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A NATURAL GENERALISATION OF BALANCED TABLEAUX

FRANÇOIS VIARD

Abstract. We introduce the notion of “type” that allows us to define new
families of tableaux, which include both balanced and standard Young tableaux.
We use these new objects to describe the set of reduced decompositions of any
permutation. Moreover, we generalise the work of Edelman and Greene on
balanced tableaux by giving among other things, a new proof of the fact that

balanced tableaux and standard Young tableaux are equinumerous.

Introduction

The problem of enumerating reduced decompositions of a permutation was first
studied by Stanley in [7]. By using symmetric function techniques, he showed that
|Red(ω0)|, the number of reduced decomposition of the longest permutation ω0 in
the symmetric group Sn, is given by the number of standard Young tableaux of
staircase shape λn = (n − 1, n − 2, . . . , 1). Moreover, he conjectured that for an
arbitrary permutation σ, |Red(σ)| =

∑

aσ,λf
λ, where λ runs over the partitions

of n, fλ is the number of standard tableaux of shape λ, and aσ,λ are nonnegative
integers.

In [3], Edelman and Greene gave a combinatorial proof of this conjecture by
introducing an algorithm, now called the Edelman-Green insertion. This algorithm
has been recently investigated by Billey and Pawlowski [1], who highlighted the
links between values of the coefficients aσ,λ and some patterns which are avoided
by σ. Another proof of the conjecture is based on the Lascoux-Schutzenberger tree
[5]. The link between these two different approaches has been recently studied by
Hamaker and Young [4], using the very elegant work of Little [6].

In another part of the same paper [3], Edelman and Greene introduced a new
family of combinatorial objects called balanced tableaux, in an attempt to prove
bijectively Stanley’s result for the longest permutation. They proved that balanced
and standard Young tableaux of same shape are equinumerous. Their proof is quite
involved and a direct bijective one is still missing.

The goal of this paper is to generalize Edelman-Greene work on balanced tableaux
in different directions. In order to do this, we deal with a bigger class of tableaux
which are not required to be standard or balanced. To each tableau T of shape S,
where S is any finite subset of N×N, we associate a combinatorial object T called
the type of T. This allows us to split that set of tableaux into different classes: two
tableaux will be in the same class if and only if they have the same type. Let us
denote Tab(T ) the set of tableaux of type T . Both sets of balanced and standard
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Young tableaux of a given shape λ can be seen as special classes of our classifica-
tion. We construct all the tableaux of a fixed type thanks to an iterative process.
In particular, we can use this procedure to easily construct all balanced tableaux
of a given shape.

In [2] an explicit bijection between Red(ω0) and the balanced tableaux of stair-
case shape is given. We generalise this result in (Theorem 2.10) as follows.

Theorem A. For each σ ∈ Sn, there exists a bijection between Red(σ) and Tab(Tσ),
where Tσ is a special type associated to σ.

This result gives a new combinatorial way of obtaining all the reduced decompo-
sitions of any fixed permutation. In Section 3, we focus on vexillary permutations,
namely 2143 avoiding permutations. It is well-known [7], that each vexillary per-
mutation σ is associated with a partition λ(σ), and that the number of reduced
decompositions of σ is fλ(σ). In Section 3.2, we introduce a combinatorial process
on types, that together with Theorem A, leads us to our second main result (The-
orem 3.18), which can be written as follows.

Theorem B. For each vexillary permutation σ, there exists a type T E
σ , such that

|Tab(T E
σ )| = fλ(σ). Moreover, all tableaux in Tab(T E

σ ) have shape λ(σ).

From this, a new and more accessible proof of the Edelman-Greene result on the
equality between the number of balanced and standard Young tableaux, will arise
(Corollary 3.22).

Finally, consequences of our work allow us to answer to a problem raised by
Edelman and Green. More precisely, in [3] the authors enumerate in some cases
the number of balanced tableaux of shape λ having the integer n in a given fixed
position, and ask for a general answer to this problem. In Section 3.6, we deal with
a more general situation where the integers n, n − 1, . . . , n − k are in given fixed
positions. This leads to the following result.

Theorem C. Set λ ⊢ n. Set A the number of balanced tableaux of shape λ with the
integers n, n−1, . . . , n−k in given fixed positions. Then there exists a permutation
ω ∈ Sm such that A = |Red(ω)|.

1. Type of a tableau

1.1. Partitions. We begin with some standard notation. A partition λ of a non-
negative integer n ∈ N, is a nonincreasing sequence of nonnegative integers λ1 ≥
λ2 ≥ · · · such that

∑

λi = n. The integers λi 6= 0 are called parts of the partition
λ.

The Ferrers diagram of λ is a finite collection of boxes, or cells, arranged in
left-justified rows of lengths given by the parts of λ. By flipping this diagram over
its main diagonal we obtain the diagram of the conjugate partition of λ denoted λ′.
We usually identify a partition with its Ferrers diagram.

1.2. Tableaux. In this paper we deal with Ferrers diagrams, but more generally
with diagrams, namely finite subsets of N × N, without any constrain. So let
S ⊂ N× N such that |S| = n (where |S| denote the cardinal of S). A tableau T of
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shape S is a bijective filling of S (seen as a set of boxes) with entries in {1, 2, . . . , n}.
Given a tableau we denote its shape by Sh(T ). The set of all tableaux of shape S
will be denoted by TabS . If we require Sh(T ) to be a partition λ, then T will be
what is usually called a Young tableau. Moreover, if we consider tableaux satisfying
the conditions that the filling is

(1) increasing from left to right across each row;
(2) increasing down each column;

we obtain the set of standard Young tableaux of shape λ, denoted by SYT(λ), whose
cardinality fλ = |SYT(λ)| is given by the well-known hook-length formula.

1 3 5

4 2

6

1 4 5 8 12 21

2 6 9 13 18

3 10 16 17 19

7 11 20

14

15

9 7 16 14 20 15

8 3 17 12 21

6 2 13 11 18

5 1 19

10

4

Figure 1. A tableau, a standard tableau, and a balanced tableau.

1.3. Type of a tableau.

Definition 1.1. Fix a diagram S. Any box c = (a, b) ∈ S determines a hook
Hc(S), which consists of that box and all boxes below in the same column (the
leg La,b(S)), and strictly on its right in the same row (the arm Aa,b(S)). More
precisely

La,b(S) = { (k, b) | k ≥ a, (k, b) ∈ S}, Aa,b(S) = { (a, k) | k > b, (a, k) ∈ S}, (1)

Ha,b(S) = Aa,b

⊎

La,b. (2)

We will denote by la,b(S), aa,b(S), and ha,b(S) their cardinalities.

Definition 1.2. Set S a diagram and T = (tc)c∈S ∈ TabS . The type of T is the
filling T = (θc)c∈S of S defined by θc = |{z ∈ Hc(S) | tz > tc}|. We note by
TabS(T ) the set of all tableaux of shape S whose type is T . When there is not any
ambiguity we will simply denote this set by Tab(T ).

More generally, we can define a type without using a tableau as follows.

Definition 1.3. Let S be a diagram and T = (θc)c∈S a filling of S with θc ∈ N.
T is called a type of shape S if and only if for all c ∈ S, 0 ≤ θc ≤ hc(S) − 1. We
denote Sh(T ) the shape of a type. The set of all types of shape S is denoted by
Type(S). When S is the Ferrers diagram of a partition λ, we will denote this set
by Type(λ).

Remark 1.4. By definition, if T ∈ TabS for a given diagram S, then the type of T is a
type (according to Definition 1.3). Furthermore, it is easy to see that this definition
generalises both the definitions of standard Young tableaux and balanced tableaux
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4 1 0

1 0

0

10 7 6 4 3 2

8 5 4 2 1

7 4 3 1 0

4 1 0

1

0

5 4

4 3

4 3

2 1

0

0

3 2 1 0

2 1 0

2 1 0

0

Figure 2. The types of the tableaux in Figure 1.

[3]. Set Sλ = (sc) ∈ Type(λ) where sc = hc(λ) − 1, then Tabλ(Sλ) = SYT(λ). In
the same way, set Bλ = (βc) ∈ Type(λ) with βc = ac(λ), then Tabλ(Bλ) = Bal(λ)
the set of balanced tableaux of shape λ. An example of a balanced type is given at
the right of Figure 2.

Now we recall one of the main result of ([3], Theorem 2.2) which will be gener-
alised by Theorem 3.18 of this paper.

Theorem 1.5 (Edelman-Greene). For all λ ⊢ n, then |SYT(λ)| = |Bal(λ)|.

1.4. Tableaux of fixed type. In this section, we introduce the definition of a
filling sequence which will allowed us to prove that for each T ∈ Type(S), TabS(T )
is not empty.

Definition 1.6. Set S a diagram and T = (θc)c∈S ∈ Type(S). A box c ∈ S is
called erasable in T if and only if θc = 0 and for all z ∈ S such that c ∈ Hz(S),
θz 6= 0.

Lemma 1.7. Set S a diagram and T = (θc)c∈S ∈ Type(S). Then there exists
c ∈ S which is erasable.

Proof. There exists z ∈ S such that |Hz(S)| = 1 because S is finite. Then we have
that 0 ≤ θz ≤ 1− 1 = 0. So θz = 0. Then, because S is finite, we have that at least
one of the boxes which contain a 0 is erasable, and this concludes the proof. �

Definition 1.8 (Filling sequence). Set S a diagram, n = |S|, and T = (θc)c∈S ∈
Type(S). Set L = [c1, . . . , cn] a sequence such that S = {c1, . . . , cn}. We say that L
is a filling sequence of T if and only if there exists a sequence (P0,P1, . . . ,Pn) such
that for all 1 ≤ i ≤ n, Pi = (θic) ∈ Type(S \ {c1, . . . , ci}), that can be constructed
recursively as follows:

(1) P0 = T ;
(2) ck+1 is erasable in Pk, and Pk+1 can be obtained from Pk in this way: for

all c ∈ Sh(Pk+1), if ck+1 ∈ Hc(Sh(P
k)), then θk+1

c = θkc − 1, and for all the
other c ∈ Sh(Pk+1), θk+1

c = θkc .

The set of all the filling sequences of T is denoted Fil(T ).

At first glance, this definition appears to be quite technical. Indeed it is quite
easy to construct all filling sequences thanks to the next recursive procedure.

Recursive process 1.9. We start with the type T and we set P0 = T . In the
first step we localise all the boxes c ∈ S which are erasable in T (circled boxes in
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Example 1.10). In the second step we chose one of those boxes c1 (we can chose
anyone of them). In the last step, we construct the type P1 from P0 by first
decreasing by one all the θ0z , where z ∈ S and c1 ∈ Hz(S), letting the others entries
unchanged, and to finish by deleting the box c1. Then we repeat those steps until
we obtain the type Pn which is empty. At the end, the sequence L = [c1, . . . , cn] is
a filling sequence by construction.

Example 1.10. We consider λ = (2, 2) ⊢ 4 and T ∈ Type(λ) which is represented
in the top left of Figure 3. Then we perform Process 1.9 on T in order to construct
a filling sequence of T . All the erasable boxes of T are circled for the first iteration
of the procedure, and this has been omitted in the others.

0

0

0

1

0

0

0

1 0

0 0

1 0

0 0

0

0 0 0 0

0 0 0

T = P0

Step 1 Step 2 Step 3

P1 P2

P3 P4

c1 = (1, 2) c2 = (1, 1)

c3 = (2, 1) c4 = (2, 2)

∅
The sequence L = [c1, c2, c3, c4]

is a filling sequence of T

Figure 3.

Remark 1.11. Thanks to Lemma 1.7, this process can always be performed. As a
consequence, Fil(T ) 6= ∅.

Now we focus on the connection there exists between Fil(T ) and Tab(T ).

Definition 1.12. Set T ∈ Type(S), and L = [c1, . . . , cn] ∈ Fil(T ). We define a
tableau TL = (tc)c∈S ∈ TabS by setting tck = n+ 1− k.

Lemma 1.13. For any filling sequence L of T ∈ Type(S), TL ∈ Tab(T ).

Proof. Let L = [c1, . . . , cn] be a filling sequence of T = (θc), set TL = (tc), T
′ = (θ′c)

the type of TL and 1 ≤ k ≤ n. By construction tck = n + 1 − k and θkck = 0. For
each c ∈ S, we define the following set

Uc,k = Hc(S) ∩ {c1, . . . , ck−1}. (3)

We use the following convention: if k = 1, Uc,k = ∅. By construction of Process 1.9,
θck = θ0ck = |Uck,k|. Moreover, by definition of TL, if z ∈ Hck(S) then tz > tck if
and only if z ∈ Uck,k, so by definition θ′ck = |Uck,k|. Then T ′ is equal to T and the
lemma is proved. �

With Remark 1.11 we have the immediate corollary.
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Corollary 1.14. For any type T , Tab(T ) 6= ∅.

Theorem 1.15. Set T ∈ Type(S) for a given diagram S. The application L 7→ TL
from Fil(T ) to Tab(T ) is a bijection.

Proof. By definition and Lemma 1.13, this application is clearly injective. Now, we
will prove recursively on n = |S| that this application is surjective. If |S| = 1, then
the property is true since |Fil(T )| = |Tab(T )| = 1.

Now we suppose that the property has been proved for all the diagrams of car-
dinality n. Set S a diagram such that |S| = n + 1, T = (θc)c∈S ∈ Type(S),
and T ∈ TabS(T ). We define the sequence L = [c1, . . . , cn+1] such that for
all k, tck = n + 2 − k. Hence proving the property is equivalent to show that
L ∈ Fil(T ). To do this, we use the Process 1.9: by definition tc1 = n + 1,
hence for all z ∈ Hc1(S), tz < n + 1 = tc1 , so θc1 = 0. Moreover, for all z
such that c1 ∈ Hz(S) then tz < tc1 , so θz 6= 0. So c1 is erasable, and it can
be picked at the first iteration of Process 1.9. Now we consider the type P1

obtained after we picked c1. By definition, P1 ∈ Type(S \ {c1}). We also con-
sider the tableau T ′ = (tc)c∈S\{c1} obtained from T just by removing the box c1.

Then, by construction we have that T ′ ∈ TabS\{c1}(P
1). Hence by induction, we

have that the sequence [c2, . . . , cn+1] ∈ Fil(P1), and by construction of Process 1.9
[c1, . . . , cn+1] ∈ Fil(T ), and this concludes the proof. �

We give an example to visualise a dynamic construction of the tableau TL asso-
ciated with a filling sequence L.

Example 1.16. Consider the type T on the top-left of Figure 4, and the filling
sequence L = [(1, 3); (1, 1); (1, 2); (2, 2); (2, 1)]. In the top line is represented the
sequence (P0, . . . ,P5) associated to L. The corresponding tableau TL is depicted
in the bottom-right of the figure.

0

0

11

1

0 0

01

0

01 1 0 0

T = P0 P1 P2 P3 P4 P5

5 54 54 3 534

2

4

1 2

3 5

TL

Figure 4.

Remark 1.17. We have some basic properties. Obviously, if λ = (n) or λ = (1n)
then for any T ∈ Type(λ), there exists a unique tableau of type T . This is because
at each iteration of the Process 1.9, there is only one (i, j) ∈ λ which is erasable.
This fact leads us to a first interesting property.

Proposition 1.18. Let k and p be two integers. Set λ = (k, 1p) and T a type of
shape λ. Then there exists fλ tableaux of type T .

Proof. Set T = (θc) ∈ Type((k, 1p)). Set L a filling of T . To begin, we remark
that in the tableau TL = (tc) we have t1,1 = n− θ1,1. So if we set S = λ− {(1, 1)}
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Arm of the type

Leg of the type

Figure 5.

(see Figure 5) and we consider the type T ′ = (θc)c∈S , then we have |Tabλ(T )| =
|TabS(T

′)|.
Now the result follows from Remark 1.17. In fact at each iteration of Process 1.9,

the only thing we have to chose is an element in the leg or in the arm of S. This is
independent of the choice of T , so the result is proved. �

This first result might lead us to think that there should be a simple way to
calculate the number of tableaux of a given type, such as a general “hook-length
formula”, but a quick verification shows that the situation seems to be considerably
more complicated. For example the number of tableaux of type

0 0 0
2 0
0

is 11 which do not divide 6!. Nevertheless, we have a sort of probabilist result.

Theorem 1.19. If we consider the set of all types of shape λ and we choose uni-
formly a type T , then the expected value for |Tabλ(T )| is fλ.

Proof. SetHλ =
∏

(a,b)∈λ ha,b(λ). It is obvious that the number of type of shape λ is

precisely Hλ. Then because of the uniform choice, the probability for a type T to be

chosen is exactly 1
Hλ

. Then by definition, the expected value is
∑

T ∈Type(λ) |TabT (λ)|

Hλ
,

and the numerator is trivially equal to n!, so the result follows. �

Now, a few questions arise.

Question 1.20. Is it possible to find a general formula to compute |Tab(T )| for
any given type T ?

Question 1.21. Set λ ⊢ n. Can we find a subset Λ ⊂ Type(λ) such that
|Tabλ(T )| = fλ for any T ∈ Λ, as the standard and the balanced type ?

The first question is still open, but in Section 3 we will give a positive answer to
the second one.

2. Types and reduced decompositions

In [3], Edelman and Greene exhibit a bijection between balanced tableaux of
staircase shape λn and Red(ω0). In this section we will rephrase this result in our
terminology and show how it can be generalized to each permutation. A new com-
binatorial interpretation of the set of reduced decompositions of any permutation
will arise.
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2.1. Definition and Theorems. It is well-known that the symmetric group Sn

is generated by the elementary transpositions si = (i, i+1), 1 ≤ i ≤ n− 1. For any
σ ∈ Sn, there exists a minimal integer k such that σ = si1 · · · sik called the length
of σ, and denoted ℓ(σ). Such a product is called a reduced decomposition of σ. The
set of all the reduced decompositions of σ is denoted Red(σ). Usually we denote a
permutation σ ∈ Sn in its window notation σ = [σ(1), . . . , σ(n)]. It is well-known
that ℓ(σ) is equal to the number of inversions of σ, namely the cardinality of the
set

Inv(σ) = {(p, q) ∈ N
2 | p < q and σ−1(p) > σ−1(q)}. (4)

We have the following classical result: for σ and ω two permutations, σ = ω if
and only if Inv(σ) = Inv(ω). Now we will define the (right) weak Bruhat order. Set
σ and ω two permutations, we said that σ ≤R ω if and only if there exists k such
that ω = σsi1 · · · sik and ℓ(ω) = ℓ(σ) + k.
For any undefined notations we refer to the book [2]

Remark 2.1. In all this section, it will be convenient to change the coordinates of
the cells of the diagram of λn : (a, b) will denote the cell previously denoted by
(a, n+ 1− b) (see Figure 6 for an illustration on λ7).

1

2

3

5

6

7

4

Figure 6. The cell previously denoted by (2, 3) is now (2, 5).

Recall the definition of the balanced type Bλn
= (βc)c∈λn

∈ Type(λn) given in
Remark 1.4: for all c ∈ λn, βc = ac(λn) (Definition 1.1). With the coordinates of
Remark 2.1 we have that for each c = (a, b) ∈ λn,

βc = |{q ∈ N | a < q < b}| = b− a− 1. (5)

The next is a well-known result of Edelman and Greene ([3], Theorem 4.2).

Theorem 2.2. There exists a bijection between Red(ω0) and Tab(Bλn
).

Hence with Theorem 1.12 we have this immediate corollary.

Corollary 2.3. There exists a bijection between Red(ω0) and Fil(Bλn
).

Remark 2.4. Since we will use this bijection later on, we give a brief sketch of its
construction. Set N =

(

n
2

)

, and

Id = σ0 ≤R σ1 ≤R . . . ≤R σN = ω0

a maximal chain in the weak order of Sn (which corresponds to a unique reduced
decomposition of ω0). Set ci = (ai, bi) the unique element in Inv(σi)\Inv(σi−1) and
set T = (tc)c∈λn

∈ Tabλn
with tci = N +1− i. Set ai < q < bi if it exists. Since ai

and bi are adjacent in σi−1 (i.e. there exists 1 ≤ k ≤ n− 1 such that σi−1(k) = ai
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and σi−1(k + 1) = bi), there exists a unique j < i such that either cj = (q, bi) or
cj = (ai, q). This is enough to show that |{z ∈ Hci(S) | tz > tci}| = |{q ∈ N | a <
q < b}| = β(ai,bi) (thanks to Equation 5), so T is balanced. Then L = [c1, . . . , cN ]
is a filling sequence of Bλn

and it obviously defines an injection from Red(ω0) to
Fil(Bλn

).
The reverse application is constructed in this way: set L = [c1, . . . , cN ] a filling

sequence of Bλn
and ci = (ai, bi). We define a sequence of permutations (σi)0≤i≤N

as follows: σ0 = Id, and for all 0 ≤ i ≤ N−1, σi+1 is obtained from σi by exchanging
the positions of ai+1 and bi+1 in the window notation of σi (see Figure 7). Edelman
and Greene showed in [3] that for all 0 ≤ i ≤ N − 1, σi+1 covers σi in the weak
order (more precisely, they showed that ai+1 and bi+1 are adjacent in σi). Hence the
sequence (σi)0≤i≤N defines a maximal chain in the weak order, which corresponds
to a unique reduced decomposition of ω0.

Example 2.5. We illustrate how the bijection turns L = [(1, 2), (1, 3), (2, 3)] ∈
Fil(Bλ3

) into a reduced decomposition of ω0 ∈ S3.

1

2

3

σ0 = [1, 2, 3]

1

2

3

σ1 = [2, 1, 3]

1

2

3

σ2 = [2, 3, 1]

1

2

3

σ3 = [3, 2, 1]

0

0

1 0

0 0

c1 = (1, 2) c2 = (1, 3)

= σ0s1 = σ1s2

c3 = (2, 3)

= σ2s1

The element of Red(ω0) corresponding to

[c1, c2, c3] ∈ Fil(Bλ3) is s1s2s1.

Figure 7.

By using the maximality of ω0 for the weak order and the previous result, we
can in fact generalize Corollary 2.3 to all permutations. To do so, we introduce the
next definition.

Definition 2.6. Set S a diagram contained in λn, and Bλn
= (βc)c∈λn

. Set AS =
(βc)c∈S , we call AS a subtype of Bλn

if and only if there exists L = [c1, c2, . . . , cN ] ∈
Fil(Bλn

) such that S = {c1, . . . , c|S|}. The set of all the subtypes of Bλn
is denoted

Sub(Bλn
).

By definition, if A ∈ Sub(Bλn
), then A is a type.

Definition 2.7. For any σ ∈ Sn, we set Tσ = (βc)c∈Inv(σ) where Inv(σ) is seen as
a subset of λn with the new convention for the coordinates.

Lemma 2.8. For any σ ∈ Sn, Tσ is a subtype of Bλn
.
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0

0

0

1

12

0

0

0

1

12

0

0

0

1

12

Figure 8. The first subset defines a subtype, the two others do not.

Proof. Set σ ∈ Sn and si1 · · · siℓ(σ)
∈ Red(σ). Then by the maximality of ω0, we can

complete this reduced decomposition into a reduced decomposition si1 · · · siℓ(σ)
· · · siN

of ω0. By Corollary 2.3 this decomposition correspond to a filling sequence L =
[c1, . . . , cN ] of Bλn

, and by Remark 2.4 we have that {c1, c2, . . . , cℓ(σ)} = Inv(σ).
This concludes the proof. �

Proposition 2.9. The application φ(σ) = Tσ is a bijection between Sn and Sub(Bλn
)

Proof. By Lemma 2.8 and Definition 2.6, φ is an application from Sn to Sub(Bλn
).

Set σ and ω two permutations. Since σ = ω if and only if Inv(σ) = Inv(ω), then φ
is injective.
Set A ∈ Sub(Bλn

), we have that Fil(A) 6= ∅. Set L ∈ Fil(A), we complete it into
a filling sequence L′ of Bλn

using Process 1.9. By Corollary 2.3, L′ = [c1, . . . , cN ]
corresponds to a reduced decomposition si1 · · · siN of ω0. Set σA = si1 · · · siℓ(σ)

,

then by Remark 2.4, {c1, . . . , c|A|} = Sh(A) = Inv(σA). Hence φ(σA) = A, and φ
is surjective. This concludes the proof. �

And now we can formulate the claimed generalisation.

Theorem 2.10. For all σ ∈ Sn there exists a bijection φσ between Fil(Tσ) and
Red(σ).

Proof. Set σ ∈ Sn and consider Tσ. Consider a filling sequence L ∈ Fil(Tσ), and
complete it into a filling sequence L′ of Bλn

, which give rise to a reduced decompo-
sition si1 · · · siℓ(σ)

· · · siN of ω0. By definition Inv(σ) = Sh(Tσ), so si1 · · · siℓ(σ)
= σ.

Moreover, since si1 · · · siN is reduced, si1 · · · siℓ(σ)
is a reduced decomposition of σ.

In this way we associated to each element of Fil(Tσ) a reduced decomposition of σ.
Let us denote this map by φσ. By Corollary 2.3, φσ is injective.
Now consider sj1 · · · sjℓ(σ)

∈ Red(σ). By maximality of ω0, we complete it into a re-

duced decomposition sj1 · · · sjℓ(σ)
· · · sjN ∈ Red(ω0). By Corollary 2.3 it corresponds

to U = [z1, . . . , zn] ∈ Fil(Bλn
), and by Remark 2.4, Inv(σ) = {z1, . . . , zℓ(σ)}, hence

[z1, . . . , zℓ(σ)] ∈ Fil(Tσ), so φσ([z1, . . . , zℓ(σ)]) = sj1 · · · sjℓ(σ)
and the application is

surjective. This concludes the proof. �

Example 2.11. In Figure 9, we show how we construct the reduced decomposition
of σ = [3, 1, 4, 2] associated to [(2, 3), (1, 3), (2, 4)] ∈ Fil(Tσ).

This bijection gives an easy way of obtaining all the reduced decompositions of a
permutation using Process 1.9. An example of such a use of this bijection is given
in Figure 10. Now, we give a combinatorial characterisation of the subtypes of Bλn

.

Proposition 2.12. Set S a subdiagram of λn. A = (βc)c∈S is a subtype of Bλn
if

and only if:

(1) for all c ∈ S, βc ≤ |Hc(S)| − 1,
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c2 = (1, 3)

σ2 = [3, 1, 2, 4]

= σ1.s1
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0

00

c3 = (2, 4)

σ3 = [3, 1, 4, 2]

= σ2.s3

associated
permutation

σ = [3, 1, 4, 2]

The element of Red(σ) associated with [c1, c2, c3] ∈ Fil(Tσ) is s2s1s3.

Figure 9.
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4 32
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s3s2s3s4s1

5

4 31

s3s2s3s1s4
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4 21
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s3s2s1s3s4

3

4 51

2

s2s3s2s1s4

3

4 52

1

s2s3s2s4s1

2

4 53

1

s2s3s4s2s1

2

Associated

permutation

[4, 1, 3, 5, 2]

Figure 10.

(2) for all c ∈ λn \ S, βc ≥ |S ∩Hc(λn)|.

Proof. Those conditions are clearly necessary. We will show recursively that they
are sufficient. By condition (1), there exists c ∈ S such that βc = 0. Moreover
by condition (2), for all x ∈ λn \ S, if S ∩ Hc(λn) 6= ∅ then βx 6= 0. Then there
exists c1 ∈ S erasable, and L a filling sequence of Bλn

which starts with c1. Set
[P0,P1, . . . ,Pn] the sequence of types associated with L and S′ = S \ {c1}. Then
by definition of Process 1.9,

(3) for all c ∈ S′, β1
c ≤ |Hc(S

′)| − 1,
(4) c ∈ (λn \ {c1}) \ S

′, β1
c ≥ |S′ ∩Hc(λn \ {c1})|,

and by induction, the proposition is proved (λn has just been replaced by λn \
{c1}). �

Proposition 2.12 allows to define the notion of subtype for any given type, but
we will not talk about that in this paper.
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3. Vexillary permutations and balanced tableaux

We have seen that some types are related with the theory of reduced decompo-
sitions in symmetric group. There exists a class of permutations called vexillary
permutations which are strongly linked with the theory of standard Young tableaux.
In this section we will show that a careful study of those permutations will give rise
to a generalisation and a new proof of the fact that standard Young tableaux and
balanced tableaux are equinumerous.

First, we give an important result of Stanley which will be central in the next
sections.

Theorem 3.1 (Stanley, [7]). Set σ ∈ Sn. For i ∈ {1, . . . , n}, we define:

(1) di(σ) = |{j > i | σ(j) < σ(i)}|,
(2) gi(σ) = |{j < i | σ(j) > σ(i)}|.

Set µ(σ) (resp. λ(σ)) the partition obtained by rearranging the sequence (di(σ))
(resp. (gi(σ))) in a nonincreasing order. If λ(σ) = µ(σ)′, then red(σ) = fλ(σ).

Definition 3.2. A permutation σ such that λ(σ) = µ′(σ) is called a vexillary
permutation. In [7] it is shown that vexillary permutations are the 2143-avoiding
permutations.

The two previous sequences have a further combinatorial interpretation when we
use the convention of Remark 2.1 for the coordinates of the cells of λn.

Lemma 3.3. Set σ ∈ Sn, then we have that ci(Tσ) = di(σ) and li(Tσ) = gi(σ)
where

ci(Tσ) = |{j | (j, i) ∈ Inv(σ)}| and li(Tσ) = |{j | (i, j) ∈ Inv(σ)}|, (6)

called respectively the column and line sequences of Tσ. Note that Inv(σ) = Sh(Tσ).

3.1. Stacking process. Set σ ∈ Sn, here we give a combinatorial interpretation of
λ(σ) and µ(σ) which will be useful in Section 3.3. We begin by putting the diagram
Inv(σ) in a grid such as in Figure 11.

X

Y

Figure 11. Diagram associated with σ = [4, 8, 9, 5, 7, 6, 1, 3, 2] ∈ S9

Then we push all the boxes against the Y -axes. To finish, we push all the boxes
against the X-axes, by obtaining a Ferrers diagram (Figure 12).
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Y -process X-process

Figure 12.

Remark 3.4. The partition obtained after this Y X-process is λ(σ). In fact by
Lemma 3.3, the number of boxes in the row i is precisely equal to gi(σ). Moreover
after we packed all the boxes against the Y -axes, these rows of boxes are left-
justified. So when we push everything on the X-axes, we are just rearranging those
rows in a nonincreasing order. As a consequence, the diagram we obtain is precisely
λ(σ). Similarly, if we do the same thing but by first stacking on the X and then
on the Y -axes (XY -process), then the partition we obtain is precisely µ(σ)′.

Corollary 3.5. As a consequence, a permutation σ is vexillary if and only if the
two partitions obtained with these two combinatorial processes are the same.

3.2. A transformation on type. At this point, we have two different descriptions
of the set of reduced decompositions of any vexillary permutation σ ∈ Sn in terms
of tableaux. On the one hand, from Theorem 3.1 we have

|Red(σ)| = |SYT(λ(σ))|, (7)

and on the other hand, from Theorem 2.10 we have

|Red(σ)| = |Tab(Tσ)|. (8)

Notice that in general, Sh(Tσ) 6= λ(σ). Hence it is not clear that those two sets of
tableaux are linked. So it seems natural to ask for a generalisation of (8) where the
shape λ(σ) of (7) appears clearly. Indeed we can answer positively to that question,
thanks to the transformation on types that we describe below.

Remark 3.6. From now on, we go back to the usual coordinates for the boxes of a
diagram.

Definition 3.7. Let S be a diagram and “a” (resp. “b”) a row (resp. a column)

of S. We define S↓a (resp.
−→
S b) the diagram obtained by exchanging rows a and

a+ 1 (resp. columns b and b+ 1) of S.

In the same way, we can exchange rows and columns in tableaux.

Definition 3.8. Let T be a tableau of shape S and a (resp. b) a row (resp. a

column) of S. We define T ↓a (resp.
−→
T b) the tableau of shape S ↓a (resp.

−→
S b)

obtained from T by exchanging rows a and a+ 1 (resp. columns b and b+ 1).

In general, if we consider T ∈ Tab(T ) and “a” a row of T , then the type T ′ of
T↓a heavily depends on the tableau T and not only on T . In the sequel, we focus
on a special case where T ′ is totally determined by T .
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Definition 3.9. Set S a diagram and T = (θc)c∈S ∈ Type(S). Let “a” (resp. “b”)
be a row (resp. a column) of T . This row (resp. column) will be called dominant
if

(D) for all (a, y) ∈ S (resp. (x, b) ∈ S), (a+ 1, y) ∈ S (resp. (x, b+ 1) ∈ S) and
θa,y > θa+1,y (resp. θx,b > θx,b+1).

Definition 3.10. Set T a type of shape S and “a” (resp. “b”) a dominant row

(resp. column) of T . We define the type T ↓a (resp.
−→
T b) of shape S ↓a (resp.

−→
S b) obtained from T by first decreasing by one all the integers in the row a (resp.
column b) of T , then by exchanging rows a and a+ 1 (resp. columns b and b+ 1)
of T , and keeping all other entries unchanged (see Figure 13).

00131

2 2 1

011

Dominant
row

00131

1 1 0

011

-1

011

1 1 0

1 3 1 0 0

T T ↓1

Figure 13.

Lemma 3.11. Set T = (θx,y) ∈ Type(S), and consider a dominant row “a” of T .
Then for any T = (tc) ∈ Tab(T ), we have ta,y < ta+1,y for all (a, y) ∈ S.

Proof. Consider T ∈ Tab(T ). By Theorem 1.15 there exists L = [(ak, bk)]1≤k≤|S| ∈

Fil(T ) and (Pj = (θja,b))j its associated sequence of types such that TL = T . By
definition of Process 1.9, to prove the lemma it is enough to show the following
property:

(Q) for all 0 ≤ k ≤ n, and (a, y) ∈ Sh(Pk) such that (a + 1, y) ∈ Sh(Pk), then
θka,y > θka+1,y.

So let c1 be the biggest integer such that (a, c1) ∈ S. Then we have that
Ha,c1(S) \ {(a, c1)} ⊆ Ha+1,c1(S) and θ0a,c1 > θ0a+1,c1 because the line a is dom-

inant. Set k such that (a + 1, c1) ∈ Sh(Pk), then θka,c1 > θka+1,c1 (such an integer
exists, at least k = 0 works). Now let see why the property is still true for k+1 by
focusing on (ak, bk). We have two main cases :

(1) If (ak, bk) = (a+ 1, c1), then (a+ 1, c1) /∈ Sh(Pk+1).
(2) If (ak, bk) 6= (a+1, c1), then θ

k
a,c1 > θka+1,c1 ≥ 0. There are two possibilities:

• (ak, bk) /∈ Ha,c1(S) \ {(a, c1)}, then θ
k+1
a,c1 = θka,c1 > θka+1,c1 ≥ θk+1

a+1,c1
.

• (ak, bk) ∈ Ha,c1(S) \ {(a, c1)}, then θ
k+1
a,c1 = θka,c1 − 1 > θka+1,c1 − 1 =

θk+1
a+1,c1

.

Finally, we proved by induction that the property (Q) holds for the column c1
for any k. Now let c2 be the biggest integer such that c2 < c1 and such that
(a, c2) ∈ S. Then La,c2(S) \ {(a, c2)} ⊆ Ha+1,c2(S) and Aa,c2(S) = {(a, c1)}. As
before we will prove recursively that for all 0 ≤ k ≤ n, the property (Q) holds for
the column c2. As before we focus on (ak, bk), once again we divide our study into
several cases as for c1. The only new situation occurs when (ak, bk) = (a, c1). Based
on our previous analysis about column c1, we know there exists q < k such that
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(aq, bq) = (a+1, c1). Then for all q+1 ≤ s ≤ k we have that θsa,c2 − θ
s
a+1,c2 ≥ 2, so

θk+1
a,c2 − θk+1

a+1,c2
≥ 1 and the property is proved. With similar arguments, we show

that the property (Q) holds for all the columns, and this concludes the proof. �

With this lemma we have the following property.

Proposition 3.12 (Exchange property). Set T a type and “a” (resp. b) a dominant
row (resp. column) of T . Then the operation ↓a (resp. −→. b) is a bijection between

Tab(T ) and Tab(T ↓a) (resp. Tab(
−→
T b)).

Proof. We consider the tableau T↓a= T ′ = (t′x,y) ∈ TabS↓a
(T ′) where T ′ = (θ′x,y).

Let (x, y) be a cell of S↓a, and Hx,y(T ) = {ta,b | (a, b) ∈ Hx,y(Sh(T )) }. If x 6= a
and a + 1, Hx,y(T ) = Hx,y(T

′), and θ′x,y = θx,y. If x = a, then Ha,y(T
′) =

Ha+1,y(T )
⋃

{ta,y} and by Lemma 3.11, t′a,y = ta+1,y > ta,y so θ′a,y = θa+1,y. To
finish if x = a+1, then θ′a+1,y = θa,y − 1 because Ha+1,y(T

′) = Ha,y(T ) \ {ta+1,y}.
Then T ′ = T ↓a, so ↓a send an element of TabS(T ) to an element of TabS↓a

(T ↓a).
Similar arguments show that ↓a also sends an element of TabS↓a

(T ↓a) to an element
of TabS(T ), hence ↓a is an involution, and it concludes the proof of the line-exchange
property. The proof of the same property for columns is similar. �

We finish this section with a useful definition.

Definition 3.13. Set T a type of shape S. The row (resp. column) a (resp. b) is
called dethroned if: for all (a, y) ∈ S (resp. (x, b) ∈ S, then (a − 1, y) ∈ S (resp.
(x, b− 1) ∈ S), and θa−1,y ≤ θa,y (resp. θx,b−1 ≤ θx,b).

Remark 3.14. Obviously, if a is a dominant row of T , then a+1 is a dethroned line
of T ↓a and viceversa. The same holds for dominant columns.

3.3. The exchange algorithm. In order to reach the goal described in the intro-
duction of Section 3.2, we define an algorithm on Tσ, whose definition will be moti-
vated in Lemma 3.16 and Proposition 3.17. For the reader convenience we show how
this algorithm works for the vexillary permutation σ = [7, 8, 4, 5, 1, 2, 6, 9, 3] ∈ S9.

Definition 3.15 (The exchange algorithm). First, we erase all the boxes of Bλn

that do not belong to Tσ. At this step, some lines and columns are possibly empty, so
we remove them (Figure 14). We denote T 0

σ the type obtained. We note r (resp. s)
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1

1

1
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3

3

4

4

4

45

5

5

6

67

0

0

1

1

1

1

2

2

2

2

23

3

3

4

4

5

5

5

6

Figure 14.

the number of lines (resp. columns) of T 0
σ . As in Lemma 3.3, we define the column
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and the line sequences (c0i )1≤i≤r and (l0i )1≤i≤s of T 0
σ . Now we create a sequence of

types (T k
σ )0≤k≤r+s such that Sh(T r+s

σ ) = λ(σ) and |Tab(T k
σ )| = |Tab(T k+1

σ )| with
the following algorithm.

(1) Let i1 be the smallest integer such that l0j ≤ l0i1 for all 1 ≤ j ≤ r.
(2) Exchange row i1 with row i1 − 1 using Proposition 3.12, then exchange the

new row i1 − 1 with the row i1 − 2, and so on until i1 has been exchanged
with all the rows above it. Call T 1

σ the type obtained after this process,
and denote (l1i )1≤i≤r its line sequence (its column sequence is the same of
T 0
σ ).

(3) Define i2 the smallest integer such that l1j ≤ l1i2 for all 2 ≤ j ≤ r.

(4) Exchange the row i2 with all the rows above it except the first. Call T 2
σ

the type obtained and (l2i )1≤i≤r its line sequence.
(5) Continue this procedure till a type T r

σ having a nonincreasing line sequence
is obtained. After that apply the same procedure to the columns, and at
the end obtain a type T r+s

σ such that both line and column sequences are
nonincreasing.

(6) Denote T E
σ = T r+s

σ .

0

1

1

2

0101

01

12

23

34

45

34

Figure 15. This is the type T E
σ obtained from σ = [4, 8, 9, 5, 7, 6, 1, 3, 2]

To prove that this algorithm can always be performed, we need an intermediate
lemma.

Lemma 3.16. Set σ ∈ Sn a vexillary permutation. Set li (resp. ci) the line
sequence (resp. the column sequence) of Sh(Tσ) (see (6) ). For all i and j in N

such that lj ≤ li (resp. cj ≤ ci), if (i, a) ∈ Sh(Tσ) (resp. (a, i) ∈ Sh(Tσ)) then
(j, a) ∈ Sh(Tσ) (resp. (a, j) ∈ Sh(Tσ)).

Proof. We prove this lemma for lines only (the proof for columns is similar) by
induction using the stacking process (Section 3.1). Set i1, . . . , in such that the
sequence (li1 , . . . , lin) is nonincreasing. We focus on i1, and consider the corre-
sponding line in S = Sh(Tσ). Now set i 6= i1 and k such that (i, k) ∈ S, then we
will show that (i1, k) ∈ S. To prove it, we assume that (i1, k) /∈ S.

(i, k)

i1 li1 boxes in this row
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So, if we push the boxes against the X-axes, then in the first row there must be
strictly more than li1 boxes.

i1 li1 + 1 boxes in this row

So this is again the case when we stack all the boxes on the Y -axes. If we reverse
the order of the stacking process and we first pack the boxes against the Y -axes
and after we stack the boxes on the X-axes, because of the maximality of li1 , the
first row contains only li1 boxes. But σ is vexillary, so this is a contradiction, and
the lemma is proved for the row i1.

Suppose the lemma is proved for rows i1, . . . , ik, k ∈ N. Set λ(σ) = (λ1, . . . , λm).
By induction, if we delete rows i1, . . . , ik in S, and then perform the XY or Y X
stacking process on the obtained diagram, we found the partition (λk+1, . . . , λm)
in both cases. With a similar argument as for the case i1, we prove that the lemma
holds for row ik+1, and this concludes the proof. �

Proposition 3.17. Set σ a vexillary permutation, then the exchange algorithm can
always be performed.

Proof. First we focus on the row i1−1: since the integers in T 0
σ are strictly increasing

from bottom to top, by Lemma 3.16 we have that the row i1 − 1 satisfies condition
(D), hence it is dominant. Then we can use Proposition 3.12 to exchange the row
i1 with the row i1−1. We denote T ′ the type obtained after this exchange. With a
similar argument we can show that row i1−2 of T ′ is dominant, so we can exchange
rows i1 − 2 and i1 − 1 in T ′, and so on. At the end, we exchanged the row i1 of T
with all the rows above it. Moreover, since the integers in T 0

σ are strictly increasing
from bottom to top, by Proposition 3.12 the integers in the rows from 2 to r in T 1

σ

are again strictly increasing from bottom to top. Then by Lemma 3.16, we prove
that we can use Proposition 3.12 to move the row i2 to the second position. And
so on.

We remark that the integers in each row of T r
σ are increasing from right to left.

Then with exactly the same arguments, we show that the process over the columns
can be performed. �

At this point, we have a type T E
σ such that both column and line sequences are

non-increasing. It is easy to see by using the stacking process and Lemma 3.16
that T E

σ is of shape λ(σ). As a consequence of Proposition 3.12, Lemma 3.3, and
Theorem 3.1 we have the expected theorem.

Theorem 3.18. Set σ ∈ Sn vexillary, then the type T E
σ is of shape λ(σ) and

|Tabλ(T
E
σ )| = |Tab(Tσ)| = fλ(σ).

3.4. Link with balanced tableaux. Now we use the theory developed in the
previous section to give an alternative proof of the fact that balanced tableaux and
stantard Young tableaux of same shape are equinumerous. Consider the Ferrers
diagram of λ. A corner of λ is a cell c of its diagram such that there is not any cell
below and on the right of c. Now consider a corner c = (a, b) of λ such that the



18 FRANÇOIS VIARD

integer k = λa + λ′b − 1 is maximal. Then we can place λ in the staircase partition
λk+1 as depicted in the following figure.

Corner c = (a, b) such that λa + λ′
b − 1

is maximal.

Then we look at the corners (u, v) of λ which are on the diagonal border of the
staircase partition. For each such corner set R(u,v) = {(x, y) ∈ λ | x ≤ u, y ≤ v},
and consider the union R of all these R(u,v). Then we let each other connected
parts of λ fall in the staircase tableau as depicted in Figure 16. Then we repeat
the same procedure for each connected part of the obtained diagram, until this is
possible. At the end, we obtain a subdiagram S of λk+1.

Diagram S

Figure 16.

Definition 3.19. Set S the diagram obtained with the procedure depicted above.
We define F = (βc)c∈S .

Lemma 3.20. F is a subtype of Bλk+1
. Moreover, if we denote σλ ∈ Sk+1 the

permutation such that F = Tσλ
, then σλ is vexillary of shape λ.

Proof. To prove this Lemma, we use Proposition 2.12. Consider z = (x, y) ∈ λk+1;

• if z /∈ S, then the only elements in Hz(λk+1)∩S have to be strictly below z.
Moreover, by definition βz is precisely equal to the number of boxes strictly
below z. Hence βz ≥ |Hz(λk+1) ∩ S|;

• if z = (x, y) ∈ S, by construction of S there exists z′ = (x′, y′) ∈ S such
that: x′ ≥ x, y′ ≥ y, βz′ = 0, and for all x ≤ u ≤ x′ and y ≤ v ≤ y′ then
(u, v) ∈ S. Then βz = (x′ − x) + (y′ − y) ≤ |Hz(S)| − 1.
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Hence, F ∈ Sub(Bλk+1
). By Proposition 2.9 there exists σλ such that Tσλ

= F .
Moreover, if we perform the stacking process on Inv(σλ) = S, it is easy to see that
both XY and Y X processes end with the partition λ. Hence by Corollary 3.5, σλ
is vexillary of shape λ, and this concludes the proof. �

Definition 3.21. Set λ = (λ1, . . . , λk) a partition of n. We said that two elements
(a, b) and (c, d) in the Ferrers diagram of λ are in the same block if and only if
λa = λc.

Now we focus on T E
σλ

= (θc)c∈λ. We first remark that if c is a corner of λ, then
θc = 0. Moreover by construction, the column sequence of S is nonincreasing, hence
when we perform the exchange algorithm on σλ, it does not exchange any columns.
Hence, we have that:

(A) for all (x, y) ∈ λ, if (x, y − 1) ∈ λ then θ(x,y−1) = θ(x,y) + 1.

More technical now: set j ∈ N and i < j maximal such that li(S) = lj(S). Then by
construction of S we have that for all k such that i < k < j, then lk(S) > li(S) (in
particular the line k is not empty). Then when we perform the exchange algorithm,
we exchange row j with each rows k where i < k < j. Moreover, each time we do
that, we decrease by one the integers in row j. Hence, since there is not any empty
rows between row i and row j in S, we have that:

(B) for all (x, y) ∈ λ, if (x − 1, y) ∈ λ and is in the same block as (x, y), then
θ(x−1,y) = θ(x,y) + 1.

From (A) and (B) we deduce that T E
σλ

is of the form depicted in Figure 17.
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Figure 17.

Definition 3.21 splits T E
σλ

into several blocks. We can use Proposition 3.12 on
each block in this way: the bottom row is translated to the top, then the new
bottom row is translated to the second position, and so on (see Figure 18). And at
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Figure 18.

the end, the type we obtained is effectively Bλ, and this proves the following result.
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Corollary 3.22. For all λ ⊢ n we have that

|Bal(λ)| = |Tab(Bλ)| = |Tab(T E
σλ
)| = fλ = |SYT(λ)|.

At this point, one could expect that there exists a vexillary permutation σeq
such that we directly have T E

σeq
= Bλ. Unfortunately, we can show that such a

permutation does not exist in general.
We conclude this section with a natural question: given two vexillary permutations
σ and ω, when do we have T E

σ = T E
ω ? We will answer to this question in the

following section.

3.5. An equivalence relation between vexillary permutations. Now we will
exhibit an equivalence relation ∼v on the set of vexillary permutations with the
property that for any two vexillary permutations σ ∈ Sn and ω ∈ Sm, then T E

σ =
T E
ω if and only if σ ∼v ω.

Set σ ∈ Sn,and p ≤ n the lowest integer such that σ(p) 6= p and q ≤ n the biggest
integer such that σ(q) 6= q. Then we define,

σ = [σ(p)− (p− 1) ; σ(p+ 1)− (p− 1) ; . . . ; σ(q)− (p− 1)].

Note that σ is an element of Sn+1−p−q because of the choice of p and q.

Definition 3.23. We say that σ ∼v ω if and only if σ = ω.

Theorem 3.24. Set σ and ω two vexillary permutations. Then T E
σ = T E

ω if and
only if σ ∼v ω.

Proof. We have a combinatorial interpretation for the relation ∼v. Set σ ∈ Sn and
ω ∈ Sm such as σ ∼v ω. We can assume n bigger than m. Then we can see ω
as a permutation of Sn by adding n −m fix points at the end of ω. Set pσ (resp.
pω) the smallest integer such that σ(pσ) 6= pσ (resp. ω(pω) 6= pω). By definition
Inv(σ) = Inv(ω), moreover Inv(σ) = {(x+(pσ − 1), y+(pσ − 1)) | (x, y) ∈ Inv(σ)}.
So if we look at Tσ and Tω, we have the situation described in the following figure.

We obtain Tσ by translating

Tω along the diagonal.

Then it is clear that we have T E
σ = T E

ω by construction.

To prove the opposite direction, we will construct the inverse procedure of the
Exchange algorithm (Definition 3.15). This algorithm is divided in two parts, one
for the columns, and another for the lines. We will show how it works on columns
(on lines is similar). Set σ ∈ Sn vexillary.

(1) Start with T E
σ : set r its number of lines and s its number of columns.

(2) Scan the columns of T E
σ from right to left starting from column s. When

one meet a column k which is dethroned (see Definition 11) then use the
Proposition 3.12 on k and k + 1. Then scan again the columns from right
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to left, starting from column s and look for a column which is dethroned
in order to use Proposition 3.12 again, and so on.

(3) The algorithm stops when there is not any dethroned column left.

Recall that T E
σ = T r+s

σ . By Definition of the Exchange Algorithm, there exist
1 ≤ u1 ≤ s and k1 ∈ N (which can be 0) such that: if we exchange the column u1
of T r+s−1

σ with the k1 columns on its left using Property 3.12, then the type we
obtain is T r+s

σ . Note that for any u1−k1 < i < j ≤ s, the columns i and j of T r+s
σ

have not been exchanged at any step of the exchange algorithm. Since the integers
in each row of Tσ are increasing from right to left, we have that this property is
still true for columns u1 − k1 + 1 to s in T r+s

σ . This implies that the rightmost
dethroned column of T r+s

σ is the column u1 − k1 + 1. After k1 iteration of the
algorithm described above, the obtained type is T r+s−1

σ . With similar arguments,
we show that the type we obtain when this algorithm stops is T r

σ . Then we perform
the same process on the lines of T r

σ , and at the end we obtain T 0
σ . Now let us see

how we can turn this type into Tσ.
In the Exchange algorithm we removed empty lines and empty columns from Tσ

in order to obtain T 0
σ = (θi,j), so now we have to put them back. Set (Li) the

line sequence of T 0
σ and imax an integer such that Limax

is maximal in the line
sequence. Then let s be the biggest integer such that (imax, s) ∈ Sh(T 0

σ ). Then for
all 1 ≤ j ≤ s, we put θimax,j − θimax,j+1 − 1 empty columns between the column

j and the column j + 1. We do the same thing with lines. We call T = (θc) the
obtained type.

By hypothesis, T = Tσ. Set ω ∈ Sm such that Tω = T . We can suppose thatm =
n by adding some fix points at the beginning of σ and ω. Then Inv(σ) = Inv(ω),
hence with a similar argument as in the first paragraph of this proof, ω ∼v σ. This
concludes the proof. �

4. On a question raised by Edelman and Greene

In this last section, we use our previous work to give an answer to a question
raised in the [3]. Set λ ⊢ n, it is obvious that

fλ =
∑

λ−

fλ
−

, (9)

where the sum runs over all the partition λ− obtained by removing a corner from
λ. Since it holds for standard tableaux, it also holds for balanced tableaux. In [3]
was raised the question to give a direct proof of this result. We can answer this
problem by considering a more general question. Set σ ∈ Sn a vexillary permutation
of shape λ and associated type T E

σ . Set z1, . . . , zk a sequence of boxes of λ, we
want to enumerate the tableaux T = (tc)c∈λ ∈ Tab(T E

σ ) such that for all 1 ≤ j ≤
k, tzj = n+ 1− j. Equivalently, this consists in enumerating the filling sequences

[c1, . . . , cn] of T
E
σ such that for all 1 ≤ j ≤ k, cj = zj . In the sequel, we will give

a complete answer to this question using the theory of reduced decompositions of
the symmetric group. To do so, we introduce the following definition.

Definition 4.1. Set S ⊂ S′ ⊆ λn such that both TS = (βc)c∈S and TS′ = (βc)c∈S′

are in Sub(Bλn
). Define TS′/S = (θc)c∈S′\S , where θc = βc − |Hc(λn) ∩ S|. Then

TS′/S is a type, and we say that TS′/S is a S-subtype of Bλn
.

Then we have the following property.
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Proposition 4.2. Set S ⊂ S′ ⊆ λn such that TS and TS′ ∈ Sub(Bλn
). Set σ and

ω ∈ Sn such that TS = Tσ and TS′ = Tω, then |Fil(TS′/S)| = |Red(σ−1ω)|.

Proof. Set k = |S′ \ S|, V = [z1, . . . , zk] ∈ Fil(TS′/S), and U = [c1, . . . , c|S|] ∈
Fil(TS). Then W = [c1, . . . , c|S|, z1, . . . , zk] ∈ Fil(TS′). By Theorem 2.10, W
corresponds to si1 · · · siℓ(ω)

∈ Red(ω). Moreover, by construction of W we have

that si1 · · · si|S|
∈ Red(σ). Hence we have that si|S|+1

. . . siℓ(ω)
∈ Red(σ−1ω). In

this way, we associate to each element of Fil(TS′/S) an element of Red(σ−1ω), and
as in the proof of Theorem 2.10, this defines a bijection. �

This result implies the following theorem which answers to the question raised
at the beginning of this section.

Theorem 4.3. Set σ ∈ Sm a vexillary permutation of shape λ ⊢ n, T E
σ its asso-

ciated type, and U = [z1, . . . , zk] a sequence of boxes in the Ferrers diagram of λ.
Then if we consider the number of filling sequences L = [c1, . . . , cn] of T

E
σ such that

Lk = [c1, . . . , ck] = U , we have the two following cases :

(1) If U can be completed into a filling of T E
σ , then there exists ω a permutation

such that this number is equal to |Red(ω)|.
(2) If not, this number is 0.

Proof. By construction, the exchange algorithm defines a bijection ψ from the dia-
gram λ to Inv(σ) ⊆ λm such that: [c1, . . . , cn] ∈ Fil(T E

σ ) if and only if [ψ(c1), . . . , ψ(cn)] ∈
Fil(Tσ). Set S = {ψ(z1), . . . , ψ(zk)}, then there is two possibilities:

(1) if there exists τ ∈ Sm such that Tτ = TS , then by Proposition 4.2 the
number we are looking for is |Red(τ−1σ)|;

(2) if not, this number is 0.

This concludes the proof. �

This theorem can also be applied to balanced tableaux. Moreover, this result is
not just theoretical : the permutation ω can be computed by using the Exchange
algorithm 3.15 and Proposition 4.2. Since the algorithm is not easy to manipulate,
we cannot provide a systematic description of the associate permutation. However
we have this nice combinatorial result.

Theorem 4.4. Set σ, T E
σ and U = [z1, . . . , zk] as in the previous theorem. We

consider the diagram S = λ(σ) \ {z1, . . . , zk}. We perform the stacking process on
S, and we set λ(S) (resp. µ(S)′) the partition obtained after the XY (resp. Y X)
process. If U can be completed into a filling of T E

σ and λ(S) = µ(S)′, then we have
that

|{L = [c1, . . . , cn] ∈ Fil(T E
σ ) | [c1, . . . , ck] = U}| = fλ(S).

As a corollary of Theorem 4.3, if U cannot be completed into a filling of T E
σ then

this number is 0. Moreover, as before this theorem is still true with the balanced
type. This theorem is an immediate consequence of Theorem 3.1 together with
Proposition 4.6, which is given after an intermediate lemma.

Lemma 4.5. Set S ⊂ S′ ⊆ λn such that TS and TS′ ∈ Sub(Bλn
). Set σ and

ω ∈ Sn such that TS = Tσ and TS′ = Tω. Then Inv(σ−1ω) = σ−1(S′ \ S) where
σ−1(S′ \ S) = {(σ−1(i), σ−1(j)) | (i, j) ∈ (S′ \ S)}.
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Proof. We have that ω = [ω(1), ω(2), . . . , ω(n)], then

σ−1ω = [σ−1(ω(1)), . . . , σ−1(ω(n))].

Since S ⊆ S′, by Proposition 2.9 we have that Inv(σ) ⊆ Inv(ω). Now let (i, j) be
an inversion of ω, then ω = [ω(1), . . . , j, . . . , i, . . . , ω(n)]. We have the two following
cases.

(1) If (i, j) ∈ Inv(σ), then by definition we have that σ−1(i) > σ−1(j). But
σ−1ω = [σ−1(ω(1)), . . . , σ−1(j), . . . , σ−1(i), . . . , σ−1(ω(n))], so

(σ−1(i), σ−1(j)) /∈ Inv(σ−1ω).

(2) If (i, j) /∈ Inv(σ), then σ−1(i) < σ−1(j), so (σ−1(i), σ−1(j)) ∈ Inv(σ−1ω).

Hence we have that σ−1(Inv(ω) \ Inv(σ)) ⊆ Inv(σ−1ω). Moreover it is easy
to see that ℓ(σ−1ω) = ℓ(ω) − ℓ(σ), so σ−1(Inv(ω) \ Inv(σ)) = Inv(σ−1ω). But
S′ \ S = Inv(ω) \ Inv(σ), so the lemma is proved. �

Proposition 4.6. Set S, S′, σ and ω as defined in Lemma 4.5. Then with
convention of Remark 2.1, we have that for all i, cσ(i)(S

′ \ S) = di(σ
−1ω) and

lσ(i)(S
′ \ S) = gi(σ

−1ω).

Proof. Set 1 ≤ i ≤ n, we have that di(σ
−1ω) = |{(k, i) | (k, i) ∈ Inv(σ−1ω)}| and

ci(S
′ \ S) = |{(k, i) | (k, i) ∈ (S′ \ S)}|. With the previous lemma, we have that

σ−1.{(k, σ(i)) | (k, σ(i)) ∈ (S′ \ S)} = {(j, i) | (j, i) ∈ Inv(σ−1ω)}

so di(σ
−1ω) = cσ(i)(S

′\S), and we prove the other equality with a similar argument.
�

Now we give a direct proof of Equation (9). First we need a definition.

Definition 4.7. Set λ ⊢ n seen as a diagram. Set B a block of λ, then there exists
i minimal such that (i, λi) ∈ B. The box (i, λi) is called the upper right corner of
the block B.

Set T a balanced tableau of shape λ ⊢ n. By definition of Process 1.9, we have
that the integers n appears in the upper right corner of a block (Figure 19).

n appears in one of these boxes

Figure 19.

Then by Theorem 4.4 we directly have the next result.

Proposition 4.8. Set B a block of λ ⊢ n and c the upper right corner of B. Then
the number of balanced tableaux of shape λ such that n appears in c is equal to the
number of standard tableaux of shape λ−, where λ− ⊢ n − 1 is obtained from λ by
suppressing the corner of the block B.
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