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Abstract

Let (ξi)i∈Z be a stationary Harris recurrent geometrically ergodic Markov chain on a count-
ably generated state space (E,B). Let f be a bounded and measurable function from E into R

satisfying the condition E(f(ξ0)) = 0. In this paper, we obtain the almost sure strong approxi-
mation of the partial sums Sn(f) =

∑n
i=1 f(ξi) by the partial sums of a sequence of independent

and identically distributed Gaussian random variables with the optimal rate O(log n).

1 Introduction and main result

This paper focuses on a Komlós-Major-Tusnády type strong approximation for additive func-
tionals of Markov chains. We first recall the famous Komlós-Major-Tusnády theorem (1975
and 1976): let (Xi)i>0 be a sequence of independent and identically distributed (iid) centered
real-valued random variables with a finite moment generating function in a neighborhood of 0.
Set σ2 = VarX1 and Sn = X1 +X2 + · · · +Xn. Then one can construct a standard Brownian
motion (Bt)t≥0 in such a way that

P

(
sup
k≤n

|Sk − σBk| ≥ x+ c log n
)
≤ a exp(−bx), (1.1)

where a, b and c are positive constants depending only on the law of X1. From this result,
the almost sure approximation of the partial sum process by a Brownian motion holds with
the rate O(log n). It comes from the Erdös-Rényi law that this result is unimprovable. This
result has been later extended to the multivariate case by Einmahl (1989), who obtained the
rate O((log n)2) in the almost sure approximation of partial sums of random vectors with finite
moment generating function in a neighborhood of 0 by Gaussian partial sums. Next Zaitsev
(1998) removed the extra logarithmic factor and obtained (1.1) in the case of random vectors.
We refer to Götze and Zaitsev (2009) for a detailed review of the results on this subject.

We now come to the framework of this paper. Let (ξn) be an irreducible and aperiodic
Harris recurrent Markov chain on a countably generated measurable state space (E,B). We
will consider only chains which are positive recurrent and π will exclusively denote the (unique)
invariant probability measure of (ξn). In that case the transition probability P (x, .) of the
Markov chain satisfies the following minorization condition: there exists some positive integer
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m, some measurable function h with values in [0, 1] with π(h) > 0, and some probability measure
ν on E, such that

Pm(x,A) ≥ h(x)ν(A) . (1.2)

In order to avoid additional difficulties, we will assume throughout the paper that the above
condition holds true with m = 1. Let then Q(x, ·) be the sub-stochastic kernel defined by

Q = P − h⊗ ν . (1.3)

Under assumption (1.2), proceeding as in Nummelin (1984), we can define an extended chain
(ξ̄n, Un) in E×[0, 1] as follows. At time 0, U0 is independent of ξ̄0 and has the uniform distribution
over [0, 1]; for any nonnegative integer n,

P(ξ̄n+1 ∈ A | ξ̄n = x, Un = y) = 1y≤h(x)ν(A) + 1y>h(x)
Q(x,A)

1− h(x)
:= P̄ ((x, y), A) (1.4)

and Un+1 is independent of (ξ̄n+1, ξ̄n, Un) and has the uniform distribution over [0, 1]. Then
the kernel P̃ of the extended chain is equal to P̄ ⊗ λ (here λ denotes the Lebesgue measure
on [0, 1]). This extended chain is also an irreducible and aperiodic Harris recurrent chain, with
unique invariant probability measure π ⊗ λ. It can easily be seen that (ξ̄n) is an homogenous
Markov chain with transition probability P (x, .). Define now the set C in E × [0, 1] by

C = {(x, y) ∈ E × [0, 1] such that y ≤ h(x)}. (1.5)

For any (x, y) in C, P(ξ̄n+1 ∈ A | ξ̄n = x, Un = y) = ν(A). Since π ⊗ λ(C) = π(h) > 0, the set
C is an atom of the extended chain, and it can be proven that this atom is recurrent.

Everywhere in the paper, we shall use the following notations: Pπ (respectively PC) will
denote the probability measure on the underlying space such that ξ̄0 ∼ π (resp. (ξ̄0, U0) ∈ C),
and Eπ(·) will denote the Pπ-expectation (resp. EC(·) the PC-expectation).

Define now the stopping times (Tk)k≥0 by

T0 = inf{n ≥ 1 : Un ≤ h(ξ̄n)} and Tk = inf{n > Tk−1 : Un ≤ h(ξ̄n)} for k ≥ 1 , (1.6)

and the return times (τk)k>0 by
τk = Tk − Tk−1 . (1.7)

Then T0 is almost surely finite and the return times τk are iid and integrable. Moreover, from
the strong Markov property, it is well known that the random vectors (ξ̄Tk+1, . . . , ξ̄Tk+1

) (k ≥ 0)
are identically distributed and independent. Their common law is the law of (ξ̄1, . . . , ξ̄T0) under
the probability PC . Let then

Sn(f) =
n∑

k=1

f(ξ̄k) . (1.8)

From the above property, for any measurable function f from E into R, the random vectors
(τk, STk

(f) − STk−1
(f))k>0 are independent and identically distributed. This fact was used in

Csáki and Csörgö (1995) to get strong approximation results for the partial sums Sn(f) under
moment assumptions on the return times τk. Let us recall their result. Assume that the chain
satisfies (1.2) with m = 1. If the random variables STk

(|f |)−STk−1
(|f |) have a finite moment of

order p for some p in ]2, 4] and if the return times τk satisfy E(τ
p/2
k ) < ∞, then one can construct

a standard Wiener process (Wt)t≥0 such that

Sn(f)−nπ(f)−σ(f)Wn = O(an) a.s., with σ2(f) = lim
n

1

n
VarSn(f) and an = n1/p log n . (1.9)

Note that the above result holds true for any bounded function f only if the return times have
a finite moment of order p. The proof of Csáki and Csörgö (1995) is based on the regeneration
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properties of the chain, on the Skorohod embedding and on an application of the results of
Komlós, Major and Tusnády (1975) to the partial sums of the iid random variables STk+1

(f)−
STk

(f), k > 0. Since the moments of the return times essentially play the same role as the
moments of the random variables in the case of iid random variables, it seems clear that such
a result is optimal, up to a possible power of log n. However this result has not been extended
to the case p > 4. By contrast the strong approximation of the renewal process associated to
the chain holds with the optimal rate O(n1/p) if E(τp1 ) < ∞, for any p > 2. Furthermore, if
the chain is geometrically ergodic, then the strong approximation of the renewal process holds
with the rate O(log n) (see Corollaries 3.1 and 4.2 in Csörgö, Horváth, and Steinebach (1987)
for these results).

We now recall some possible methods to get strong approximation results. Some of these
methods are based on the ergodicity properties of the Markov chain. For positive measures µ
and ν, let ‖µ− ν‖ denote the total variation of µ− ν. Set

βn =

∫

E
‖Pn(x, .)− π‖dπ(x) . (1.10)

The coefficients βn are called absolute regularity (or β-mixing) coefficients of the chain. Then,
as proved by Bolthausen (1980 and 1982), for any p > 1,

EC(T
p
0 ) < ∞ if and only if

∑

n>0

np−2βn < ∞ . (1.11)

The second part of (1.11) is also called a weak dependence condition. Under a mixing condi-
tion which is more restrictive than (1.11) in the context of Markov chains, Shao and Lu (1987)
obtained (1.9) with the rate an = O(n1/p(log n)c) for some c > 1 for p in ]2, 4]. Their proof
was based on the so-called Skorohod embedding. Recently, using a direct method based on con-
structions via quantile transformations, as in Major (1976), Merlevède and Rio (2012) improved
the results of Shao and Lu (1987). For p in ]2, 3[, they obtained (1.9) under the ergodicity
condition (1.11) with the better rate an = n1/p(log n)(p−2)/(2p). The results of Merlevède and
Rio (2012) involve more general weak dependence coefficients than the coefficients βn, so that
their result applies also to non irreducible Markov chains and to some dynamical systems. In
the context of dynamical systems, Gouëzel (2010) used spectral methods to construct coupling
with independent random variables and applied then strong approximation results for partial
sums of independent random vectors to get rates of the order of n1/p for p in ]2, 4[ in (1.9). The
techniques used in these papers are suitable for Markov chains or non trivial dynamical systems,
including the Liverani-Saussol-Vaienti map. Nevertheless the applied tools limit the accuracy to
the rate O(n1/4).

Recently, for stationary processes that are functions of iid innovations, Berkes, Liu and Wu
(2014) obtained (1.9) with the rate O(n1/p) for any p > 2 provided that the inovations have finite
moments of order p and the process has a fast enough arithmetically decay of some coupling
coefficients. Moreover they give some application to nonlinear time series (see Example 2.2).
However their condition (2.15) is too restrictive (even for functional autoregressive processes)
and they do not give estimates of their coupling coefficients for more general Markov chains.

In this paper we are interested in general Harris recurrent Markov chains. Our aim is to
obtain the optimal rate O(log n). Recall that, in the dependent case the rate o(n1/p) has never
been surpassed. In order to get better rates of approximation, we will assume thoughout the
paper that the Markov chain is geometrically ergodic, which means that (see Theorem 2.1 in
Nummelin and Tuominen (1982))

βn = O(ρn) for some real ρ with 0 < ρ < 1, (1.12)

where βn is defined in (1.10). Note now that P(τ1 > n) = PC(T0 > n) = νQn(1) and in addition
Pπ(T0 > n) = πQn+1(1) + νQn(1)π(h) where Q is defined by (1.3). Therefore, condition (1.12)
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together with Corollary 2.4 and Lemma 2.8 in Nummelin and Tuominen (1982) imply that both
P(τ1 > n) and Pπ(T0 > n) decrease exponentially fast. Hence, if (1.12) holds there exists a
positive real δ such that

E
(
etτ1

)
< ∞ and Eπ

(
etT0

)
< ∞ for any |t| ≤ δ . (1.13)

We will use this fact together with a strategy inherited from the papers of Bolthausen (1980
and 1982) to get the optimal rates of strong approximation in that case: we will apply a
strong approximation result of Zaitsev (1998) to the multidimensional partial sum process
(Tn − T0, STn(f) − ST0(f)) rather than the initial theorems of Komlós, Major and Tusnády
(1975 and 1976). This method enables us to get the optimal rate of convergence. Let us now
give our main result.

Theorem 1.1. Let (ξn) be a stationary, irreducible and aperiodic Harris positive recurrent
Markov chain on E, with invariant probability measure π. Assume that the chain satisfies (1.2)
with m = 1 and the geometric ergodicity condition (1.12). Let g be any bounded measurable
function from E × [0, 1] to R such that π ⊗ λ(g) = 0 and let S̄n(g) =

∑n
k=1 g(ξ̄k, Uk). Let

P̃ = P̄ ⊗ λ. If

σ2(g) = π ⊗ λ(g2) + 2
∑

n>0

π ⊗ λ(gP̃ng) > 0 ,

then there exists a standard Wiener process (Wt)t≥0 and positive constants a, b and c depending
on g and on the transition probability P (x, ·) such that, for any positive real x and any integer
n ≥ 2,

Pπ

(
sup
k≤n

∣∣S̄k(g)− σ(g)Wk

∣∣ ≥ c log n+ x
)
≤ a exp(−bx) . (1.14)

We now give in a separate corollary the application of this result to additive functionals of
the initial chain. The proof, being immediate, will be omitted.

Corollary 1.1. Let (ξn) be a stationary, irreducible and aperiodic Harris positive recurrent
Markov chain on E, with invariant probability measure π. Assume that the chain satisfies (1.2)
with m = 1 and the geometric ergodicity condition (1.12). Let f be any bounded measurable
function from E to R such that π(f) = 0 and let Sn(f) =

∑n
k=1 f(ξk). If

σ2(f) = π(f2) + 2
∑

n>0

π(fPnf) > 0 ,

then there exists a standard Wiener process (Wt)t≥0 and positive constants a, b and c depending
on f and on the transition probability P (x, ·) such that, for any positive real x and any integer
n ≥ 2,

Pπ

(
sup
k≤n

∣∣Sk(f)− σ(f)Wk

∣∣ ≥ c log n+ x
)
≤ a exp(−bx) . (1.15)

Remark 1.1. Corollary 1.1 may be generalized to the nonstationary case. Let µ be any law on
E such that ∫

E
‖Pn(x, .)− π‖dµ(x) = O(rn) for some r < 1.

Corollary 2.4 and Lemma 2.8 in Nummelin and Tuominen (1982) ensure that Pµ(T0 > n)
decreases exponentially fast. Consequently the proof of Theorem 1.1 extends to the Markov chain
(ξn) with transition probability P and initial law µ without modification.
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2 Proof of Theorem 1.1

Before proving our main result, we give an idea of the proof. The constants v, ṽ, λ and γ
appearing below will be specified in Subsection 2.3. For any i ≥ 1, let

Xi =

Ti∑

ℓ=Ti−1+1

g(ξ̄ℓ, Uℓ) .

The random variables (Xi, τi)i>0 are independent and identically distributed. Let then α be the
unique real such that Cov(Xk − ατk, τk) = 0. Applying the multidimensional extension of the
results of Komlós Major and Tusnády (1976), which is due to Zaitsev (1998), we obtain that
there exist two independent standard Brownian motions (Bt)t and (B̃t)t such that

S̄Tn(g)− α(Tn − nE(τ1))− vBn = O(log n) a.s. and Tn − nE(τ1)− ṽB̃n = O(log n) a.s.

Next, using the Komlós-Major-Tusnády strong approximation theorem, one can construct a
Poisson process N with parameter λ from B̃ in such a way that

nE(τ1) + ṽB̃n − γN(n) = O(log n) a.s.

For this Poisson process,

S̄γN(n)(g)− αγN(n) + αnE(τ1)− vBn = O(log n) a.s.

The processes (Bt)t and (Nt)t appearing here are independent. From the above result one can
deduce that

S̄n(g) = vBN−1(n/γ) + αn− αE(τ1)N
−1(n/γ) +O(log n) a.s. (2.1)

If v = 0, which corresponds to the case of renewal processes, then

S̄n(g) = αn− αE(τ1)N
−1(n/γ) +O(log n) a.s.

Up to some multiplicative constant, the process on right hand is a partial sum process associated
to iid random variables with exponential law. Hence, using the Komlós-Major-Tusnády strong
approximation theorem again, one can construct a Brownian motion W̃ such that

αn− αE(τ1)N
−1(n/γ) = W̃n +O(log n) a.s. , (2.2)

which leads to the expected result. Notice that the Brownian motion W̃ depends only on the
Poisson process N and on some auxiliary atomless random variables independent of the σ-field
generated by the processes B and N .

If v 6= 0 and α = 0, (2.1) ensures that

S̄n(g) = vBN−1(n/γ) +O(log n) a.s.

As noted by Csörgö, Deheuvels and Horváth (1987), since the renewal process of the Poisson
process is the partial sum process associated to independent random variables with exponential
law, the above compound process is a partial sum process associated to iid random variables
with a finite Laplace transform, and consequently, one can construct a Brownian motion W such
that

BN−1(n/γ) −Wn = O(log n) a.s. ,

which leads to the expected result. However the Brownian motion W depends on N . It follows
that, in the case α 6= 0 and v 6= 0, the so constructed processes W and W̃ are not independent.
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Then the construction of Csörgö, Deheuvels and Horváth (1987) cannot be used to prove our
theorem.

In order to perform the exact rate in the case α 6= 0, it will be necessary to construct a
Brownian motion W ∗ independent of N in such a way that

Bn −W ∗
γN(n) = O(log n) a.s. (2.3)

Since W ∗ is independent of N , it will also be independent of W̃ . Then, using (2.1) and (2.2),
we will get that

S̄n(g) = W ∗
n + W̃n +O(log n) a.s.

which will imply our strong approximation theorem. The proof of (2.3) will be done in Subsection
2.2. Then, starting from this fundamental result, we will prove the main theorem.

2.1 Some technical lemmas

Lemma below follows from the classical Cramér-Chernoff calculation (see also, for instance,
Lemma 1 in Bretagnolle and Massart (1989)).

Lemma 2.1. Let Z be a real-valued random variable with Poisson distribution of parameter m.
Then, for any positive x and any sign ε, we have

P
(
ε(Z −m) > x

)
≤ exp

(
−mh(εx/m)

)
.

where
h(t) = (1 + t) log(1 + t)− t for t > −1 and h(t) = +∞ for t ≤ −1. (2.4)

Next lemma follows once again from the classical Cramér-Chernoff calculation together with
the Doob maximal inequality.

Lemma 2.2. Let (N(t) : t ≥ 0) be a real-valued homogeneous Poisson process of parameter m.
Then, for any positive reals x and s, we have

P
(
sup
t≤s

|N(t)− tm| > x
)
≤ exp

(
−msh(x/(ms))

)
+ exp

(
−msh(−x/(ms))

)
.

where h(·) is defined by (2.4).

Lemma 2.3 below is due to Tusnády in his Phd-thesis (see Bretagnolle and Massart (1989)
for a complete proof of it).

Lemma 2.3. Let ξ be a random variable with law N (0, 1), Φ its distribution function and Φm

the distribution function of a Binomial law B(m, 1/2). Let Bm = 2Φ−1
m (Φ(ξ))−m where Φ−1

m is
the generalized inverse of Φm. Then the following inequality holds:

|Bm| ≤ 2 + |ξ|√m.

2.2 A fundamental lemma

The main new tool for proving Theorem 1.1 is the lemma below.

Lemma 2.4. Let (Bt)t≥0 be a standard Brownian motion on the line and {N(t) : t ≥ 0} be
a Poisson process with parameter λ > 0, independent of (Bt)t≥0. Then one can construct a
standard Brownian process (Wt)t≥0 independent of the Poisson process N(·) and such that, for
any positive integer n ≥ 2 and any positive real x,

P

(
sup
k≤n

∣∣Bk −
1√
λ
WN(k)

∣∣ ≥ C log n+ x
)
≤ A exp(−Bx) ,

where A, B and C are positive constants depending only on λ. Furthermore (Wt)t≥0 may be
constructed from the processes (Bt)t≥0, N(·) and some auxiliary atomless random variable δ
independent of the σ-field generated by the processes (Bt)t≥0 and N(·).
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Proof. For j ∈ Z and k ∈ N, let

ẽj,k = 2−j/2
(
1]k2j ,(k+ 1

2
)2j ] − 1](k+ 1

2
)2j ,(k+1)2j ]

)
,

and

Yj,k =

∫ ∞

0
ẽj,k(t)dB(t) = 2−j/2

(
2B(k+ 1

2
)2j −Bk2j −B(k+1)2j

)
.

Note that (ẽj,k)j∈Z,k≥0 is a total orthonormal system of ℓ2(R). Hence for any t ∈ R
+, Bt can be

written as

Bt =
∑

j∈Z

∑

k≥0

(∫ t

0
ẽj,k(t)dt

)
Yj,k . (2.5)

For any j ∈ Z and k ∈ N such that N(k2j) < N((k + 1
2)2

j) < N((k + 1)2j), let

f̃j,k = c
−1/2
j,k

(
bj,k1]N(k2j),N((k+ 1

2
)2j)] − aj,k1]N((k+ 1

2
)2j),N((k+1)2j)]

)
,

where

aj,k = N((k +
1

2
)2j)−N(k2j) , bj,k = N((k + 1)2j)−N((k +

1

2
)2j) ,

and
cj,k = aj,kbj,k(aj,k + bj,k) .

For j ∈ Z, let Ej = {k ∈ N : N(k2j) < N((k + 1
2)2

j) < N((k + 1)2j)}, and notice that

(f̃j,k)j∈Z,k∈Ej
is an orthonormal system whose closure contains the vectors 1]0,N(t)] for t ∈ R

+

and then the vectors 1]0,ℓ] for ℓ ∈ N
∗. With the convention f̃j,k = 0 if k /∈ Ej , we then set

Wℓ =
∑

j∈Z

∑

k≥0

(∫ ℓ

0
f̃j,k(t)dt

)
Yj,k for any ℓ ∈ N

∗ and W0 = 0 . (2.6)

Since conditionally to N(·), (f̃j,k)j∈Z,k∈Ej
is an orthonormal system and (Yj,k) is a sequence of

iid standard Gaussian random variables, independent of N(·), one can easily check that, condi-
tionally to N(·), (Wℓ)ℓ≥0 is a Gaussian sequence such that Cov(Wℓ,Wm) = ℓ∧m. Therefore this
Gaussian sequence is independent of the Poisson process N(·). By the Skorohod embedding the-
orem, there exists a standard Wiener process (Wt)t which coincides with the Gaussian sequence
(Wℓ) at integer values. Furthermore this Wiener process can be constructed from the Gaussian
sequence and an auxiliary atomless random variable δ independent of the σ-field generated by
the processes (Bt)t≥0 and N(·).

Let c1 and c2 be two positive reals such that

c1 ≥ c̃1 := max
(
8 +

1765(2 +
√
2)2(1 +

√
2)2

λ
,

1656

λ2(log 2)2

)
, (2.7)

and

c2 ≥ c̃2 :=
1765(2 +

√
2)2

(
√
2− 1)2

. (2.8)

Let n0 be the smallest integer such that n0 ≥ c1 and

n0 − c1 log(n0)− c2 ≥ 0 . (2.9)

The lemma will be proven if we can show that there exist positive constants a and b depending
only on λ, such that for any n ≥ max(25, n0),

P
(
sup
k≤n

|Bk − λ−1/2WN(k)| ≥ 3c1 log n+ 3c2x
)
≤ ae−bx . (2.10)
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Indeed, for any integer n in [2,max(25, n0)], it can be easily shown that the conclusion of the
lemma holds. From now on, n is a positive integer such that n ≥ max(25, n0). To prove (2.10),
we first define j0 as the smallest integer such that

2j0 ≥ c1 log n+ c2x , (2.11)

where c1 and c2 are positive reals satisfying (2.7) and (2.8) respectively. Now, let K be the
integer such that 2K−1 + 1 < n ≤ 2K . Notice that

P
(
sup
k≤n

|Bk−λ−1/2WN(k)| ≥ 3c1 log n+3c2x
)
≤ P

(
sup

1≤ℓ≤2K−j0

∣∣Bℓ2j0−λ−1/2WN(ℓ2j0 )

∣∣ ≥ c1 log n+c2x
)

+ P
(

sup
0≤ℓ≤2K−j0−1

sup
ℓ2j0<k≤(ℓ+1)2j0

|Bk −Bℓ2j0 | ≥ c1 log n+ c2x
)

+ P
(

sup
0≤ℓ≤2K−j0−1

sup
ℓ2j0<k≤(ℓ+1)2j0

|WN(k) −WN(ℓ2j0 )| ≥ λ1/2(c1 log n+ c2x)
)
. (2.12)

But, by Lévy’s inequality,

P
(

sup
0≤ℓ≤2K−j0−1

sup
ℓ2j0<k≤(ℓ+1)2j0

|Bk −Bℓ2j0 | ≥ c1 log n+ c2x
)

≤
2K−j0−1∑

ℓ=0

P
(

sup
ℓ2j0<k≤(ℓ+1)2j0

|Bk −Bℓ2j0 | ≥ c1 log n+ c2x
)

≤ 2K−j0+1
P
(
|B2j0 | ≥ c1 log n+ c2x

)
≤ 2K−j0+2

√
2π

exp(−2−(j0+1)(c1 log n+ c2x)
2) .

Using the definition (2.11) of j0, it follows that

P
(

sup
0≤ℓ≤2K−j0−1

sup
ℓ2j0<k≤(ℓ+1)2j0

|Bk −Bℓ2j0 | ≥ c1 log n+ c2x
)

≤ 23√
2π

× n1−c1/4

(c1 log n+ c2x)3/2
exp(−c2x/4) . (2.13)

Next,

P
(

sup
0≤ℓ≤2K−j0−1

sup
ℓ2j0<k≤(ℓ+1)2j0

|WN(k) −WN(ℓ2j0 )| ≥ λ1/2(c1 log n+ c2x)
)

≤
2K−j0−1∑

ℓ=0

P
(

sup
ℓ2j0<k≤(ℓ+1)2j0

|WN(k) −WN(ℓ2j0 )| ≥ λ1/2(c1 log n+ c2x)
)

≤ 2K−j0P
(

sup
0<t≤λ2j0+1

|Wt| ≥ λ1/2(c1 log n+ c2x)
)

+

2K−j0−1∑

ℓ=0

P
(

sup
ℓ2j0<k≤(ℓ+1)2j0

|N(k)−N(ℓ2j0)| ≥ λ2j0+1
)
.

Using once again Lévy’s inequality and the definition (2.11) of j0, we get

2K−j0P
(

sup
0<t≤λ2j0+1

|Wt| ≥ λ1/2(c1 log n+ c2x)
)

≤ 2K−j0+1 21+j0/2

√
π(c1 log n+ c2x)

exp
(
− (c1 log n+ c2x)

2

2j0+2

)

≤ 23√
π
× n1−c1/8

(c1 log n+ c2x)3/2
exp(−c2x/8) .
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On another hand, by Lemma 2.2,

P
(

sup
1≤k≤2j0

N(k) ≥ λ2j0+1
)
≤ P

(
sup

1≤k≤2j0
|N(k)− kλ| ≥ λ2j0

)
≤ exp

(
− λ2j0h(1)

)
.

Hence, by using (2.11),

2K−j0P
(

sup
1≤k≤2j0

N(k) ≥ λ2j0+1
)
≤ 2

n1−λc1/3

c1 log n+ c2x
exp(−λc2x/3) .

So, overall,

P
(

sup
0≤ℓ≤2K−j0−1

sup
ℓ2j0<k≤(ℓ+1)2j0

|WN(k) −WN(ℓ2j0 )| ≥ λ1/2(c1 log n+ c2x)
)

≤ 23√
π
× n1−c1/8

c1 log n+ c2x
exp(−c2x/8) + 2

n1−λc1/3

c1 log n+ c2x
exp(−λc2x/3) . (2.14)

Therefore, starting from (2.12) and considering the upper bounds (2.13) and (2.14), we derive
that to prove the lemma, it suffices to show that there exist positive constants A1 and B1

depending only on λ, such that for any n ≥ max(25, n0),

P

(
sup

1≤ℓ≤2K−j0

∣∣Bℓ2j0 − λ−1/2WN(ℓ2j0 )

∣∣ ≥ c1 log n+ c2x
)
≤ A1 exp(−B1x) . (2.15)

In the rest of the proof, we shall prove the inequality above.
Taking into account (2.5) and (2.6), we first write that, for any ℓ ∈ N

∗,

Bℓ2j0 − λ−1/2WN(ℓ2j0 ) =
∑

j≥j0

∑

k≥0

(∫ ℓ2j0

0
ẽj,k(t)dt− λ−1/2

∫ N(ℓ2j0 )

0
f̃j,k(t)dt

)
Yj,k .

Notice that if ℓ2j0 /∈]k2j , (k + 1)2j [ then

∫ ℓ2j0

0
ẽj,k(t)dt =

∫ N(ℓ2j0 )

0
f̃j,k(t)dt = 0 .

Therefore setting
ℓj = [ℓ2j0−j ] ,

we get

Bℓ2j0 − λ−1/2WN(ℓ2j0 ) =
∑

j≥j0

(∫ ℓ2j0

0
ẽj,ℓj (t)dt− λ−1/2

∫ N(ℓ2j0 )

0
f̃j,ℓj (t)dt

)
Yj,k .

Setting

tj =
ℓ2j0 − ℓj2

j

2j
,

this leads to
Bℓ2j0 − λ−1/2WN(ℓ2j0 ) =

∑

j≥j0

Ũj,kYj,k +
∑

j≥j0

Ṽj,kYj,k ,

where Ũj,k = Uj,ℓj1tj∈]0,1/2] with

Uj,ℓj = 2j/2tj − λ−1/2 bj,ℓj√
cj,ℓj

(
N(ℓ2j0)−N(ℓj2

j)
)

(2.16)
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and Ṽj,k = Vj,ℓj1tj∈]1/2,1[ with

Vj,ℓj = 2j/2(1− tj)− λ−1/2aj,ℓjbj,ℓj√
cj,ℓj

+ λ−1/2 aj,ℓj√
cj,ℓj

(
N(ℓ2j0)−N((ℓj +

1

2
)2j)

)
. (2.17)

It follows that

P

(
sup

1≤ℓ≤2K−j0

∣∣Bℓ2j0 − λ−1/2WN(ℓ2j0 )

∣∣ ≥ c1 log n+ c2x
)

≤
K∑

k=j0

P

(
sup

ℓ : 2k≤ℓ2j0≤2k+1−1

∣∣Bℓ2j0 − λ−1/2WN(ℓ2j0 )

∣∣ ≥ c1 log n+ c2x
)

≤
K∑

k=j0

2k+1−j0−1∑

ℓ=2k−j0

P

(∣∣∣
∑

j≥j0

(
Ũj,ℓj + Ṽj,ℓj

)
Yj,ℓj

∣∣∣ ≥ c1 log n+ c2x
)
.

Recall now that (Yj,k)j>0,k≥1 is a sequence of standard centered Gaussian random variables that
are mutually independent. In addition this sequence is independent of (N(t), t ≥ 0). Therefore,

P

(∣∣∣
∑

j≥j0

(
Ũj,ℓj + Ṽj,ℓj

)
Yj,ℓj

∣∣∣ ≥ c1 log n+ c2x
)

≤ P

(∣∣∣
∑

j≥j0

(
Ũj,ℓj + Ṽj,ℓj

)
Yj,ℓj

∣∣∣ ≥ c1 log n+ c2x,
∑

j≥j0

(
Ũj,ℓj + Ṽj,ℓj

)2
< c1 log n+ c2x

)

+ P

( ∑

j≥j0

(
Ũj,ℓj + Ṽj,ℓj

)2 ≥ c1 log n+ c2x
)

≤ 2(2π)−1/2

√
c1 log n+ c2x

e−(c1 logn+c2x)/2 + P

( ∑

j≥j0

(
Ũj,ℓj + Ṽj,ℓj

)2 ≥ c1 log n+ c2x
)
.

So, overall, by using (2.11) and the fact that 2K ≤ 2n,

P

(
sup

1≤ℓ≤2K−j0

∣∣Bℓ2j0 − λ−1/2WN(ℓ2j0 )

∣∣ ≥ c1 log n+ c2x
)
≤ 8(2π)−1/2n1−c1/2

(c1 log n+ c2x)3/2
e−c2x/2

+
K∑

k=j0

2k+1−j0−1∑

ℓ=2k−j0

P

( ∑

j≥j0

(
Ũj,ℓj + Ṽj,ℓj

)2 ≥ c1 log n+ c2x
)
. (2.18)

Let now
Θℓ,j0 = Θa,ℓ,j0 ∩Θb,ℓ,j0 , (2.19)

where

Θa,ℓ,j0 = {aj,ℓj ≤
3

2
(λ2j−1) for all j ≥ j0} ∩ {aj,ℓj ≥

1

2
(λ2j−1) for all j ≥ j0} ,

and

Θb,ℓ,j0 = {bj,ℓj ≤
3

2
(λ2j−1) for all j ≥ j0} ∩ {bj,ℓj ≥

1

2
(λ2j−1) for all j ≥ j0} .

We have

P(Θc
a,ℓ,j0) ≤

∑

j≥j0

P
(
aj,ℓj >

3

2
(λ2j−1)

)
+

∑

j≥j0

P
(
aj,ℓj <

1

2
(λ2j−1)

)
.

Hence, by Lemma 2.1,

P(Θc
a,ℓ,j0) ≤

∑

j≥j0

(
exp

(
− λ2j−1h(2−1)

)
+ exp

(
− λ2j−1h(−2−1)

))
.
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Therefore,

P(Θc
a,ℓ,j0) ≤ 2

∑

j≥j0

exp
(
− λ2j/20

)
≤ 80

λ2j0
exp

(
− λ2j0/40

)
.

A similar bound is valid for P(Θc
b,ℓ,j0

). Hence by (2.11),

K∑

k=j0

2k+1−j0−1∑

ℓ=2k−j0

P(Θc
ℓ,j0) ≤

5× 27

λ(c1 log n+ c2x)2
n1−λc1/40 exp(−λc2x/40) . (2.20)

Starting from (2.18) and taking into account the upper bound (2.20), we infer that to prove
(2.15) and then the lemma, it suffices to show that there exist two positive constants A2 and B2

such that, for any n ≥ max(25, n0),

K∑

k=j0

2k+1−j0−1∑

ℓ=2k−j0

P

( ∑

j≥j0

(
Ũj,ℓj + Ṽj,ℓj

)2 ≥ c1 log n+ c2x,Θℓ,j0

)
≤ A2 exp(−B2x) , (2.21)

for any c1 ≥ c̃1 and any c2 ≥ c̃2 where c̃1 and c̃2 are defined in (2.7) and (2.8) respectively.
To prove the inequality (2.21), we first notice that, by definition of Ũj,ℓj and Ṽj,ℓj ,

∑

j≥j0

(
Ũj,ℓj + Ṽj,ℓj

)2
=

∑

j≥j0

Ũ2
j,ℓj

+
∑

j≥j0

Ṽ 2
j,ℓj

and that if k ∈ {j0, . . . ,K} with ℓ ∈ [2k−j0 , 2k+1−j0 [∩N, then ℓj = 0 for any j ≥ k + 1, and
tj ≤ 1/2 for any j ≥ k + 2. Therefore,

∑

j≥j0

(
Ũj,ℓj + Ṽj,ℓj

)2
=

2(k+4)∑

j=j0

(
Ũ2
j,ℓj

+ Ṽ 2
j,ℓj

)
+

∑

j≥2(k+4)

U2
j,0 . (2.22)

In the rest of the proof, if it is not specified, k and ℓ are two integers such that k ∈ {j0, . . . ,K}
and ℓ ∈ [2k−j0 , 2k+1−j0 [. On the set Θℓ,j0 ,

|Uj,0| ≤
ℓ2j0

2j/2
+ 3

√
2 2−j/2N(ℓ2j0)

λ
≤ 2k+1

2j/2
+ 3

√
2 2−j/2N(2k+1)

λ
,

leading to
∑

j≥2(k+4)

U2
j,0 ≤

1

24
+ 9

N2(2k+1)

λ222k+5
≤ 1

24
+

N2(2k+1)

λ222k+1
.

Hence, for any y > 2−4,

P

( ∑

j≥2(k+4)

U2
j,0 ≥ y,Θℓ,j0

)
≤ P

(N(2k+1)

λ2k+1
≥

√
(y − 2−4)/2

)
.

Next, if
√

(y − 2−4)/2 ≥ 3/2, by Lemma 2.1,

P

(N(2k+1)

λ2k+1
≥

√
(y − 2−4)/2

)
≤ P

(
N(2k+1)− λ2k+1 ≥ λ2k

)

≤ exp(−λ2k+1h(1/2)) ≤ exp(−λ2k/20) ,

and taking into account (2.11),

K∑

k=j0

2k+1−j0−1∑

ℓ=2k−j0

exp(−λ2k/20) ≤ 5× 24

λ(c1 log n+ c2x)2
n1−λc1/40 exp(−λc2x/40) .
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So, overall, starting from (2.22) and taking into account the considerations above, we get, for
any n ≥ 10,

K∑

k=j0

2k+1−j0−1∑

ℓ=2k−j0

P

( ∑

j≥j0

(
Ũj,ℓj + Ṽj,ℓj

)2 ≥ c1 log n+ c2x,Θℓ,j0

)

≤
K∑

k=j0

2k+1−j0−1∑

ℓ=2k−j0

P

( 2(k+4)∑

j=j0

(
Ũj,ℓj + Ṽj,ℓj

)2 ≥ (c1 − 2) log n+ c2x,Θℓ,j0

)

+
5× 24

λ(c1 log n+ c2x)2
n1−λc1/40 exp(−λc2x/40) . (2.23)

We prove now that, for any n ≥ 25, and any c1 ≥ c̃1 where c̃1 is defined in (2.7),

K∑

k=j0

2k+1−j0−1∑

ℓ=2k−j0

P

( 2(k+4)∑

j=j0

(
Ũ2
j,ℓj

+ Ṽ 2
j,ℓj

)
≥ (c1 − 2) log n+ c2x,Θℓ,j0

)

≤ 4

c1 log n+ c2x
exp

(
− λ(

√
2− 1)2c2x

1765(2 +
√
2)2

)
. (2.24)

Clearly taking into account the restriction on c1 and the fact that c2 ≥ 1765(2+
√
2)2

(
√
2−1)2

, the inequality

(2.21), and then the lemma, will follow from (2.23) and (2.24). To prove (2.24), we first write
the following decomposition

bj,ℓj√
cj,ℓj

=
1

2aj,ℓj

√
4aj,ℓjbj,ℓj
aj,ℓj + bj,ℓj

=
1

2aj,ℓj

√
aj,ℓj + bj,ℓj −

(aj,ℓj − bj,ℓj )
2

aj,ℓj + bj,ℓj
.

Therefore

1

2aj,ℓj

√
aj,ℓj + bj,ℓj −

1

2aj,ℓj

|aj,ℓj − bj,ℓj |√
aj,ℓj + bj,ℓj

≤ bj,ℓj√
cj,ℓj

≤ 1

2aj,ℓj

√
aj,ℓj + bj,ℓj . (2.25)

Set, for any j > 0 and k ≥ 0,

Πj,k = N((k + 1)2j)−N(k2j) . (2.26)

Recalling the definition (2.16) of Uj,k and noticing that aj,ℓj + bj,ℓj = Πj,ℓj , we then get

|Uj,ℓj | ≤ tj |λ−1/2Π
1/2
j,ℓj

− 2j/2|

+ λ−1/2Π
1/2
j,ℓj

∣∣∣ 1

2aj,ℓj

(
N(ℓ2j0)−N(ℓj2

j)
)
− tj

∣∣∣+
|aj,ℓj − bj,ℓj |
λ1/2Π

1/2
j,ℓj

N(ℓ2j0)−N(ℓj2
j)

2aj,ℓj
.

Whence, using the fact that, for tj ∈]0, 1/2], N(ℓ2j0)−N(ℓj2
j) ≤ aj,ℓj , we infer that

|Ũj,ℓj | ≤ |λ−1/2Π
1/2
j,ℓj

− 2j/2|1tj∈]0,1/2] + (2λ1/2Π
1/2
j,ℓj

)−1|aj,ℓj − bj,ℓj |1tj∈]0,1/2]

+ 2j/2
∣∣∣ 1

2aj,ℓj

(
N(ℓ2j0)−N(ℓj2

j)
)
− tj

∣∣∣1tj∈]0,1/2] .

Moreover using the fact that, on the set Θℓ,j0 , aj,ℓj ≥ λ2j−2 and Πj,ℓj = aj,ℓj + bj,ℓj ≥ λ2j−1, we
get that, on the set Θℓ,j0 ,

|Ũj,ℓj | ≤ |λ−1/2Π
1/2
j,ℓj

− 2j/2|1tj∈]0,1/2] + 2−(j+1)/2λ−1|aj,ℓj − bj,ℓj |1tj∈]0,1/2]
+ 21−j/2λ−1

∣∣N(ℓ2j0)−N(ℓj2
j)− 2tjaj,ℓj

∣∣1tj∈]0,1/2] . (2.27)
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On another hand, permuting the roles of aj,ℓj and of bj,ℓj in (2.25), we get

1

2bj,ℓj

√
Πj,ℓj −

1

2bj,ℓj

|bj,ℓj − aj,ℓj |√
Πj,ℓj

≤ aj,ℓj√
cj,ℓj

≤ 1

2bj,ℓj

√
Πj,ℓj ,

where we recall that Πj,ℓj = aj,ℓj + bj,ℓj . Since

Vj,ℓj = 2j/2(1− tj)−
aj,ℓj√
cj,ℓj

λ−1/2
(
N((ℓj + 1)2j)−N(ℓ2j0)

)
,

it follows that for any tj ∈]1/2, 1[,

|Vj,ℓj | ≤ (1− tj)|λ−1/2Π
1/2
j,ℓj

− 2j/2|+ λ−1/2Π
1/2
j,ℓj

∣∣∣ 1

2bj,ℓj

(
N((ℓj + 1)2j)−N(ℓ2j0)

)
− (1− tj)

∣∣∣

+
|aj,ℓj − bj,ℓj |
λ1/2Π

1/2
j,ℓj

N((ℓj + 1)2j)−N(ℓ2j0)

2bj,ℓj
.

Whence, using the fact that, for tj ∈]1/2, 1[, N((ℓj + 1)2j)−N(ℓ2j0) ≤ bj,ℓj , we infer that

|Ṽj,ℓj | ≤ |λ−1/2Π
1/2
j,ℓj

− 2j/2|1tj∈]1/2,1[ +
|aj,ℓj − bj,ℓj |
2λ1/2Π

1/2
j,ℓj

1tj∈]1/2,1[

+ 2j/2
∣∣∣ 1

2bj,ℓj

(
N((ℓj + 1)2j)−N(ℓ2j0)

)
− (1− tj)

∣∣∣1tj∈]1/2,1[ .

Since, on the set Θℓ,j0 , bj,ℓj ≥ λ2j−2 and Πj,ℓj ≥ λ2j−1, we get that, on the set Θℓ,j0 ,

|Ṽj,ℓj | ≤ |λ−1/2Π
1/2
j,ℓj

− 2j/2|1tj∈]1/2,1[ + 2−(j+1)/2λ−1|aj,ℓj − bj,ℓj |1tj∈]1/2,1[
+ 21−j/2λ−1

∣∣N((ℓj + 1)2j)−N(ℓ2j0)
)
− 2(1− tj)bj,ℓj

∣∣1tj∈]1/2,1[ .

Notice now that

N((ℓj + 1)2j)−N(ℓ2j0)
)
− 2(1− tj)bj,ℓj

= N((ℓj + 1)2j)−N(ℓj2
j) + 2tj(bj,ℓj − aj,ℓj )− 2bj,ℓj −

(
N(ℓ2j0)−N(ℓj2

j)− 2tjaj,ℓj
)

= (2tj − 1)(bj,ℓj − aj,ℓj )−
(
N(ℓ2j0)−N(ℓj2

j)− 2tjaj,ℓj
)
.

So, overall, on the set Θℓ,j0 ,

|Ṽj,ℓj | ≤ |λ−1/2Π
1/2
j,ℓj

− 2j/2|1tj∈]1/2,1[ + 2−(j+1)/2(23/2 + 1)λ−1|aj,ℓj − bj,ℓj |1tj∈]1/2,1[
+ 21−j/2λ−1

∣∣N(ℓ2j0)−N(ℓj2
j)− 2tjaj,ℓj

∣∣1tj∈]1/2,1[ . (2.28)

Taking into account (2.27) and (2.28), it follows that, on the set Θℓ,j0 ,

Ũ2
j,ℓj

+ Ṽ 2
j,ℓj

≤ 3|λ−1/2Π
1/2
j,ℓj

− 2j/2|2 + 24× λ−2 × 2−j |aj,ℓj − bj,ℓj |2

+ 12× λ−2 × 2−j
∣∣N(ℓ2j0)−N(ℓj2

j)− 2tjaj,ℓj
∣∣2 .

Therefore, on the set Θℓ,j0 ,

2(k+4)∑

j=j0

(
Ũ2
j,ℓj

+ Ṽ 2
j,ℓj

)
≤ 3

2(k+4)∑

j=j0

|λ−1/2Π
1/2
j,ℓj

− 2j/2|2 + 24× λ−2

2(k+4)∑

j=j0

2−j |aj,ℓj − bj,ℓj |2

+ 12× λ−2

2(k+4)∑

j=j0+1

2−j
∣∣N(ℓ2j0)−N(ℓj2

j)− 2tjaj,ℓj
∣∣2 , (2.29)
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the last sum starting at j = j0 + 1 since ℓj02
j0 = ℓ2j0 and tj0 = 0.

To handle the terms in the inequality above we shall introduce the following double indexed
sequence (ξj,k)j>0,k≥0 of Gaussian random variables. Let Φ be the distribution function of
a standard real-valued Gaussian random variable and Φn be the distribution function of the
Binomial law B(n, 1/2). Let (δj,k)j>0,k≥0 be a sequence of iid random variables with uniform
law on [0, 1], independent of the Poisson process N(·). For any j ∈ N

∗ and k ∈ N, let

ξj,k = Φ−1
(
ΦΠj,k

(Πj−1,2k − 0) + δj,k
(
ΦΠj,k

(Πj−1,2k)− ΦΠj,k
(Πj−1,2k − 0)

))
, (2.30)

where we recall that the Πj,k’s have been defined in (2.26). Note that, conditionnally to the
sigma algebra, say Fj , generated by the random variables {Πj,k : k ≥ 0} and {δi,k : i < j, k ≥ 0}
the random variables (ξj,k)k≥0 are independent with law N (0, 1). By recurrence, it follows that
for any positive integer m0, (ξj,k)j≤m0,k≥0 is a sequence of independent random variables with
law N (0, 1), and therefore (ξj,k)j>0,k≥0 is a sequence of iid standard real-valued Gaussian random
variables. Moreover according to Lemma 2.3,

∣∣Πj−1,2k −
1

2
Πj,k

∣∣ ≤ 1 +
1

2
Π

1/2
j,k |ξj,k| . (2.31)

Since limm→∞ 2−mΠm,ℓm = λ almost surely, we have

2(k+4)∑

j=j0

|λ−1/2Π
1/2
j,ℓj

− 2j/2|2 = λ−1

2(k+4)∑

j=j0

( ∑

m≥j

(
2

j−m
2 Π

1/2
m,ℓm

− 2
j−m−1

2 Π
1/2
m+1,ℓm+1

))2
.

But

Π
1/2
m,ℓm

− 2−1/2Π
1/2
m+1,ℓm+1

=
Πm,ℓm − 2−1Πm+1,ℓm+1

Π
1/2
m,ℓm

+ 2−1/2Π
1/2
m+1,ℓm+1

. (2.32)

Notice now that ℓm+1 = [ℓm/2]. Therefore, setting

Π̃j,k = Πj−1,2k −
1

2
Πj,k , (2.33)

we have
Πm,ℓm − 2−1Πm+1,ℓm+1 = (−1)ℓmΠ̃m+1,ℓm+1 . (2.34)

In addition, recall that on the set Θℓ,j0 , Πj,ℓj = aj,ℓj + bj,ℓj ≥ λ2j−1. Hence, starting from (2.32)
and using (2.34) and (2.31), we get that, on the set Θℓ,j0 ,

∣∣Π1/2
m,ℓm

− 2−1/2Π
1/2
m+1,ℓm+1

∣∣ ≤ λ−1/22−(m−1)/2 +
1√
2
|ξm+1,ℓm+1 | .

Whence, on the set Θℓ,j0 ,

2(k+4)∑

j=j0

|λ−1/2Π
1/2
j,ℓj

− 2j/2|2 ≤ λ−1

2(k+4)∑

j=j0

( ∑

m≥j

2
j−m

2
(
λ−1/22−(m−1)/2 +

1√
2
|ξm+1,ℓm+1 |

))2

= λ−1

2(k+4)∑

j=j0

(2
√
2√
λ
2−j/2 +

1√
2

∑

m≥j

2
j−m

2 |ξm+1,ℓm+1 |
)2

≤ λ−2 × 2−j0+5 + λ−1

2(k+4)∑

j=j0

∑

i≥j

2
j−i
2

∑

m≥j

2
j−m

2 ξ2m+1,ℓm+1

≤ λ−2 × 2−j0+5 + λ−1(2 +
√
2)

2(k+4)∑

j=j0

∑

m≥j

2
j−m

2 ξ2m+1,ℓm+1
,
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Therefore, on the set Θℓ,j0 ,

2(k+4)∑

j=j0

|λ−1/2Π
1/2
j,ℓj

− 2j/2|2 ≤ λ−2 × 2−j0+5 + λ−1(2 +
√
2)

2(k+4)∑

m=j0

m∑

j=j0

2
j−m

2 ξ2m+1,ℓm+1

+ λ−1(2 +
√
2)

∑

m≥2k+9

2(k+4)∑

j=j0

2
j−m

2 ξ2m+1,ℓm+1
.

This leads, by taking into account (2.11), to

2(k+4)∑

j=j0

|λ−1/2Π
1/2
j,ℓj

− 2j/2|21Θℓ,j0
≤ 25

λ2(c1 log n+ c2x)
+ λ−1(2 +

√
2)2

2(k+4)∑

m=j0

ξ2m+1,ℓm+1

+ λ−1(2 +
√
2)2

∑

m≥2k+9

2k+4

2m/2
ξ2m+1,ℓm+1

. (2.35)

On another hand,

|aj,ℓj − bj,ℓj |2 = |2aj,ℓj −Πj,ℓj |2 = 4
∣∣Πj−1,2ℓj −

1

2
Πj,ℓj

∣∣2 .

Therefore by using (2.31) and the fact that on the set Θℓ,j0 , Πj,ℓj ≤ 3λ× 2j−1, we derive

1Θℓ,j0

2(k+4)∑

j=j0

2−j |aj,ℓj − bj,ℓj |2 ≤ 4

2(k+4)∑

j=j0

(
21−j + 3λ× 2−2ξ2j,ℓj

)
,

leading, by taking into account (2.11), to

1Θℓ,j0

2(k+4)∑

j=j0

2−j |aj,ℓj − bj,ℓj |2 ≤
16

c1 log n+ c2x
+ 3λ

2(k+4)∑

j=j0

ξ2j,ℓj . (2.36)

To handle now the last term in the right-hand side of (2.29), we first note that ℓ2j0 = ℓj02
j0 ,

and write the following decomposition

N(ℓ2j0)−N(ℓj2
j)− 2tjaj,ℓj =

j∑

m=j0+1

(
N(ℓm−12

m−1)−N(ℓm2m)− (ℓm−12
m−1 − ℓm2m)

aj,ℓj
2j−1

)
.

Since ℓm = [ℓm−1/2], ℓm−12
m−1 6= ℓm2m only if ℓm−1 = 2ℓm + 1 and in this case ℓm−12

m−1 −
ℓm2m = 2m−1. Therefore, using the notation (2.26) and that aj,ℓj = Πj−1,2ℓj , we have

N(ℓ2j0)−N(ℓj2
j)−2tjaj,ℓj =

j∑

m=j0+1

1ℓm−12m−1 6=ℓm2m
(
N((2ℓm+1)2m−1)−N(ℓm2m)−2m−jaj,ℓj

)

=

j∑

m=j0+1

1ℓm−12m−1 6=ℓm2m

(
Πm−1,2ℓm − 1

2
Πm,ℓm +

j−1∑

u=m

1

2u+1−m

(
Πu,ℓu − 1

2
Πu+1,ℓu+1

)

+
1

2j−m

(1
2
Πj,ℓj −Πj−1,2ℓj

))
.
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Using the notation (2.33) and the relation (2.34), we then derive

N(ℓ2j0)−N(ℓj2
j)− 2tjaj,ℓj

=

j∑

m=j0+1

1ℓm−12m−1 6=ℓm2m

(
Π̃m,ℓm +

j−1∑

u=m

(−1)ℓu

2u+1−m
Π̃u+1,ℓu+1 −

1

2j−m
Π̃j,ℓj

)
.

Therefore by (2.31),
∣∣N(ℓ2j0)−N(ℓj2

j)− 2tjaj,ℓj
∣∣

≤
j∑

m=j0+1

1ℓm−12m−1 6=ℓm2m

( j∑

u=m

1

2u−m

(
1 +

1

2
Π

1/2
u,ℓu

|ξu,ℓu |
)
+

1

2j−m

(
1 +

1

2
Π

1/2
j,ℓj

|ξj,ℓj |
))

≤ 2j +

j∑

m=j0+1

j∑

u=m

1

2u−m
Π

1/2
u,ℓu

|ξu,ℓu | .

It follows that

1Θℓ,j0

2(k+4)∑

j=j0+1

2−j
∣∣N(ℓ2j0)−N(ℓj2

j)− 2tjaj,ℓj
∣∣2

≤ 8

2(k+4)∑

j=j0+1

j2

2j
+ 3λ

2(k+4)∑

j=j0+1

1

2j

( j∑

m=j0+1

j∑

u=m

2m

2u/2
|ξu,ℓu |

)2
,

since on the set Θℓ,j0 , Πu,ℓu = au,ℓu + bu,ℓu ≤ 3λ × 2u−1. Hence by taking into account (2.11)
and by using Cauchy-Schwarz’s inequality,

1Θℓ,j0

2(k+4)∑

j=j0+1

2−j
∣∣N(ℓ2j0)−N(ℓj2

j)− 2tjaj,ℓj
∣∣2

≤ 32(k + 4)2

c1 log n+ c2x
+ 12λ

2(k+4)∑

j=j0+1

1

2j

( j∑

u=j0+1

2u/2|ξu,ℓu |
)2

=
32(k + 4)2

c1 log n+ c2x
+ 12λ

2(k+4)∑

j=j0+1

1

2j

j∑

i=j0+1

2i/2
j∑

u=j0+1

2u/2ξ2u,ℓu

≤ 32(k + 4)2

c1 log n+ c2x
+ 12(2 +

√
2)λ

2(k+4)∑

j=j0+1

1

2j/2

j∑

u=j0+1

2u/2ξ2u,ℓu .

Therefore

1Θℓ,j0

2(k+4)∑

j=j0+1

2−j
∣∣N(ℓ2j0)−N(ℓj2

j)− 2tjaj,ℓj
∣∣2 ≤ 32(k + 4)2

c1 log n+ c2x
+ 12(2 +

√
2)2λ

2(k+4)∑

u=j0+1

ξ2u,ℓu .

(2.37)
Hence starting from (2.29) and considering the upper bounds (2.35), (2.36) and (2.37), we derive

P

( 2(k+4)∑

j=j0

(
Ũ2
j,ℓj

+ Ṽ 2
j,ℓj

)
≥ (c1 − 2) log n+ c2x,Θℓ,j0

)

≤ P

(
A4

2(k+4)∑

m=j0−1

ξ2m+1,ℓm+1
+A52

k
∑

m≥2k+9

2−m/2ξ2m+1,ℓm+1
≥ (c1 − 2) log n+ c2x−A3

)
.
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where

A3 =
3× 25 + 16× 24

λ2(c1 log n+ c2x)
+

32× 12(k + 4)2

λ2(c1 log n+ c2x)
,

A4 = 3λ−1(24 + (2 +
√
2)2 + (12)2 × (2 +

√
2)2) and A5 = 3λ−1 × 24(2 +

√
2)2 .

Recall that k ≤ K. Hence k < 1 + (log n)/(log 2). Therefore if n ≥ 25, we get

(k + 4)2 <
4

(log 2)2
(log n)2 . (2.38)

Whence, if n ≥ 25,

A3 ≤
(30 + 32× 12)(k + 4)2

λ2(c1 log n+ c2x)
≤ 1656× (log n)2

λ2(log 2)2(c1 log n+ c2x)
≤ 1656× (log n)

λ2c1(log 2)2
.

Therefore if n ≥ 25 and we take c1 such that

c1 ≥ max
(
3,

1656

λ2(log 2)2
)
, (2.39)

we get A3 ≤ log n implying that

P

( 2(k+4)∑

j=j0−1

(
Ũ2
j,ℓj

+ Ṽ 2
j,ℓj

)
≥ (c1 − 2) log n+ c2x,Θℓ,j0

)

≤ P

(
A4

2(k+4)∑

m=j0−1

ξ2m+1,ℓm+1
+A52

k
∑

m≥2k+9

2−m/2ξ2m+1,ℓm+1
≥ (c1 − 3) log n+ c2x

)
. (2.40)

Notice now that for any 0 < t < (2A4)
−1,

E exp
(
A4t

2(k+4)∑

m=j0−1

ξ2m+1,ℓm+1

)
=

( 1

1− 2tA4

)k+4−(j0−2)/2
≤ exp

(2tA4(k + 4)

1− 2tA4

)
,

where, for the last inequality, we have used that − log(1− u) ≤ u
1−u for any u ∈ [0, 1[ and that

j0 ≥ 2 since c1 ≥ 3 and n ≥ 4. On another hand, for any 0 < t < (2−7/2A5)
−1,

E exp
(
A5t

∑

m≥2k+9

2k−m/2ξ2m+1,ℓm+1

)
=

∏

m≥2k+9

( 1

1− 2tA5 × 2k−m/2

)1/2
.

Using once again the fact that − log(1− u) ≤ u
1−u for any u ∈ [0, 1[, we get that

∑

m≥2k+9

log
( 1

1− 2tA5 × 2k−m/2

)
≤

∑

m≥2k+9

2tA5 × 2k−m/2

1− 2tA5 × 2k−m/2
≤ tA5(

√
2 + 1)× 2−3

1− 2−7/2tA5
.

Since 2−7/2A5 ≤ 2A4, it follows that, for any 0 < t < (2A4)
−1,

E exp
(
A5t

∑

m≥2k+9

2k−m/2ξ2m+1,ℓm+1

)
≤ exp

( tA5(
√
2 + 1)× 2−4

1− 2tA4

)
.

So, overall, for any 0 < t < (2A4)
−1,

E exp
(
tA4

2(k+4)∑

m=j0−1

ξ2m+1,ℓm+1
+A5t2

k
∑

m≥2k+9

2−m/2ξ2m+1,ℓm+1

)
≤ exp

( t(2A4k +A6)

1− 2tA4

)
,
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where
A6 = 8A4 +A5(

√
2 + 1)× 2−4 .

Therefore, starting from (2.40), we get, if n ≥ 25 and c1 satisfies (2.39),

P

( 2(k+4)∑

j=j0

(
Ũ2
j,ℓj

+ Ṽ 2
j,ℓj

)
≥ (c1 − 2) log n+ c2x,Θℓ,j0

)

≤ inf
0<t<(2A4)−1

exp
(
− t((c1 − 3) log n+ c2x) +

t(2A4k +A6)

1− 2tA4

)
.

Hence, if (c1 − 3) log n > 2A4k +A6,

P

( 2(k+4)∑

j=j0

(
Ũ2
j,ℓj

+ Ṽ 2
j,ℓj

)
≥ (c1 − 2) log n+ c2x,Θℓ,j0

)

≤ exp
(
− (

√
(c1 − 3) log n+ c2x−

√
2A4k +A6 )

2

2A4

)
.

Let
A7 = 3× 148× λ−1(2 +

√
2)2 .

Notice that A4 ≤ A7 and A6 ≤ 9A7. Therefore 2A4k + A6 ≤ 9A7(k + 4)/4. Hence, if n ≥ 25,
and if c1 ≥ 3 + 9A7/(log 2), taking into account (2.38), we get

2A4k +A6 ≤
9A7

2(log 2)
(log n) ≤ (c1 − 3)

2
(log n) .

So, overall, if

c1 ≥ max
(
3 +

3996(2 +
√
2)2

λ(log 2)
,

1656

λ2(log 2)2

)
,

then for any n ≥ 25,

P

( 2(k+4)∑

j=j0

(
Ũ2
j,ℓj

+ Ṽ 2
j,ℓj

)
≥ (c1 − 2) log n+ c2x,Θℓ,j0

)

≤ exp
(
− (

√
2− 1)2

(
(c1 − 3) log n+ c2x

)

4A4

)
.

This last inequality leads to (2.24) as soon as c1 ≥ c̃1 where c̃1 is defined in (2.7), taking into
account that 4A4 ≤ 1765 × λ−1(2 +

√
2)2 and 2j0 satisfies (2.11). This ends the proof of the

lemma.

2.3 Proof of Theorem 1.1

Notice first that it suffices to prove the result for any positive real x such that x ≤ 2n‖g‖∞.
Indeed since |S̄k(g)| ≤ k‖g‖∞ for any positive integer k, it follows, by Lévy’s inequality, that for
any standard Wiener process (Wt)t≥0 and any real x > 2n‖g‖∞,

P

(
sup
k≤n

∣∣S̄k(g)− σ(g)Wk

∣∣ ≥ c log n+ x
)
≤ 2P

(
|σ(g)Wn| ≥ x/2

)

≤ 4
√
2√
π

× σ(g)
√
n

x
exp

(
− x2

8σ2(g)n

)
≤ 2

√
2σ(g)

‖g‖∞
√
π
n−1/2 exp

(
− x‖g‖∞

4σ2(g)

)
.
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Therefore, to prove the theorem, it suffices to show that there exists a standard Wiener process
(Wt)t≥0 such that (1.15) holds for any positive real x satisfying x ≤ 2n‖g‖∞. From now on, x
will be a positive real satisfying the latter condition.

For any i ∈ N
∗, let

Xi =

Ti∑

ℓ=Ti−1+1

g(ξ̄ℓ, Uℓ) .

With this notation
∑k

i=1Xi = S̄Tk
(g) − S̄T0(g). Let τk be defined by (1.7). Notice that

(τk, Xk)k≥1 forms a sequence of iid random vectors. In addition for any k, E(Xk) = 0 since
π⊗ λ(g) = 0. We can assume without loss of generality that Var(τ1) > 0. Indeed if Var(τ1) = 0
then τ1 is almost surely equal to some positive integer d. Then τi = d almost surely for any
positive integer i, which implies that Tk = kd+ T0 almost surely. The result follows then easily
from the Komlós-Major-Tusnády theorem applied to the above sequence (Xi)i>0 and the fact
that T0 has a finite Laplace transform in a neighborhood of 0.

We now assume that Var(τ1) 6= 0. Let

α =
Cov(τ1, X1)

Var(τ1)
. (2.41)

It follows that (τk, Xk −α(τk −E(τk)))k≥1 is a sequence of iid random vectors such that, for any
k ∈ N

∗,
Cov(τk, Xk − α(τk − E(τk))) = 0 .

Let
v2 = Var

(
X1 − α(τ1 − E(τ1))

)
. (2.42)

As it was recalled in the introduction, under the condition (1.12), the return times τk have finite
Laplace transform on some neighborhood of 0 (see (1.13)). Since g is assumed to be bounded,
the random variables Xk − α(τk −E(τk)) also a finite Laplace transform on some neighborhood
of 0. More precisely, by (1.13),

E
(
et(X1−α(τ1−E(τ1)))

)
≤ etαE(τ1)E

(
et(‖g‖∞+|α|)τ1) < ∞ for any |t| ≤ δ(‖g‖∞ + |α|)−1.

Taking into account all the considerations above mentioned, we can apply Theorem 1.3 in Zaitsev
(1998) to the multivariate sequence of iid random variables (τk, Xk−α(τk−E(τk)))k>0 to conclude
that there exists a sequence (Yi, Zi)i≥1 of independent random variables in R

2 such that (Yi)i≥1

is independent of (Zi)i≥1,

L(Yi) = N (0, v2) , L(Zi) = N (0,Var(τ1)) ,

and satisfying, for some positive constants C1, A1 and B1 depending on g and on the transition
probability P (x, ·), the following inequalities: for any integer n ≥ 2,

P

(
sup
k≤n

∣∣S̄Tk
(g)− S̄T0(g)−α(Tk−T0−kE(τ1))−

k∑

i=1

Yi
∣∣ ≥ C1 log n+x

)
≤ A1 exp(−B1x) , (2.43)

and

P

(
sup
k≤n

∣∣Tk − T0 − kE(τ1)−
k∑

i=1

Zi

∣∣ ≥ C1 log n+ x
)
≤ A1 exp(−B1x) . (2.44)

Using the Skorohod embedding theorem, we can then construct two independent standard
Wiener processes (Bt)t≥0 and (B̃t)t≥0 such that for any positive integer k,

vBk =

k∑

i=1

Yi and
√

Var(τ1)B̃k =

k∑

i=1

Zi .
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In addition, according to Theorem 1(ii) in Komlós, Major and Tusnády (1975), there exists a
Poisson process (N(t), t ≥ 0) with parameter λ defined by

λ =
(E(τ1))

2

Var(τ1)
(2.45)

such that, setting

γ =
Var(τ1)

E(τ1)
, (2.46)

the following inequality holds: for any integer n ≥ 2,

P

(
sup
k≤n

∣∣γN(k)− kE(τ1)−
√

Var(τ1)B̃k

∣∣ ≥ C2 log n+ x
)
≤ A2 exp(−B2x) , (2.47)

where C2, A2 and B2 are positive constants depending on λ. According to the dyadic construc-
tion of Komlós, Major and Tusnády (1975), this Poisson process may be defined from (B̃t)t≥0

in a deterministic way. Therefore N(·) is independent of (Bt)t≥0. Notice that (2.44) together
with (2.47) imply that

P

(
sup
k≤n

∣∣γN(k)− (Tk − T0)
∣∣ ≥ C3 log n+ 2x

)
≤ A3 exp(−B3x) , (2.48)

where C3 = C1 + C2, A3 = A1 + A2 and B3 = B1 ∧ B2. Actually, as we shall see, the above
upper bound also implies that, for any n ≥ 2,

P

(
sup
t≤n

∣∣γN(t)− T[t]

∣∣ ≥
(
C3 +

3λγ

log 2

)
log n+ 4x

)

≤ A3 exp(−B3x) + exp
(
− x log 3

2γ

)
+ Eπ

(
eδT0

)
exp(−δx) , (2.49)

where δ is defined in (1.13). Therefore, for any n ≥ 2,

P

(
sup
t≤n

∣∣γN(t)− T[t]

∣∣ ≥ C4 log n+ 4x
)
≤ A4 exp(−B4x) , (2.50)

where

C4 = C3 +
3λγ

log 2
, A4 = 1 +A3 + Eπ

(
eδT0

)
and B4 = min

(
B3, δ,

log 3

2γ

)
.

Let us prove (2.49). By using (1.13) and (2.48), we have

P

(
sup

t∈[0,n]

∣∣γN(t)− T[t]

∣∣ ≥
(
C3 +

3λγ

log 2

)
log n+ 4x

)

≤ Eπ

(
eδT0

)
e−δx + P

(
sup

1≤k≤n

∣∣γN(k)− (Tk − T0)
∣∣ ≥ C3 log n+ 2x

)

+ P

(
sup

1≤k≤n
sup

k−1<t≤k
γ(N(t)−N(k − 1)) ≥ 3λγ

log 2
log n+ x

)

≤ Eπ

(
eδT0

)
e−δx+A3 exp(−B3x)+P

(
sup

1≤k≤n
sup

k−1<t≤k
γ(N(t)− γN(k− 1)) ≥ 3λγ

log 2
log n+x

)
.

(2.51)
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Now, for any n ≥ 2, by using Lemma 2.2, we get

P

(
sup

1≤k≤n
sup

k−1<t≤k
γ(N(t)−N(k− 1)) ≥ 3λγ

log 2
log n+ x

)
≤ nP

(
sup

0<t≤1
γN(t) ≥ 3λγ

log 2
log n+ x

)

≤ nP
(

sup
0<t≤1

γ|N(t)− λt| ≥ λγ
( 3

log 2
log n− 1

)
+ x

)

≤ nP
(

sup
0<t≤1

|N(t)− λt| ≥ 2λ

log 2
log n+ xγ−1

)
≤ n exp

(
− λh

( 2

log 2
log n+ (γλ)−1x

))

≤ n exp
(
−
(λ log n
log 2

+
γ−1x

2

)
log

(
1 +

2

log 2
log n+ (γλ)−1x

))
,

where for the last inequality, we have used that h(x) ≥ x
2 log(1+x). Hence, taking into account

that λ > 1, we derive that, for any n ≥ 2,

P

(
sup

1≤k≤n
sup

k−1<t≤k
γ(N(t)−N(k − 1)) ≥ 3λγ

log 2
log n+ x

)
≤ exp

(
− x log 3

2γ

)
. (2.52)

Starting from (2.51) and taking into account (2.52), (2.49) follows.

Note now that the random variables Γk defined by

Γ0 = 0 and Γk := N−1(k) = inf{t > 0 : N(t) ≥ k} for k ≥ 1

are such that (Γk − Γk−1)k≥1 forms a sequence of iid random variables with exponential law
of parameter λ. Therefore, according to Theorem 1(i) in Komlós, Major and Tusnády (1975),

there exists a standard Wiener process (W̃t)t≥0 such that, for any integer n ≥ 2,

P

(
sup
k≤n

∣∣N−1(k)− k

λ
− 1

λ
W̃k

∣∣ ≥ C5 log n+ x
)
≤ A5 exp(−B5x) . (2.53)

where C5, A5 and B5 are positive constants depending on λ. Notice that the so constructed
Wiener process W̃ depends only on the process N−1 and on some auxiliary atomless random
variable U independent of the σ-field generated by the processes B, N and the auxiliary random
variable δ of Lemma 2.4.

On another hand, since (Bt)t≥0 is independent of (N(t) : t ≥ 0), according to Lemma 2.4,
there exists a standard Brownian process (W ∗

t )t≥0 independent of the Poisson process N(·) and
such that, for any integer n ≥ 2,

P
(
sup
k≤n

|Bk −
1√
λ
W ∗

N(k)| ≥ C6 log n+ x
)
≤ A6 exp(−B6x) , (2.54)

where C6, A6 and B6 are positive constants depending on λ. Moreover (W ∗
t )t is measurable

with respect to the σ-field generated by the processes B, N and the auxiliary random variable
δ of Lemma 2.4, which ensures that (W ∗

t )t is independent of the σ-field generated by N(·) and

U . Hence the Wiener processes W̃ and W ∗ are independent.
In what follows we shall prove that (1.15) holds true with

Wt =
1

σ(g)

( v√
λ
W ∗

t/γ − α
E(τ1)

λ
W̃t/γ

)
. (2.55)

Recall here that σ(g) is assumed to be positive. Notice that (Wt)t≥0 defined by (2.55) is a
standard Brownian motion. Indeed

v2

γλ
+ α2 (E(τ1))

2

γλ2
=

Var(X1)

E(τ1)
= lim

n→∞
Var(S̄n(g))

n
= σ2(g) .
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The two latter inequalities follow from a well known fact concerning the asymptotic variance
(see e.g. Nummelin (1984) or Chen (1999)).

Before proving that (1.15) holds true with (Wt)t≥0 defined by (2.55), let us prove that, in
addition to (2.54), we also have, for any integer n ≥ 2,

P
(

sup
0≤t≤n

|Bt −
1√
λ
W ∗

N(t)| ≥ C7 log n+ 3x
)
≤ A7 exp(−B7x) , (2.56)

where

C7 = C6 + (6 + 4λ−1)(log 2)−1 , A7 = A6 + 2 +
1

25
√
π

and
B7 = min(1, B6, (λ log 2)/4) .

With this aim we first write the following decomposition:

P
(

sup
0≤t≤n

|Bt −
1√
λ
W ∗

N(t)| ≥ C7 log n+ 3x
)
= P

(
sup

1≤k≤n
sup

k−1≤t≤k
|Bt −

1√
λ
W ∗

N(t)| ≥ C7 log n+ 3x
)

≤ P
(

sup
1≤k≤n

|Bk −
1√
λ
W ∗

N(k)| ≥ C6 log n+ x
)
+ P

(
sup

1≤k≤n
sup

k−1≤t≤k
|Bt −Bk−1| ≥ 2(log 2)−1 log n+ x

)

+ P
(

sup
1≤k≤n

sup
k−1≤t≤k

| 1√
λ
W ∗

N(t) −
1√
λ
W ∗

N(k−1)| ≥ (4 + 4λ−1)(log 2)−1 log n+ x
)

:= I1 + I2 + I3 . (2.57)

By Lévy’s inequality, for any n ≥ 2,

I2 ≤
n∑

k=1

P
(

sup
k−1≤t≤k

|Bt −Bk−1| ≥ 2(log 2)−1 log n+ x
)
≤ 2nP

(
|B1| ≥ 2(log 2)−1 log n+ x

)

≤ 2
√
2n√

π(2(log 2)−1 log n+ x)
exp(−2−1(2(log 2)−1 log n+ x)2) ≤ exp(−2x) . (2.58)

On another hand, for any y > 0,

I3 ≤
n∑

k=1

P
(

sup
k−1≤t≤k

P
∣∣ 1√

λ
W ∗

N(t) −
1√
λ
W ∗

N(k−1)| ≥ (4 + 4λ−1)(log 2)−1 log n+ x
)

≤ nP
(

sup
0≤t≤y

λ−1/2|Wt| ≥ (4+4λ−1)(log 2)−1 log n+x
)
+

n∑

k=1

P
(

sup
k−1≤t≤k

(N(t)−N(k−1)) ≥ y
)
.

Using once again Lévy’s inequality and taking y = 2−1λ((4 + 4λ−1)(log 2)−1 log n+ x) , we get,
for any integer n ≥ 2,

P
(

sup
0≤t≤y

λ−1/2|Wt| ≥ (4 + 4λ−1)(log 2)−1 log n+ x
)

≤ 2√
π

1√
(4 + 4λ−1)(log 2)−1 log n+ x

e−((4+4λ−1)(log 2)−1 logn+x)

≤ n−4/(log 2)

√
π

exp(−x) .

On another hand, by Lemma 2.2, for any y ≥ 2λ,

P
(

sup
k−1≤t≤k

(N(t)−N(k − 1)) ≥ y
)
= P

(
sup

0≤t≤1
N(t) ≥ y

)
≤ P

(
sup

0≤t≤1
|N(t)− λt| ≥ y − λ

)

≤ exp(−λh((y − λ)/λ)) ≤ exp
(
− y − λ

2
log(y/λ)

)
≤ exp

(
− (y − λ) log 2

2

)
.
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Therefore, for y = 2−1λ((4 + 4λ−1)(log 2)−1 log n+ x) and n ≥ 2,

P
(

sup
k−1≤t≤k

(N(t)−N(k − 1)) ≥ 2−1λ((2 + 4λ−1)(log 2)−1 log n+ x)
)

≤ n−1 exp
(
− xλ log 2

4

)
.

So overall, for any n ≥ 2,

I3 ≤
1

25
√
π
exp(−x) + exp

(
− xλ log 2

4

)
. (2.59)

Starting from (2.57) and considering the upper bounds (2.54), (2.58) and (2.59), (2.56) follows.
We turn now to the proof of (1.15) with (Wt)t≥0 defined by (2.55). In the rest of the proof

we shall show that, for any n ≥ 2,

P
(
sup
k≤n

|S̄k − σ(g)Wk| ≥ c log n+ dx
)
≤ A exp(−Bx) , (2.60)

where
d := 3 + |α|E(τ1) + 4v + 5‖g‖∞ + 5|α|

A := A1 + 2A4 +A5 +A7 + Eπ(e
δT0) + 2 +

√
2

π

B := min
(
B1, B4, B5, B7, 2, δ,

λ(1− log 2)

2‖g‖∞
, 2v−1

√
λ,

2λ

αE(τ1)

)

and

c := c1 +
2v√
λ log 2

+
2αE(τ1)

λ log 2
+

‖g‖∞(1 + γ)

log 2
+ |αE(τ1)|C5

(
1 +

| log γ|
log 2

)
,

with

c1 = 2vC7 + 2C4‖g‖∞ + 2v(log 2)−1 + 2C1 +
|α|E(τ1)
log 2

+ 2|α|C4 . (2.61)

The reals α, v , λ, γ and δ involved in the definition of the constants above are defined in (2.41),
(2.42), (2.45), (2.46) and (1.13) respectively, whereas the constants A1, B1, A2, B2, A5, B5, A7

and B7 have been defined previously all along the proof.
To prove (2.60), we recall the definition (2.55) of (Wt)t≥0 and first write

P
(
sup
k≤n

|S̄k(g)− σ(g)Wk| ≥ c log n+ dx
)

≤ P

(
sup
k≤n

∣∣S̄k(g)−
v√
λ
W ∗

[k/γ] + α
E(τ1)

λ
W̃[k/γ]

∣∣ ≥
(
c− 2v√

λ log 2
− 2αE(τ1)

λ log 2

)
log n+ (d− 2)x

)

+ P

(
sup
k≤n

∣∣W ∗
k/γ −W ∗

[k/γ]

∣∣ ≥ 2

log 2
log n+ v−1

√
λx

)

+ P

(
sup
k≤n

∣∣W̃k/γ − W̃[k/γ]

∣∣ ≥ 2

log 2
log n+

λ

αE(τ1)
x
)
. (2.62)

For any integer n ≥ 2, we have

P

(
sup
k≤n

∣∣W ∗
k/γ −W ∗

[k/γ]

∣∣ ≥ 2

log 2
log n+ v−1

√
λx

)

≤ n√
2π

exp
(
− 1

2

( 2

log 2
log n+ v−1

√
λx

)2)
≤ 1√

2π
exp

(
− 2xv−1

√
λ
)
. (2.63)
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Similarly

P

(
sup
k≤n

∣∣W̃k/γ − W̃[k/γ]

∣∣ ≥ 2

log 2
log n+

λ

αE(τ1)
x
)
≤ 1√

2π
exp

(
− 2xλ

αE(τ1)

)
. (2.64)

On another hand, notice that

sup
k≤n

∣∣S̄k(g)− S̄[γ[k/γ]](g)
∣∣ ≤ ‖g‖∞ sup

k≤n

∣∣k − [γ[k/γ]]
∣∣ ≤ ‖g‖∞(1 + γ)

which is less than ‖g‖∞(1+γ)
log 2 log n for any integer n ≥ 2. Therefore, since N(N−1(ℓ)) = ℓ for any

positive integer ℓ, we get that for any integer n ≥ 2,

P

(
sup
k≤n

∣∣S̄k(g)−
v√
λ
W ∗

[k/γ] + α
E(τ1)

λ
W̃[k/γ]

∣∣ ≥
(
c− 2v√

λ log 2
− 2αE(τ1)

λ log 2

)
log n+ (d− 2)x)

)

≤ I4 + I5 , (2.65)

where, by setting kγ = k/γ,

I4 := P

(
sup

γ≤k≤n

∣∣N−1([kγ ])−
1

λ
[kγ ]−

1

λ
W̃[kγ ]

)∣∣ ≥
(
1 +

| log γ|
log 2

)
C5 log n+ x

)
,

and

I5 := P

(
sup

γ≤k≤n

∣∣S̄[γN(N−1([kγ ])](g)−
v√
λ
W ∗

N(N−1([kγ ])
+αE(τ1)

(
N−1([kγ ])−

1

λ
[kγ ]

)∣∣ ≥ c1 log n+d1x
)
,

where d1 = d− 2− |α|E(τ1) and c1 is defined in (2.61). Applying (2.53), we infer that, for any
n ≥ 2,

I4 ≤ A5 exp(−B5x) . (2.66)

We handle now I5. Note that

I5 ≤ P

(
sup

t≤N−1([n/γ])

∣∣S̄[γN(t)](g)−
v√
λ
W ∗

N(t) + αE(τ1)
(
t− 1

λ
N(t)

)∣∣ ≥ c1 log n+ d1x
)

≤ P

(
sup
t≤2n

∣∣S̄[γN(t)](g)−
v√
λ
W ∗

N(t)+αE(τ1)
(
t− 1

λ
N(t)

)∣∣ ≥ c1 log n+d1x
)
+P

(
N−1([n/γ]) > 2n

)
.

(2.67)

If n < γ, then N−1([n/γ]) = 0 and the second term in the right-hand side is zero. Assume now
that n ≥ γ. Since N−1([n/γ]) has a Gamma distribution with parameters [n/γ] and λ, we have

P

(
N−1([n/γ]) > 2n

)
=

λ

([n/γ]− 1)!

∫ +∞

2n
(λx)[n/γ]−1e−λxdx

≤ λ× 2[n/γ]−1

∫ +∞

2n
e−λx/2dx = 2[n/γ]e−nλ .

Therefore since λγ = E(τ1) ≥ 1 and x ≤ 2n‖g‖∞,

P

(
N−1([n/γ]) > 2n

)
≤ exp

(
− nλ(1− log 2)

)
≤ exp

(
− x

λ(1− log 2)

2‖g‖∞

)
. (2.68)

Moreover, by using (2.56), we get that, for any integer n ≥ 2,

P

(
sup
t≤2n

∣∣S̄[γN(t)](g)−
v√
λ
W ∗

N(t) + αE(τ1)
(
t− 1

λ
N(t)

)∣∣ ≥ c1 log n+ d1x
)
≤ A7 exp(−B7x)

+ P

(
sup
t≤2n

∣∣S̄[γN(t)](g)− vBt + αE(τ1)
(
t− 1

λ
N(t)

)∣∣ ≥ (c1 − 2vC7) log n+ (d1 − 3v)x
)
. (2.69)
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But

P

(
sup
t≤2n

∣∣S̄[γN(t)](g)− vBt + αE(τ1)
(
t− 1

λ
N(t)

)∣∣ ≥ (c1 − 2vC7) log n+ (d1 − 3v)x
)

≤ P

(
sup
t≤2n

∣∣S̄[γN(t)](g)− S̄T[t]
(g)

∣∣ ≥ ‖g‖∞(2C4 log n+ 4x)
)

+ P

(
sup
t≤2n

v
∣∣Bt −B[t]

∣∣ ≥ v(2(log 2)−1 log n+ x)
)

+ P

(
sup
t≤2n

∣∣S̄T[t]
(g)− vB[t] + αE(τ1)

(
t− 1

γλ
T[t]

)∣∣ ≥
(
2C1 +

|α|E(τ1)
log 2

)
log n+ (1 + |α|+ ‖g‖∞)x

)

+ P

(
sup
t≤2n

∣∣αE(τ1)
(
λ−1N(t)− (λγ)−1T[t]

)∣∣ ≥ |α|(2C4 log n+ 4x)
)

:= I
(1)
5 + I

(2)
5 + I

(3)
5 + I

(4)
5 . (2.70)

By (2.50), for any integer n ≥ 2,

I
(1)
5 ≤ P

(
sup
t≤2n

∣∣γN(t)− T[t]

∣∣ ≥ C4 log(2n) + 4x
)
≤ A4 exp(−B4x) . (2.71)

To handle I
(4)
5 , we first notice that λγ = E(τ1). Therefore, applying (2.50), we get that, for any

integer n ≥ 2,

I
(4)
5 ≤ A4 exp(−B4x) . (2.72)

On another hand, by using Lévy’s inequality as we did in (2.58), we infer that, for any n ≥ 2,

I
(2)
5 ≤ 2nP

(
sup

0≤t≤1

∣∣Bt −B[t]

∣∣ ≥ 2(log 2)−1 log n+ x
)
≤ exp(−2x) . (2.73)

Let us now handle I
(3)
5 . With this aim, taking into account that γλ = E(τ1), we first write

sup
t≤2n

∣∣S̄T[t]
(g)− vB[t] + αE(τ1)

(
t− 1

γλ
T[t]

)∣∣ ≤ sup
k≤2n

∣∣S̄Tk
− vBk + α

(
Tk − kE(τ1)

)∣∣+ |α|E(τ1)

≤ sup
k≤2n

∣∣S̄Tk
(g)− S̄T0(g)− vBk + α

(
Tk − T0 − kE(τ1)

)∣∣+ |α|E(τ1) + T0(|α|+ ‖g‖∞) .

Therefore, taking into account (2.43), we derive that, for any integer n ≥ 2,

I
(3)
5 ≤ Pπ

(
sup
k≤2n

∣∣S̄Tk
(g)− S̄T0(g)− vBk + α

(
T[k] − T0 − kE(τ1)

)∣∣ ≥ 2C1 log n+ x
)

+ P

(
|α|E(τ1) + T0(|α|+ ‖g‖∞) ≥ |α|E(τ1)

log 2
log n+ (|α|+ ‖g‖∞)x

)

≤ A1 exp(−B1x) + Pπ

(
T0 ≥ x

)
.

Hence, for any n ≥ 2,

I
(3)
5 ≤ A1 exp(−B1x) + Eπ(e

δT0) exp(−δx) , (2.74)

where δ is defined in (1.13). Starting from (2.70) and considering the upper bounds (2.71),
(2.72), (2.73) and (2.74), it follows that, for any integer n ≥ 2,

P

(
sup
t≤2n

∣∣S̄[γN(t)] − vBt + αE(τ1)
(
t− 1

λ
N(t)

)∣∣ ≥ (c1 − 2vC7) log n+ (d1 − 3v)x
)

≤ A1 exp(−B1x) + 2A4 exp(−B4x) + exp(−2x) + Eπ(e
δT0) exp(−δx) . (2.75)

25



Starting from (2.67) and considering the upper bounds (2.68), (2.69) and (2.75), we then get
that, for any integer n ≥ 2,

I5 ≤ A1 exp(−B1x) + 2A4 exp(−B4x) +A7 exp(−B7x)

+ exp
(
− x

λ(1− log 2)

2‖g‖∞

)
+ exp(−2x) + Eπ(e

δT0) exp(−δx) . (2.76)

Starting from (2.62) and considering the upper bounds (2.63), (2.64), (2.65), (2.66) and (2.76),
the inequality (2.60) follows. This ends the proof of the theorem.
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