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A NATURAL GENERALIZATION OF BALANCED TABLEAUX

FRANÇOIS VIARD

Abstract. We introduce the notion of “type” of a tableau, that allows us to

define new families of tableaux including both balanced and standard Young
tableaux. We use these new objects to describe the set of reduced decompo-

sitions of any permutation. We then generalize the work of Fomin et al. by

giving, among other things, a new proof of the fact that balanced and standard
tableaux are equinumerous, and by exhibiting many new families of tableaux

having similar combinatorial properties to those of balanced tableaux.

1. Introduction

Since the fundamental paper of Stanley [10], it is well-known that standard
Young tableaux interact with the weak order, providing and important tool to enu-
merate the reduced expressions of any permutation (see also [3, 4, 7, 8]). Another
important family of tableaux called balanced tableaux has been defined in [3] by
Edelman and Greene to study this enumerative problem. The surprising feature
of balanced tableaux is that they are equinumerous with standard tableaux of the
same shape λ. This was showed in the original paper [3] with a quite involved
proof. The notion of balanced tableaux was further generalized in [4], with the in-
troduction of the set of balanced tableaux of shape D(σ), where D(σ) denotes the
Rothe diagram of the permutation σ. By using this new family, the authors gave in
[4] a new interpretation of the set of reduced expressions of any permutation, and
derived from this a new and more accessible proof of the fact that balanced and
standard tableaux are equinumerous.

In this article, we give a wide generalization of the previous result using the
results from [12]. Namely, we give a new interpretation of the set of reduced ex-
pressions of a permutation from which we define many families of tableaux having
similar combinatorial properties as those of balanced tableaux. As a corollary of
our method, we provide an alternative proof that balanced and standard tableaux
are equinumerous.

In order to do so, we deal with a bigger class of tableaux which are not required
to be standard or balanced. To each tableau T of shape S, where S is any finite
subset of N × N, we associate a combinatorial object T called the type of T . This
allows us to split the set of tableaux of shape S into different classes: two tableaux
being in the same class if and only if they have same type. Let us denote by Tab(T )
the set of all the tableaux having type T . In particular, both sets of standard and
balanced tableaux are special instances of this classification. We also provide an
algorithmic process allowing us to construct all tableaux having a given type, and
in particular this allows us to easily obtain all balanced tableaux of a given shape.
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In Section 4.1, we associate each permutation σ ∈ Sn with a type Tσ such that
we have a one-to-one correspondence between Tab(Tσ) and Red(σ), where Red(σ)
is the set of reduced expressions of σ. This gives a new combinatorial interpreta-
tion of reduced expressions of any permutation (not fundamentally different from
the one given in [4], but maybe more natural with respect to the results in [12]).
Then, we focus on the case of vexillary permutations, namely permutation being
2143-avoiding, which are one of the main objects studied in [4]. It is well-known
[10] that each vexillary permutation σ is associated with a partition λ(σ) such that
|Red(σ)| equals the number of standard tableau of shape λ(σ). We then introduce
a transformation on types called the exchange algorithm (see Section 4.3), and we
use it to prove the following theorem.

Theorem 4.14. Let σ ∈ Sn be a vexillary permutation and T Eσ be the type obtained
by performing the exchange algorithm on Tσ. Then, |Tab(T Eσ )| equals the number
of balanced tableaux of shape λ(σ), and each element of Tab(T Eσ ) is of shape λ(σ).

This result provides a generalization of Edelman and Greene result. Indeed, we
have the following two facts:

• from Theorem 4.14 can be deduced that balanced and standard tableaux
are equinumerous (see Section 4.5);
• for any vexillary permutations σ ∈ Sn and ω ∈ Sm, we have T Eσ = T Eω if

and only if σ can be obtained from ω by adding or deleting some fix points
at its end and beginning (see Section 4.6).

We finish our study with exhibiting some combinatorial properties of the types
T Eσ (see Section 5). We explain how a new combinatorial description of Schur
functions arise from them, and we enumerate the elements of Tab(T Eσ ) such that
the integers 1, . . . , k appear in given fixed positions. This last proposition provides
a direct proof of [3, Equation (2.4)] as asked by Edelman and Greene.

2. Definitions, notations and background

In this section, we recall some basic definitions and background about standard
and balanced tableaux.

A partition λ of a nonnegative integer n ∈ N is a nonincreasing sequence of
nonnegative integers λ1 ≥ λ2 ≥ · · · such that

∑
λi = n. The integers λi 6= 0

are called parts of the partition λ. The Ferrers diagram of λ is a finite collection
of boxes, or cells, arranged in left-justified rows of lengths given by the parts of
λ. By flipping this diagram over its main diagonal, we obtain the diagram of the
conjugate partition of λ, denoted by λ′. We usually identify a partition with its
Ferrers diagram.

More generally, in this article we work with diagrams of arbitrary shape, namely
finite subsets of N × N, without any constrain: let S ⊂ N × N such that |S| = n
(where |S| denote the cardinal of S). We identify S with a set of boxes in the
plan, using the English convention for the coordinates of each box (i.e. we use
“matrix-like coordinates”). A tableau T of shape S is a bijective filling of S (seen
as a set of boxes) with entries in [n] := {1, 2, . . . , n}. Given a tableau we denote
its shape by Sh(T ). If we require Sh(T ) to be a partition λ, then T will be what is
usually called a Young tableau. Moreover, if we consider Young tableaux satisfying
the conditions that the filling is
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(1) increasing from left to right across each row;
(2) increasing down each column;

we obtain the set of standard Young tableaux of shape λ, denoted by SYT(λ).

Definition 2.1. Let S be a diagram and c = (a, b) be a box of S. We define the
following sets,

LS(a, b) = {(k, b) | k ≥ a, (k, b) ∈ S}, AS(a, b) = {(a, k) | k > b, (a, k) ∈ S}, (1)

HS(a, b) = AS(a, b)
⊎
LS(a, b), (2)

respectively called the leg, the arm, and the hook based on (a, b). We will denote
by lS(a, b), aS(a, b), and hS(a, b) their respective cardinalities.

This notion of hook allows us to enumerate standard Young tableaux, thanks to
the well-known hook-length formula (see [11] for more details about this formula).

Theorem 2.2. Let λ be a partition of the integer n, seen as a diagram. Then, we
have

|SYT(λ)| = n!∏
(a,b)∈λ hλ(a, b)

.

In [3], Edelman and Greene introduced the concept of balanced tableaux, defined
as follows.

Definition 2.3. Let S be a diagram such that |S| = n. A balanced tableau T =
(ta,b)(a,b)∈S of shape S is a Young tableau satisfying the following condition:

for all (a, b) ∈ S, aa,b = |{(x, y) ∈ HS(a, b) | tx,y < ta,b}|.
We denote by Bal(S) the set of all balanced tableaux of shape S.

In [3] the authors proved the following result about combinatorics of balanced
tableaux.

Theorem 2.4 ([3], Theorem 2.2). Let λ be a partition of n. Then, we have

|Bal(λ)| = |SYT(λ)| = fλ.

The original proof is quite involved, and an alternative one is given in [4], which
we now detail. In order to do so, we need to introduce the notion of reduced
decomposition of a permutation and of vexillary permutation. It is classical that
the symmetric group Sn is generated by the simple transpositions si = (i, i + 1),
i ∈ [n − 1], exchanging the positions of the integers i and i + 1. We denote by
`(σ) the minimal integer such that σ can be written as a product of `(σ) simple
transpositions, and we define the reduced decompositions of any σ ∈ Sn to be the
elements of the set of word on {s1, . . . , sn−1}

Red(σ) := {si1 · · · s`(σ) | sj ∈ S and si1 · · · s`(σ) = σ}.
Reduced decompositions are closely related to a partial order on Sn, called the
(right) weak order and denoted by ≤R. The weak order is defined as the transitive
and reflexive closure of the covering relations

for all σ, ω ∈ Sn, σ CR ω if and only if there exists i ∈ [n− 1]

such that σ = ω.si and `(ω) = `(σ) + 1.

In this context, there is a clear one-to-one correspondence between reduced decom-
positions of σ and maximal chains from Id to σ in the poset (Sn,≤R). There is also
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an alternative description of this poset in terms of inversion sets. For all σ ∈ Sn,
we define its inversion set to be

Inv(σ) := {(a, b) | 1 ≤ a < b ≤ n and σ−1(a) > σ−1(b)}.
It is classical that for any σ, ω ∈ Sn, we have that σ ≤R ω if and only if Inv(σ) ⊆
Inv(ω) (see, for instance, [2]).

We now define vexillary permutations.

Definition 2.5. Let σ ∈ Sn, we denote by (di(σ))i and (gi(σ))i the finite sequences
defined by

• di(σ) := |{j > i | σ(j) < σ(i)}|,
• gi(σ) := |{j < i | σ(j) > σ(i)}|.

We denote by µ(σ) and λ(σ) the partitions obtained by rearranging in a nonin-
creasing order the sequences (di)i and (gi)i, respectively. We say that σ is vexillary
if and only if λ(σ) = µ′(σ).

In [10], Stanley proved the following result using symmetric functions, giving an
explicit formula to compute the number of reduced decompositions of any vexillary
permutation.

Theorem 2.6 (Stanley, [10]). Let σ ∈ Sn, if σ is vexillary then

|Red(σ)| = fλ(σ).

We are now able to explain the proof of Theorem 2.4 that can be found in [4],
which uses Theorem 2.6 as fundamental tool. The first step consists in associating
a diagram to each permutation.

Definition 2.7. Let σ ∈ Sn, the Rothe diagram D(σ) of σ is the subset of [n]× [n]
defined by

D(σ) := {(a, σ(b)) ∈ [n]× [n] | a < b and σ(a) > σ(b)}.

1 2 3 4 5
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3
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1

4

1 2 3 4 5
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4

12

3

4

5 6 7

Figure 1. Rothe diagram of the permutation σ = [5, 3, 2, 1, 4] (on
the left) and a balanced tableau of shape D(σ) (on the right).

As it is shown in [4], the balanced tableaux whose shape is the Rothe diagram
of a given permutation σ (also called balanced labellings of D(σ)) are intimately
related to the reduced decompositions of σ.

Theorem 2.8 ([4], Theorem 2.4). Let σ ∈ Sn and D(σ) be its Rothe diagram.
Then, there is a bijection between the set of the reduced decompositions of σ and
the set of the balanced tableaux of shape D(σ).
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Let us briefly explain how this bijection is constructed. By definition of the
Rothe diagram of a permutation σ ∈ Sn, it is clear that

(a, σ(b)) ∈ D(σ) if and only if (a, b) ∈ Inv(σ).

Thus, a balanced tableau corresponds to an ordering [(a1, b1), . . . , (a`(σ), b`(σ))] of
the inversions of σ. Furthermore, the authors proved in [4] that {(a1, b1), . . . , (ai, bi)}
is the inversion set of a permutation σi ∈ Sn for all 1 ≤ i ≤ `(σ). Therefore, we
have

IdCR σ1 CR σ2 CR . . .CR σ`(σ) = σ,

i.e., a balanced tableau of shape D(σ) corresponds to a maximal chain from Id to
σ in the weak order on Sn. Thus, it corresponds to a reduced decomposition of σ,
and it is proved in [4] that this correspondence is bijective.

Eventually, this correspondence leads to a proof of Theorem 2.4.

Theorem 2.9 ([4], Theorem 3.4). Let λ be a partition of n. Then, there exists a
vexillary permutation σ ∈ Sk for some k ∈ N such that

• λ(σ) = λ;
• the shape of D(σ) is λ (up-to the deletion of some empty columns).

Combining Theorem 2.6 and Theorem 2.9, Theorem 2.4 follows immediately.
In the sequel of this article, we will generalize Theorem 2.4 by exhibiting many
families of tableaux having similar combinatorial properties as those of balanced
tableaux.

3. Type of a tableau, definition and general properties

In this section, we introduce a natural generalization of balanced tableaux. We
then study some of the properties of these generalizations and and mention some
of the questions that naturally arise from this concept.

3.1. Definition of types and filling algorithm. In this section, S will denote a
diagram without any constraint on its shape.

Definition 3.1. A type of shape S is a filling of S with integers (θ(c))c∈S satisfying
the following condition: for all c ∈ S,

0 ≤ θ(c) ≤ hc(S)− 1.

We denote by Type(S) the set of all the type being of shape S.

In the following definition, we explain how one can associate a type to each
tableau of a given shape.

Definition 3.2. Let T = (tc)c∈S be a tableau of shape S. The type of T is the
type T = (θ(c))c∈S such that for all c ∈ S,

θ(c) = |{d ∈ HS(c) | td < tc}|.
We denote by TabS(T ) the set of all tableaux of shape S whose type is T . When
there is no ambiguity, we simply denote this set by Tab(T ).

Example 3.3. Both balanced and standard tableaux are special instances of this
classification: let B = (ac(S))c∈S be the type whose each box is filled by its arm
length, and St ∈ Type(S) be the type whose each box is filled by the integer 0. By
definition, we clearly have that Tab(B) = Bal(S). Moreover, if T ∈ Tab(St), then
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each integer appearing in T is minimal in its associated hook. Thus, the entries
in T are increasing from left to right along each row and decreasing from top to
bottom along each column, so that Tab(St) is the set of standard tableaux of shape
S.

Definition 3.2 provides a way to classify all tableaux according to their type.
However, at this stage it is unclear if Tab(T ) is empty or not for any given type
T . In what follows, we give a combinatorial way to construct all the elements of
Tab(T ), which will implies that Tab(T ) 6= ∅ for any T ∈ Type(S). We begin with
a useful definition.

Definition 3.4. Let T = (θ(c))c∈S ∈ Type(S) and c ∈ S. We say that c is erasable
in T if and only if the following two conditions are satisfied:

(1) θ(c) = 0;
(2) for all d ∈ S \ {c} such that c ∈ HS(d), we have θ(d) 6= 0.

Clearly, if we consider an erasable box c of a type T of shape S, if we suppress
the box c and we decrease by one the integer in each box d ∈ S \ {c} such that
c ∈ HS(d), then what we obtain is a type of shape S \ {c}. This fact allows us to
construct all the elements of Tab(T ), as it is explained after the following technical
lemma.

Lemma 3.5. Let T = (θ(c)) ∈ Type(S). Then, there exists a box c which is
erasable in T .

Proof. Since S is finite, there exists a box d such that HS(d) = {d}. Thus, we
have θ(d) = 0. Let us now construct a sequence (di)i≥1 of pairwise distinct boxes
of S such that d1 = d, θ(dj) = 0 for all j ≥ 1, and dj ∈ HS(dj+1), and assume
that the length k of this sequence is maximal. By maximality, for all c such that
dk ∈ HS(c) we have θ(c) 6= 0. Consequently, dk is erasable in T , and this concludes
the proof. �

Definition 3.6 (Filling process). Let T ∈ Type(S) and L = [c1, . . . , c|S|] be a
sequence of pairwise distinct boxes of S. We say that L is filling sequence of T if
and only if there exists a sequence of types (Ti)1≤i≤|S| such that

• T1 = T ;
• for all 1 ≤ i ≤ |S|, ci is erasable in Ti;
• for all 1 ≤ i < |S|, Ti+1 is obtained from Ti by suppressing ci in Ti and

decreasing by one the valuation in each box d ∈ S′ := S \ {c1, . . . , ci−1}
such that ci ∈ HS′(d).

We associate each filling sequence L = [c1, . . . , c|S|] with a tableau TL = (tc)c of
shape S defined by tci = i for all 1 ≤ i ≤ |S|.
Remark 3.7. Note that the filling process is a special instance of the peeling process
introduced in [12].

Proposition 3.8. For any filling sequence L, we have TL ∈ Tab(T ), and the map
L 7→ TL is a bijection.

Proof. This is clear by induction on |S|. �

Example 3.9. Consider the type T on the top-left of Figure 2 and the filling
sequence L = [(1, 3); (1, 1); (1, 2); (2, 2); (2, 1)] (since we represent Ferrers diagrams
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with the English convention, we use the matrix coordinates for each box). The
types on the top of the figure are the types obtained after each iteration of the
filling process.

0

0

12

1

1 0

01

0

01 1 0 0

T = P0 P1 P2 P3 P4 P5

1 12 123 13 2

4

2

5 4

3 1

TL

Figure 2.

Thanks to the previous proposition and Lemma 3.5, we also have the following
result which concludes this section.

Proposition 3.10. For all T ∈ Type(S), we have Tab(T ) 6= ∅.
3.2. Some results about the enumeration of Tab(T ). Now that we have a
classification of all the tableaux of a given shape according to their type and a way
to construct all tableaux in a given class, the following natural questions arise.

Question 3.11.

(1) Is it possible to find a formula to compute |Tab(T )| For any type T ?
(2) At least, can we exhibit some family of types for which the number of

corresponding tableaux can be computed?

Even if the general case seems to be quite difficult, we have some basic properties
in that direction that we now detail. First, note that if λ = (n) or λ = (1n), then
for any T ∈ Type(λ) there exists a unique tableau of type T . This is clear, since
at each iteration of the filling process there is only one (i, j) ∈ λ which is erasable.
This basic fact leads us to our first enumerative proposition, generalizing Lemma 3.2
from [3].

Proposition 3.12. Let k and p be two integers and T be a type of shape λ = (k, 1p).
Then, we have

|Tab(T )| = fλ.

Proof. First, note that for any tableau T = (tc)c∈λ of type T , we have t1,1 =
θ(1, 1) + 1 by definition. Thus, if we set S := λ \ {(1, 1)} (see Figure 3) and
T ′ := (GS , θ), then we have

|Tabλ(T )| = |TabS(T ′)|.
Moreover, when we perform the filling process on T ′, the only thing we have to

chose at each step is an element in the leg or in the arm of S, and this is independent
of the choice of T . This concludes the proof. �

In general, finding an explicit formula for the number of tableaux of a given
type T seems to be a quite complicated problem (note that an approach similar to
that of [5, 9] has not been tried yet). However, a probabilistic approach might be
possible, as suggested by the following result.
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Arm of the type

Leg of the type

Figure 3.

Proposition 3.13. Let S be a diagram, if we choose uniformly a type T in Type(S),
then the expected value for |TabS(T )| is

n!∏
c∈S hS(c)

.

Proof. Set HS =
∏

c∈λ hS(c), it is clear that the number of types of shape S is
precisely HS . Then, because of the uniform choice, the probability for a type T to
be chosen is exactly 1

HS
. Thus, the expected value for |Tab(T )| is∑

T ∈Type(S) |TabS(T )|
HS

,

and the numerator clearly equals n!. The result follows. �

This last proposition leads us to the following natural question.

Question 3.14. Is it possible to find an explicit formula for the variance ?

This last question is open, and it seems that the value of the variance heavily
depends on the shape of the considered diagram: for instance, some tests suggest
that the variance is maximal when we consider a square shape.

4. Types and reduced decompositions of permutations

In this section, our objective is twofold: we give a positive answer to Ques-
tion 3.11 (2), and we provide a wide generalization of Theorem 2.4. More precisely,
we explain how to associate each vexillary permutation σ with a type T Eσ of shape
λσ (we will explain in Section 4.3 what the index “E” stands for) such that:

• |Tab(T Eσ )| = fλ(σ);
• the map σ 7→ T Eσ is injective up-to an explicit and simple equivalence

relation (see Section 4.6);
• elements of Tab(T Eσ ) share many combinatorial properties similar to those

of balanced tableaux (see Section 5).

4.1. Type associated with a permutation. We first explain how one can asso-
ciate any permutation σ with a type Tσ such that |Tab(Tσ)| = |Red(σ)|, using the
results from [12].

Let λn denote the staircase partition (n−1, n−2, . . . , 1). We identify the Ferrers
diagram of λn with the set {(a, b) ∈ N|1 ≤ a < b ≤ n}, by choosing new coordinates
for each box of λn, as depicted on Figure 4. Thanks to these coordinates, we
associate to each box (a, b) ∈ λn the integer θ(a, b) = b− a− 1, and this defines a
type An of shape λn, as depicted on the right of Figure 4.

Using the type An, we can associate each permutation with a type, thanks to
the following definition and proposition.
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1

1

2

23

The coordinates of this box

are (2, 5).

Type associated with λ5.

Figure 4. Representation of the type An.

Definition 4.1. We denote by Tσ the sub-diagram of λn made of the boxes whose
coordinates are the elements of Inv(σ), and such that each box c ∈ Inv(σ) is filled
with the integer θ(c) coming from the definition of An.

Proposition 4.2. Let σ ∈ Sn. Then, Tσ is a type and we have

|Tab(Tσ)| = |Red(σ)|.
Proof. This is an immediate reformulation of [12, Theorem 4.1]. �

Remark 4.3. Notice that it is possible to construct a one-to-one correspondence
between elements of Tab(Tσ) and balanced tableaux of shape D(σ), by swapping
positions of some rows in elements of Tab(Tσ). Therefore, it is possible to reformu-
late what follows in terms of Rothe diagram and their labbelings. However, using
Rothe diagrams instead of types Tσ would require to rewrite most of the results
from [12], without major modification. Furthermore, the use of the types Tσ seems
to be more natural, since they have similar properties as those of Rothe diagrams,
and provide a natural description of the weak order and its combinatorics.

4.2. A transformation on types. At this point, we already have a way to as-
sociate each vexillary permutation σ with a type Tσ such that |Tab(Tσ)| = fλ(σ).
However, in general the shape of Tσ is not the Ferrers diagram of λ(σ). In the
sequel, we introduce a combinatorial transformation on types that will allow us to
turn Tσ into a type of shape λ(σ) whenever σ is vexillary.

Let us begin this section with introducing two notations.

Definition 4.4. Let S be a diagram and “a” (resp. “b”) be a row (resp. a column)

of S. We denote by S↓a (resp.
−→
S b) the diagram obtained by swapping rows a and

a+ 1 (resp. columns b and b+ 1) of S.

Definition 4.5. Let T be a tableau of shape S and a (resp. b) a row (resp. a

column) of S. We denote by T↓a (resp.
−→
T b) the tableau of shape S↓a (resp.

−→
S b)

obtained from T by exchanging rows a and a+ 1 (resp. columns b and b+ 1).

Let us consider a type T of shape S and let a be the index of a row of S.
In general, the set A = {T ↓a | T ∈ Tab(T )} does not correspond to a class of
our classification. That is, in general there is no type T ′ of shape S↓a such that
A = Tab(T ′). However, we will prove in the sequel of this section that such a type
T ′ exists in a specific case.
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Definition 4.6. Let S be a diagram, T ∈ Type(S) and “a” be the index of a row
of T . We say that the row a is dominant if and only if

• for all (a, y) ∈ N× N, if (a, y) ∈ S, then (a+ 1, y) ∈ S;
• for all (a, y) ∈ S we have θ(a, y) > θ(a+ 1, y).

We have a similar definition of dominant column (see Figure 5) for a graphical
representation of these two notions).

0

0

0

00 11

1

1

1

1

22 22

4 2

0

0

0

0

0

0

0

1

1

1

1

2

2

2 2

3

5

2

Figure 5. A dominant row (on the left) and a dominant column
(on the right).

Before moving to the combinatorial study of the types having a dominant row
or column, let us introduce one last notation.

Definition 4.7. Let T be a type of shape S and “a” be the index of a dominant
row of T . We denote by T ↓a the type of shape S↓a being obtained from T by first
decreasing by one all the integers in the row a of T , then by swapping rows a and
a + 1 (resp. columns b and b + 1) of T , and keeping all other entries unchanged
(see Figure 6).

00131

2 2 1

011

Dominant
row

00131

1 1 0

011

-1

011

1 1 0

1 3 1 0 0

T T ↓1

Figure 6. From T to T ↓1.

Our aim is now to prove that for any dominant row a of a type T we have

{T↓a | T ∈ Tab(T )} = Tab(T ↓a). (3)

For that purpose, we first prove a technical lemma.

Lemma 4.8. Let T = (GS , θ) ∈ Type(S) and a be the index of a dominant row of
T . Then, for any T = (tc) ∈ Tab(T ), we have ta,y > ta+1,y for all (a, y) ∈ S.

Proof. Let T = (t(x,y))(x,y)∈S ∈ Tab(T ), and assume by contradiction that the
lemma is not true and consider y maximal such that t(a,y) ≤ t(a+1,y). Let c ∈
HS(a, y) \ {(a, y)} such that tc < t(a,y), and let us split our study into two cases.

• If c ∈ LS(a, y), then we have that c ∈ HS(a+1, y) and tc < t(a,y) ≤ t(a+1,y).
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• If c ∈ AS(a, y), then there exists z > y such that c = (a, z), and we have
by maximality of y

t(a+1,y) ≥ t(a,y) > t(a,z) > t(a+1,z).

This is enough to show that θ(a, y) ≤ θ(a+ 1, y), and this contradicts the fact that
a is dominant. This concludes the proof. �

We now prove that (3) holds.

Proposition 4.9 (Exchange property). Let T be a type and “a” (resp. b) be a

dominant row (resp. column) of T . Then, the map T 7→ T↓a (resp. T 7→ −→T b) is a

bijection between Tab(T ) and Tab(T ↓a) (resp. Tab(
−→T b)).

Proof. Let T ∈ Tab(T ), and denote by T ′ = (θ′(c))c∈S↓a the type of the tableau
T ′ := T↓a= (t′x,y). We will prove that T ′ = T ↓a.

Let (x, y) be a box of S↓a and let us define the following set

Hx,y(T ) := {ta,b | (a, b) ∈ Hx,y(Sh(T )) }.
We split our study into three cases.

• If x /∈ {a, a + 1}, then we have Hx,y(T ) = Hx,y(T ′), so that θ′(x, y) =
θ(x, y).

• If x = a, then we have Ha,y(T ′) = Ha+1,y(T )∪{ta,y}. However, by Lemma
4.8 we have t′a,y = ta+1,y < ta,y, so that θ′(a, y) = θ(a+ 1, y).

• If x = a+1, then we have Ha+1,y(T ′) = Ha,y(T )\{ta+1,y}, so that θ′a+1,y =
θa,y − 1.

Then, we have T ′ = T ↓a, hence T 7→ T ↓a send an element of TabS(T ) to an
element of TabS↓a(T ↓a). Similar arguments show that T 7→ T ↓a also sends an
element of TabS↓a(T ↓a) to an element of TabS(T ), but ↓a is an involution, so that
it is bijection. This concludes the proof for rows. The proof of the same property
for columns is similar. �

We finish this section with a useful definition.

Definition 4.10. Let T be a type of shape S and a be the index of a row of T .
The row a is called dethroned if and only if

• for all (a, y) ∈ N× N, if (a, y) ∈ S, then (a− 1, y) ∈ S;
• for all (a, y) ∈ S we have θ(a− 1, y) ≤ θ(a, y).

We have a similar notion of dethroned column.

Obviously, if a is a dominant row of T , then a+ 1 is a dethroned line of T ↓a and
conversely. The same holds for dominant columns. If a + 1 is a dethroned line of
T , we denote by T ↑a+1 the unique type such that (T ↑a+1)↓a= T .

4.3. The exchange algorithm. In this section, we explain how one can turn the
type Tσ (where σ ∈ Sn is vexillary) into a type of shape λ(σ) using recursively
Proposition 4.9 on lines and columns.

Definition 4.11 (Line-exchange algorithm). Let T be a type of shape S, the line-
exchange algorithm is the algorithm described below.

(1) Erase all the empty rows of T .
(2) Set i := 1.
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(a) If i is a dominant row of T , then set T := T ↓i and go back to step
(2). Otherwise, go to step (2-b).

(b) If there is no row below i, then the algorithm stops. Otherwise, set
i := i+ 1 and go back to step (2-a).

We denote by T L the type obtained after we perform the line-exchange algorithm.

There is an obvious analogous column-exchange algorithm, and we denote by T C
the type obtained after we perform this algorithm on a type T .

Lemma 4.12. For any type T , we have

|Tab(T )| = |Tab(T L)| = |Tab(T C)|.
Proof. It is clear by Proposition 4.9. �

Definition 4.13. For all type T , we denote by T E the type (T L)C obtained by
first performing the line exchange algorithm on T , and then performing the column
exchange algorithm on T L.

We now state the main result of this section, whose proof is detailed in Section 4.4

Theorem 4.14. Let σ ∈ Sn be a vexillary permutation and Tσ be its associated
type. Then, we have:

(1) |Tab(T Eσ )| = fλ(σ) = fλ(σ)′ ;
(2) The shape of T Eσ is λ(σ)′.

0

0

0

0

0000

00

00

00

33

33

33

Figure 7. This is the type T Eσ obtained considering the vexillary
permutation σ = [4, 8, 9, 5, 7, 6, 1, 3, 2]

4.4. Proof of Theorem 4.14. The first step of the proof consists in a character-
ization of vexillary permutations using their associated type.

Definition 4.15. Let σ ∈ Sn, we denote by (li(Tσ))i and (ci(Tσ))i the sequences
defined by

li(Tσ) := |{j | (j, i) ∈ Inv(σ)}|,
ci(Tσ) := |{j | (i, j) ∈ Inv(σ)}|.

The following lemma is immediate by Definition 2.5.

Lemma 4.16. Let σ ∈ Sn, then the partition obtained by rearranging the sequence
(li(Tσ))i (resp. (ci(Tσ))i) in a non-increasing order is µ(σ) (resp. λ(σ)).
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X

Y

Figure 8. Diagram associated with σ = [7, 8, 4, 5, 1, 2, 6, 9, 3] ∈ S9

Let us now consider σ ∈ Sn, we begin with putting the diagram Inv(σ) in a
grid as depicted on Figure 8. We first push all the boxes of Inv(σ) against the
Y -axes, and we then push all the boxes against the X-axes, obtaining by this way
a Ferrers diagram (see Figure 9). The partition obtained after this Y X-process is

Y -process X-process

Figure 9.

µ(σ). Indeed, when we packed all the boxes against the Y -axes we obtain a diagram
whose rows are left-justified, and row i contains exactly li(Tσ) boxes. Therefore,
when we push everything on the X-axes, we are just rearranging these rows in a
non-increasing order. Thus, thanks to Lemma 4.16 the resulting diagram is precisely
µ(σ). Clearly, if we first stack on the X and then on the Y -axes (this process is
called the XY -process), then the resulting partition is precisely λ(σ)′.

The following proposition is an immediate consequence of the observation made
in the previous paragraph.

Proposition 4.17. Let σ ∈ Sn. Then, σ is vexillary if and only if the partitions
obtained after we perform the XY -process and Y X-process on Inv(σ) are the same.

We now prove an intermediate lemma.

Lemma 4.18. Let σ ∈ Sn be a vexillary permutation and i, j be two integers.
Then, we have the following two properties.

• If li(Tσ) ≤ lj(Tσ), then we have that for all (i, a) ∈ N× N,

if (a, i) ∈ Sh(Tσ), then (a, j) ∈ Sh(Tσ).
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• If ci(Tσ) ≤ cj(Tσ), then we have that for all (a, i) ∈ N× N,

if (i, a) ∈ Sh(Tσ), then (j, a) ∈ Sh(Tσ).

Proof. We prove this lemma only for lines, since the proof for columns is similar,
and we simply denote by li the integer li(Tσ). We denote by n the number of non-
empty rows in the diagram Sh(Tσ) and we set i1, . . . , in a sequence of indices such
that:

• lik 6= 0 for all k ∈ [n];
• the sequence (li1 , . . . , lin) is non-increasing.

We will prove by induction on k ∈ [n] that the property holds for the row ik. First,
notice that we have li1 ≥ liq for all 1 < q ≤ n. Let us fix such a q, and consider a
box c = (iq, p) ∈ Sh(Tσ).

Assume by contradiction that (i1, p) ∈ Sh(Tσ), then we have the configuration
depicted on Figure 10. Therefore, if we push the boxes against the X-axes, then in

(iq, p)

i1 li1 boxes in this row

Figure 10. Configuration when (iq, p) ∈ Sh(Tσ) and (i1, p) /∈ Sh(Tσ)

the first row there must be strictly more than li1 boxes as represented on Figure 11.
Thus, there are strictly more than li1 boxes in the first row of the partition obtained

i1 More than li1 + 1 boxes in this row

Figure 11. Configuration after we pushed the boxes of Sh(Tσ)
against the X-axes.

after we perform the XY -process on Sh(Tσ). However, by maximality of li1 , the
first row of the partition obtained we perform the Y X-process on Sh(Tσ) contains
li1 boxes. Thus, λ(σ) 6= µ(σ)′, and this contradicts the fact that σ is vexillary.
Consequently, we have (i1, p) ∈ Sh(Tσ) and the lemma is true for row i1.

Let k be such that the lemma is true for rows i1, . . . , ik, and let λ(σ) = (λ1, . . . , λm).
By induction, if we delete rows i1, . . . , ik in Sh(Tσ) and then perform the XY
or Y X stacking process on the obtained diagram, then the resulting partition is
(λk+1, . . . , λm) in both cases. Then, the same argument as for i1 proves that the
lemma holds for row ik+1, and this ends the proof. �

Eventually, we can now provide a proof of Theorem 4.14.
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Proof of Theorem 4.14. Point (1): this is an immediate consequence of Theo-
rem 2.6 together with Proposition 4.9.

Point (2): first, note that by definition of the line-exchange algorithm, we have

for all T ∈ Type(S), we have (T L)L = T L and (T C)C = T C . (4)

Let us denote by θ the valuation associated with T Lσ and by li the number of
boxes in row i of Sh(T Lσ ). Assume by contradiction that there exists an integer
k such that lk < lk+1. Then, thanks to Lemma 4.18 we have that Sh(T Lσ ) is as
represented on Figure 12. However, by construction for all (a, k) ∈ Sh(T Lσ ) we have

Row k

Row k + 1

Figure 12. Rows k and k + 1 of Sh(T Lσ ).

θ(a, k) > θ(a+ 1, k). Therefore, if we perform the line-exchange algorithm on T Lσ ,
then these two rows are exchanged, so that we have

(T Lσ )L 6= T Lσ ,
contradicting (4). Thus, the sequence (li)i is non-increasing. Using a similar argu-
ment, we prove that the sequence (ci)i is non-increasing, where ci is the number of
boxes in column i of Sh(T Eσ ) = Sh((T Lσ )C).

Eventually, the same arguments as for the proof of Lemma 4.18 prove that
Sh(T Eσ ) is a partition, which is necessarily equal to λ(σ)′. �

4.5. Link with balanced tableaux. Let us now explain how the construction
made in the previous sections can be use to provide an alternative proof of Theo-
rem 2.4 (but not fundamentally different from the one in [4]). Let λ be a partition
of an integer n that we identify with its Ferrers diagram. A box c = (a, b) of λ is
called a corner of λ if and only if there is no boxes on the right and below c, i.e.
both (a+ 1, b) and (a, b+ 1) are not in λ.

Let c = (a, b) be a corner of λ such that k = λa + λ′b − 1 is maximal (such a
corner is not necessarily unique). Then, we can place λ in the staircase partition
λk+1 as shown on Figure 13.

Let us look at the corners (u, v) of λ which are on the diagonal boundary of
the staircase partition. For each such corner, we set R(u,v) = {(x, y) ∈ λ | x ≤
u, y ≤ v} and we consider the union R of the R(u,v). Then we let each connected
component of λ \R fall in the staircase tableau as shown on Figure 14. We repeat
the same procedure for each connected component of the resulting diagram, while
it is possible. At the end, we get a sub-diagram of λk+1, which we denote by S(λ).

Lemma 4.19. There exists σλ ∈ Sk+1 such that Sh(Tσ(λ)) = S(λ). Moreover, σλ
is vexillary and λ(σ)′ = λ.

Proof. The proof of this lemma requires the use of some results and notations from
[12], which we first recall. Let us consider the type Ak+1 (see Section 4.1) together
with its associated valuation θ. We consider the set IS(Ak+1) made of all the sets
A ⊂ λk+1 = {(a, b) ∈ N2 | 1 ≤ a < b ≤ k + 1} such that:

(1) for all c ∈ A, θ(c) ≤ |A ∩
(
H(λk+1)(c) \ {c}

)
|;
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Corner c = (a, b) such that λa + λ′b − 1

is maximal.

Figure 13. The partition (8, 7, 7, 7, 3, 3, 1) in λ11.

Diagram S

Figure 14.

(2) for all c ∈ λk+1 \A, θ(c) ≥ |A ∩
(
H(λk+1)(c) \ {c}

)
|.

Thanks to [12, Prop. 3.1] and [12, Theorem 4.1], a subset A of λk+1 is the inversion
set of a permutation in Sk+1 if and only if A ∈ IS(Ak+1).

Our aim is now to prove that S(λ) ∈ IS(Ak+1). Let z = (x, y) ∈ λk+1.

• If z /∈ S(λ), then for all z′ ∈ Hλk+1
(z)∩S(λ), z′ is in the same column and

strictly below z. Moreover, by definition θ(z) equals the number of boxes
strictly below z. Thus, we have θ(z) ≥ |Hλk+1

(z) ∩ S(λ)|;
• If z = (x, y) ∈ S(λ), then by construction of S(λ) there exists z′ = (x′, y′) ∈
S(λ) such that: x′ ≥ x, y′ ≥ y, θ(z′) = 0, and

for all x ≤ u ≤ x′ and y ≤ v ≤ y′, we have (u, v) ∈ S(λ).

Thus, we have θ(z) = (x′ − x) + (y′ − y) ≤ |HS(λ)(z)| − 1.

Therefore, we have S(λ) ∈ IS(Ak+1), so that there exists σλ such that Sh(Tσλ) =
Sλ. Moreover, if we perform the stacking process on S(λ), it is clear that both
XY and Y X processes end with the partition λ(σ). Thus, σλ is vexillary and this
concludes the proof. �
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Proposition 4.20. Let σλ be the permutation whose inversion set is S(λ). Then,
we have

Tab(T Lσλ) = Bal(λ).

Proof. First, note that we have Sh(T Lσλ) = λ by construction of S(λ). We denote

by θ and θ′ the valuations associated with the types Tσλ and T Lσλ , respectively. Let
c = (a, b) ∈ S(λ) such that all boxes in the same row and on the right of c are not
in S(λ). Then, by construction of S(λ) and by definition of θ we have:

• θ(c) equals the number of indices k < a such that row k of S(λ) contains
more boxes than row a;
• for all d = (a, d) ∈ S(λ), we have θ(d) = θ(c) + d− b.

Therefore, when we perform the line-exchange algorithm on Tσλ we have that the
row a of Tσλ is swapped with exactly θ(c) rows below it. Thus, we have that for all
d ∈ λ,

θ′(d) = aλ(d),

hence the elements of Tab(Tσλ) are the balanced tableaux of shape λ, and recipro-
cally. This ends the proof. �

The previous proposition, together with Proposition 4.9, immediately imply The-
orem 2.4.

4.6. An equivalence relation between vexillary permutations. At this point,
a natural question arises: given two vexillary permutation σ and ω, when do we
have T Eσ = T Eω ? In this section we answer this section by exhibiting an equivalence
relation ∼v on the set of vexillary permutations with the property that, for any two
vexillary permutations σ ∈ Sn and ω ∈ Sm, T Eσ = T Eω if and only if σ ∼v ω.

We first introduce a notation. Let σ ∈ Sn, p ≤ n be the lowest integer such that
σ(p) 6= p and q ≤ n be the biggest integer such that σ(q) 6= q. We define

σ := [σ(p)− (p− 1) ; σ(p+ 1)− (p− 1) ; . . . ; σ(q)− (p− 1)].

Note that σ is an element of Sn+1−p−q because of the choice of p and q.

Definition 4.21. We say that σ ∼v ω if and only if σ = ω.

Theorem 4.22. Let σ and ω be two vexillary permutations, then T Eσ = T Eω if and
only if σ ∼v ω.

Proof. Step 1: we begin with giving a combinatorial interpretation for the relation
∼v. Let σ ∈ Sn and ω ∈ Sm such that σ ∼v ω. Without loss of generality, we can
assume that n is larger than m. Then, we can see ω as a permutation of Sn by
adding (n −m) fixed points at the end of ω. Let us denote by pσ (resp. pω) the
smallest integer such that σ(pσ) 6= pσ (resp. ω(pω) 6= pω). By definition, we have
Inv(σ) = Inv(ω) and

Inv(σ) = {(x+ (pσ − 1), y + (pσ − 1)) | (x, y) ∈ Inv(σ)}.
Thus, if we look at Tσ and Tω, we have the situation described on Figure 15. Then,
we have T Eσ = T Eω by construction.

Step 2: in order to prove the converse implication, we define two algorithms:
one which reverses the Line-exchange Algorithm and another which reverse the
Column-exchange Algorithm. Since these two algorithms are similar, we only give
the definition of the algorithm on lines. Let T be a type of shape S, the reverse
line-exchange algorithm is the algorithm described below.
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We get Tσ by translating

Tω along the diagonal.

Figure 15. The types Tσ and Tω seen as subsets of λn.

(1) Erase all the empty rows of T .
(2) Set i := r, where r is the number of non-empty rows of T .

(a) If i is a dethroned row of T , then set T := T ↑i and go back to step
(2). Otherwise, go to step (2-b).

(b) If there is no row above i, then the algorithm stops. Otherwise, set
i := i− 1 and go back to step (2-a).

We denote by LT the type obtained after we perform the reverse line-exchange
algorithm. We also denote by T the type obtained from T deleting empty rows.
In general, the type L(T L) is different from the type T . However, it is clear that
L(T L) = T whenever there is no dethroned lines in T , and by construction there
is no dethroned lines in Tσ for any σ ∈ Sn.

Therefore, for all vexillary permutations σ, ω ∈ Sn, if T Eσ = T Eω then we have
Tσ = Tω, and this implies that Tσ = Tω. Then, we have Inv(σ) = Inv(ω) implying
that σ = ω, i.e. ω ∼v σ. This concludes the proof. �

5. Combinatorial properties of types T Eσ
We finish this article by studying two combinatorial properties of types T Eσ ,

relative respectively to Schur functions and partial fillings of tableaux.

5.1. Semi-standard tableaux of type T Eσ and Schur function. As explained
in [4], one can define a notion of “semi-standard balanced tableaux” of a given
shape λ ` n, thanks to the concept of column-strict balanced labelling of a diagram,
that we now detail by adapting it to our terminology. Let λ be a partition and B
be the type associated with Bal(λ) (see Example 3.3). Let T = (tc)c∈λ be a filling
of λ with integer, which is not necessarily a tableau (for instance, a given integer
can appear several times in T ). We say that T is a column-strict balanced labelling
of λ if and only if there exists a filling sequence L = [c1, . . . , cn] such that:

• for all i < j, tci ≤ tcj ;
• for all i < j, if ci and cj are in the same column of λ, then tci < tcj .

Let us denote by SST(B) the set of all column-strict balanced labellings of λ (the
SST stands for “semi-standard tableau of type B”). To each element T = (tc)c∈λ of

SST(B), we can associate a monomial xT =
∏
c∈λ

xtc , and thanks to [4] we have:

sλ(x1, x2, . . .) =
∑

T∈SST (B)

xT ,

where sλ is the Schur function of shape λ.
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All these definitions admit a straightforward generalization for all type, and we
associate each type T with a set SST(T ) of semi-standard tableaux of type T . We
then have the following property.

Proposition 5.1. Let σ be a vexillary permutation. Then, we have

sλ(σ) =
∑

T∈SST (T Eσ )

xT .

Proof. We have a one-to-one correspondence between the elements of SST(T Eσ ) and
the elements of SSF(Inv(σ)) introduced in [12, Section 5]. More precisely, we go
from one set to the other just by swapping column and lines according to the line
and column exchange process. Therefore, the result follow immediately from [12,
Theorem 5.10]. �

5.2. Partial fillings of tableaux of type T Eσ . It is classical that the number
standard tableaux of a given shape λ satisfy the following relation:

|SYT(λ)| =
∑
λ−

|SYT(λ−)|,

where the sum ranges on the set of all the partition λ− obtained from λ by sup-
pressing a corner of its Ferrers diagram. Thanks to Theorem 2.4, (5.2) also holds for
balanced tableaux. In fact, proving (5.2) for balanced tableaux is clearly equivalent
to proving Theorem 2.4, and this approach naturally leads to study the number of
balanced tableaux such that the integers 1, 2, . . . , k appear at given fixed positions.
The study of this problem has been started in [3], but was only solved in some
specific cases. In this section, we give a complete solution to this problem in the
general case of the type T Eσ with σ vexillary, and this can be applied to balanced
tableaux as well. Before moving to the statement and the proof of our results, let
us make two important remarks.

(1) The results presented here are implicit in [4] in the case of balanced tableaux,
and can be deduced with the same arguments as the ones used here.

(2) Our approach gives a more direct proof that (5.2) holds for balanced tableaux,
as required in [3, Section 2]. However, our current proof does not lead to a
satisfactory combinatorial proof of 2.4 since it still uses Theorem 2.6 as fun-
damental compound. Nevertheless, the concepts developed in the current
article might be a first step toward such a proof.

We begin with introducing a useful notation.

Definition 5.2. Let σ ∈ Sm be a vexillary permutation such that λ(σ) ` n and
U = [z1, . . . , zk] be a sequence of boxes of the Ferrers diagram of λ(σ). We denote
by Nσ,U the set defined by

Nσ,U := {T = (tc)c∈λ ∈ Tab(T Eσ ) | tzi = i for all i ∈ [k]}.
Theorem 5.3. Let σ ∈ Sm be a vexillary permutation such that λ(σ) ` n and
U = [z1, . . . , zk] be a sequence of boxes of the Ferrers diagram of λ(σ). Then, we
have that either Nσ,U is empty, or there exists ω ∈ Sm such that

|Nσ,U | = |Red(ω)|.
Proof. Let us assume that Nσ,U is not empty. By construction, there exists a
bijection Ψ between the set of boxes of Tσ and the inversion set of σ such that for
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any sequence L = [x1, . . . , xn], we have that L is a filling sequence of T Eσ if and only
if [Ψ(x1),Ψ(x2), . . . ,Ψ(xn)] is a filling sequence of Tσ. Consequently, thanks to [12,
Theorem 4.1], Ψ({z1, . . . , zk}) is the inversion set of a permutation τ ∈ Sm, and we
have a one-to-one correspondence between Nσ,U and the set of the maximal chains
from τ to σ in (Sm,≤R). Thanks to [2, Prop. 3.1.6, p. 69], the set of maximal
chains from τ to σ in (Sm,≤R) is in one-to-one correspondence with Red(τ−1ω),
and this concludes the proof. �

This theorem applies in particular to balanced tableaux. Moreover, this result
is constructive: the permutation ω can be computed. We cannot provide a sys-
tematic description of the associate permutation, however we have the following
combinatorial result.

Theorem 5.4. Let σ ∈ Sm be a vexillary permutation such that λ(σ) ` n and
U = [z1, . . . , zk] be a sequence of boxes of the Ferrers diagram of λ. If there exists a
partition µ ` (n− k) such that the resulting partition of the XY and Y X processes
applied on the diagram λ(σ) \ {z1, . . . , zk} is µ, then |Nσ,U | = fµ.

Proof. We keep the notations introduced in the proof of Theorem 5.3. Let τ be the
permutation whose inversion set is given by {Ψ(x1), . . . ,Ψ(xk)}. Since ω = τ−1σ
with τ ≤R σ, we have

Inv(ω) = τ−1(Inv(σ) \ Inv(τ)) = τ−1(Sh(Tσ) \ {Ψ(x1), . . . ,Ψ(xk)}).
Thus, if we denote by li (resp. ci) the number of boxes in row (resp. column) i of
λ(σ) \ {z1, . . . , zk}, we have that the sequences (li)i and (gi(ω))i (resp. (ci)i and
(ri(ω))i) are equal up to re-ordering. Therefore, ω is vexillary and µ(ω) = µ. This
concludes the proof. �

Notice that the results of the current section apply to balanced tableaux.

Definition 5.5. Let λ = (λ1, . . . , λk) be a partition of n and (a, b), (c, d) ∈ λ, we
say that (a, b) and (c, d) are in the same block if and only if λa = λc. Let B be
a block of λ and let i be the minimal integer such that (i, λi) ∈ B, then the box
(i, λi) is called the upper right corner of B.

Let T be a balanced tableau of shape λ ` n. By definition, we have that the
integer 1 appears in the upper right corner of a block (see Figure 16). Then, thanks

1 appears in one of these boxes

Figure 16. Possible positions of the integer 1 in a ballanced tableau.

to Theorem 5.4 we immediately have the following result.
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Proposition 5.6. Let B be a block of λ ` n and c be the upper right corner of B.
Then, the number of balanced tableaux of shape λ such that 1 is in the box c equals
the number of standard tableaux of shape λ−, where λ− ` n− 1 is obtained from λ
by suppressing the corner of the block B.

The previous proposition directly implies that for all partition λ,

|Bal(λ)| =
∑
λ−

|Bal(λ−)|,

where the sum range on all partitions obtained from λ by suppressing a corner.

References

[1] A. Bjorner, Orderings of Coxeter groups. Contemp. Math., 34, Amer. Math. Soc., Provi-

dence, RI, 1984.
[2] A. Bjorner, F. Brenti, Combinatorics of Coxeter groups. Springer, New York, NY, 2005.

[3] P. Edelman, C. Greene, Balanced tableaux. Adv. Math., 63, 42-99, 1987.

[4] S. Fomin, C. Greene, V. Reiner, M. Shimozono, Balanced Labellings and Schubert Polyno-
mials. Europ. J. Combin., 18, 373-389, 1995.

[5] C. Greene, A. Nijenhuis, H. S. Wilf, A probabilistic proof of a formula for the number of
Young Tableaux of a given shape. Adv. in Math. 31 (1979), no. 1, 104-109.

[6] J.E. Humphreys, Reflection groups and Coxeter groups. Cambridge Studies in advanced

Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990.
[7] A. Lascoux, M.-P. Schützenberger, Schubert polynomials and the Littlewood-Richardson

rule. Lett. Math. Phys. 10 (1985), no. 2-3, 111-124.

[8] D. Little, Combinatorial aspects of the Lascoux-SchÃ 1
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