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Abstract6

The dynamics of heterogeneous materials, like rocks and concrete, is complex. It includes such

features as nonlinear elasticity, hysteresis, and long-time relaxation. This dynamics is very sen-

sitive to microstructural changes and damage. The goal of this paper is to propose a physical

model describing the longitudinal vibrations in heterogeneous material, and to develop a numer-

ical strategy to solve the evolution equations. The theory relies on the coupling of two processes

with radically different time scales: a fast process at the frequency of the excitation, governed by

nonlinear elasticity and viscoelasticity, and a slow process, governed by the evolution of defects.

The evolution equations are written as a nonlinear hyperbolic system with relaxation. A time-

domain numerical scheme is developed, based on a splitting strategy. The features observed by

numerical simulations show qualitative agreement with the features observed experimentally by

Dynamic Acousto-Elastic Testing.

Keywords: Nonlinear acoustics; time-dependent materials; viscoelasticity; acoustic7

conditioning; numerical methods; hyperbolic system.8

1. Introduction9

Understanding the mechanisms of acoustic nonlinearity in heterogeneous materials is an ob-10

ject of intensive studies [11, 22, 12, 16]. Experimental evidence has shown that media such as11

rocks and concrete possess an anomalously strong acoustic nonlinearity, which is of great im-12

portance for the description of ultrasonic phenomena including damage diagnostics. Besides the13

widely-studied nonlinear and hysteretic stress-strain relation [15], a long-time relaxation is also14

reported by most of the authors [29, 30]. This slow dynamics is typically observed in experi-15

ments of softening / hardening [25, 26], where a bar is forced by a monochromatic excitation16

on a time interval, before the source is switched-off. During the experiment, the elastic modulus17

is measured by Dynamic Acousto-Elastic Testing methods. It can be observed that the elastic18

modulus decreases gradually (softening), and then it recovers progressively its initial value after19

the extinction of the source (hardening). The time scales of each stage is much longer than the20

time scale of the forcing, which justifies the term ”slow dynamics”.21
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The modelling of this slow dynamic effect has been investigated by many authors. An essen-22

tially phenomenological model is widely used for this purpose: the Preisach-Mayergoyz model23

(P-M model) based on the integral action of hysteretic elements connecting stress and strain24

[27, 28, 16]. This model initially arose from the theory of magnetism, where the ”hysteron”25

has a clear physical significance. In elasticity, such a physical interpretation is not available. To26

overcome this limitation and to develop a rigorous theory, various authors have proposed alter-27

native models based on clear mechanical concepts. To our knowledge, the first physical model28

of slow dynamics was described in [30], where the relaxation was related to the recovery of mi-29

croscopic contact impeded by a smooth spectrum of energy barriers. This theory was extended30

in [2, 3], and recently improved based on the analysis of inter-grain contacts and the resulting31

surface force potential with a barrier [16]. Another approach was followed in [23], where the32

author shows that two rough surfaces interacting via adhesion forces yield dynamics similar to33

that of the fictitious elements of the Preisach-Mayergoyz space [23].34

Here, we present an alternative mechanical description of slow dynamics based on the works35

of Vakhnenko and coauthors [32, 33], where the following scenario is proposed:36

• the Young’s modulus E varies with time. One can write E(g), where g is a time-dependent37

concentration of defects. It is closely related to the notion of damage in solids mechan-38

ics. But contrary to what happens in this irreversible case, where g strictly increases with39

time, the evolution of g is reversible. Waiting a sufficiently long time, the initial material40

properties are recovered;41

• at equilibrium, stress σ yields a concentration of defects gσ. The dependence of gσ with42

respect to σ is monotonic;43

• out of equilibrium, relaxation times are required for g to reach gσ. Whether g < gσ (in-44

crease in the number of defects) or g > gσ (decrease in the number of defects), Vakhnenko45

et al state that the time scales differ. The argument is given in section III of [33]: ”there46

are various ways for an already existing crack in equilibrium to be further expanded when47

surplus tensile load is applied. However, under compressive load a crack, once formed, has48

only one spatial way to be annhilated or contracted”. In both cases, these relaxation times49

are much longer than the time scale of the excitation, which explains the slow dynamics.50

Comparisons with experimental data are given in section V of [33], where the authors reproduced51

experiments done on Berea sandstone [29]. One current weakness is that no micro-mechanical52

description of the involved defects has been proposed so far. A possible analogy may be found53

with populations of open / closed cracks filled with air, equivalent to a population of bubbles that54

relax towards an equilibrium state, depending on the applied stress [8, 9]. In counterpart, one55

attractive feature of Vakhnenko’s model is that it combines hyperbolic equations and relaxation56

terms, which constitutes a sound basis of physical phenomena [10].57

The present paper is a contribution to the theoretical analysis of this model and to its practical58

implementation to describe wave motion in damaged media. First, we point out that no mech-59

anisms prevents the concentration of defects from exceeding 1, which is physically unrealistic.60

We fix this problem by proposing another expression for the equilibrium concentration. Second,61

the Stokes model describing viscoelasticity behaviour in [33] poorly describes the attenuation62

in real media, and it is badly suited to time-domain simulations of wave propagation. Instead,63

we propose a new nonlinear version of the Zener model. This viscoelastic model degenerates64

correctly towards a pure nonlinear elasticity model when attenuation effects vanish. Moreover,65
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the usual Zener model in the linear regime is recovered [5]. In practice, this model only requires66

one physical parameter under the assumption of constant quality factor. Third, hyperbolicity is67

analyzed. Depending on the chosen model of nonlinear elasticity, a real sound speed may ob-68

tained only on a finite interval of strains; this is true in particular with the widely-used Landau’s69

model.70

The main effort of Vakhnenko et al was devoted to the construction of a model of slow71

dynamics. The resolution of the involved equations was quite rudimentary and not satisfying.72

Indeed, the equilibrium concentration of defects gσ was assumed to be known and was imposed73

(eq (17) in [33]), while it depends on σ. But treating the full coupled nonlinear equations is74

out of reach of a semi-analytical approach, which explains the strategy of these authors. On the75

contrary, we propose here a numerical method to integrate the full system of equations, involving76

the nonlinear elasticity, the hysteretic terms of viscoelasticity, and the slow dynamics. Due to the77

existence of different time scales, a splitting strategy is followed, ensuring the optimal time step78

for integration. The full system is split into a propagative hyperbolic part (resolved by a standard79

scheme for conservation laws) and into a relaxed part (resolved exactly).80

Our numerical model is very modular. The various bricks (nonlinear elasticity, viscoelas-81

ticity, slow dynamics) can be incorporated easily. Numerical tests validate each part separately.82

When all the whole bricks are put together, typical features of wave motion in damaged media83

are observed. The softening / hardening experiments are qualitatively reproduced.84

2. Physical modeling85

In this section, we write the basic components describing the wave motion in a 1D material86

with damage. The fundations rely on linear elastodynamics, whose equations are recalled in87

section 2.1. Then, the soft-ratchet model of Vakhnenko and coauthors is introduced and enhanced88

in section 2.2. The fast dynamics is described in section 2.3, where various known models of89

nonlinear elasticity are presented, and a nonlinear model of viscoelasticity is proposed. This90

latter degenerates correctly in the limit cases of linear elasticity or null attenuation.91

2.1. Linear elastodynamics92

In the case of small deformations, the propagation of 1D elastic waves can be described by

the following system [1]:



































∂v

∂t
−

1

ρ

∂σ

∂x
= γ, (1a)

∂ε

∂t
−
∂v

∂x
= 0, (1b)

where t is the time, x is the spatial coordinate, γ is a forcing term, u is the displacement, v = ∂u
∂t

is93

the velocity, ε = ∂u
∂x

is the strain, and σ is the stress. The latter is a function of strain: σ = σ(ε).94

In the linear case, Hooke’s law writes σ = E ε, where E is the Young’s modulus, which is95

assumed to be constant over time. In the particular case where γ is a Dirac source at xs with time96

evolution G(t), then the exact solution of (1) is straightforward97

ε = −
sgn(x − xs)

2 c2
G

(

t −
|x − xs|

c

)

, (2)
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where sgn is the sign distribution, and c =
√

1
ρ
∂σ
∂ε
≡

√

E/ρ is the speed of sound.98

The goal of the forthcoming sections is to extend the model (1) in three ways:99

• time variations of E due to the stress;100

• nonlinear Hooke’s law;101

• hereditary effects (viscoelasticity).102

The time scales for the first effect (variation of E) are much greater than for the second and third103

effect. This is consequently referred to as slow dynamics.104

2.2. Slow dynamics: soft-ratchet model105

Here we follow the approach taken from [32, 33] with some modifications. The slow dynam-106

ics of the medium is assumed to rely on the concentration of activated defects g, which varies107

with σ. In the lowest approximation, the Young’s modulus is written:108

E =

(

1 −
g

gcr

)

E+, (3)

where gcr and E+ are the critical concentration of defects and the maximum possible value of109

Young’s modulus, respectively (figure 1-(a)). The following constraints hold:110

0 ≤ g ≤ gcr ≤ 1. (4)

(a) (b)

E0

E+ g  > g

g  < g
�

�

0

0

Figure 1: parameters of the slow dynamics. (a): Young’s modulus E in terms of the concentration of defects g (3), for

E+ = 14.28 GPa; the vertical dotted line denotes the initial concentration of defects g0 = 0.3 and the corresponding

Young’s modulus E0 = E(g0) = 10 GPa. (b): time evolution of the concentration of defects g given an equilibrium stress

σ and two initial values g0; the horizontal dotted line denotes gσ.
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The concentration g is assumed to evolve to its stress-dependent equilibrium value gσ at a111

rate fr if g > gσ (restoration), or fd if g < gσ (destruction). This mechanism can be modeled by112

the ordinary differential equation113

dg

dt
= − ( fr H(g − gσ) + fd H(gσ − g)) (g − gσ), (5)

where H is the Heaviside step distribution. The frequencies fr and fd differ substantially:114

fr ≪ fd ≪ fc, (6)

where fc is a typical frequency of the excitation. Figure 1-(b) represents the time evolution of115

g, given a constant equilibrium concentration gσ = 0.3 denoted by a horizontal dotted line. The116

restoration and rupturation frequencies are fr = 25 Hz and fd = 250 Hz, respectively. Two initial117

value of the concentration of defects are considered: g0 = 0.2 and g0 = 0.4. In both cases, g118

tends towards gσ with different rates: destruction is much faster than restoration.119

It remains to define the evolution of gσ withσ. In [32, 33], the authors propose the expression120

gσ = g0 exp(σ/σ), σ =
kT

υ
, (7)

where g0 is the unstrained equilibrium concentration of defects, k is the Boltzmann constant, T

is the temperature, and υ is a typical volume accounting for a single defect. If σ > σ ln gcr/g0,

then gσ > gcr; in this case, the concentration may evolve to g > gcr due to equation (5), which

contradicts the second assumption in (4). To remove this drawback and to build a physically

realistic expression of gσ, we enforce (4) together with the following requirements:































































0 ≤ gσ < gcr, (8a)

gσ(0) = g0, (8b)

lim
σ→−∞

gσ = 0, (8c)

lim
σ→+∞

gσ = gcr, (8d)

∂gσ

∂σ
> 0. (8e)

The simplest smooth function satisfying (8) is121

gσ =
gcr

2

(

1 + tanh

(

σ − σc

σ

))

, (9)

where the central stress is122

σc = σ tanh−1

(

1 − 2
g0

gcr

)

. (10)

Figure 2-(a) illustrates the two expressions of the stress-dependent equilibrium value gσ: the123

”exponential model” (7), and the ”tanh model” (9)-(10). The numerical values are g0 = 0.3 and124

σ = 105 Pa. The two expressions are the same at null stress. But for tractions greater than125

230 kPa, the value of gσ deduced from (7) exceeds 1, leading to non-physical negative Young’s126

modulus. Figure 2-(b) illustrates the influence of σ in (9). As σ decreases, gσ may evolve more127

easily towards the extreme values 0 and gcr, and hence the damage may increase thanks to (5).128
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(a) (b)

σ (kPa)

σ
g σ

c

σ (kPa)

g

σ=2.5 E5

σ=1.0 E5

σ=1.0 E4

Figure 2: equilibrium concentration of defects gσ in terms of the applied stress σ. (a): ”exponential model” (7) and ”tanh

model” (9). (b): ”tanh model” (9) with various values of σ. The horizontal dotted line denotes the critical concentration

of defects gcr ; the vertical dotted line denotes the central stress σc.

2.3. Fast dynamics: nonlinear viscoelasticity129

Nonlinear elasticity.130

The stress-strain relation is given by a smooth function131

s ≡ s(ǫ, K, p), (11)

where s is the stress, ǫ is the strain, K is a stiffness, and p is a set of parameters governing the132

nonlinearity. No pre-stress is considered; K is the slope of s at the origin; lastly, s is homogeneous133

of degree 1 in K. In other words, s satisfies the following properties:134

s(0, K, p) = 0,
∂s

∂ǫ
(0, K, p) = K, s(ǫ, αK, p) = α s(ǫ, K, p). (12)

Three models of nonlinear elasticity (11) satisfying (12) are now given and illustrated in figure135

3.136

Model 1. This model is from [33] and mimics the Lennard-Jones potential describing the inter-137

action between a pair of neutral atoms:138

s(ǫ, K, p) = K
d

r − a





























1
(

1 +
ǫ

d

)a+1
−

1
(

1 +
ǫ

d

)r+1





























, p = (r, a, d)T . (13)

The nonlinear parameters are the repulsion and attraction coefficients r and a (0 < a < r). The139

strain is bounded below by the maximal allowable closure d. The function (13) has an extremal140

point ǫc > 0, and then it decreases asymptotically towards 0 when ǫ > ǫc (figure 3-(a)).141
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Model 2. A third-order Taylor expansion of the model 1 (13) yields142

s(ǫ, K, p) = K ǫ

(

1 −
1

2
(r + a + 3)

ǫ

d
+

1

6

(

r2 + ra + a2 + 6r + 6a + 11
)

(

ǫ

d

)2
)

, p = (r, a, d)T .

(14)

The nonlinear parameters are the same than in model 1. But contrary to what happened in model143

1, the function (14) is a strictly monotonically increasing function without extremal point (figure144

3-(a)). Moreover, the strain is not bounded below.145

Model 3. The most widely used law in ultrasonic NonDestructive Testing is the so-called Lan-146

dau’s model [17]147

s(ǫ, K, p) = K ǫ
(

1 − β ǫ − δ ǫ2
)

, p = (β, δ)T . (15)

The parameters governing the nonlinear behavior are β and δ; in practice, β ≪ δ. Like what148

happens with model 1, the function (15) has extremal points, but it is not bounded below (figure149

3-(b)).150

(a) (b)

−1E−4 0 1E−4 2E−4 3E−4 4E−4

−2 

0 

2 

4 

ε

σ
(k

P
a)

model 1

model 2

linear elasticity

−2E−4 −1E−4 0 1E−4 2E−4

−4 

0 

4 

ε

σ
(k

P
a)

model 3

linear elasticity

Figure 3: Stress-strain relations for the three models (11). In (a), the dotted lines denote the coordinates of the inflexion

point for model 1. The physical parameters are: E = 10 GPa, d = 4.3 10−4 m, a = 2, r = 4 (models 1 and 2), β = 100,

δ = 108 (model 3).

Viscoelasticity.151

To incorporate attenuation, the following criteria are used as a guideline:152

C1: when the viscous effects are null, the nonlinear elasticity must be recovered (11);153

C2: when a linear stress-strain relation holds, it is necessary to recover the standard linear solid154

model (or generalized Zener model), which accurately represents the behavior of usual155

solids [5].156
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Figure 4: Rheological model of a generalized Zener material.

For this purpose, a system with N Zener elements connected in parallel is considered (figure 4).157

The total stress acting on the system is158

σ =

N
∑

ℓ=1

σ1ℓ =

N
∑

ℓ=1

(σ2ℓ + σ3ℓ), (16)

where the index 1 refers to the springs in series, and indices 2-3 refer to the springs and dashpots159

in parallel. The strain ε is160

ε = ε1ℓ + ε2ℓ, ℓ = 1, · · · ,N. (17)

The index 1 springs satisfy nonlinear stress-strain relations (11) with stiffnesses K1ℓ. The pa-

rameters p governing the nonlinearity (for instance β and δ in model 3 (15)) are assumed to

be constant and identical for each element. The index 2 springs satisfy linear stress-strain rela-

tions with stiffnesses K2ℓ. Lastly, the dashpots satisfy linear Maxwell laws with coefficients of

viscosity ηℓ. These laws are summed up as follows:



































σ1ℓ(ε1ℓ) = s(ε1ℓ, K1ℓ, p), (18a)

σ2ℓ(ε2ℓ) = s(ε2ℓ, K2ℓ, 0), (18b)

σ3ℓ(ε2ℓ) = ηℓ
∂ε2ℓ

∂t
. (18c)

To determine the parameters K1ℓ, K2ℓ and ηℓ, the relaxation times τσℓ, τεℓ and the relaxed modu-161

lus ER are introduced:162

τσℓ =
ηℓ

K1ℓ + K2ℓ

, τεℓ =
ηℓ

K2ℓ

,
ER

N
=

K1ℓ K2ℓ

K1ℓ + K2ℓ

. (19)

On the one hand, a procedure is given in Appendix A to compute the relaxation times in terms163

of the quality factor Q. On the other hand, ER is related to the unrelaxed Young’s modulus E (3)164
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and to the relaxation times previsously determined (see [5]):165

ER =
N

N
∑

ℓ=1

τεℓ

τσℓ

E. (20)

Once τσℓ, τεℓ and ER are determined, inverting (19) provides the values of the viscoelastic model166

in terms of relaxed modulus and relaxation times (ℓ = 1, · · · ,N):167

K1ℓ =
τεℓ

τσℓ

ER

N
, K2ℓ =

τεℓ

τεℓ − τσℓ

ER

N
, ηℓ =

τ2
εℓ

τεℓ − τσℓ

ER

N
. (21)

From (20) and (21), it follows that the viscoelastic parameters depend indirectly on the Young’s168

modulus E, and thus depend on g. In other words, the proposed model of viscoelasticity evolves169

with the concentration of defects and thus with the applied stress.170

In the inviscid case, the stress-strain relation deduced from (16)-(18) makes it possible to171

recover the nonlinear elasticity (11), whatever the number N of relaxation mechanisms:172

σ = s(ε, E, p). (22)

This property is proven in Appendix B.173

3. Mathematical modeling174

In this section, the basic components describing wave motion in damaged media are put175

together and analysed. Section 3.1 collects the various mechanisms (nonlinear elastodynamics,176

slow dynamics, hysteresis) into a single system of first-order equations. Two important properties177

of this system are addressed in section 3.2: hyperbolicity (finite sound velocity) and decrease in178

energy.179

3.1. First-order system180

The conservation of momentum (1a) writes181

∂v

∂t
=

1

ρ

∂σ

∂x
+ γ, (23)

where γ is a forcing term, and σ is given by (16). The hypothesis of small deformations (1b)182

gives183

∂ε

∂t
=
∂v

∂x
. (24)

Lastly, manipulations on (16), (17) and (18c) yield184

∂ε1ℓ

∂t
=
∂v

∂x
+
σ2ℓ(ε − ε1ℓ) − σ1ℓ(ε1ℓ)

ηℓ
, ℓ = 1, · · · ,N. (25)
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In (25), ε1ℓ takes the place of the memory variables proposed in [20] and is better suited to

nonlinear elasticity. Putting together (23)-(25) and the relaxation equation (5) leads to the first-

order system of N + 3 evolution equations



















































































∂v

∂t
−

1

ρ

∂σ

∂x
= γ, (26a)

∂ε

∂t
−
∂v

∂x
= 0, (26b)

∂ε1ℓ

∂t
−
∂v

∂x
=
σ2ℓ(ε − ε1ℓ) − σ1ℓ(ε1ℓ)

ηℓ
, ℓ = 1, · · · , N, (26c)

dg

dt
= − ( fr H(g − gσ) + fd H(gσ − g)) (g − gσ). (26d)

To close the system (26), the following equations are recalled:185

• The total stress σ in (26a) depends on ε1ℓ via (16), (18a), and a nonlinear law (11):186

σ =

N
∑

ℓ=1

s(ε1ℓ, K1ℓ, p). (27)

• The stress componentsσ1ℓ and σ2ℓ in (26c) depend on the stifnesses K1ℓ and K2ℓ (18a) and187

(18b). The latter, as well as the viscosity coefficients ηℓ, depend on the Young modulus E188

via (20)-(21), and thus on g:189

E =

(

1 −
g

gcr

)

E+. (28)

• The equilibrium value of the defect concentration gσ in (26d) satisfies (9) and (10):190

gσ =
gcr

2

(

1 + tanh

(

σ − σc

σ

))

. (29)

The system (26), together with equations (27)-(29), generalizes the standard equations of linear191

elastodynamics (1). It accounts for softening / recovering of Young’s modulus, nonlinearity and192

viscoelasticity.193

For the sake of clarity, the vector of N + 3 variables is introduced194

U = (v, ε, ε11, · · · , ε1N , g)T . (30)

Then the system (26) can be put in the form195

∂

∂t
U +

∂

∂x
F(U) = R(U) + Γ. (31)

The flux function F, the relaxation term R, and the forcing Γ are196

F(U) =

(

−
σ

ρ
, −v, −v, · · · , −v, 0

)T

,

R(U) = (0, 0, ∆1, · · · , ∆N ,− ( fr H(g − gσ) + fd H(gσ − g)) (g − gσ))T ,

Γ = (γ, 0, · · · , 0, 0)T ,

(32)
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where197

∆ℓ =
σ2ℓ(ε − ε1ℓ) − σ1ℓ(ε1ℓ)

ηℓ
. (33)

To conclude, let us consider the limit-case where the viscoelastic attenuation is neglected. In198

this case, equation (22) states that the stress-strain relations degenerate rigorously towards pure199

nonlinear elasticity, whatever N.200

3.2. Properties201

Hyperbolicity is a crucial issue in wave problems - physically, mathematically, and numer-202

ically. It amounts to saying that there exists a real and finite sound velocity c. This property203

was analysed in [21] for a particular nonlinear stress-strain relation in 3D. In 1D, it reduces to a204

simpler case detailed as follows. Let us define the sound speed c by205

c2 =

N
∑

ℓ=1

c2
ℓ =

1

ρ

N
∑

ℓ=1

∂σ1ℓ

∂ε1ℓ

. (34)

The system (31) is hyperbolic if and only if c2 > 0 in (34). The proof, as well as sufficient206

conditions on the strain to ensure hyperbolicity, is given in Appendix B. From (34), the local207

elastic modulus M can be deduced:208

M = ρ c2 =

N
∑

ℓ=1

∂σ1ℓ

∂ε1ℓ

. (35)

Note that the Stokes viscoelastic model used in [33] introduces a term ∂2v
∂x2 in the right-hand side of209

(26c). This Laplacian term destroys the hyperbolic character of the system (31). The viscoelastic210

model used here has therefore better mathematical properties.211

Now let us examine the spectrum of the relaxation function in (31). Let us consider linear212

stress-strain relations. The parameters K1ℓ, K2ℓ and ηℓ are ”freezed” in (20)-(21), so that they do213

not depend on g via E (3). Then, the eigenvalues of the Jacobian matrix J = ∂R
∂U

are214

Sp(J) =

{

02, − fξ , −
K1ℓ + K2ℓ

ηℓ

}

=

{

02, − fξ, −
1

τσℓ

}

, ℓ = 1, · · · , N, (36)

(see (19)), with fξ = fr if g > gσ, fξ = fd if g < gσ, fξ = 0 else. The proof is detailed in215

Appendix C. Two observations can be made:216

• J is definite-negative if the relaxation frequencies τσℓ are positive. The latter parameters217

are deduced from an optimization process based on the quality factor (Appendix A). To218

ensure the energy decrease, it is therefore crucial to perform nonlinear optimization with219

constraint of positivity.220

• The optimization procedure detailed in Appendix A is performed on the frequency range221

[ fmin, fmax] surrounding the excitation frequency fc. These frequencies satisfy222

fmin ≈
1

max τσℓ
< fc < fmax ≈

1

min τσℓ
. (37)
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In (37), ≈ are replaced by equalities if a linear optimisation is used [20]. From (6), it223

follows the spectral radius of J224

̺(J) =
1

min τσℓ
≫ fξ, (38)

so that the system (31) is stiff.225

4. Numerical modeling226

In this section, a numerical strategy is proposed to integrate the first-order equations (31).227

For the sake of efficiency, a splitting approach is followed in section 4.1. The original equations228

are splitted into two parts, solved successively: a propagative part (section 4.2) and a relaxation229

part (section 4.3).230

4.1. Splitting231

To integrate (31), a uniform spatial mesh ∆x and a variable time step ∆t(n) ≡ ∆t are intro-232

duced. An approximation Un
i

of the exact solution U(xi = i∆x, tn = tn−1 + ∆t) is sought. A first233

strategy is to discretize explicitly the non-homogeneous system (31). But numerical stability234

implies a bound of the form235

∆t ≤ min

(

∆x

cmax

,
2

̺(J)

)

, (39)

where cmax = max cn
i

is the maximal sound velocity at time tn, and ̺(J) is the spectral radius of236

the Jacobian of the relaxation term. As deduced from (38), the second bound in (39) is penalizing237

compared with the standard CFL condition ∆t ≤ ∆x/cmax.238

Here we follow another strategy: equation (31) is split into a hyperbolic step239

∂

∂t
U +

∂

∂x
F(U) = 0 (40)

and a relaxation step240

∂

∂t
U = R(U) + Γ. (41)

The discrete operators associated with the discretization of (40) and (41) are denoted Hh and Hr,

respectively. The second-order Strang splitting is used, solving successively (40) and (41) with

adequate time increments:



























































U
(1)

i
= Hr

(

∆t

2

)

Un
i , (42a)

U
(2)

i
= Hh (∆t) U

(1)

i
, (42b)

Un+1
i = Hr

(

∆t

2

)

U
(2)

i
. (42c)

Provided that Hh and Hr are second-order accurate and stable operators, the time-marching (42)241

gives a second-order accurate approximation of the original equation (31) [18].242
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4.2. Hyperbolic step243

The homogeneous equation (40) is solved by a conservative scheme for hyperbolic systems244

[18]245

Un+1
i = Un

i −
∆t

∆x

(

Fi+1/2 − Fi−1/2

)

. (43)

Many sophisticated schemes can be used for this purpose [19]. For the sake of simplicity and246

robustness, the Godunov scheme is used here. The numerical flux function Fi+1/2 is computed247

using the Rusanov method [31]248

Fi+1/2 =
1

2

(

F(Un
i+1) + F(Un

i ) − λn
i+1/2(Un

i+1 − Un
i )
)

, (44)

where F is the flux function (32), and the diffusion parameter λn
i+1/2

is given by the Davis ap-249

proximation [7]250

λn
i+1/2 = max

(

cn
i , c

n
i+1

)

. (45)

The Godunov scheme is first-order accurate and stable under the usual Courant-Friedrichs-Lewy251

(CFL) condition252

∆t =
α∆x

cmax

, with α ≤ 1. (46)

4.3. Relaxation step253

Let us denote U = (ε, ε11, · · · , ε1N) and R the restriction of R(U) to the strain components

(32)-(33). The ordinary differential equation (41) can then be written























































∂v

∂t
= γ, (47a)

∂

∂t
U = R(U), (47b)

dg

dt
= − ( fr H(g − gσ) + fd H(gσ − g)) (g − gσ), (47c)

The viscoelastic parameters in the relaxation function R depend implicitly on g (see section 2.3),254

which complicates the resolution of (47a). However, one can take advantage of the scaling (6).255

Indeed, ε and ε1ℓ evolve much faster than g, so that the viscoelastic parameters K1ℓ, K2ℓ, ηℓ are256

almost constant on a time step. Consequently, they are ”freezed” and the three equations in (47)257

can be solved separately.258

The half-time step in the relaxation steps (42a)-(42c) is denoted by τ = ∆t
2

. One details the259

time-stepping from tn to the first intermediate step (42a); adaptation to the third intermediate step260

(42c) is straightforward.261

The first equation (47a) is integrated using the Euler method:262

vn+1
i = v

(1)

i
+ ∆t γ(i, tn). (48)

To integrate the second equation (47b), a first-order Taylor expansion of R(U) is performed263

∂

∂t
U ≈ R(0) +

∂R

∂U
(0) U = J U, (49)
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where J is the Jacobian matrix (C.2); the nullity of stress at zero strain has been used (18a). Then264

(49) is solved exactly, leading to the relaxation operator265

U
(1)

i = eJ τ U
n

i (50)

with the matrix exponential266

eJ τ =



























































1 0 · · · 0

E21

E11 + E21

(

1 − e
−

E11+E21
η1

τ
)

e
−

E11+E21
η1

τ

...
. . .

E2N

E1N + E2N

(

1 − e
−

E1N +E2N
ηN

τ
)

e
−

E1N +E2N
ηN

τ



























































. (51)

Lastly, the third equation (47c) is solved exactly. The grid value gσi is evaluated thanks to (9).267

Setting268

fξ =















fr if gn
i
≥ gn

σi
,

fd if gn
i
< gn

σi
,

(52)

leads to269

g
(1)

i
= gn

σi +
(

gn
i − gn

σi

)

e− fξ τ. (53)

The integrations (50), (48) and (53) are unconditionally stable. As a consequence, the splitting270

(42) is stable under the CFL condition (46).271

4.4. Summary of the algorithm272

The numerical method can be divided in two parts:273

1. initialisation274

• bulk modulus ρ, Young’s modulus E = E0 = ρ c2
∞;275

• soft-ratchet coefficients gcr = 1, g = g0, fr, fd, σ;276

• maximum Young’s modulus E+ (3)277

• nonlinear coefficients (e.g. β and δ in (15);278

• quality factor Q, frequency range of optimization [ fmin, fmax], number of relaxation279

mechanisms N;280

• optimization of the viscoelastic coefficients (Appendix A);281

2. time-marching tn → tn+1, xi = i∆x (n = 0, · · · , Nt, i = 1, · · · , Nx)282

• physical and numerical parameters283

- Young’s modulus E (3), viscoelastic parameters ER (20), K1ℓ, K2ℓ and ηℓ (21);284

- partial stresses σ1ℓ (18a) and total stress σ (16);285

- sound velocity c (34) and (B.6), maximal velocity cmax;286

- time step ∆t (46);287

• relaxation step Hr (42a)288

- strains (50) and (51);289
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- velocity v (48);290

- concentration of defects at equilibrium gσ (9) and out of equilibrium g (53);291

• hyperbolic step Hh (42b)292

- coefficient λi+1/2 of Davis (45);293

- computation of the flux F (32), e.g., by the Rusanov flux Fi+1/2 (44);294

- time-marching of the conservative scheme (43);295

• relaxation step Hr (42c).296

5. Numerical experiments297

5.1. Configuration298

ρ (kg/m3) E0 (GPa) g0 fr (Hz) fd (Hz) σ (GPa) β δ Q

2054 2.21 0.1 25 250 0.1 40 3.5 106 20

Table 1: Physical parameters.

The physical parameters are detailed in table 1. Depending on the test, some of these param-299

eters are modified. In the limit-case of linear elasticity, the sound velocity is c =
√

E/ρ = 3280300

m/s. The maximal CFL number is α = 0.95 in (46). The mesh size is ∆x = 4 10−3 m. Depending301

on the test, two lengths of domain are considered. For each test, a receiver put at xr = 0.2 m302

stores the numerical solution at each time step.303

The wave fields are excited by a punctual source at xs = 10−2 m, with a central frequency304

fc = 10 kHz. Depending on the expression of the forcing γ in (26c), it is possible to deduce the305

magnitude of the maximal strain εmax emitted by the source in the limit-case of linear elasticity306

(2):307

εmax =
1

2 c2
maxG(t). (54)

The Landau model for nonlinear elasticity is used (15). The coefficient β is much smaller than308

δ. The critical value of strain that ensures hyperbolicity (B.5) is εc = 3.08 10−4. The viscoelastic309

effects are described by N = 4 relaxation mechanisms. The relaxation times τσℓ and τεℓ (19) are310

computed by optimization on the frequency range [ fmin = fc/10, fmax = fc × 10] (see Appendix311

A); they are given in table 2.312

ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4

τσℓ (s) 1.16 10−3 2.05 10−4 4.49 10−5 7.75 10−6

τεℓ (s) 1.53 10−3 2.49 10−4 5.50 10−5 1.06 10−5

Table 2: Relaxation times for a quality factor Q = 20. Optimization with N = 4 relaxation mechanisms on the frequency

range [1 kHz, 100 kHz].

5.2. Test 1: nonlinear elastodynamics313

In the first test, the viscoelasticity is neglected, and the activation / restoration of defects is314

annihilated: fr = fd = 0 Hz. This test corresponds to the example 12 of [34]. Our goal is to315
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Figure 5: test 1. Snapshot of the strain after 400 time steps, for two amplitudes of the excitation. The vertical dotted line

denotes the location xr of the receiver.

show typical features of wave propagation in purely nonlinear elastic media. The source is a316

monochromatic excitation:317

G(t) = A sin(ωct) H(t), (55)

where A is the magnitude of the forcing, and ωc = 2 π fc. From (54) and (55), it is possible to318

estimate the maximal strain εmax emitted by the source in the linear elastic case. The domain of319

propagation is Lx = 2 m long and is discretized onto 400 grid nodes.320

Figure 5 displays the spatial evolution of ε after 400 time steps. For εmax = 10−5, almost321

no distorsion of the wave is seen. On the contrary, εmax = 2.0 10−4 yields a high distorsion as322

the wave propagates. Shocks, as well as the attenuation due to the intersection of characteristic323

curves [18], are observed.324

Figure 6 displays the time evolution of the strain recorded at the receiver (vertical dotted line325

in Figure 5) for εmax = 2.0 10−4. The normalized amplitudes of the Fourier series decomposition326

show a typical feature of cubic nonlinear elasticity: the spectrum involves mainly odd harmonics327

[13].328

5.3. Test 2: linear viscoelasticity329

The goal of the second test is to validate the numerical modeling of attenuation. For this

purpose, a linear stress-strain relation is chosen (β = δ = 0), and the activation / restoration of

defects is still annihilated ( fr = fd = 0 Hz). Consequently, the system (26) simplifies into



























































∂v

∂t
−

1

ρ

∂σ

∂x
= γ, (56a)

∂ε

∂t
−
∂v

∂x
= 0, (56b)

∂ε1ℓ

∂t
−
∂v

∂x
=

K2ℓ

ηℓ
(ε − ε1ℓ) −

K1ℓ

ηℓ
ε1ℓ. (56c)
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Figure 6: test 1. Time history of the strain at the receiver at xr (a), normalized Fourier coefficients (b). The amplitude of

the excitation is εmax = 2.0 10−4.

The domain of propagation is Lx = 2 m long and is discretized onto 400 grid nodes. The time330

evolution of the source is a truncated combination of sinusoids with C6 smoothness:331

G(t) =























4
∑

m=1

am sin (bmωc t) if 0 ≤ t ≤
1

fc
,

0 otherwise,

(57)

with parameters bm = 2m−1, a1 = 1, a2 = −21/32, a3 = 63/768 and a4 = −1/512. Five receivers332

are put at abscissae xr = 0.5 + 0.3 ( j − 1), with j = 1, · · · 5.333

Figure 7-(a) shows a seismogram of the velocity recorded at the receivers. Attenuation and334

dispersion of the waves is clearly observed. Figure 7-(b) compares the numerical solution with335

the semi-analytical solution after 400 time steps. The computation of the semi-analytical solution336

is described in Appendix D; it is numerically evaluated with N f = 512 Fourier modes, with a337

frequency step ∆ f = 200 Hz. Good agreement is observed between numerical and exact values.338

The attenuation is slightly overestimated by the scheme, due to the numerical diffusion of the339

Godunov scheme. This numerical artifact can be fixed by choosing a higher-order scheme [31].340

5.4. Test 3: softening / recovering341

The goal of the third test is to illustrate the softening / recovering of the elastic modulus,342

and to validate the numerical modeling of this phenomenon. For this purpose, linear elasticity is343

assumed and the viscoelasticity is neglected (β = δ = 0, Q = +∞). Even if a linear stress-strain344

relation is used, the evolution problem (26) is nonlinear by virtue of (26d), (28) and (29). Like345

in test 1, the source is monochromatic; but is is switched off after a time t∗:346

G(t) = A sin(ωct) (H(t) − H(t∗)) . (58)
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Figure 7: test 2. Wave propagation in a viscoelastic medium. (a): time evolution of v at a set of receivers; (b): snapshot

of v at t = 0.46 ms, and comparison between the numerical and the semi-analytical solution.

As long as the source is switched on (0 < t < t∗), the equilibrium concentration of defects347

increases from the initial value g0 up to g∗ = g(t∗). At the same time, the Young’s modulus348

decreases from E0 to E∗ via (3).349

For t > t∗, the waves go out of the domain, and the elastodynamic fields vanish. From (29)350

and (10), σ = 0 implies that the equilibrium concentration of defects becomes gσ = g0. As a351

consequence, the ordinary differential equation (ODE) (26d) describing the evolution of defects352

simplifies into353



















dg

dt
= − fr (g − g0),

g(t∗) = g∗.

(59)

The solution of (59) is354

g(t) = g0 + (g∗ − g0) e− fr(t−t∗). (60)

Equation (60) is injected into (3), which gives the time evolution of the Young’s modulus during355

the recovering process (t ≥ t∗):356

E(t) = E0 −
1

gcr

(g∗ − g0) e− fr(t−t∗) E+. (61)

The domain of propagation is Lx = 0.4 m long and is discretized onto 100 grid nodes. The357

maximal strain is εmax = 10−5. Time integration is performed up to t = 460 ms. Figure 8 shows358

the time evolution of the elastic modulus M ≡ E (35); this equality occurs only because a linear359

stress-strain relation is assumed. The numerical values of M are shown from the beginning of360

the simulation, whereas the exact values of E (61) are shown from t∗. For the sake of clarity, the361

values are shown only each 5000 time steps. Logically, the elastic modulus decreases as long as362

the source is switched on (softening), and then increases up to its initial value (recovering).363
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Figure 8: test 3. Time evolution of the elastic modulus M (35) at xr . (a): influence of the central stress σ = 108 Pa and

107 Pa. (b): influence of the frequency of restoration fr = 2.5 Hz and 100 Hz. The vertical dotted line denotes the time

t∗ where the source is switched off.

Figure 8-(a) illustrates the influence of the central stress on the evolution of M: σ = 108
364

Pa or 107 Pa (the other parameters are those of table 1). According to the Vakhnenko’s expres-365

sion (7), these values correspond to spherical defects of radius 2.13 10−10 m and 4.59 10−10 m,366

respectively. In both cases, equilibrium has been reached at t∗. The lower value of σ yields a367

greater variation of the elastic modulus. This property follows from (9): as σ decreases, the368

curve g → gσ stiffens and tend towards a Heaviside step function. Consequently, greater values369

of gσ are obtained when σ is smaller. This implies a greater evolution of g (5), and hence of E370

(3).371

Figure 8-(b) illustrates the influence of the frequency of restoration on the evolution of M:372

fr = 2.5 Hz or 100 Hz (the other parameters are those of table 1). The lowest value of fr yields373

a greater variation of the elastic modulus. This is a consequence of the competition between374

restoration (with frequency fr) and destruction (with frequency fd). When fr is too low compared375

with fd , restoration has almost no time to occur during one period T = 1/ fc, and destruction plays376

a preponderant role.377

5.5. Test 4: full model378

The fourth and last test incorporates all the physical mechanisms of the model: nonlinear379

stress-strain law, viscoelasticity, activation / restoration of defects. The domain is Lx = 0.4 m380

long and is discretized onto 100 grid nodes. The source is a monochromatic excitation (55).381

Time integration is performed during 5 104 time steps. The fields are recorded at xr.382

Figure 9-(a) illustrates the influence of viscoelasticity on the stress-strain law. When viscous383

effects are neglected (Q = +∞, where Q is the quality factor), the behavior induced by the384

Landau law (15) is observed. Moreover, the scaling (6) induces that the evolution of defects on385

one cycle is insufficient to provide a measurable hysteretic effect. On the contrary, hysteresis is386

obtained when viscoelasticity is accounted for (Q = 20). Figure 9-(b) mimics the simulation of387

test 3, where the source a switched-on and off. But contrary to test 3, a nonlinear stress-strain388
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Figure 9: test 4. (a): stress-strain curves at xr for different quality factor Q and a forcing amplitude εmax = 2.0 10−4. (b):

time evolution of the elastic modulus; the vertical dotted line denotes the time t∗ when the source is switched off.

relation is used. Large oscillations up to t∗ can be observed, contrary to what can be seen in389

figure 8.390

Figure 10 displays the relative variation of the elastic modulus ∆M = (M − M0)/M0 in391

terms of the strain, for various amplitudes of the forcing. Three observations can be made.392

First, nonlinear curves are obtained, which is a signature of the nonlinear stress-strain relation.393

Second, ∆M increases with εmax: softening increases monotonically with the forcing. Third and394

last, loops are obtained if and only if viscoelasticity is incorporated (c-d). These three features395

are qualitatively similar to those obtained experimentally [25, 26].396

5.6. Conclusion397

We have proposed a one-dimensional model that captures the behavior of real media under398

longitudinal bar excitation, including the following features: nonlinear elasticity; softening / re-399

covering of the elastic modulus; hysteretic evolution of the elastic modulus with the strain. The400

proposed model is very modular. It involves three different bricks which can be used also in-401

dependently: see for instance the numerical experiments in section 5, in which are considered402

various combinations of elasticity, attenuation and slow dynamics. Experimentally, the parame-403

ters corresponding to each mechanisms can be identified separately:404

• the measure of nonlinear elastic parameters is described in many books [11, 13];405

• the measure of the quality factor must be performed in the linear regime. See the reference406

book [4] for a description of an experimental protocol;407

• lastly, measuring the parameters of the slow dynamics is detailed in many papers cited in408

the bibliography. The current challenge is to link the physical observations to the param-409

eters of Vakhnenko’s model. Our ambition, with the present paper, is to provide experi-410
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Figure 10: test 4. Relative variations in the elastic modulus M for various amplitudes of forcing εmax, from 10−6 to

7.5 10−5 . Top (a-b): without viscoelasticity; bottom (c-d): with viscoelasticity.

menters with a tool for testing various sets of parameters, and hence testing the validity of411

Vakhnenko’s model.412

A major interest of the numerical approach is the possibility to tackle with variable coefficients in413

space, which is representative of localized defects [24]. In particular, a random initial distribution414

of defects g0(x) can be considered straightforwardly.415

Many improvements can be investigated, to mention but a few. More sophisticated models416

can be built quite naturally, considering for instance relaxation of the nonlinear coefficients p in417

(18a), or a nonlinear law in (18b). Concerning the numerical simulations, higher-order schemes418

(such as WENO schemes [18]) can easily be adapted to the proposed formulation. Lastly, the-419

oretical analyses should be done to prove rigorously the well-posedness of the model and its420

thermodynamic properties.421
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Work is currently proceeding along two directions. First, numerical simulations are being422

done to recover quantitatively the experimental results of the litterature [25, 26]. Second, the423

extension of this model to 2D and 3D geometries is under progress.424

Appendix A. Parameters of the viscoelastic model425

Standard calculations on (16), (18) and (19) yield the reciprocal of the quality factor Q [5]426

Q−1(ω) =















N
∑

ℓ=1

ω (τεℓ − τσℓ)

1 + ω2τ2
σℓ















/















N
∑

ℓ=1

1 + ω2τεℓτσℓ

1 + ω2τ2
σℓ















. (A.1)

Optimizing Q−1 towards a given law (for instance a constant quality factor on a frequency range427

of interest [ fmin, fmax]) provides a means to determine τσℓ and τεℓ [20]. Here an optimization428

with constraint is applied to ensure positive values of τσℓ and τεℓ, as required by the decrease in429

energy (see section 3.2). See [6] for details about such an optimization.430
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Figure A.11: Properties of the viscoelastic model in the linear regime. (a): reciprocal of the quality factor Q = 20 (A.1).

The constant exact value is denoted by a horizontal line; the values obtained after optimization with N = 2 and N = 4

relaxation mechanisms are denoted in blue and red, respectively; the range of optimization [ fmin, fmax] is denoted by

vertical dotted lines. (b): frequency evolution of the phase velocity; the horizontal dotted lines denote the phase velocity

at zero and infinite frequency.

Figure A.11 illustrates the properties of the viscoelastic model. Figure A.11-(a) compares431

the reciprocal of the constant quality factor Q = 20 with the value deduced from (A.1), for N = 2432

and N = 4 relaxation mechanisms. Nonlinear optimization is performed from fmin = 1 kHz to433

fmax = 100 kHz. Large oscillations are obtained for N = 2; excellent agreement is observed for434

N = 4. Figure A.11-(b) shows the increase in phase velocity from c0 =
√

ER/ρ to c∞ =
√

E/ρ.435

The reader is referred to [5] for details about these quantities.436

Lastly, the consistancy relation (22) is proven here. Null attenuation amounts to an infinite437

quality factor. Equation (A.1) implies that Q = +∞ is obtained if τεℓ = τσℓ. In this case, the438
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viscoelastic coefficients (20) and (21) are439

ER = E, K1ℓ =
E

N
, K2ℓ = +∞, ηℓ = +∞. (A.2)

To get a bounded stress, (18c) implies ε2ℓ = 0, and hence ε1ℓ = ε for ℓ = 1, · · · , N (17). Putting440

together the total stress (16), the nonlinear elasticity (11) and the homogeneity property in (12),441

one obtains442

σ =

N
∑

ℓ=1

s(ε1ℓ, K1ℓ, p) =

N
∑

ℓ=1

s

(

ε,
E

N
, p

)

=
1

N

N
∑

ℓ=1

s(ε, E, p) = s(ε, E, p), (A.3)

which concludes the proof.443

Appendix B. Analysis of hyperbolicity444

The Jacobian A of f (32) is445

A(U) =












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


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


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










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


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...

...
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, (B.1)

where446

Φℓ = −
1

ρ

∂σ1ℓ

∂ε1ℓ

. (B.2)

The determinant of A writes447

PA(λ) = −λ
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∣
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∣

∣
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∣

∣

(B.3)

The columns and lines are denoted by C j and L j, respectively. The following algebraic manipu-448

lations are performed successively:449

(i) C1 ← λC1,450

(ii) C1 ← C1 − C j, with j = 2, · · · , N + 1,451

which yields452

λ PA(λ) = −λ
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∣

∣

∣

∣

∣

∣

∣

∣
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∣

∣
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∣
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Φℓ 0 Φ1 · · · ΦN

0 −λ
...

. . .

0 −λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

= (−1)N+1λN+2
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
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
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

.

(B.4)
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It follows that the eigenvalues are 0 (with multiplicity N + 1) and ±c, with the sound velocity453

(34). From (B.2), real eigenvalues are obtained if and only if c2 > 0 in (34).454

Necessary and sufficient conditions are easily deduced from (34) for the models (13)-(15)455

when N = 1: hyperbolicity is satisfied if |ε| < εc, where456

εc =


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(B.5)

Model 2 is always hyperbolic. On the contrary, the widely-used Landau model (model 3) is457

conditionally hyperbolic. When N > 1, the hyperbolicity condition |ε1ℓ| < εc is sufficient.458

Given the nonlinear elastic models (13)-(15), the speed of sound c satisfies:459

c2 =
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(B.6)

Appendix C. Analysis of the relaxation terms460

For linear stress-strain relations (18), the relaxation coefficients (33) yield461
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(C.1)

The Jacobian matrix of the relaxation function (32) can be obtained462

J =
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, (C.2)
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with fξ = fr if g > gσ, fξ = fd if g < gσ, fξ = 0 else. It follows that the eigenvalues are 0,463

−K1ℓ+K2ℓ

ηℓ
, and − fξ .464

Appendix D. Semi-analytical solution465

The semi-analytical solution of the viscodynamic equations is computed as follows. Fourier466

transforms in space and time are applied to the system (56). Applying an inverse Fourier trans-467

form in space yields468

v̂(x, ω) =
iωρ

N
∑

ℓ=1

K1ℓ

iω + 1/τεℓ

iω + 1/τσℓ

Ĝ(ω)

2 π

∫ +∞

−∞

1

k2 − k2
0

e−ikx0 dk, (D.1)

where the hat refers to the Fourier transform,G is the time evolution of the source, the relaxation469

times τεℓ and τσℓ are defined in (19), and k is the wavenumber. The poles ±k0 satisfy470

k2
0 =

ρω2

N
∑

ℓ=1

K1ℓ

iω + 1/τεℓ

iω + 1/τσℓ

(D.2)

with ℑm(k0) < 0. Applying the residue theorem gives the time-domain velocity471

v(x, t) = ρ
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dω. (D.3)

Expressions for ε and ε1ℓ can be obtained in a similar manner. Lastly, the numerical evaluation472

of (D.3) is done using a rectangular quadrature rule on N f Fourier modes and with a constant473

frequency step ∆ f on the frequency band of interest.474
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