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Abstract. A condition monitoring system is a key element in a pre-
dictive maintenance strategy allowing to reduce the operating costs of
the monitored system. However, the system-driven generation of health
indicators requires the knowledge of the system kinematics and the con-
figuration of thresholds which may induce lots of false alarms. In this
paper, we propose a generic and data-driven method to automatically
generate system health indicators without any a priori knowledge on
the monitored system or the acquired signals. The proposed method is
based on the automatic detection of spectral content characterising every
acquired signal. Within these successive spectral contents, peaks, har-
monics series and modulation sidebands are then tracked over time and
grouped in time trajectories which will be used to generate the system
health indicators.

Keywords: condition monitoring, tracking, surveillance, fault diagno-
sis, harmonics, sidebands, signal processing, wind turbines.

1 Introduction

The installation of a Condition Monitoring System (CMS) on a mechanical ma-
chine (e.g., on a wind turbine) aims to reduce the operating costs by applying
a predictive maintenance strategy. The CMS is composed of sensors acquir-
ing signals from which system health indicators are computed and monitored.
System-driven computation of these indicators requires the monitored system
kinematics and is done by averaging large or narrow spectral bands. The aver-
aging and the need for predefined thresholds for fault detection may induce lots
of false alarms while reducing the ability to detect a fault early.

To get precise health indicators whatever the system is, we propose a generic
and data-driven monitoring strategy without any a priori knowledge on the sys-
tem or the measured signals. The first step consists in analyzing and extracting



the spectral content of each successive signal acquired by the CMS. This content
is composed of single spectral peaks, or peaks grouped in more complex struc-
tures like harmonic series or modulation sidebands. Each spectral structure is
characterized by several parameters, including for example the number of peaks,
the characteristic frequencies and the energy [1].

The second step is a time-frequency tracking of the spectral structures through
all available signals. It results in the creation of spectral structure trajectories
from which the system health indicators will be derived. The time-frequency
tracking method proposed in this paper is based on the McAulay & Quatieri
method [2] which has been originally designed for a single peak tracking in speech
signals. We have adapted [2] in order to account not only for single spectral peak
evolution but also for the evolution of more complex structures such as harmonic
series or modulation sidebands. Moreover, the proposed method is made robust
against the possible non-detection of spectral structures for some isolated signals
among all the acquisitions thanks to a sleep state adapted from [3]. Finally, in
every trajectory the temporal evolution of each spectral structure parameter can
be monitored and used as precise system health indicators.

The paper is organised as follows. The identification of spectral peaks, har-
monics series and modulation sidebands is presented in Section 2. Section 3 de-
tails the proposed time-frequency tracking method. In Section 4, the proposed
method is validated on real-world signals acquired on a wind turbine test rig.
Conclusions and perspectives are given in Section 5.

2 Identification of Spectral Peaks and Spectral Structures

Different kinds of signals are recorded by a CMS: vibration, acoustic or electrical
signals. In order to analyse a signal whatever its modality, we propose a generic
and data-driven method to automatically identify the spectral peaks and the
spectral structures like harmonic series or modulation sidebands. The different
steps of the method illustrated in Fig. 1 are fully automatic and does not need
any a priori knowledge or settings. Among a list of detected peaks, harmonic
series and modulation sidebands are identified.

Signal s Signal Spectral ... grouped by
information peaks... harmonic series and
modulation sidebands

Harmonics &
sidebands
identification

Data
Validation

identification

Fig. 1. The different steps of spectral content extraction: the data validation step
assesses some global properties of the signal in order to ease the identification of spectral
peaks which are finally grouped in harmonic series or modulation sidebands.



Let us consider a sensor acquiring signals s™ at time ¢", where n denotes the
signal index and ¢™ is the time elapsed in operating hours since the beginning of
the surveillance. Each signal is analysed independently by the following process.
A preanalysis extracts fundamental information about the signal s™ [4]. Then,
a "multi-cycle” spectral analysis strategy [5] detects the peaks P/* present in
the spectrum, with ¢ € [1, N3] being the index of the peak and N3 being the
total number of detected peaks. The list of peaks is sorted in ascending order of
frequency.

Finally, the list of peaks is parsed to identify the harmonic series H} and the
modulation sidebands MJ present in the spectrum [1], where j and k are the
index of the harmonic series and the modulation sideband respectively. These
spectral structures are characterised by several parameters, including for exam-
ple the number of peaks and the energy of the structure.

The identification of spectral peaks and structures in a sequence of signals
s™ is summarized in Fig. 2 by the discrete time-frequency map. Each detected
peak is represented by a color and shape combination. Peaks with the same color
and shape belong to the same spectral structure while the grey circles represent
the peaks which does not belong to any structure. Further readings at [5,1] for
a detailed presentation of this steps.

n

3 Time-Frequency Tracking of Peaks and Structures

Time-frequency tracking is a problematic already present in the literature. Sev-
eral methods are based on McAulay & Quatieri one [2] which is simple and
efficient but designed for peak tracking only. In [6], the peak tracking algorithm
is based on a hidden Markov models and thus has a high computation com-
plexity. Meanwhile, others methods [7,8] are able to track spectral structures
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Fig. 2. A discrete time-frequency map illustrating the identification of peaks and struc-
tures for every signal acquired. Peaks which belong to the same structure share the
same shape and colour. Grey circles represent the peaks which are not in a structure.



like harmonic series. However, the number of structure tracked should be low or
given a priori.

In our CMS context, the tracking method should be: (1) able to track both
peaks and structures, (2) generic, thus necessitating no a priori information,
and (3) able to deal with a large amount of signals, with thousands of peaks
and hundreds of spectral structures. To our knowledge, none of the methods
verifies all the criteria. Therefore, we propose to derive a method from the one
of McAulay & Quatieri which is the one with the lowest complexity. We adapted
their method to track not only peaks but also spectral structures.

However, the CMS context is quite different from the audio signal context.
The CMS acquires signals on a irregular temporal basis meaning that the state
of the system could be completely different between two acquisitions. This is
troublesome for the tracking operation. Therefore, the main hypothesis to use
our proposed tracking method is that the signals are all acquired in a “constant
machine state”, where the operational parameters are constant during the ac-
quisition and are the same for every acquisition. Angular resampling [9] may be
performed as a pre-process to assess that the constant machine state hypothesis
is verified.

3.1 Tracking of Spectral Peaks

The peak tracking is done sequentially and peak by peak, starting from the
lowest frequencies. Suppose that the tracking is done up to time ¢ and up to
peak P ;. The trajectory 77 of the next peak P will now be linked to a peak
at time t"*! by the following 2-step process.

Step 1: A search for candidate is made in the research interval Af around
the frequency f]*. If there is no candidate, the trajectory of the peak P dies.
In the case of multiple candidates, the one with the nearest frequency to f;* is
elected as the best candidate.

Step 2: The best candidate from step 1 has to verify the backward com-
patibility condition. In other words, the frequency of the best candidate has to
be closer to f* than to any other detected peak at time ¢". When the back-
ward condition is met, the best candidate is added in the peak P trajectory. If
there is no other candidate in the search interval, the trajectory of the peak P}
dies. Else, the association is made with the second best candidate in the search
interval.

To sum up, the peak trajectories are constructed sequentially with

Af Af
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backward compatibility condition
best candidate

In the original method, every peak is part of a trajectory, even if it is alone in
its trajectory. We propose to start new trajectories only if at least two successive



peaks will be included in it. Moreover, the original method is not robust against
the possible non-detection of peaks, as the trajectory directly dies. We propose to
introduce a sleep state as proposed in [3] to solve this problem. As a consequence,
a trajectory can fall asleep and wake up. If the trajectory sleeps for a too long
time (2 successive signals in our algorithm), the trajectory finally dies.

3.2 Tracking of Harmonic Series

The tracking of harmonic series is done by applying the strategy explained in 3.1
to the set of fundamental frequencies f;* of all harmonic series H}. When two
harmonic series are associated, the peaks inside the series are automatically
tracked according to their harmonic rank. This structural approach is more ro-
bust than tracking each peak independently as the tracking is efficient even if
some peaks are missing in the harmonic series. One of the missing peak can even

be the peak representing the fundamental frequency.

3.3 Tracking of Modulation Sidebands

The modulation sidebands M} are characterized by two parameters to track;
the carrier frequency f;' and the modulation frequency Af;}. However, in the
proposed method only the peaks belonging to at least one harmonic series could
be consider as a potential carrier frequency. Therefore, the carrier frequency has
already been tracked during the tracking of harmonic series (see 3.2).

It becomes then possible to track the modulation sidebands thanks to the
strategy explained in 3.1 applied on the set of modulation frequencies Af}'
present around each carrier frequency trajectory.

As for harmonic series, when modulation sidebands are tracked, the peaks
inside the modulation are automatically tracked thanks to their modulation fre-
quency. As a consequence, to track all the spectral content without redundancy,
the tracking operations are done in the following order: (1) identification of the
harmonic series trajectories 77, (2) identification of the modulation sideband
trajectories 7™, and (3) the identification of remaining peak trajectories 77 .
The remaining peaks are the peaks which are not yet in any trajectory after
harmonic and modulation tracking.

3.4 Generation of the System Health Indicators

The system health indicators are generated from the spectral structure trajec-
tories. Each structure is characterised by several parameters, including for ex-
ample the number of peaks and the energy [1]. The temporal evolution of these
parameters for each trajectory are used as health indicators. Examples of these
indicators are given in the next section of the paper.



4 Experiments

4.1 Description of the Wind Turbine Test Rig

A test rig developed by the CETIM within the frame of the KAStrion project
has been designed according to a wind turbine kinematics. Instead of the blades,
a geared-motor of 10 kW generates the rotation of the main shaft (around 20
RPM). A multiplier with a ratio of 100:1 increases the rotational speed, allowing
the generator to operate around 2000 RPM.

Among the several sensors installed on the test rig (accelerometers, thermo-
couples, torquemeters, tachometers, voltage and current probes), we will focus
on the 3 accelerometers which take place on the main bearing and which are
illustrated in Fig. 3. The 4z accelerometer is in the axial direction while the +y
and —z are in radial directions.

The vibration acquisition is done while the test rig works under stationary
conditions which remain the same for every acquisition. Therefore, the hypothesis
of constant machine state is met. Each vibration signal lasts 150 seconds and is
sampled at 39062.5 Hz.

One of the rig tasks consists in damaging the main bearing thanks to a loading
unit and non-stationary working conditions which have been programmed to
simulate real wind speed profiles. The results of the proposed method on the
degradation of two different main bearings is presented in 4.2 and 4.3.

4.2 Medium Degradation of the Main Bearing

For each accelerometer, 12 vibration signals were recorded during the main bear-
ing medium degradation. In each signal, an average of 19400 peaks were detected
and grouped in 750 harmonic series and 21500 modulation sidebands. If these

Fig. 3. A picture of the wind turbine test rig. The 3 accelerometers are represented by
green arrows. The main bearing and its loading unit is circled in orange.
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numbers seem large, one has to remember that the identification methods oper-
ate over all the signal frequency band without any a priori.

Let us first consider the accelerometer in the —z direction. After the track-
ing operations, 1084 harmonic series trajectories and 564 modulation sideband
trajectories are identified. Among the remaining peaks, 9327 trajectories are
created.

One of the trajectory is particularly interesting. It is a harmonic series trajec-
tory which energy suddenly and rapidly increases from approximatively 0.011 to
1.6 pm?.s~2 after 203 operating hours (see Fig. 4). The fundamental frequency
of this harmonic series is 2.72 Hz and corresponds to the Ball Pass Frequency of
the Outer ring (BPFO) of the main bearing.

The wear test is stopped after 214 operating hours although the rig is still able
to operate. The main bearing is dismantled for visual inspection; 3 small flaking
were present on the outer ring. This confirms the relevancy of the automatically
generated indicator.

The results of the other accelerometers (+x,+y) will not be presented here
as they show high similarity to the result of accelerometer —z.

4.3 Full Degradation of the Main Bearing

For this second wear test, another kind of main bearing is used with a differ-
ent kinematics. Let us consider the +y accelerometer. 17 vibration signals were
recorded, containing an average of 9000 peaks, 600 harmonic series and 12000
modulation sidebands. After the tracking operations, we get 828 harmonic series
trajectories and 9373 modulation sideband trajectories. 12406 peak trajectories
are created among the remaining peaks.

Fig. 5 shows one harmonic series trajectory deserving a special attention.
On the top of the figure, peaks are symbolised by small grey circles on the
discrete time-frequency map. The time localization of the peaks correspond to
the signal acquisition timestamp. The zoom in the top left corner shows the
high peak density. Among these detected peaks, a particular peak at 3.45 Hz is
tracked from 44 to 189 operating hours and is represented by bigger and blue
circles. About 129 hours, this peak trajectory evolves to become a harmonic

20 40 60 80 100 120 140 160 180 200 220
Time (in operating hours)

Fig. 4. Medium degradation of the main bearing. The energy in the inner ring harmonic
series starts increasing around 200 operating hours. After 214 hours, the test is stopped
and the bearing is dismantled for inspection.



series trajectory with more and more peaks (see the increasing number of blue
circles). Also, the energy of this trajectory increases and is represented by the
orange plot in the middle of Fig. 5. The last plot in the bottom of Fig. 5 shows
that the frequency of the trajectory is slightly decreasing.

Moreover, a 0.33 Hz modulation sidebands started to appear after 134 oper-
ating hours around the 3.45 Hz carrier frequency. As shown in Fig. 6, the number
of sidebands increases accordingly to the severity of the fault.

The 3.45 Hz corresponds to the Ball Pass Frequency of the Inner ring (BPFI).
The apparition of harmonics and sidebands at 129 and 134 operating hours
respectively are an early warning of a fault birth. The fault severity is then
characterized by the increase in both energy and number of sidebands. The
slightly decreasing frequency is explained by the fact that the inner ring wear
generates slipping.

A second harmonic series trajectory also deserves some attention. Its funda-
mental frequency of 2.54 Hz corresponds to the BPFO. As shown in Fig. 7, its
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Fig. 5. Evolution of the main bearing fault, seen by the 4y accelerometer. On the
top, all detected peaks are represented by small grey circles on the time-frequency
map. Blue and bigger circles belongs to the same harmonic series trajectory linked to
the inner ring fault. Below, two trends of the harmonic series are plotted: the energy
increases while the fundamental frequency is slightly decreasing.



energy starts increasing from 144 operating hours, that is 15 operating hours
after the early warning of the BPFT fault. It means that the fault is spreading
in the main bearing and its severity is increasing.

On the top of Fig. 5, it is possible to see on the time-frequency map that
around 163 hours few peaks were detected in the signal. The spectral analysis was
not able to identify the peaks and structures for this particular signal. Indeed,
other tests [4] were applied and concluded on the fact that this signal was highly
non-stationary due to a high impulse in the vibration signal. Nervertheless, the
tracking of harmonic series and modulation sidebands was not stopped as it is
shown in Fig. 5, 6 and 7. In fact, the sleep state allowed the tracking to continue.
The sleep state is represented by a dotted line on the different curves.

The combination of the four automatically generated indicators (the energy
and the frequency of the harmonic series at 3.45 Hz, the number of sidebands
around the carrier frequency 3.45 Hz and the energy of the harmonic series at
2.54 Hz) mirrors out the failure and confirms the value the proposed data-driven
method. These four indicators are part of a long list of automatically generated
indicators. In order to make a full automatic system health diagnosis, further
work will focus on identifying automatically the most interesting indicators.

5 Conclusions

We proposed in this paper a complete generic and data-driven method to au-
tomatically generate system health indicators. The two steps of the proposed
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Fig. 6. Evolution of the number of modulation sidebands around the slowly evolving
carrier frequency starting at 3.45 Hz. The modulation frequency is equal to 0.333 Hz.
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Fig. 7. Propagation of the fault: the energy of the outer ring harmonic series is also
increasing after 145 operating hours.



method are (1) the identification of the spectral structures present in each sig-
nal spectrum, and (2) the tracking of these detected spectral structures through
all the available signals. The trajectories constructed during the tracking oper-
ations are finally used to derive the system health indicators from the structure
parameters.

The proposed approach is validated on real-world signals, recorded on a wind
turbine test rig. Two different main bearings have been damaged. In both cases,
the system health indicators automatically generated could detect the fault in
its early stage. The severity of the faults is characterised by the time evolution
of the health indicators.

The number of system health indicators generated is large. Therefore, fu-
ture work will focus on sorting and classifying these indicators to make a fully
automatic tool for system diagnosis.
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