In addition, according to Theorem 1(ii) in Komlds, Major and Tusnady (1975), there exists a
Poisson process (N (t),t > 0) with parameter \ defined by

_ (E(m)?
A= Var(7) (245)
such that, setting
Var(ry)
— Y 2.46
7T TE(n) (2.46)

the following inequality holds: for any integer n > 2,

P(sup |YN (k) — kE(r1) — \/Var(Tl)Bk‘ > Cylogn + x) < Ag exp(—Bax), (2.47)

k<n

where Co, As and Bs are positive constants depending on A. According to the dyadic construc-
tion of Komlés, Major and Tusnady (1975), this Poisson process may be defined from (B)so
in a deterministic way. Therefore N(-) is independent of (By)i>0. Notice that (2.44) together
with (2.47) imply that

P(igp |YN (k) — (T}, — To)| = Cslogn + 2;10) < Az exp(—Bsz), (2.48)

where C3 = Cy + Cy, A3 = Ay + Ay and B3y = B; A By. Actually, as we shall see, the above
upper bound also implies that, for any n > 2,

3y
P(igg !’yN(t) — T[t” > (03 + @) logn + 495)
xlog3

2y

< Agexp(—DBsx) + exp ( - ) +E; (e‘STO) exp(—dx), (2.49)

where ¢ is defined in (1.13). Therefore, for any n > 2,

P(sup hN(t) - T[t}’ > Cylogn + 4:1:) < Agexp(—Byx), (2.50)
t<n
where 25 log 3
Cy=0Cs5+ 27 , Ay =1+ Ag —|—E7r(e‘5T0) and B4 = min (33,5, £> .
log 2 2y

Let us prove (2.49). By using (1.13) and (2.48), we have

3y
]P’(t:}é%] ‘ny(t) — T[t]‘ > (Cg + @) logn + 43:)
< I[*]Tr(e‘STO)e_‘sgC + IP’( sup |[yN(k) — (T, — Tp)| = Cslogn + 230)
1<k<n
+ IP’( sup  sup Y(N(t)—N(k—-1)) > 3 logn + :c)
1<k<n k—1<t<k ~ log2
5T\, —ox 3\y
< Er(e”'0)e % 4+ Agexp(—Bsz) + IP’( sup  sup Y(N(t)—yN(k-1)) > logn + x) .
1<k<n k—1<t<k log 2
(2.51)
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Now, for any n > 2, by using Lemma 2.2, we get

A A
]P’( sup sup Y(N({t)—N(k-1))> 3 logn—i—a:) gnIF’< sup YN (t) > 3\ logn—i—a;)
1<k<n k—1<t<k log 2 0<t<1 log 2
3
< nP( sup 4|N(t) = M| = A logn—1) +2)
0<t§1ﬂ (t) — At 7(log2 g )

2
log 2

<nB( sup [N() ~ M| > o logn+ a7 ) < mexp (— A

-1
0<t<1 log 2 logn +(7A) a:))

Alo -1
gn+fy x
log 2 2

< nexp(— ( )log (1+ logn—i—(’y/\)_lx)) )

log 2

where for the last inequality, we have used that h(x) > $log(1+x). Hence, taking into account
that A > 1, we derive that, for any n > 2,

A 1
P( sup sup Y(N(t)—N(k-1)) > Siat] 10gn—i—a:> Sexp(— T 0g3>. (2.52)
1<k<n k—1<t<k log 2 2

Starting from (2.51) and taking into account (2.52), (2.49) follows.
Note now that the random variables I'y, defined by

[o=0 and T}, := N"Y(k) =inf{t >0 : N(t) >k} for k> 1

are such that (I'y, — I'y—1)g>1 forms a sequence of iid random variables with exponential law
of parameter \. Therefore, according to Theorem 1(i) in Komlés, Major and Tusnady (1975),
there exists a standard Wiener process (W;)>0 such that, for any integer n > 2,

ko 1=

]P’(sup INTH(k) — = — <Wy| > Cslogn + x) < Asexp(—Bsz) . (2.53)
k<n AA

where U5, As and By are positive constants depending on A. Notice that the so constructed
Wiener process W depends only on the process N~! and on some auxiliary atomless random
variable U independent of the o-field generated by the processes B, N and the auxiliary random
variable ¢ of Lemma 2.4.

On another hand, since (B¢)¢>0 is independent of (N(t) : ¢ > 0), according to Lemma 2.4,
there exists a standard Brownian process (W;");>0 independent of the Poisson process N(-) and
such that, for any integer n > 2,

P(sup |By, — LWR‘,(,@)] > Cglogn + z) < Agexp(—Bgx), (2.54)
k<n \/X
where Cg, Ag and Bg are positive constants depending on A\. Moreover (W;"); is measurable
with respect to the o-field generated by the processes B, N and the auxiliary random variable
d of Lemma 2.4, which ensures that (W;); is independent of the o-field generated by N(-) and
U. Hence the Wiener processes W and W* are independent.
In what follows we shall prove that (1.15) holds true with

1 v, E(m1)—~
W= o5 (ﬁ Ty = a(Al)Wm) . (2.55)

Recall here that o(g) is assumed to be positive. Notice that (W;);>o defined by (2.55) is a
standard Brownian motion. Indeed

2 2
v 5 (E(11)) Var(X7) .
_ = f— 1
e E(r)  nooo

Var(S'n(g)) — 0_2(9).
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The two latter inequalities follow from a well known fact concerning the asymptotic variance
(see e.g. Nummelin (1984) or Chen (1999)).

Before proving that (1.15) holds true with (W;);>o defined by (2.55), let us prove that, in
addition to (2.54), we also have, for any integer n > 2,

1

P( sup |By — Wi > Crlogn + 3z) < A7 exp(—Brx), 9 56
(0§t£n|t VA Nl = Crlog ) < A7 exp(—Brx) (2.56)
where 1
Cr=Cs+ (6+4X"Nlog2)™", Ay =Ag+2+ ——
r=Cot (6443 )(og) !, A7 =g+ 2+ 5
and

B; = min(1, Bs, (Alog2)/4).

With this aim we first write the following decomposition:

1 1
P( sup |B; — —)\WX,(M > Crlogn+3z) =P( sup sup |Bi— —)\WJ’{,(t)| > Crlogn + 3z)

0<t<n VA 1<k<n k—1<t<k VA
1
<P( sup |Bi— —Wj(,(k)| > Cslogn+x) +P( sup sup |B;— Bj_1| > 2(log 2)"Llogn + )
1<k<n VA 1<k<n k—1<t<k

1 1
+P( sup sup |—=Wpx, — —
(1gkgn k—1<t<k | PRERMCEEVA

=L+ 1+ 13. (257)

Wj:,(kil)] > (4442 H(log2) tlogn + )

By Lévy’s inequality, for any n > 2,

n
I, < ZIP’( sup |B; — Bi-1] > 2(log 2)_llogn—|—az) < 2nP(|B1] > 2(log2)_llogn—|—x)
k=1

k—1<t<k

< Qﬁn

~ V/m(2(log2)"!logn + x)
On another hand, for any y > 0,

exp(—271(2(log 2) ' logn + x)?) < exp(—2z). (2.58)

n
I3§ZIP’( sup P 1

1 * * — —
s Bl Wiy = = Wigey| > (44437 (log2) " logn +2)
k=1 B

< nP( sup A2 > (4+4)\_1)(10g2)_1logn+x)+ZP( sup (N(t)—N(k-1)) > y).
0<t<y o k—1<i<k

Using once again Lévy’s inequality and taking y = 272 A\((4 +4X\"1)(log2) ~tlogn + z) , we get,
for any integer n > 2,

P( sup AV2|Wy| > (4 + 42X (log2) ' logn + )

0<t<y
<2 1 o~ (4+4A"1)(log 2) "L log n-+a)
T VT /(A + AT (log2)Tlogn +
n—4/(10g2)
< — —x).
<7 exp(—)

On another hand, by Lemma 2.2, for any y > 2\,

P( sup (N(t)—N(k—1))>y)=P( sup N(t) >y) <P( sup [N(t) — M| >y—]A)
k—1<t<k 0<t<1 0<t<1

< exp(~Ah((y ~ /) < exp L5 M toa(/n) < exp (- LTIE2),
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Therefore, for y = 271\((4 + 42"1)(log 2) "t logn + ) and n > 2,

P( sup (N(t)— N(k—1)) >27"A((2+ 42 ) (log2) 'logn + )

k—1<t<k
< n~Texp ( B :c/\log2> '
4
So overall, for any n > 2,
1 Alog 2

Starting from (2.57) and considering the upper bounds (2.54), (2.58) and (2.59), (2.56) follows.
We turn now to the proof of (1.15) with (W});>0 defined by (2.55). In the rest of the proof
we shall show that, for any n > 2,

P(sup |Sk — o(g)Wi| > clogn + dz) < Aexp(—Buz), (2.60)
k<n

where
d =3+ |a|E(m) + 4v + 5||g||o + 5]

A::A1+2A4+A5+A7+EW(65TO)+2+\/5
T

: A(l—log2) . _; 2\
B :=min (B1, By, Bs, B7, 2,8, ————2= 2y7 1/},
(815455 By 2[lgll aEm))
and 2 20E(m) | lglleoll +7) log )
v alk(my Glloo(l + 7 og "y
E(r)|Cs (1
Vlog 2 Alog 2 log 2 + loE(m)| ( + log 2 )’

c:=c1 +

with

|| E(71)
log 2

The reals a, v , A, v and § involved in the definition of the constants above are defined in (2.41),

(2.42), (2.45), (2.46) and (1.13) respectively, whereas the constants Aj, By, A2, Ba, As, Bs, Az

and By have been defined previously all along the proof.
To prove (2.60), we recall the definition (2.55) of (W})s>0 and first write

c1 = 2007 + 2C4|g| 0o + 20(log 2) ™ + 207 + +2]a|Cy. (2.61)

B(sup|Si(g) — o) Wi| > clogn + dx)

k<n
= E( 1) = 2v 2aE (1)
< — —
< P(igg |Sk(g9) — \AW[W’Y] + a——Wy/y| > ( ilog2  Mog2 ) logn + (d Z)x)

—i—IP’(Zl%E ‘W,:‘M - W[’l;/,”‘ > l—logn—l—v*lﬁx)

+ (Sup‘WkM W[k/wﬂ > 1 logn—l— :1:) . (2.62)

A
aE(r1)

For any integer n > 2, we have

P (suplWi ~ Wi 2 g o 71V

n 1 1 2 1 1
§mexp(—§<log210gn+v \[\x))gmexp(—%ﬂ) \&) (2.63)
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Similarly

~ —~ 2 A 1 2x )\
— > < - . .
P(Z?Z |Wk/7 W[k/,”‘ Z g2 logn + aE(ﬁ)x> S Jom exp ( OéIE(Tl)> (2.64)
On another hand, notice that
sup | Sk(9) = Spyy(9)] < IIQIIOOSUP\k kAN < Nglloo(X+7)

k<n

which is less than Hg”‘fgw log n for any integer n > 2. Therefore, since N(N~1(¢)) = £ for any

positive integer ¢, we get that for any integer n > 2,

. E(Tl) 20 2041[‘1(71)
(232‘5% ﬁWWﬂ +a Wik/| = (c— flog2 Mog?2 )10gn+(d—2)x)>

<I+1I5, (2.65)
where, by setting k, = k/~,

! log 7|
log 2

1=B( swp [N(l)) — 511~ Wie )| > (14

S 3 )C’ logn + a:)

and

v
I rZP(nggn\Sw (D9~

where dy = d — 2 — |a|E(71) and ¢; is defined in (2.61). Applying (2.53), we infer that, for any
n > 2,

* _ 1
WN(N—l([k’Y])_}‘OéE(Tl)(N 1([]@])—}[]4:7])‘ > ¢y log n—i—dlx) ,

Iy < Asexp(—Bsx). (2.66)
We handle now I5. Note that

I <P sup S
<t<N—1([n/v])’ ovens) - ﬁ

< P(ts<1121i; |§[7N(t)} (g)—\UE\WXI(t)+aE(ﬁ)(t—iN(t))‘ > logn+d1x>+P<N_1([n/'y]) > 2n) :
(2.67)

=Wy + aB(11) (t - XN )| > a logn+d1x>

If n < v, then N7!([n/7]) = 0 and the second term in the right-hand side is zero. Assume now
that n > 5. Since N~!([n/7]) has a Gamma distribution with parameters [n/4] and A, we have

+o0o
P(N—l([n/fy]) > 2n) _ W‘_l)'/% (/\:L.)[n/ﬂ—le—)\xdx

+oo
< A x 21 / o A/20, _ oln/Alg—nA
2n

Therefore since Ay =E(m) > 1 and z < 2n||¢|~,

A(1 — log 2))

(2.68)
2/lglloo

]P’(Nfl([n/’y]) > 2n> <exp (—nA(1—log2)) <exp ( -z

Moreover, by using (2.56), we get that, for any integer n > 2,

v *
]P’(ts<u2p |1 v (9) — \TAWN@) + aE(my) (t — XN )| > cilogn + d1x> < A7 exp(—Brx)

—HP’( sup ‘S[WN 1(9) —vB; + o (1) (t — XN( )| = (c1 — 2vC7) logn + (di — 3v)x ) . (2.69)

t<2n
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But
_ 1
IP’( s<112p ‘S[WN(t)] (9) — vBy + aE(m1) (t — XN(t))‘ > (1 — 2vC7)logn + (di — 31))3:)
t<2n

< B( sup [S,v0)(0) — 511y (9)] = llglloe (201 Tog + 4) )

+ IF’( sup v| By — Biy| > v(2(log 2)"tlogn + :U))
t<2n
| E(71)
log 2

_ 1
+ IP( sup {STM (9) —vBpy + aE(m1) (t — —Tm)‘ > (20 +

- Jlogn -+ (1+ o] + lgllx)x)
<2n

+ IP’( sup |04E(71)()\_1N(t) - (Aw)_lT[tm > |a|(2Cylogn + 4.%'))

t<2n

=1+ 1P+ 1P+ 1Y (2.70)
By (2.50), for any integer n > 2,

15(1) < P(fgzl?z VN (t) — Ty | > Calog(2n) + 4x) < Ajexp(—Byzx) . (2.71)

To handle T, é4), we first notice that Ay = E(71). Therefore, applying (2.50), we get that, for any
integer n > 2,
IE(>4) < Ayexp(—Byz). (2.72)

On another hand, by using Lévy’s inequality as we did in (2.58), we infer that, for any n > 2,

IéQ) < 2nP< sup ‘Bt — B[t” > 2(log2) tlogn + a:) < exp(—2z). (2.73)
0<t<1

Let us now handle I é3). With this aim, taking into account that YA = E(1y), we first write

_ 1 _
sup |ST[t] (9) — vBy + aE(1)(t — —Tpy)| < sup |Sp, — vBy + (T — kE(11))| + |o|E(71)
t<2n YA k<2n

< sup |S7,.(9) — Sn,(9) — vBr + (T — To — kE(71)) | + [|E(11) + To(la] + [|glloo) -

Therefore, taking into account (2.43), we derive that, for any integer n > 2,

¥ < Pw(ksg; |57,.(9) = S1.(9) — vBy + (Tigy — To — kE(m1)) | > 2C1 logn + 5”)

ol|E 1
+P(JalE(n) + Tollal + glle) = 0 togn + (la] + g]))
< Ajexp(—Biz) + Pr (Tg > x) .
Hence, for any n > 2,

Ié?’) < Ay exp(=Biz) + Er(e’70) exp(—dz) , (2.74)

where § is defined in (1.13). Starting from (2.70) and considering the upper bounds (2.71),
(2.72), (2.73) and (2.74), it follows that, for any integer n > 2,

_ 1
IP)(ts<11217)I }S[WN(t)} —vB; + aE(m) (t — XN(t))’ > (1 — 2vCr)logn + (di — 3v)x)

< Ajexp(—Biz) + 24, exp(—Byz) 4 exp(—2z) + Ex(e2T0) exp(—dz) . (2.75)
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Starting from (2.67) and considering the upper bounds (2.68), (2.69) and (2.75), we then get
that, for any integer n > 2,

Is < Ay exp(—Byz) + 2Ag exp(—Byx) + A7 exp(—Brx)

1—1log2)

A( .
+exp (= =g PR ) + exp(~20) + En(e"T) exp(~02). - (2:76)

Starting from (2.62) and considering the upper bounds (2.63), (2.64), (2.65), (2.66) and (2.76),
the inequality (2.60) follows. This ends the proof of the theorem.
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