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Abstract6

Heterogeneous materials, such as rocks and concrete, have a complex dynamics including hys-

teresis, nonlinear elasticity and viscoelasticity. It is very sensitive to microstructural changes

and damage. The goal of this paper is to propose a physical model describing the longitudinal

vibrations of this class of material, and to develop a numerical strategy for solving the evolution

equations. The theory relies on the coupling between two processes with radically-different time

scales: a fast process at the frequency of the excitation, governed by nonlinear elasticity and vis-

coelasticity; a slow process, governed by the evolution of defects. The evolution equations are

written as a nonlinear hyperbolic system with relaxation. A time-domain numerical scheme is

developed, based on a splitting strategy. The numerical simulations show qualitative agreement

with the features observed experimentally by Dynamic Acousto-Elastic Testing.

Keywords: Nonlinear acoustics; time-dependent materials; viscoelasticity; acoustic7

conditioning; numerical methods; hyperbolic system.8

1. Introduction9

In geosciences, understanding the complex nonlinear behavior of rocks and soil is valuable10

for earthquake source characterization, seismic imaging, etc. Within the context on license re-11

newal in nuclear energy, non-destructive evaluation is a key point to evaluate the state of concrete12

structures, and to estimate the life remaining time. In both cases, many authors report a large,13

but qualitative, sensitivity of nonlinear parameters to various kinds of damage and pathologies.14

However, without quantitative data, it is still impossible to compare studies among others.15

An unified model describing both nonlinear elasticity and non equilibrium dynamics is of16

great interest in wave propagation in microheterogeneous media such as rock and concrete. This17

so-called ”non classical” [8, 17, 5] or ”mesoscopic” [6] class of material exhibits some nonlin-18

ear phenomena unexpected regarding the Landau’s theory [9], involving fast and slow dynamic19

behavior. Fast dynamics describes the quasi-instantaneous nonlinear response of the materials.20

Slow dynamics relates the slow (order 103 s) softening / recovering of the elastic properties21

when subjected to a high amplitude strain amplitude (order 10−6) dynamic excitation. These22
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phenomena are illustrated in figures 1 and 2. In particular, it is observed experimentally that the23

curves relating elastic modulus and strain exhibit hysteresis loops, and vary with the amplitude24

of forcing (figure 2).25

Figure 1: evolution of the relative elastic modulus measured experimentally. Excitation is switched on after 1200 ul-

trasonic (US) pulses, and then switched off after 2900 US pulses. M and M0 are the elastic modulus out equilibrium

and at equilibrium, respectively. The vertical dotted lines denote a time interval where equilibrium has been reached.

Reproduced from figure 3-(a) of [15]. Authorization of reproduction courtesy given by the Authors and by the Journal

Editor.

The most widely used model describing these behaviors is based on the Preisach-Mayergoyz26

theory, introduced in the field of electromagnetism. Even if it can reproduce experimental ob-27

servations, this phenomenological model lacks physical foundations. In particular, it does not28

incorporate relaxation times [14].29

Here, we present a ”soft-ratchet” model initially introduced in [19] and physically meaning-30

full. The softening / recovering of elastic modulus is related to the activation of defects that31

evolves dynamically with the applied stress. This relaxation mechanism is coupled to a law of32

nonlinear elasticity, for instance the well-known Landau’s model [9]. Lastly, viscoelasticity is33

introduced in the model. Our contribution is two-fold:34

• Improvement of the physical model. Non-physical features of the soft-ratchet model [19]35

are fixed. A generalization of the viscoelastic Zener model to the nonlinear framework is36

also introduced. This mechanism of attenuation is more realistic than the Stokes model37

used in [19], and is better suited for the numerical resolution.38

• Construction of a numerical scheme. Analytical tools used in [19] were unable to solve39

the full coupled system. On the contrary, the numerical strategy developed here enables to40

solve the whole equations, in the time-domain.41

The sketch of the paper is as follows. First, we introduce the physical model and its basic42

features in 1D: evolution of defects, nonlinear elasticity, and attenuation. Second, the evolution43

equations are written as a first-order sytem of partial differential equations, whose properties are44

stated. Third, the numerical method is introduced, based on a splitting strategy. The hyperbolic45

step is solved by a conservative scheme, whereas the relaxation step is solved exactly. Fourth46

and last, numerical experiments show that the experimental observations performed by Dynamic47

Acousto-Elastic Testing [15, 16] and shown in figures 1 and 2 are qualitatively recovered.48
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Figure 2: experimental evolution of the elastic modulus in terms of the elastic strain, for various amplitudes of forcing.

Reproduced from figure 4-(c) of [16]. Authorization of reproduction courtesy given by the Authors and by the Journal

Editor.

2. Physical modeling49

2.1. Linear elastodynamics50

In the case of small deformations, the propagation of 1D elastic waves can be described by

the following system [1]:



































∂v

∂t
−

1

ρ

∂σ

∂x
= γ, (1a)

∂ε

∂t
−
∂v

∂x
= 0, (1b)

where t is the time, x is the spatial coordinate, γ is a forcing term, u is the displacement, v = ∂u
∂t

is51

the velocity, ε = ∂u
∂x

is the strain, and σ is the stress. The latter is a function of strain: σ = σ(ε).52

In the linear case, the Hooke’s law writes σ = E ε, where E is the Young’s modulus, which53

is assumed to be constant over time. In the particular case where γ is a Dirac source at xs with54
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time evolution G(t), then the exact solution of (1) is straightforward55

ε = −
sgn(x − xs)

2 c2
G

(

t −
|x − xs|

c

)

, (2)

where sgn is the sign distribution, and c =
√

1
ρ
∂σ
∂ε
≡

√

E/ρ is the speed of sound.56

The goal of the forthcoming sections is to extend the model (1) in three ways:57

• time variations of E due to the stress;58

• nonlinear Hooke’s law;59

• hereditary effects (viscoelasticity).60

The first effect (variation of E) owns time scales much greater than the second and third effect.61

It is consequently referred to as slow dynamics.62

2.2. Slow dynamics: soft-ratchet model63

Here we follow the lines of [19] with some modifications. The slow dynamics of the medium64

is assumed to rely on the concentration of activated defects g, which varies with σ. In the lowest65

approximation, the Young’s modulus is written:66

E =

(

1 −
g

gcr

)

E+, (3)

where gcr and E+ are the critical concentration of defects and the maximum possible value of67

Young’s modulus, respectively (figure 3-(a)). The following constraints hold:68

0 ≤ g ≤ gcr ≤ 1. (4)

The concentration g is assumed to evolve to its stress-dependent equilibrium value gσ at a69

rate fr if g > gσ (restoration), or fd if g < gσ (destruction). This mechanism can be modeled by70

the ordinary differential equation71

dg

dt
= − ( fr H(g − gσ) + fd H(gσ − g)) (g − gσ), (5)

where H is the Heaviside step distribution. The frequencies fr and fd differ substantially:72

fr ≪ fd ≪ fc, (6)

where fc is a typical frequency of the excitation. Figure 3-(b) represents the time evolution of73

g, given a constant equilibrium concentration gσ = 0.3 denoted by a horizontal dotted line. The74

restoration and rupturation frequencies are fr = 25 Hz and fd = 250 Hz, respectively. Two initial75

value of the concentration of defects are considered: g0 = 0.2 and g0 = 0.4. In both cases, g76

tends towards gσ with different rates: destruction is much faster than restoration.77

It remains to define the evolution of gσ with σ. In [19], the authors propose the expression78

gσ = g0 exp(σ/σ), σ =
kT

υ
, (7)
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(a) (b)

E0

E+ g  > g

g  < g
✁

✁

0

0

Figure 3: parameters of the slow dynamics. (a): Young’s modulus E in terms of the concentration of defects g (3), for

E+ = 14.28 GPa; the vertical dotted line denotes the initial concentration of defects g0 = 0.3 and the corresponding

Young’s modulus E0 = E(g0) = 10 GPa. (b): time evolution of the concentration of defects g given an equilibrium stress

σ and two initial values g0; the horizontal dotted line denotes gσ.

where g0 is the unstrained equilibrium concentration of defects, k is the Boltzmann constant, T

is the temperature, and υ is a typical volume accounting for a single defect. If σ > σ ln gcr/g0,

then gσ > gcr; in this case, the concentration may evolve to g > gcr due to equation (5), which

contradicts the second assumption in (4). To remove this drawback and to build a physically

realistic expression of gσ, we enforce (4) together with the following requirements:































































0 ≤ gσ < gcr, (8a)

gσ(0) = g0, (8b)

lim
σ→−∞

gσ = 0, (8c)

lim
σ→+∞

gσ = gcr, (8d)

∂gσ

∂σ
> 0. (8e)

The simplest smooth function satisfying (8) is79

gσ =
gcr

2

(

1 + tanh

(

σ − σ0

σ

))

, (9)

where the central stress is80

σ0 = σ tanh−1

(

1 − 2
g0

gcr

)

. (10)

Figure 4-(a) illustrates the two expressions of the stress-dependent equilibrium value gσ: the81

”exponential model” (7), and the ”tanh model” (9)-(10). The numerical values are g0 = 0.3 and82

σ = 105 Pa. The two expressions are the same at null stress. But for tractions larger than 230 kPa,83

the value of gσ deduced from (7) overcomes 1, leading to non-physical. Figure 4-(b) illustrates84
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the influence of σ in (9). As σ decreases, gσ may evolve more easily towards the extreme values85

0 and gcr, and hence the damage may increase thanks to (5).86

(a) (b)

σ
0

σ=2.5 E5

σ=1.0 E5

σ=1.0 E4

Figure 4: equilibrium concentration of defects gσ in terms of the applied stress σ. (a): ”exponential model” (7) and ”tanh

model” (9). (b): ”tanh model” (9) with various values of σ. The horizontal dotted line denotes the critical concentration

of defects gcr ; the vertical dotted line denotes the central stress σ0.

2.3. Fast dynamics: nonlinear viscoelasticity87

Nonlinear elasticity.88

The stress-strain relation is given by a smooth function89

s ≡ s(ǫ, K, p), (11)

where s is the stress, ǫ is the strain, K is a stiffness, and p is a set of parameters governing the90

nonlinearity. No prestress is considered; K is the slope of s at the origin; lastly, s is homogeneous91

of degree 1 in K. In other words, s satisfies the following properties:92

s(0, K, p) = 0,
∂s

∂ǫ
(0, K, p) = K, s(ǫ, αK, p) = α s(ǫ, K, p). (12)

Three models of nonlinear elasticity (11) are now given and illustrated in figure 5.93

Model 1. This model is issued from [19] and mimics the Lennard-Jones potential describing the94

interaction between a pair of neutral atoms:95

s(ǫ, K, p) = K
d

r − a





























1
(

1 +
ǫ

d

)a+1
−

1
(

1 +
ǫ

d

)r+1





























, p = (r, a, d)T . (13)

The nonlinear parameters are the repulsion and attraction coefficients r and a (0 < a < r). The96

strain is bounded below by the maximal allowable closure d. The function (13) has an extremal97

point ǫc > 0, and then it decreases asymptotically towards 0 when ǫ > ǫc (figure 5-(a)).98
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Model 2. A third-order Taylor expansion of the model 1 (13) yields99

s(ǫ, K, p) = K ǫ

(

1 −
1

2
(r + a + 3)

ǫ

d
+

1

6

(

r2 + ra + a2 + 6r + 6a + 11
)

(

ǫ

d

)2
)

, p = (r, a, d)T .

(14)

The nonlinear parameters are the same than in model 1. But unlike model 1, the function (14)100

is a strictly monotonic increasing function without extremal point (figure 5-(a)). Moreover, the101

strain is not bounded below.102

Model 3. The most widely used law in ultrasonic NonDestructive Testing is the so-called Lan-103

dau’s model [9]104

s(ǫ, K, p) = K ǫ
(

1 − β ǫ − δ ǫ2
)

, p = (β, δ)T . (15)

The nonlinear parameters are the quadratic and cubic coefficients β and δ; in practice, β ≪ δ.105

Like model 1, the function (15) has extremal points, but it is not bounded below (figure 5-(b)).106

(a) (b)

−1E−4 0 1E−4 2E−4 3E−4 4E−4

−2 

0 

2 

4 

eps

si
g
m

a (
M

P
a)

model 1

model 2

linear elasticity

−2E−4 −1E−4 0 1E−4 2E−4

−4 

0 

4 

eps

si
g
m

a (
M

P
a)

model 3

linear elasticity

Figure 5: Stress-strain relations for the three models (11). In (a), the dotted lines denote the coordinates of the inflexion

point for model 1. The physical parameters are: E = 10 GPa, d = 4.3 10−4 m, a = 2, r = 4 (models 1 and 2), β = 100,

δ = 108 (model 3).

Viscoelasticity.107

To incorporate attenuation, the following criteria are used as a guideline:108

C1: when the viscous effects are null, one must recover the nonlinear elasticity (11);109

C2: when a linear stress-strain relation holds, one must recover the standard linear solid model110

(or generalized Zener model), which accurately represents the behavior of usual solids [2].111

For this purpose, a system with N Zener elements connected in parallel is considered (figure 6).112

The total stress acting on the system is113

σ =

N
∑

ℓ=1

σ1ℓ =

N
∑

ℓ=1

(σ2ℓ + σ3ℓ), (16)
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Figure 6: Rheological model of a generalized Zener material.

where the index 1 refers to the series springs, and the indices 2-3 refer to the springs and dashpots114

in parallel. The strain ε is115

ε = ε1ℓ + ε2ℓ, ℓ = 1, · · · ,N. (17)

The springs 1 satisfy nonlinear stress-strain relations (11) with stiffnesses K1ℓ. The parameters p

governing the nonlinearity (for instance β and δ in model 3 (15)) are assumed to be constant and

identical for each element. The springs 2 satisfy linear stress-strain relations with stiffnesses K2ℓ.

Lastly, the dashpots satisfy linear Maxwell laws with coefficients of viscosity ηℓ. These laws are

summed up as follows:



































σ1ℓ(ε1ℓ) = s(ε1ℓ, K1ℓ, p), (18a)

σ2ℓ(ε2ℓ) = s(ε2ℓ, K2ℓ, 0), (18b)

σ3ℓ(ε2ℓ) = ηℓ
∂ε2ℓ

∂t
. (18c)

To determine the parameters K1ℓ, K2ℓ and ηℓ, one introduces the relaxation times τσℓ, τεℓ and the116

relaxed modulus ER:117

τσℓ =
ηℓ

K1ℓ + K2ℓ

, τεℓ =
ηℓ

K2ℓ

,
ER

N
=

K1ℓ K2ℓ

K1ℓ + K2ℓ

. (19)

On one hand, a procedure is given in Appendix A to compute the relaxation times in terms of the118

quality factor Q. On the other hand, ER is related to the unrelaxed Young’s modulus E (3) and to119

the relaxation times previsously determined (see [2]):120

ER =
N

N
∑

ℓ=1

τεℓ

τσℓ

E. (20)
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Once τσℓ, τεℓ and ER are determined, inverting (19) provides the values of the viscoelastic model121

in terms of the relaxed modulus and relaxation times (ℓ = 1, · · · ,N):122

K1ℓ =
τεℓ

τσℓ

ER

N
, K2ℓ =

τεℓ

τεℓ − τσℓ

ER

N
, ηℓ =

τ2
εℓ

τεℓ − τσℓ

ER

N
. (21)

From (20) and (21), it follows that the viscoelastic parameters depend indirectly on the Young’s123

modulus E, and thus depend on g. In other words, the proposed model of viscoelasticity evolves124

with the concentration of defects and thus with the applied stress.125

To conclude this part, let us recall the two criteria C1 and C2 used to build the viscoelastic126

model. C1 concerned the consistency with the Zener model in the linear case, whereas C2 con-127

cerned the consistency with the nonlinear elasticity (11) in the inviscid case. By construction, C1128

is satisfied. The following property states that C2 is also true. The proof is given in Appendix A.129

Property 1. In the inviscid case, the stress-strain relation deduced from (16)-(18) recovers the130

nonlinear elasticity (11), whatever the number N of relaxation mechanisms.131

3. Mathematical modeling132

3.1. First-order system133

The conservation of momentum (1a) writes134

∂v

∂t
=

1

ρ

∂σ

∂x
+ γ, (22)

where γ is a forcing term, and σ is given by (16). The hypothesis of small deformations (1b)135

gives136

∂ε

∂t
=
∂v

∂x
. (23)

Lastly, manipulations on (16), (17) and (18c) yield137

∂ε1ℓ

∂t
=
∂v

∂x
+
σ2ℓ(ε − ε1ℓ) − σ1ℓ(ε1ℓ)

ηℓ
, ℓ = 1, · · · ,N. (24)

In (24), ε1ℓ takes the place of the memory variables proposed in [12] and is better suited to

nonlinear elasticity. Putting together (22)-(24) and the relaxation equation (5) leads to the first-

order system of N + 3 evolution equations



















































































∂v

∂t
−

1

ρ

∂σ

∂x
= γ, (25a)

∂ε

∂t
−
∂v

∂x
= 0, (25b)

∂ε1ℓ

∂t
−
∂v

∂x
=
σ2ℓ(ε − ε1ℓ) − σ1ℓ(ε1ℓ)

ηℓ
, ℓ = 1, · · · , N, (25c)

dg

dt
= − ( fr H(g − gσ) + fd H(gσ − g)) (g − gσ). (25d)

To close the system (25), one recalls the following equations:138
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• The total stress σ in (25a) depends on ε1ℓ via (16), (18a), and a nonlinear law (11):139

σ =

N
∑

ℓ=1

s(ε1ℓ, K1ℓ, p). (26)

• The stress componentsσ1ℓ and σ2ℓ in (25c) depend on the stifnesses K1ℓ and K2ℓ (18a) and140

(18b). The latter, as well as the viscoesity coefficients ηℓ, depend on the Young modulus141

E via (20)-(21), and thus on g:142

E =

(

1 −
g

gcr

)

E+. (27)

• The equilibrium value of the defect concentration gσ in (25d) satisfies (9) and (10):143

gσ =
gcr

2

(

1 + tanh

(

σ − σ0

σ

))

. (28)

The system (25) together with equations (26)-(28) generalizes the standard equations of linear144

elastodynamics (1). It accounts for softening / recovering of Young’s modulus, nonlinearity and145

viscoelasticity.146

For the sake of clarity, one introduces the vector of N + 3 unknowns147

U = (v, ε, ε11, · · · , ε1N , g)T . (29)

Then the system (25) can be put in the form148

∂

∂t
U +

∂

∂x
F(U) = R(U) + Γ. (30)

The flux function F, the relaxation term R, and the forcing S are149

F(U) =

(

−
σ

ρ
, −v, −v, · · · , −v, 0

)T

,

R(U) = (0, 0, ∆1, · · · , ∆N ,− ( fr H(g − gσ) + fd H(gσ − g)) (g − gσ))T ,

Γ = (γ, 0, · · · , 0, 0)T ,

(31)

where150

∆ℓ =
σ2ℓ(ε − ε1ℓ) − σ1ℓ(ε1ℓ)

ηℓ
. (32)

To conclude, let us consider the limit-case where the viscoelastic attenuation is neglected. In151

this case, property 1 states that the stress-strain relations degenerate rigorously towards pure152

nonlinear elasticity, whatever N. But for computational purpose, it is more efficient to eliminate153

the additional strain variables ε1ℓ and the equation (25c). A reduced system (30) is therefore154

obtained.155
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3.2. Properties156

Hyperbolicity is a crucial issue in wave problems, both physically and mathematically. It157

amounts to say that there exists a real and finite sound velocity c. This property has been analysed158

in [13] for a particular nonlinear stress-strain relation in 3D. In 1D, it reduces to a simpler case159

detailed as follows.160

Property 2. Let define the sound speed c by161

c2 =

N
∑

ℓ=1

c2
ℓ =

1

ρ

N
∑

ℓ=1

∂σ1ℓ

∂ε1ℓ

. (33)

The system (30) is hyperbolic if and only if c2 > 0 in (33).162

The proof is given in Appendix B. Necessary and sufficient conditions are easily deduced163

from (33) for the models (13)-(15) when N = 1: hyperbolicity is satisfied if |ε| < εc, where164

εc =















































































d





















(

r + 1

a + 1

)
1

r − a
− 1





















(model 1),

+∞ (model 2),

1

2β
if δ = 0,

β

3δ

















√

1 +
3δ

β2
− 1

















otherwise (model 3).

(34)

Model 2 is always hyperbolic. On the contrary, the widely-used Landau model (model 3) is165

conditionaly hyperbolic. When N > 1, the hyperbolicity condition |ε1ℓ| < εc is sufficient.166

Expressions of the sound speed c for the three nonlinear elastic models (13)-(15) are given in167

(B.5). From (33), one deduces the local elastic modulus M168

M = ρ c2 =

N
∑

ℓ=1

∂σ1ℓ

∂ε1ℓ

. (35)

To conclude on hyperbolicity, let us note that the Stokes viscoelastic model used in [19] intro-169

duces a term ∂2v
∂x2 in the right-hand side of (25c). This Laplacian term destroys the hyperbolic170

character of the system (30). The viscoelastic model used here has therefore better mathematical171

properties.172

Now we examine the spectrum of the relaxation function in (30). Some useful insight can be173

obtained in the case of small strains.174

Property 3. Let us consider linear stress-strain relations. The parameters K1ℓ, K2ℓ and ηℓ are175

”freezed” in (20)-(21), so that they do not depend on g via E (3). Then, the eigenvalues of the176

Jacobian matrix J = ∂R
∂U

are177

Sp(J) =

{

02, − fξ , −
K1ℓ + K2ℓ

ηℓ

}

=

{

02, − fξ, −
1

τσℓ

}

, ℓ = 1, · · · , N, (36)

(see (19)), with fξ = fr if g > gσ, fξ = fd if g < gσ, fξ = 0 else.178
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The proof of property 3 is detailed in Appendix C. Two remarks are deduced:179

• J is definite-negative if the relaxation frequencies τσℓ are positive. The latter parameters180

are deduced from an optimization process based on the quality factor (Appendix A). To181

ensure the energy decrease, it is therefore crucial to perform nonlinear optimization with182

constraint of positivity.183

• The optimization procedure detailed in Appendix A is performed on the frequency range184

[ fmin, fmax] surrounding the excitation frequency fc. These frequencies satisfy185

fmin ≈
1

max τσℓ
< fc < fmax ≈

1

min τσℓ
. (37)

In (37), ≈ are replaced by equalities if a linear optimisation is used [12]. From (6), it186

follows the spectral radius of J187

̺(J) =
1

min τσℓ
≫ fξ, (38)

so that the system (30) is stiff.188

4. Numerical modeling189

4.1. Splitting190

To integrate (30), one introduces a uniform spatial mesh ∆x and a variable time step ∆t(n) ≡191

∆t. One seeks an approximation Un
i

of the exact solution U(xi = i∆x, tn = tn−1 + ∆t). A first192

strategy is to discretize explicitly the non-homogeneous system (30). But numerical stability193

implies a bound of the form194

∆t ≤ min

(

∆x

cmax

,
2

̺(J)

)

, (39)

where cmax = max cn
i

is the maximal sound velocity at time tn, and ̺(J) is the spectral radius of195

the Jacobian of the relaxation term. As deduced from (38), the second bound in (39) is penalizing196

compared with the standard CFL condition ∆t ≤ ∆x/cmax.197

Here we follow another strategy: equation (30) is split into a hyperbolic step198

∂

∂t
U +

∂

∂x
F(U) = 0 (40)

and a relaxation step199

∂

∂t
U = R(U) + Γ. (41)

The discrete operators associated with the discretization of (40) and (41) are denoted Hh and Hr,

respectively. The second-order Strang splitting is used, solving successively (40) and (41) with

adequate time increments:



























































U
(1)

i
= Hr

(

∆t

2

)

Un
i , (42a)

U
(2)

i
= Hh (∆t) U

(1)

i
, (42b)

Un+1
i = Hr

(

∆t

2

)

U
(2)

i
. (42c)
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Provided that Hh and Hr are second-order accurate and stable operators, the time-marching (42)200

gives a second-order accurate approximation of the original equation (30) [10].201

4.2. Hyperbolic step202

The homogeneous equation (40) is solved by a conservative scheme for hyperbolic systems203

[10]204

Un+1
i = Un

i −
∆t

∆x

(

Fi+1/2 − Fi−1/2

)

. (43)

Many sophisticated schemes can be used for this purpose [11]. For the sake of simplicity and205

robustness, we use here the Godunov scheme. Its numerical flux function Fi+1/2 is computed by206

the Rusanov method [18]207

Fi+1/2 =
1

2

(

F(Un
i+1) + F(Un

i ) − λi+1/2(Un
i+1 − Un

i )
)

, (44)

where f is the flux function (31), and the diffusion parameter λi+1/2 is given by the Davis approx-208

imation [4]209

λi+1/2 = max
(

cn
i , c

n
i+1

)

. (45)

The Godunov scheme is first-order accurate and stable under the usual CFL condition210

∆t =
α∆x

cmax

, with α ≤ 1. (46)

4.3. Relaxation step211

Let us denote U = (ε, ε11, · · · , ε1N) and R the restriction of R(U) to the strain components

(31)-(32). The ordinary differential equation (41) can then be written























































∂v

∂t
= γ, (47a)

∂

∂t
U = R(U), (47b)

dg

dt
= − ( fr H(g − gσ) + fd H(gσ − g)) (g − gσ), (47c)

The viscoelastic parameters in the relaxation function R depend implicitly on g (see section 2.3),212

which complicates the resolution of (47a). However, one can take advantage of the scaling (6).213

Indeed, ε and ε1ℓ evolve much fastly than g, so that the viscoelastic parameters K1ℓ, K2ℓ, ηℓ are214

almost constant on a time step. Consequently, they are freezed and the three equations in (47)215

can be solved separately.216

The half-time step in the relaxation steps (42a)-(42c) is denoted by τ = ∆t
2

. One details the217

time-stepping from tn to the first intermediate step (42a); adaptation to the third intermediate step218

(42c) is traightforward.219

The first equation (47a) is integrated by the Euler method:220

vn+1
i = v

(1)

i
+ ∆t γ(i, tn). (48)

13



To integrate the second equation (47b), a first-order Taylor expansion of R(U) is performed221

∂

∂t
U ≈ R(0) +

∂R

∂U
(0) U = J U, (49)

where J is the Jacobian matrix (C.2); the nullity of stress at zero strain has been used (18a). Then222

(49) is solved exactly, leading to the relaxation operator223

U
(1)

i = eJ τ U
n

i (50)

with the exponential of matrix224

eJ τ =



























































1 0 · · · 0

E21

E11 + E21

(

1 − e
−

E11+E21
η1

τ
)

e
−

E11+E21
η1

τ

...
. . .

E2N

E1N + E2N

(

1 − e
−

E1N +E2N
ηN

τ
)

e
−

E1N +E2N
ηN

τ



























































. (51)

Lastly, the third equation (47c) is solved exactly. The grid value gσi is evaluated thanks to (9).225

Setting226

fξ =















fr if gn
i
≥ gn

σi
,

fd if gn
i
< gn

σi
,

(52)

one obtains227

g
(1)

i
= gn

σi +
(

gn
i − gn

σi

)

e− fξ τ. (53)

The integrations (50), (48) and (53) are unconditionaly stable. As a consequence, the splitting228

(42) is stable under the CFL condition (46).229

4.4. Summary of the algorithm230

The numerical method can be divided in two parts:231

1. initialisation232

• bulk modulus ρ, Young’s modulus E = E0 = ρ c2
∞;233

• soft-ratchet coefficients gcr = 1, g = g0, fr, fd, σ;234

• maximum Young’s modulus E+ (3)235

• nonlinear coefficients (e.g. β and δ in (15);236

• quality factor Q, frequency range of optimization [ fmin, fmax], number of relaxation237

mechanisms N;238

• optimization of the viscoelastic coefficients (Appendix A);239

2. time-marching tn → tn+1, xi = i∆x (n = 0, · · · , Nt, i = 1, · · · , Nx)240

• physical and numerical parameters241

- Young’s modulus E (3), viscoelastic parameters ER (20), K1ℓ, K2ℓ and ηℓ (21);242

- stresses σ1ℓ (18a) and σ (16);243
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- sound velocity c (33) and (B.5), maximal velocity cmax;244

- time step ∆t (46);245

• relaxation step Hr (42a)246

- strains (50) and (51);247

- elastic velocity v (48);248

- concentration of defects gσ (9), g (53);249

• hyperbolic step Hh (42b)250

- coefficient λi+1/2 of Davis (45);251

- computation of the flux F (31) e.g. by the Rusanov flux Fi+1/2 (44);252

- time-marching with the conservative scheme (43);253

• relaxation step Hr (42c).254

5. Numerical experiments255

5.1. Configuration256

ρ (kg/m3) E0 (GPa) g0 fr (Hz) fd (Hz) σ (GPa) β δ Q

2054 2.21 0.1 25 250 0.1 40 3.5 106 20

Table 1: Physical parameters.

The physical parameters are detailed in table 1. Depending on the test, some of these mara-257

peters are modified. In the limit-case of linear elasticity, the sound velocity is c =
√

E/ρ = 3280258

m/s. The maximal CFL number is α = 0.95 in (46). The mesh size is ∆x = 4 10−3 m. Depending259

on the test, two lengths of domain are considered. For each test, a receiver put at xr = 0.2 m260

stores the numerical solution at each time step.261

The wave fields are excited by a punctual source at xs = 10−2 m, with a central frequency262

fc = 10 kHz. Depending on the expression of the forcing γ in (25c), one deduces the magnitude263

of the maximal strain εmax emitted by the source in the limit-case of linear elasticity (2):264

εmax =
1

2 c2
maxG(t). (54)

The Landau model for nonlinear elasticity is used (15). The quadratic coefficient β is much265

smaller than the cubic one δ. The critical value of strain that ensures hyperbolicity (34) is εc =266

3.08 10−4. The viscoelastic effects are described by N = 4 relaxation mechanisms. The relaxation267

times τσℓ and τεℓ (19) are computed by optimization on the frequency range [ fmin = fc/10, fmax =268

fc × 10] (see Appendix A); they are given in table 2.269

ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4

τσℓ (s) 1.16 10−3 2.05 10−4 4.49 10−5 7.75 10−6

τεℓ (s) 1.53 10−3 2.49 10−4 5.50 10−5 1.06 10−5

Table 2: Relaxation times for a quality factor Q = 20. Optimization with N = 4 relaxation mechanisms on the frequency

range [1 kHz, 100 kHz].
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Figure 7: test 1. Snapshot of the strain after 400 time steps, for two amplitudes of the excitation. The vertical dotted line

denotes the location xr of the receiver.

5.2. Test 1: nonlinear elastodynamics270

The goal of the first test is to show typical features of wave propagation in purely nonlin-271

ear elastic media. The viscoelasticity is neglected, and the activation / restoration of defects is272

annihilated: fr = fd = 0 Hz. The source is a monochromatic excitation:273

G(t) = A sin(ωct) H(t), (55)

where A is the magnitude of the forcing, and ωc = 2 π fc. From (54) and (55), one can esti-274

mate the maximal strain εmax emitted by the source in the linear elastic case. The domain of275

propagation is Lx = 2 m long and is discretized onto 400 grid nodes.276

Figure 7 displays the spatial evolution of ε after 400 time steps. For εmax = 10−5, almost no277

distorsion of the wave is seen. On the contrary, εmax = 2.0 10−4 yields a high distorsion as wave278

propagates. Shocks are observed, as well as the attenuation due to the decrease of entropy.279

Figure 8 displays the time evolution of the strain recorded at the receiver (vertical dotted line280

in Figure 7) for εmax = 2.0 10−4. The normalized amplitudes of the Fourier series decomposition281

show a typical feature of cubic nonlinear elasticity: the spectrum involves mainly odd harmonics282

[7].283

5.3. Test 2: linear viscoelasticity284

The goal of the second test is to validate the numerical modeling of attenuation. For this

purpose, a linear stress-strain relation is chosen (β = δ = 0), and the activation / restoration of
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Figure 8: test 1. Time history of the strain at the receiver at xr (a), normalized Fourier coefficients (b). The amplitude of

the excitation is εmax = 2.0 10−4.

defects is still annihilated ( fr = fd = 0 Hz). Consequently, the system (25) simplifies into



























































∂v

∂t
−

1

ρ

∂σ

∂x
= γ, (56a)

∂ε

∂t
−
∂v

∂x
= 0, (56b)

∂ε1ℓ

∂t
−
∂v

∂x
=

K2ℓ

ηℓ
(ε − ε1ℓ) −

K1ℓ

ηℓ
ε1ℓ. (56c)

The domain of propagation is Lx = 2 m long and is discretized onto 400 grid nodes. The time285

evolution of the source is a truncated combination of sinusoids with C6 smoothness:286

G(t) =























4
∑

m=1

am sin (bmωc t) if 0 ≤ t ≤
1

fc
,

0 otherwise,

(57)

with parameters bm = 2m−1, a1 = 1, a2 = −21/32, a3 = 63/768 and a4 = −1/512. A set of 5287

receivers is put at abscissae xr = 0.5 + 0.3 ( j − 1), with j = 1, · · · 5.288

Figure 9-(a) shows a seismogram of the velocity recorded at the receivers. Attenuation and289

dispersion of the waves is clearly observed. Figure 9-(b) compares the numerical solution with290

the semi-analytical solution after 400 time steps. The computation of the semi-analytical solution291

is described in Appendix D; it is numerically evaluated with N f = 512 Fourier modes, with a292

frequency step ∆ f = 200 Hz. Good agreement is observed between numerical and exact values.293

The attenuation is slightly overestimated by the scheme, due to the numerical diffusion of the294

Godunov scheme [18].295
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Figure 9: test 2. Wave propagation in a viscoelastic medium. (a): time evolution of v at a set of receivers; (b): snapshot

of v at t = 0.46 ms, and comparison between the numerical and the semi-analytical solution.

5.4. Test 3: softening / recovering296

The goal of the third test is to illustrate the softening / recovering of the elastic modulus,297

and to validate the numerical modeling of this phenomenon. For this purpose, linear elasticity298

is assumed and viscoelasticity is neglected (β = δ = 0, Q = +∞). Even if a linear stress-strain299

relation is used, the evolution problem (25) is nonlinear by virtue of (25d), (27) and (28). As in300

test 1, the source is monochromatic; but is is switched off after a time t∗:301

G(t) = A sin(ωct) (H(t) − H(t∗)) . (58)

As long as the source is switched on (0 < t < t∗), the equilibrium concentration of defects302

increases from the initial value g0 up to g∗ = g(t∗). In the same time, the Young’s modulus303

decreases from E0 to E∗ via (3).304

For t > t∗, the waves go out of the domain, and the elastodynamic fields vanish. From (28)305

and (10), σ = 0 implies that the equilibrium concentration of defects becomes gσ = g0. As a306

consequence, the ODE (25d) describing the evolution of defects simplifies into307



















dg

dt
= − fr (g − g0),

g(t∗) = g∗.

(59)

The solution of (59) is308

g(t) = g0 + (g∗ − g0) e− fr(t−t∗). (60)

Equation (60) is injected into (3), which gives the time evolution of the Young’s modulus during309

the recovering process (t ≥ t∗):310

E(t) = E0 −
1

gcr

(g∗ − g0) e− fr(t−t∗) E+. (61)
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Figure 10: test 3. Time evolution of the elastic modulus M (35) at xr . (a): influence of the central stress σ = 108 Pa and

107 Pa. (b): influence of the frequency of restoration fr = 2.5 Hz and 100 Hz. The vertical dotted line denotes the time

t∗ where the source is switched off.

The domain of propagation is Lx = 0.4 m long and is discretized onto 100 grid nodes. The311

maximal strain is εmax = 10−5. Time integration is performed during 4 105 time steps. Figure 10312

shows the time evolution of the elastic modulus M ≡ E (35); this equality occurs only because a313

linear stress-strain relation is assumed. The numerical values of M are shown from the beginning314

of the simulation, whereas the exact values of E (61) are shown from t∗. For the sake of clarity,315

the values are shown only each 5000 time steps. Logically, the elastic modulus decreases as long316

as the source is switched on (softening), and then increases up to its initial value (recovering).317

Figure 10-(a) illustrates the influence of the central stress on the evolution of M: σ = 108
318

Pa or 107 Pa (the other parameters are those of table 1). According to the Vakhnenko’s ex-319

pression (7), these values correspond to spherical defects of radius 2.13 10−10 m and 4.59 10−10
320

m, respectively. In both cases, equilibrium has been reached at t∗. Lower value of σ yields a321

greater variation of the elastic modulus. This property follows from (9): as σ decreases, the322

curve g → gσ stiffens and tend towards a Heaviside step function. Consequently, greater values323

of gσ are obtained when σ is smaller. It implies a larger evolution of g (5), and hence of E (3).324

Figure 10-(b) illustrates the influence of the frequence of restoration on the evolution of325

M: fr = 2.5 Hz or 100 Hz (the other parameters are those of table 1). The lowest value of326

fr yields a greater variation of the elastic modulus. This is a consequence of the competition327

between restoration (with frequency fr) and destruction (with frequency fd). When fr is too low328

compared with fd , restoration has almost no time to occur during one period T = 1/ fc, and329

destruction plays a preponderant role.330

5.5. Test 4: full model331

The fourth and last test incorporates all the physical mechanisms of the model: nonlinear332

stress-strain law, viscoelasticity, activation / restoration of defects. The domain is Lx = 0.4 m333

long and is discretized onto 100 grid nodes. The source is a monochromatic excitation (55).334

Time integration is performed during 5 104 time steps. The fields are recorded at xr.335
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Figure 11: test 4. (a): stress-strain curves at xr for different quality factor Q and a forcing amplitude εmax = 2.0 10−4.

(b): time evolution of the elastic modulus; the vertical dotted line denotes the time t∗ where the source is switched off.

Figure 11-(a) illustrates the influence of viscoelasticity on the stress-strain law. When viscous336

effects are neglected (Q = +∞, where Q is the quality factor), the cubic behavior induced by the337

Landau law (15) is observed. Moreover, the scaling (6) induces that the evolution of defects on338

one cycle is unsufficient to provide a measurable hysteretic effect. On the contrary, hysteresis is339

obtained when viscoelasticity is accounted for (Q = 20). Figure 11-(b) mimics the simulation of340

test 3, where the source a switched-on and off. But unlike test 3, a nonlinear stress-strain relation341

is used. One observes large oscillations up to t∗, contrary to figure 10. It reproduces qualitatively342

the behavior observed in figure 1.343

Figure 12 displays the relative variation of the elastic modulus ∆M = (M − M0)/M0 in344

terms of the strain, for various amplitudes of the forcing. Three observations can be done. First,345

nonlinear curves are obtained, which is a signature of the nonlinear stress-strain relation. Second,346

∆M increases with εmax: softening increases monotonically with the forcing. Third and last,347

loops are obtained if and only if viscoelasticity is incorporated (c-d). These three features are348

qualitatively similar to those obtained experimentally [15, 16].349

5.6. Conclusion350

We have proposed a one-dimensional model that captures the behavior of real media under351

longitudinal bar excitation, namely:352

• softening / recovering of the elastic modulus;353

• hysteretic evolution of the elastic modulus with the strain.354

This model, which extends previous contributions of other authors [19], involves different fre-355

quency scales: a fast excitation frequency related to nonlinear elasticity and viscoelastic attenua-356

tion, and slow frequencies related to the restoration / destruction of defects. Sound mathematical357

properties are ensured: the concentration of defects remains bounded, hyperbolicity is analysed,358
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Figure 12: test 4. Relative variations in the elastic modulus M for various amplitudes of forcing εmax, from 10−6 to

7.5 10−5 . Top (a-b): witout viscoelasticity; bottom (c-d): with viscoelasticity.

and the energy decreases if the viscoelastic parameters are conveniently determined. Lastly, a ro-359

bust numerical scheme has been built. A major interest of the present approach is the possibility360

to tackle with variable coefficients in space, which is representative of localized defects [14].361

Many improvements can be investigated, to cite a few. More sophisticated models can be362

built quite naturally, considering for instance relaxation of the nonlinear coefficients p in (18a),363

or a nonlinear law in (18b). Concerning the numerical simulations, higher-order schemes (such as364

WENO schemes [10]) may can easily be adapted to the proposed formulation. Lastly, theoretical365

analyses should be done to prove rigorously the well-posedness of the model and the decrease of366

energy.367
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Two directions of work are currently investigated. First, numerical simulations are done to368

recover quantitatively the experimental results of the litterature [15, 16]. Second, extension of369

this model to 2D-geometries is under progress.370

Appendix A. Parameters of the viscoelastic model371

Standard calculations on (16), (18) and (19) yield the reciprocal of the quality factor Q [2]372

Q−1(ω) =















N
∑

ℓ=1

ω (τεℓ − τσℓ)

1 + ω2τ2
σℓ















/















N
∑

ℓ=1

1 + ω2τεℓτσℓ

1 + ω2τ2
σℓ















. (A.1)

Optimizing Q−1 towards a given law (for instance a constant quality factor on a frequency range373

of interest [ fmin, fmax]) provides a means to determine τσℓ and τεℓ [12]. Here an optimization374

with constraint is applied to ensure positive values of τσℓ and τεℓ, as required by the decrease of375

energy (see section 3.2). See [3] for details about such an optimization.376
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Figure A.13: Properties of the viscoelastic model in the linear regime. (a): reciprocal of the quality factor Q = 20 (A.1).

The constant exact value is denoted by a horizontal line; the values obtained after optimization with N = 2 and N = 4

relaxation mechanisms are denoted in blue and red, respectively; the range of optimization [ fmin, fmax] is denoted by

vertical dotted lines. (b): frequency evolution of the phase velocity; the horizontal dotted lines denote the phase velocity

at zero and infinite frequency.

Figure A.13 illustrates the properties of the viscoelastic model. Figure A.13-(a) compares377

the reciprocal of the constant quality factor Q = 20 with the value deduced from (A.1), for N = 2378

and N = 4 relaxation mechanisms. Nonlinear optimization is performed from fmin = 1 kHz to379

fmax = 100 kHz. Large oscillations are obtained for N = 2; excellent agreement is observed for380

N = 4. Figure A.13-(b) shows the increase of phase velocity from c0 =
√

ER/ρ to c∞ =
√

E/ρ.381

The reader is referred to [2] for details about these quantities.382

Lastly, property 1 is proven here.383
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Proof. Null attenuation amounts to an infinite quality factor. Equation (A.1) implies that Q =384

+∞ is obtained if τεℓ = τσℓ . In this case, the viscoelastic coefficients (20) and (21) are385

ER = E, K1ℓ =
E

N
, K2ℓ = +∞, ηℓ = +∞. (A.2)

To get a bounded stress, (18c) implies ε2ℓ = 0, and hence ε1ℓ = ε for ℓ = 1, · · · , N (17). Putting386

together the total stress (16), the nonlinear elasticity (11) and the homogeneity property in (12),387

one obtains388

σ =

N
∑

ℓ=1

s(ε1ℓ, K1ℓ, p) =

N
∑

ℓ=1

s

(

ε,
E

N
, p

)

=
1

N

N
∑

ℓ=1

s(ε, E, p) = s(ε, E, p), (A.3)

which concludes the proof.389

Appendix B. Proof of property 2390

The Jacobian A of f (31) is391

A(U) =


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, (B.1)

where392

Φℓ = −
1

ρ

∂σ1ℓ

∂ε1ℓ

. (B.2)

The determinant of A writes393

PA(λ) = −λ
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(B.3)

The columns and lines are denoted by C j and L j, respectively. The following algebraic manipu-394

lations are performed successively:395

(i) C1 ← λC1,396

(ii) C1 ← C1 − C j, with j = 2, · · · , N + 1,397
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which yields398

λ PA(λ) = −λ
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(B.4)

It follows the eigenvalues 0 (with multiplicity N + 1) and ±c, with the sound velocity (33). From399

(B.2), real eigenvalues are obtained if and only if the property 2 is satisfied. Given the nonlinear400

elastic models (13)-(15), the speed of sound c satisfies:401
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(B.5)

Appendix C. Proof of property 3402

For linear stress-strain relations (18), the relaxation coefficients (32) yield403


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(C.1)

One obtains the Jacobian matrix of the relaxation function (31)404

J =































































0 0 · · · 0 0
E21

η1

−
E11 + E21

η1

0

...
. . .

E2N

η1

−
E1N + E2N

ηN

0

0 · · · 0 fξ































































, (C.2)

with fξ = fr if g > gσ, fξ = fd if g < gσ, fξ = 0 else. It follows the eigenvalues 0, −K1ℓ+K2ℓ

ηℓ
, and405

− fξ .406
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Appendix D. Semi-analytical solution407

The semi-analytical solution of the viscodynamic equations is computed as follows. Fourier408

transforms in space and time are applied to the system (56). Applying an inverse Fourier trans-409

form in space yields410

v̂(x, ω) =
iωρ

N
∑

ℓ=1

K1ℓ

iω + 1/τεℓ

iω + 1/τσℓ

Ĝ(ω)

2 π

∫ +∞

−∞

1

k2 − k2
0

e−ikx0 dk, (D.1)

where the hat refers to the Fourier transform,G is the time evolution of the source, the relaxation411

times τεℓ and τσℓ are defined in (19), and k is the wavenumber. The poles ±k0 satisfy412
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iω + 1/τσℓ

(D.2)

with ℑm(k0) < 0. Applying the residue theorem gives the time-domain velocity413

v(x, t) = ρ
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dω. (D.3)

Expressions for ε and ε1ℓ can be obtained in a similar manner. Lastly, the numerical evaluation of414

(D.3) is done by a rectangular quadrature rule on N f Fourier modes and with a constant frequency415

step ∆ f on the frequency band of interest.416

[1] J. D. Achenbach, Wave Propagation in Elastic Solids, North-Holland Publishing, Amsterdam (1973).417

[2] J. M. Carcione,Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromag-418

netic Media, Elsevier (2007).419

[3] A. Ben Jazia, B. Lombard, C. Bellis, Wave propagation in a fractional viscoelastic Andrade medium: diffusive420

approximation and numerical modeling, Wave Motion, 51 (2014), 994-1010.421

[4] S. F. Davis, Simplified second-order Godunov-type methods, SIAM J. Sci. Stat. Comput., 9 (1988), 445-473.422

[5] R. A. Guyer, P. A. Johnson, Nonlinear mesoscopic elasticity: Evidence for a new class of materials, Physics423

Today 52 (1999), 30-35.424

[6] R. A. Guyer, P. A. Johnson, Nonlinear Mesoscopic Elasticity: The Complex Behaviour of Rocks, Solis, Concrete,425

Wiley (2009).426

[7] M. F. Hamilton, D. T. Blackstock, Nonlinear Acoustics, Academic Press (1998).427

[8] P. A. Johnson, B. Zinszner, P. N. J. Rasolofosaon, Resonance and elastic nonlinear phenomena in rock, J. Geo-428

phys. Res., 101 (1996), 11553-11564.429

[9] L. Landau, E. Lifshitz, Theory of Elasticity, Pergamon Press (1970).430

[10] R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press (2002).431

[11] R. J. LeVeque, D. H. Yong, Solitary waves in layered nonlinear media, SIAM J. Appl. Math., 63-5 (2003), 1539-432

1560.433

[12] B. Lombard, J. Piraux, Numerical modeling of transient two-dimensional viscoelastic waves, J. Comput. Phys.,434

230-15 (2011), 6099-6114.435

[13] S. Ndanou, N. Favrie, S. Gavrilyuk, Criterion of hyperbolicity in hyperelasticity in the case of the stored energy436

in separable form, J. Elast., 115 (2014), 1-25.437

25



[14] C Pecorari, D.A. Mendelsohn, Forced nonlinear vibrations of a one-dimensional bar with arbitrary distributions438

of hysteretic damage, to appear in J. Nondestruct. Eval. (2014).439

[15] G. Renaud, P.Y. Le Bas, P.A. Johnson, Revealing highly complex elastic nonlinear (anelastic) behavior of Earth440

materials applying a new probe: Dynamic acoustoelastic testing, J. Geophys. Res., 117 (2012), B06202.441

[16] J. Riviere, G. Renaud, R.A. Guyer, P.A. Johnson, Pump and probe waves in dynamic acousto-elasticity: Compre-442

hensive description and comparison with nonlinear elastic theories, J. Appl. Phys., 114 (2013), 054905.443

[17] J.A. Ten Cate, T.J. Shankland, Slow dynamics in the nonlinear elastic response of Berea sandstone, Geophys.444

Res. Lett., 23-21 (1996), 3019-3022.445

[18] E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics. A Practical Introduction, Springer-446

Verlag (1999).447

[19] O. O. Vakhnenko, V. O. Vakhnenko, T. J. Shankland, Soft-ratchet modeling of end-point memory in the nonlinear448

resonant response of sedimentary rocks, Physical Review B71 (2005), 174103.449

26


