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Existence results for degenerate
cross-diffusion systems

with application to seawater intrusion

J. Alkhayal, S. Issa, M. Jazar, R. Monneau

August 18, 2014

Abstract: In this paper, we study degenerate parabolic systems, which are strongly cou-
pled. We prove general existence results, but the uniqueness remains an open question. Our
proof of existence is based on a crucial entropy estimate which both control the gradient of the
solution and the non-negativity of the solution. Our systems are of porous medium type and
our theory applies to models in seawater intrusion both in the confined and unconfined cases.

Keywords: Degenerate parabolic system, entropy estimate, porous medium like sys-
tems.

1 Introduction

For sake of simplicity, we will work on the torus Ω := TN = (R/Z)N , with N ≥ 1.
Let ΩT := (0, T )× Ω with T > 0. Let an integer m ≥ 1. Our purpose is to study a class of
degenerate strongly coupled parabolic systems in two different cases,
Unconfined case:

ui
t = div

(
ui

m∑

j=1

Aij∇uj

)
in ΩT , for i = 1, . . . ,m. (1.1)

Confined case:




ui
t = div

(
ui∇

(
p+

m∑
j=1

Aiju
j

))
in ΩT , for i = 1, . . . ,m,

m∑
i=1

ui(t, x) = 1 in ΩT ,

(1.2)

with the initial condition

ui(0, x) = ui
0(x) ≥ 0 a.e. in Ω, for i = 1, . . . ,m. (1.3)

In the confined case (1.2), p is the pressure defined on ΩT , which appears as a Lagrange
multiplier of the constraint on u = (ui)1≤i≤m, given by the second line of (1.2). In the core
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of the paper we will assume that A = (Aij)1≤i,j≤m is a real m ×m matrix (not necessarily
symmetric) that satisfies the following positivity condition: we assume that there exists
δ0 > 0, such that we have

ξTAξ ≥ δ0|ξ|2, for all ξ ∈ R
m. (1.4)

This condition can be weaken: see Subsection 4.1. Problem (1.1) and (1.2) appear naturally
in the modeling of seawater intrusion (see Subsection 1.2).

1.1 Main results

To introduce our main results, we need to define the spaceH1(Ω)/R and the entropy function
Ψ:
The space H1(Ω)/R:
We define H1(Ω)/R as the space of functions of H1(Ω), up to addition of constant. A natural
norm is

‖p‖(H1(Ω)/R) = inf
c∈R

‖p− c‖H1(Ω) =

∥∥∥∥p−
1

|Ω|

∫

Ω

p

∥∥∥∥
H1(Ω)

. (1.5)

The function Ψ:
We define the nonnegative function Ψ as

Ψ(a)− 1

e
=





a ln a for a > 0,
0 for a = 0,

+∞ for a < 0,
(1.6)

which is minimal for a =
1

e
.

Theorem 1.1 (Existence for the unconfined system)
Assume that A satisfies (1.4). For i = 1, . . . ,m, let ui

0 ≥ 0 in Ω satisfying

m∑

i=1

∫

Ω

Ψ(ui
0) < +∞, (1.7)

where Ψ is given in (1.6). Then there exists a function u = (ui)1≤i≤m ∈ (L2(0, T ;H1(Ω)) ∩
C([0, T ); (W 1,∞(Ω))′))m solution in the sense of distributions of (1.1),(1.3), with ui ≥ 0 a.e.
in ΩT , for i = 1, . . . ,m. Moreover this solution satisfies the following entropy estimate for
a.e. t ∈ (0, T ), with ui(t) = ui(t, ·):

m∑

i=1

∫

Ω

Ψ(ui(t)) + δ0

m∑

i=1

∫ t

0

∫

Ω

|∇ui|2 ≤
m∑

i=1

∫

Ω

Ψ(ui
0), (1.8)

where Ψ is given in (1.6).

Theorem 1.2 (Existence for the confined system)
Assume that A satisfies (1.4). For i = 1, . . . ,m, let ui

0 ≥ 0 in Ω satisfying (1.7). Then
there exists a function u = (ui)1≤i≤m ∈ (L2(0, T ;H1(Ω)) ∩ C([0, T ); (W 1,∞(Ω))′))m, and a
function p ∈ L2(0, T ;H1(Ω)/R) such that (u, p) is a solution in the sense of distributions of
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(1.2),(1.3), with ui ≥ 0 a.e. in ΩT , for i = 1, . . . ,m. Moreover this solution satisfies the
entropy estimate (1.8) and for a.e. t ∈ (0, T ), with ui(t) = ui(t, ·), p(t) = p(t, ·):

∫

Ω

|∇p(t)|2 ≤ ‖A‖2
m∑

i=1

∫

Ω

∣∣∇ui(t)
∣∣2 . (1.9)

Here ‖A‖ is the matrix norm defined as

‖A‖ = sup
|ξ|=1

|Aξ| . (1.10)

Notice that the entropy estimate (1.8) guarantees that ∇ui ∈ L2(0, T ;L2(Ω)), and therefore

allows us to define the product ui

m∑

i=1

Aij∇uj in (1.1) and (1.2). Similarly, estimate (1.9)

guarantees that ∇p ∈ L2(0, T ;L2(Ω)) and allows us to define the product ui∇p in (1.2).
When our proofs were obtained, we realized that a similar entropy estimate has been obtained
in [7] and [9] for a special system different from ours.

1.2 Application to seawater intrusion

In this subsection, we describe briefly two models of seawater intrusion (confined and un-
confined), which are particular cases of our systems (1.1) and (1.2).
An aquifer is an underground layer of a porous and permeable rock through which water can
move. On the one hand coastal aquifers contain freshwater and on the other hand saltwater
from the sea can enter in the ground and replace the freshwater. We refer to [3] for a general
overview on seawater intrusion models.
Now let ν = 1− ε0 ∈ (0, 1) where

ε0 =
γs − γf

γs

with γs and γf are the specific weight of the saltwater and freshwater respectively. We can
distinguish two types of aquifers, confined and unconfined.

Unconfined aquifers:

Figure 1: Unconfined aquifer

3



We assume that in the porous medium, the interface between the saltwater and the bedrock is
given as {z = 0}, the interface between the saltwater and the freshwater, which are assumed
to be unmiscible, can be written as {z = g(t, x)}, and the interface between the freshwater
and the dry soil can be written as {z = h(t, x) + g(t, x)}. Then the evolutions of h and g
are given by a coupled nonlinear parabolic system (we refer to see [14]) of the form

{
ht = div {h∇(ν(h+ g))} in ΩT ,
gt = div {g∇(νh+ g)} in ΩT ,

(1.11)

This is a particular case of (1.1), where the 2× 2 matrix

A =

(
ν ν
ν 1

)
(1.12)

satisfies (1.4).

Confined aquifers:
A confined aquifer is an aquifer that lies between two impermeable layers. For simplicity we
assume that z = 0 and z = 1 represent these two layers.

Figure 2: Confined aquifer

Then a natural model is the following system:




ht = div {h∇(p+ ν(h+ g))} in ΩT ,
gt = div {g∇(p+ νh+ g)} in ΩT ,

h+ g = 1 in ΩT ,

where p is the pressure on the top confined rock. This is a particular case of (1.2) with
matrix A given by (1.12).

1.3 Brief review of the litterature

The cross-diffusion systems, in particular the strongly coupled ones (for which the equations
are coupled in the highest derivatives terms), are widely presented in different domains such
as biology, chemistry, ecology, fluid mechanics and others. They are difficult to treat. Many
of the standard results cannot be applied for such problems, such as the maximum principle.

4



Among them, the model proposed by Shigesada, Kawasaki and Teramoto in [25] which arises
in population dynamics and can be written as

ui
t = divJ i + fi(u

1, u2), J i = ∇(βiu
i + αi1u

1ui + αi2u
2ui) + diu

iq, i = 1, 2, (1.13)

where ui denotes the population density of the i-th species, J i the corresponding population
flows and q = ∇U where U(t, x) is a prescribed environmental potential, modeling areas
where the environmental conditions are more or less favorable. The existence of a solution
for this problem was frequently studied with restrictions on the diffusion coefficients. We
cite some of the available results for




α11 = α22 = α21 = 0, α12 > 0, β1, β2 > 0, d1 = d2 = 0, see [23, 24],
α11 = α22 = 0, α21 = α12 = 1, β1, β2 > 0, d1 = d2 = 0, see [6],
α11, α22 ≥ 0, α21 = 0, α12 ≥ 0 β1, β2 ≥ 0, d1 = d2 = 0, see [21],
α11 = α22 = α21 = 0, α12 > 0, β1 = β2 > 0, d1 = d2 = 0, see [13],
0 < α21 < 8α11, 0 < α12 < 8α22, β1, β2 > 0, d1, d2 ≥ 0, see [27],
0 ≤ α21 < 8α11, 0 ≤ α12 < 8α22, β1, β2 ≥ 0, d1, d2 ∈ R, see [11],
α11, α22 ≥ 0, 2α21 < α11, 2α12 < α22, β1 − β2 > 0, d1 = d2 = 0, see [16]
α11 > α21 > 0, α22 > α12 > 0,
α12α21 < (α11 − α21)(α22 − α12), β1 − β2 > 0, d1 = d2 = 0, see [15],
α11 = α22 > 0, α21 = α12 = 1, β1, β2 ≥ 0, d1, d2 ∈ R, see [7].

In [28], the existence of a global solution of a problem such:

ui
t −∆

[(
βi +

m∑

j=1

αiju
j

)
ui

]
=

(
ai −

m∑

j=1

biju
j

)
ui, for i = 1, . . . ,m,

is studied where βi > 0 and αij > 0. For the stationary problem, we refer to see, for example,
[20] where βi > 0 and αij ≥ 0. In [17], Lepoutre, Pierre and Rolland studied a relaxed model,
without a term source (see also [4, 16]) of the form

{
ui
t = ∆[ai(ũ)u

i], ũ = (ũi)1≤i≤m, for i = 1, . . . ,m,
ũi − δi∆ũi = ui, with δi > 0, for i = 1, . . . ,m,

(1.14)

in any dimension and for general nonlinearities bounded ai ∈ C([0,∞)m; [η,∞)), for some
η > 0. In [17], they show the existence of a weak solution. Moreover if the functions ai are
locally Lipschitz continuous then it is shown that this solution has more regularity and then
is unique.
Another example of such problems is the electochemistry model studied by Choi, Huan and
Lui in [8] where they consider the general form

ui
t =

n∑

ℓ=1

m∑

j=1

∂

∂xℓ

(
aijℓ (u)

∂uj

∂xℓ

)
, u = (ui)1≤i≤m for i = 1, . . . ,m, (1.15)

and prove the existence of a weak solution of (1.15) under assumptions on the matrices
Al(u) = (aijl (u))1≤i,j≤m: it is continuous in u, its components are uniformly bounded with
respect to u and its symmetric part is definite positive. Their strategy of proof seeks to use
Galerkin method to prove the existence of solutions to the linearized system and then to apply
Schauder fixed-point theorem. Then they apply the results obtained to an electrochemistry
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model.
A fourth example of cross-diffusion models is the chemotaxis model introduced in [18]. The
global existence for classical solutions of this model is studied by Hillen and Painter in [12]:

{
ut = ∇(∇u− V (u, v)∇v),
vt = µ∆v + g(u, v),

where the chemotactic cross-diffusion V is assumed to be bounded, and the function g
describes production and degradation of the external stimulus.
A fifth example is a seawater intrusion problem in a confined aquifers, studied in [22]. It
consists in a coupled system of an elliptic and a degenerate parabolic equation. The global
existence is obtained by using Schauder’s fixed point with a parabolic regularization.

1.4 Strategy of the proof

In the unconfined case (1.1) (respectively the confined case (1.2) ), the elliptic part of the
equation does not have a Lax-Milgram structure. Otherwise, our existence result is mainly
based on the entropy estimate (1.8). It is difficult to get this entropy estimate directly (we
do not have enough regularity to do it), so we proceed by approximations:
Approximation 1:

We discretize in time system (1.1) (respectively (1.2)), with a time step ∆t =
T

K
, where

K ∈ N∗. Then for a given un = (ui,n)1≤i≤m ∈ (H1(Ω))m, we consider the implicit scheme
which is an elliptic system:

ui,n+1 − ui,n

∆t
= div

{
ui,n+1

m∑

j=1

Aij∇uj,n+1

}
. (1.16)

Approximation 2:
We regularize the PDE term:

div

{
ui,n+1

m∑

i=1

Aij∇uj,n+1

}
. (1.17)

To do that, we take η > 0 and 0 < ε < 1 < ℓ, and we choose the following regularization

div

{
T ε,ℓ(ui,n+1)

m∑

j=1

Aij∇ρη ⋆ ρη ⋆ u
j,n+1

}
, (1.18)

where T ε,ℓ is a truncation operator defined as,

T ε,ℓ(a) :=





ε if a ≤ ε,
a if ε ≤ a ≤ ℓ,
ℓ if a ≥ ℓ,

(1.19)

and the mollifier ρη(x) =
1

ηN
ρ(
x

η
) with ρ ∈ C∞

c (RN), ρ ≥ 0,

∫

RN

ρ = 1 and ρ(−x) = ρ(x).

Now with the convolution by ρη in (1.18), the term ∇ρη ⋆ ρη ⋆ u
j,n+1 behaves like uj,n+1.

Note that the convolution ρη ⋆ u
j,n+1 is done on RN , considering uj,n+1 as its ZN - periodic
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extension on RN .
Approximation 3:
Let δ > 0. We then add a term like δ∆ui. This way, the term δ∆ui remains the main term,
and we can apply the Lax-Milgram theorem.
Approximation 4:
We consider div

(
δT ε,ℓ(ui)∇ui

)
instead of δ∆ui, to keep an entropy estimate.

Then by freezing the coefficients to make a linear structure (these coefficients are now called
δT ε,ℓ(vi,n+1)), we obtain these following modified systems:
Unconfined case:

ui,n+1 − ui,n

∆t
= div

{
T ǫ,ℓ(vi,n+1)

(
m∑

j=1

Aij∇ρη ⋆ ρη ⋆ u
j,n+1 + δ∇ui,n+1

)}
, (1.20)

Confined case:



ui,n+1 − ui,n

∆t
= div

{
T ǫ,ℓ(vi,n+1)

(
∇pn+1 +

m∑
j=1

Aij∇ρη ⋆ ρη ⋆ u
j,n+1 + δ∇ui,n+1

)}
,

m∑
j=1

ui,n+1 = 1.

(1.21)

We will look for fixed points solutions vi,n+1 = ui,n+1 of these modified systems. Finally, we
will recover the expected result dropping one after one all the approximations.

1.5 Organization of the paper

In Section 2, we recall some useful tools. In Section 3, we study the unconfined case (1.1). By
discretizing our problem on time, in Subsection 3.1, we obtain an elliptic problem. We use the
Lax-Milgram theorem to show the existence of a unique solution to a linear problem (when
the coefficients T ε,ℓ(ui,n+1) are frozen to be T ε,ℓ(vi,n+1)). We demonstrate, in Subsection 3.2,
the existence of a solution of the nonlinear problem, using the Schaefer’s fixed point theorem.

Then we pass to the limit when
{

(∆t, ε) → (0, 0) in Subsection 3.3,
(ℓ, η, δ) → (∞, 0, 0) in Subsection 3.4.

Generalizations (including more general matrices A or tensors) will be presented in Section
4. Finally, Section 5 contains the Appendix with some technical results.

2 Preliminary tools

Theorem 2.1 (Schaefer’s fixed point theorem)[10, Theorem 4 page 504]
Let X be a real Banach space. Suppose that

Φ : X → X

is a continuous and compact mapping. Assume further that the set

{u ∈ X, u = λΦ(u) for some λ ∈ [0, 1]}
is bounded. Then Φ has a fixed point.
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Proposition 2.2 (Aubin’s lemma)[26]
For any T > 0, and Ω = TN , let E denote the space

E :=
{
g ∈ L2((0, T );H1(Ω)) and gt ∈ L2((0, T );H−1(Ω))

}
,

endowed with the Hilbertian norm

‖ω‖E =
(
‖ω‖2L2(0,T ;H1(Ω)) + ‖ωt‖2L2(0,T ;H−1(Ω))

) 1

2

.

The embedding
E →֒ L2((0, T );L2(Ω)) is compact.

On the other hand, it follows from [19, Proposition 2.1 and Theorem 3.1, Chapter 1] that
the embedding

E →֒ C([0, T ];L2(Ω)) is continuous.

Lemma 2.3 (Simon’s Lemma)[26]
Let X, B and Y three Banach spaces, where X →֒ B with compact embedding and B →֒ Y
with continuous embedding. If (gn)n is a sequence such that

‖gn‖Lq(0,T ;B) + ‖gn‖L1(0,T ;X) + ‖gnt ‖L1(0,T ;Y ) ≤ C,

where 1 < q ≤ ∞, and C is a constant independent of n, then (gn)n is relatively compact in
Lp(0, T ;B) for all 1 ≤ p < q.

Now we will present the variant of the original result of Simon’s lemma [26, Corollary 6,
page 87]. First of all, let us define the norm |.|Var([a,b);Y )

where Y is a Banach space.

For a function g : [a, b) → Y , we set

|g|Var([a,b);Y )
= sup

∑

j

|g(aj+1)− g(aj)|Y (2.1)

over all possible finite partitions:

a ≤ a0 < · · · < ak < b.

Theorem 2.4 (Variant of Simon’s Lemma)
Let X, B and Y three Banach spaces, where X →֒ B with compact embedding and B →֒ Y
with continuous embedding. Let (gn)n be a sequence such that

|gn|L1(0,T ;X) + |gn|Lq(0,T ;B) + |gn|Var([0,T );Y )
≤ C, (2.2)

where 1 < q < ∞, and C is a constant independent of n. Then (gn)n is relatively compact
in Lp(0, T ;B) for all 1 ≤ p < q.

Proof of Theorem 2.4
Step 1: Regularization of the sequence
Let ρ̄ ∈ C∞

c (R) with ρ̄ ≥ 0,
∫
R
ρ̄ = 1 and supp ρ̄ ⊂ (−1, 1). For ε > 0, we set

ρ̄ε(x) = ε−1ρ̄(ε−1x).
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We extend gn = gn(t) by zero outside the time interval [0, T ). Because q < +∞, we see that
for each n, we choose some 0 < εn → 0 as n → +∞ such that

|ḡn − gn|Lq(0,T ;B) → 0 as n → +∞, with ḡn = ρ̄εn ⋆ gn (2.3)

For any δ > 0 small enough, we also have for n large enough (such that εn < δ):

|ḡn|L1(δ,T−δ;X) ≤ |gn|L1(0,T ;X) ≤ C

and
|ḡnt |L1(δ,T−δ;Y ) ≤ |gn|Var([0,T );Y )

≤ C (2.4)

Step 2: Checking (2.4)
Note that by definition of | · |Var([0,T );Y )

(see (2.1)), there exists a sequence of step functions

fη which approximates uniformly ḡn on [0, T ) as η → 0, with moreover satisfies

|fη|Var([0,T );Y )
→ |ḡn|Var([0,T );Y )

.

Therefore we get easily (for εn < δ)

|(ρ̄εn ⋆ fη)t|L1(δ,T−δ;Y ) ≤ |fη|Var([0,T );Y )

which implies (2.4), when we pass to the limit as η goes to zero.
Step 3: Conclusion
We can then apply Corollary 6 in [26] to deduce that ḡn is relatively compact in Lp(0, T ;B)
for all 1 ≤ p < q. Because of (2.3), we deduce that this is also the case for the sequence
(gn)n, which ends the proof of the Theorem. �

3 Existence for the unconfined case

Our goal is to prove Theorem 1.1 in order to get the existence of a solution for the unconfined
system (i.e. system (1.1)).

3.1 Existence for a linear elliptic problem

In this subsection we prove the existence, via Lax-Milgram theorem, of the unique solution
for the linear elliptic system given in (1.20).
Let us recall our linear elliptic system. Assume that A is any m × m real matrix. Let
vn+1 = (vi,n+1)1≤i≤m ∈ (L2(Ω))m and un = (ui,n)1≤i≤m ∈ (H1(Ω))m. Then for all ∆t, ε, ℓ,
η, δ > 0, with ε < 1 < ℓ and ∆t < τ where τ is given in (3.2), we look for the solution
un+1 = (ui,n+1)1≤i≤m of the following system:





ui,n+1 − ui,n

∆t
= div

{
J i
ǫ,ℓ,η,δ(v

n+1, un+1)
}

in D′(Ω),

J i
ǫ,ℓ,η,δ(v

n+1, un+1) = T ǫ,ℓ(vi,n+1)

{
m∑
j=1

Aij∇ρη ⋆ ρη ⋆ u
j,n+1 + δ∇ui,n+1

}
,

(3.1)

where T ε,ℓ is given in (1.19).
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Proposition 3.1 (Existence for system (3.1))
Assume that A is any m×m real matrix. Let ∆t, ε, ℓ, η, δ > 0, with ε < 1 < ℓ, such that

∆t <
δεη2

C0
2ℓ2 ‖A‖2

:= τ, (3.2)

where
C0 = ‖∇ρ‖L1(RN ). (3.3)

Then for n ∈ N, for a given vn+1 = (vi,n+1)1≤i≤m ∈ (L2(Ω))m and un = (ui,n)1≤i≤m ∈
(H1(Ω))m, there exists a unique function un+1 = (ui,n+1)1≤i≤m ∈ (H1(Ω))m solution of
system (3.1). Moreover, this solution un+1 satisfies the following estimate

(
1− ∆t

τ

)∥∥un+1
∥∥2
(L2(Ω))m

+∆tεδ
∥∥∇un+1

∥∥2
(L2(Ω))m

≤ ‖un‖2(L2(Ω))m , (3.4)

where τ is given in (3.2).

Proof of Proposition 3.1.
The proof is done in two steps using Lax-Milgram theorem.
First of all, let us define for all un+1 = (ui,n+1)1≤i≤m and ϕ = (ϕi)1≤i≤m ∈ (H1(Ω))m, the
following bilinear form:

a(un+1, ϕ) =
m∑

i=1

∫

Ω

ui,n+1ϕi +∆t

m∑

i,j=1

∫

Ω

T ε,ℓ(vi,n+1)Aij

(
∇ρη ⋆ ρη ⋆ u

j,n+1
)
· ∇ϕi

+∆tδ
m∑

i=1

∫

Ω

T ε,ℓ(vi,n+1)∇ui,n+1 · ∇ϕi,

which can be also rewritten as

a(un+1, ϕ) =
〈
un+1, ϕ

〉
(L2(Ω))m

+∆t
〈
T ε,ℓ(vn+1)∇ϕ,A∇ρη ⋆ ρη ⋆ u

n+1
〉
(L2(Ω))m

+∆tδ
〈
T ε,ℓ(vn+1)∇ϕ,∇un+1

〉
(L2(Ω))m

,

where 〈·, ·〉(L2(Ω))m denotes the scalar product on (L2(Ω))m, and the following linear form:

L(ϕ) =
m∑

i=1

∫

Ω

ui,nϕi = 〈un, ϕ〉(L2(Ω))m .

Step 1: Continuity of a
For every n ∈ N, un+1 and ϕ ∈ (H1(Ω))m, we have

|a(un+1, ϕ)| ≤ ‖un+1‖(L2(Ω)m‖ϕ‖(L2(Ω))m +∆tℓ‖A‖‖∇ρη ⋆ ρη ⋆ u
n+1‖(L2(Ω))m‖∇ϕ‖(L2(Ω))m

+∆tδℓ‖∇un+1‖(L2(Ω))m‖∇ϕ‖(L2(Ω))m

≤ 3max(1,∆tℓ‖A‖,∆tδℓ)‖un+1‖(H1(Ω))m‖ϕ‖(H1(Ω))m .

where ‖A‖ is given in (1.10) and we have used the fact that
∥∥∇ρη ⋆ ρη ⋆ u

n+1
∥∥
(L2(Ω))m

≤
∥∥∇un+1

∥∥
(L2(Ω))m

, (3.5)

10



and
ε ≤ T ε,ℓ(a) ≤ ℓ, for all a ∈ R. (3.6)

Step 2: Coercivity of a
For all ϕ ∈ (H1(Ω))m, we have that a(ϕ, ϕ) = a0(ϕ, ϕ) + a1(ϕ, ϕ), where

a0(ϕ, ϕ) = ‖ϕ‖2(L2(Ω))m +∆tδ
〈
T ε,ℓ(ϕ)∇ϕ,∇ϕ

〉
(L2(Ω))m

and
a1(ϕ, ϕ) = ∆t

〈
T ε,ℓ(ϕ)∇ϕ,A∇ρη ⋆ ρη ⋆ ϕ

〉
(L2(Ω))m

.

On the one hand, we already have the coercivity of a0:

a0(ϕ, ϕ) ≥ ‖ϕ‖2(L2(Ω))m +∆tδε‖∇ϕ‖2(L2(Ω))m .

On the other hand, we have

|a1(ϕ, ϕ)| ≤ ∆tℓ ‖A‖ ‖∇ρη ⋆ ρη ⋆ ϕ‖(L2(Ω))m ‖∇ϕ‖(L2(Ω))m

≤ ∆tℓ ‖A‖
(

1

2α
‖∇ρη ⋆ ρη ⋆ ϕ‖2(L2(Ω))m +

α

2
‖∇ϕ‖2(L2(Ω))m

)

≤ ∆tℓ2 ‖A‖2 C2
0

2δεη2
‖ϕ‖2(L2(Ω))m +

∆tεδ

2
‖∇ϕ‖2(L2(Ω))m ,

where in the second line we have used Young’s inequality, and chosen α =
δε

‖A‖ ℓ in the third

line, with C0 is given in (3.3) and ‖A‖ is given in (1.10). So we get that

a(ϕ, ϕ) ≥
(
1− ∆t

2τ

)
‖ϕ‖2(L2(Ω))m +

∆tεδ

2
‖∇ϕ‖2(L2(Ω))m (3.7)

is coercive, since ∆t < τ where τ is given in (3.2).
Finally, it is clear that L is linear and continuous on (H1(Ω))m, and then by Lax-Milgram
theorem there exists a unique solution, un+1, of system (3.1).

Step 3: Proof of estimate (3.4)
Using (3.7) and the fact that a(un+1, un+1) = L(un+1) we get

(
1− ∆t

2τ

)∥∥un+1
∥∥2
(L2(Ω))m

+
∆tεδ

2

∥∥∇un+1
∥∥2
(L2(Ω))m

≤
〈
ui,n, ui,n+1

〉
(L2(Ω))m

≤ 1

2
‖un‖2(L2(Ω))m +

1

2

∥∥un+1
∥∥2
(L2(Ω))m

,

which gives us the estimate (3.4). �

3.2 Existence for the nonlinear time discrete problem

In this subsection we prove the existence, using Schaefer’s fixed point theorem, of a solution
for the nonlinear time discrete system (3.10) given below. Moreover, we also show that this
solution satisfies a suitable entropy estimate.
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First, to present our result we need to choose a function Ψε,ℓ which is continuous, convex

and satisfies that Ψ′′
ε,ℓ(x) =

1

T ε,ℓ(x)
, where T ε,ℓ is given in (1.19). So let

Ψε,ℓ(a)−
1

e
=





a2

2ε
+ a ln ǫ− ε

2
if a ≤ ε,

a ln a if ε < a ≤ ℓ,

a2

2ℓ
+ a ln ℓ− ℓ

2
if a > fℓ.

(3.8)

Let us introduce our nonlinear time discrete system: Assume that A satisfies (1.4). Let
u0 = (ui,0)1≤i≤m := u0 = (ui

0)1≤i≤m that satisfies

m∑

i=1

∫

Ω

Ψε,ℓ(u
i
0) < +∞, (3.9)

such that ui
0 ≥ 0 in Ω for i = 1, . . . ,m. Then for all ∆t, ε, ℓ, η, δ > 0, with ε < 1 < ℓ and

∆t < τ where τ is given in (3.2), for n ∈ N, we look for a solution un+1 = (ui,n+1)1≤i≤m of
the following system:





ui,n+1 − ui,n

∆t
= div

{
J i
ε,ℓ,η,δ(u

n+1, un+1)
}

in D′(Ω), for n ≥ 0

ui,0(x) = ui
0(x) in Ω,

(3.10)

where J i
ε,ℓ,η,δ is given in system (3.1), and T ε,ℓ is given in (1.19).

Proposition 3.2 (Existence for system (3.10))
Assume that A satisfies (1.4). Let u0 = (ui

0)1≤i≤m that satisfies (3.9), such that ui
0 ≥ 0 a.e.

in Ω for i = 1, . . . ,m. Then for all ∆t, ε, ℓ, η, δ > 0, with ε < 1 < ℓ and ∆t < τ where τ
is given in (3.2), there exists a sequence of functions un+1 = (ui,n+1)1≤i≤m ∈ (H1(Ω))

m
for

n ∈ N, solution of system (3.10), that satisfies the following entropy estimate:

m∑

i=1

∫

Ω

Ψε,ℓ(u
i,n+1)+δ∆t

m∑

i=1

n∑

k=0

∫

Ω

|∇ui,k+1|2+δ0∆t
m∑

i=1

n∑

k=0

∫

Ω

|∇ρη ⋆ u
i,k+1|2 ≤

m∑

i=1

∫

Ω

Ψε,ℓ(u
i
0),

(3.11)
where Ψε,ℓ is given in (3.8).

Proof of Proposition 3.2.
Our proof is based on the Schaefer’s fixed point theorem. So we need to define, for a given
w := un = (ui,n)1≤i≤m ∈ (L2(Ω))m and v := vn+1 = (vi,n+1)1≤i≤m ∈ (L2(Ω))m, the map Φ as:

Φ : (L2(Ω))m → (L2(Ω))m

v 7→ u

where u := un+1 = (ui,n+1)1≤i≤m = Φ(vn+1) ∈ (H1(Ω))m is the unique solution of system
(3.1), given by Proposition 3.1.
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Step 1: Continuity of Φ
Let us consider the sequence vk such that





vk ∈ (L2(Ω))m,

vk −→ v in (L2(Ω))m.

We want to prove that the sequence uk = Φ(vk) −→ u = Φ(v) to get the continuity of Φ.
From the estimate (3.4), we deduce that uk is bounded in (H1(Ω))m. Therefore, up to a
subsequence, we have 




uk ⇀ u weakly in (H1(Ω))m,
and
uk → u strongly in (L2(Ω))m,

where the strong convergence arises because Ω is compact. Thus, by the definition of the
truncation operator T ε,ℓ, we can see that T ε,ℓ is continuous and bounded, then by dominated
convergence theorem, we have that

T ε,ℓ(vik) −→ T ε,ℓ(vi) in L2(Ω), for i = 1, . . . ,m.

Now we have

ui
k − wi

∆t
= div

{
J i
ε,ℓ,η,δ(vk, uk)

}
in D′(Ω). (3.12)

This system also holds in H−1(Ω), because J i
ε,ℓ,η,δ(vk, uk) ∈ L2(Ω). Hence by multiply-

ing this system by a test function in (H1(Ω))m and integrating over Ω for the bracket
〈·, ·〉H−1(Ω)×H1(Ω), we can pass directly to the limit in (3.12) when k tends to +∞, and we
get

ui − wi

∆t
= div{J i

ε,ℓ,η,δ(v, u)} in D′(Ω). (3.13)

where we used in particular the weak L2 - strong L2 convergence in the product T ε,ℓ(vk)∇uk.
Then u = (ui)1≤i≤m = Φ(v) is a solution of system (3.1). Finally, by uniqueness of the solu-
tions of (3.1), we deduce that the limit u does not depend on the choice of the subsequence,
and then that the full sequence converges:

uk → u strongly in (L2(Ω))m, with u = Φ(v).

Step 2: Compactness of Φ
By the definition of Φ we can see that for a bounded sequence (vk)k in (L2(Ω))m, Φ(vk) = uk

converges strongly in (L2(Ω))m up to a subsequence, which implies the compactness of Φ.

Step 3: A priori bounds on the solutions of v = λΦ(v)
Let us consider a solution v of

v = λΦ(v) for some λ ∈ [0, 1].

By (3.4) we see that there exists a constant C1 = C1(∆t, ε, ...) such that for any given
w ∈ (L2(Ω))m, we have ‖Φ(v)‖(H1(Ω))m ≤ C1 ‖w‖(L2(Ω))m . Hence v = λΦ(v) is bounded.
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Step 4: Existence of a solution
Now, we can apply Schaefer’s fixed point Theorem (Theorem 2.1), to deduce that Φ has a
fixed point un+1 on (L2(Ω))m. This implies the existence of a solution un+1 of system (3.10).

Step 5: Proof of estimate (3.11)
We have,

m∑

i=1

∫

Ω

Ψε,ℓ(u
i,n+1)−Ψε,ℓ(u

i,n)

∆t

≤
m∑

i=1

∫

Ω

(
ui,n+1 − ui,n

∆t

)
Ψ′

ε,ℓ(u
i,n+1)

=
m∑

i=1

〈
ui,n+1 − ui,n

∆t
,Ψ′

ε,ℓ(u
i,n+1)

〉

H−1(Ω)×H1(Ω)

= −
m∑

i=1

〈
δT ε,ℓ(ui,n+1)∇ui,n+1 + T ε,ℓ(ui,n+1)

m∑

j=1

Aij∇ρη ⋆ ρη ⋆ u
j,n+1,Ψ′′

ε,ℓ(u
i,n+1)∇ui,n+1

〉

L2(Ω)

= −
m∑

i=1

{
δ

∫

Ω

|∇ui,n+1|2 +
∫

Ω

m∑

j=1

∇ρη ⋆ u
i,n+1Aij∇ρη ⋆ u

j,n+1

}

≤ −
m∑

i=1

δ

∫

Ω

|∇ui,n+1|2 − δ0

m∑

i=1

∫

Ω

|∇ρη ⋆ u
i,n+1|2,

where we have used, in the second line, the convexity inequality on Ψε,ℓ. In the third line,

we used the fact that
ui,n+1 − ui,n

∆t
∈ H−1(Ω) and that ∇Ψ′

ε,ℓ(u
i,n+1) = Ψ′′

ε,ℓ(u
i,n+1)∇ui,n+1 ∈

L2(Ω) because Ψ′
ε,ℓ(u

i,n+1) ∈ C1(R), see [5, Proposition IX.5, page 155]. Thus, in the fourth
line we use that ui,n+1 is a solution for system (3.10) where we have applied an integration
by parts. In the fifth line, we used the transposition of the convolution (see for instance [5,
Proposition IV.16, page 67]), and the fact that ρ̌η(x) = ρη(−x) = ρη(x). Finally, in the last
line we use that A satisfies (1.4).
Then by a straightforward recurrence we get estimate (3.11). This ends the proof of Propo-
sition 3.2. �

3.3 Passage to the limit when (∆t, ε) → (0, 0)

In this subsection we pass to the limit when (∆t, ε) → (0, 0) in system (3.10) to get the
existence of a solution for the continuous approximate system (3.16) given below.
First, let us define the function Ψ0,ℓ as

Ψ0,ℓ(a)−
1

e
:=





+∞ if a < 0,

0 if a = 0,

a ln a if 0 < a ≤ ℓ,

a2

2ℓ
+ a ln ℓ− ℓ

2
if a > ℓ.

(3.14)
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Now let us introduce our continuous approximate system. Assume that A satisfies (1.4). Let
u0 = (ui

0)1≤i≤m satisfying

C3 :=
m∑

i=1

∫

Ω

Ψ0,ℓ(u
i
0) < +∞, (3.15)

which implies that ui
0 ≥ 0 a.e. in Ω for i = 1, . . . ,m. Then for all ℓ, η, δ > 0, with

1 < ℓ < +∞, we look for a solution u = (ui)1≤i≤m of the following system:





ui
t = div

{
J i
0,ℓ,η,δ(u)

}
in D′(ΩT ),

J i
0,ℓ,η,δ(u) = T 0,ℓ(ui)

{
m∑

j=1

Aij∇ρη ⋆ ρη ⋆ u
j + δ∇ui

}
,

ui(0, x) = ui
0(x) in Ω.

(3.16)

where T 0,ℓ is given in (1.19) with ε = 0, and we recall here ΩT := (0, T )× Ω.

Proposition 3.3 (Existence for system (3.16))
Assume that A satisfies (1.4). Let u0 = (ui

0)1≤i≤m satisfying (3.15). Then for all ℓ, η,
δ > 0 with 1 < ℓ < +∞ there exists a function u = (ui)1≤i≤m ∈ (L2(0, T ;H1(Ω)) ∩
C([0, T );L2(Ω)))m, with ui ≥ 0 a.e. in ΩT , solution of system (3.16) that satisfies the
following entropy estimate for a.e. t ∈ (0, T ) with ui(t) = ui(t, ·)
∫

Ω

m∑

i=1

Ψ0,ℓ(u
i(t)) + δ

∫ t

0

∫

Ω

m∑

i=1

∣∣∇ui
∣∣2 + δ0

∫ t

0

∫

Ω

m∑

i=1

∣∣∇ρη ⋆ u
i
∣∣2 ≤

∫

Ω

m∑

i=1

Ψ0,ℓ(u
i
0). (3.17)

Proof of Proposition 3.3.

Our proof is based on the variant of Simon’s Lemma (Theorem 2.4). Recall that ∆t =
T

K
where K ∈ N∗ and T > 0 is given. We denote by C a generic constant independent of ∆t
and ε. For all n ∈ {0, . . . , K − 1} and i = 1, . . . ,m, set tn = n∆t and let the piecewise
continuous function in time:

U i,∆t(t, x) := ui,n+1(x), for t ∈ (tn, tn+1], (3.18)

with U i,∆t(0, x) := ui
0(x) satisfying (3.9).

Step 1: Upper bound on
∥∥∇U∆t

∥∥
(L2(0,T ;L2(Ω)))m

and
∥∥U∆t

∥∥
(L2(0,T ;L2(Ω)))m

We will prove that U∆t = (U i,∆t)1≤i≤m satisfies

∫ T

0

‖∇U∆t(t)‖2(L2(Ω))m ≤ C.

For all n ∈ {0, . . . , K − 1} and i = 1, . . . ,m, for t ∈ (tn, tn+1] we have

∇U i,∆t(t, x) = ∇ui,n+1(x).

Then
∫ tn+1

tn

‖∇U i,∆t(t)‖2L2(Ω) = ∆t‖∇ui,n+1‖2L2(Ω).
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Hence

∫ T

0

‖∇U∆t(t)‖2(L2(Ω))m = ∆t

K−1∑

k=0

‖∇uk+1‖2(L2(Ω)m

≤ C2

δ
,

where we have used the entropy estimate (3.11) with

C2 =
m∑

i=1

∫

Ω

Ψε,ℓ(u
i
0). (3.19)

Hence, using Poincaré-Wirtinger’s inequality we can get similarly an upper bound on∫ T

0

∥∥U i,∆t
∥∥2
(L2(Ω))m

independently of ∆t (using the fact that

∫

Ω

ui,n+1 =

∫

Ω

ui,n =

∫

Ω

ui,0

by equation (3.10)) .

Step 2: Upper bound on
∥∥U∆t

∥∥
(Var([0,T );H−1(Ω)))m

We will prove that ∥∥U∆t
∥∥
(Var([0,T );H−1(Ω)))m

≤ C.

Thus we have for i = 1, . . . ,m

∥∥U i,∆t
∥∥
Var([0,T );H−1(Ω))

= sup
K−1∑

n=0

∥∥U i,∆t(tn+1)− U i,∆t(tn)
∥∥
H−1(Ω)

= sup
K−1∑

n=0

∥∥ui,n+1 − ui,n
∥∥
H−1(Ω)

= ∆t sup
K−1∑

n=0

∥∥∥∥
ui,n+1 − ui,n

∆t

∥∥∥∥
H−1(Ω)

≤ ∆t sup
K−1∑

n=0

∥∥∥∥∥T
ε,ℓ(ui,n+1)

(
m∑

j=1

Aij∇ρη ⋆ ρη ⋆ u
j,n+1 + δ∇ui,n+1

)∥∥∥∥∥
L2(Ω)

≤ ℓ∆t sup
K−1∑

n=0

{
‖A‖∞

m∑

j=1

∥∥∇ρη ⋆ u
i,n+1

∥∥
L2(Ω)

+ δ
∥∥∇ui,n+1

∥∥
L2(Ω)

}

≤ C,

where

‖A‖∞ = max
1≤i≤m

m∑

j=1

|Aij| , (3.20)

and we have used in the last inequality the entropy estimate (3.11), and the fact that

∆t
K−1∑

n=0

∥∥∇ui,n+1
∥∥
L2(Ω)

≤
√
T

(
∆t

K−1∑

n=0

∥∥∇ui,n+1
∥∥2
L2(Ω)

) 1

2

.
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Step 3: Ui,∆t ∈ Lp(0,T,L2(Ω)) with p > 2
The estimate (3.11) gives us that U i,∆t ∈ L∞(0, T ;L1(Ω)) ∩ L2(0, T ;H1(Ω)) for i =
1, . . . ,m. Using Sobolev injections we get H1(Ω) →֒ L2+α(N)(Ω), with α(N) > 0, and then
U i,∆t ∈ L2(0, T ;L2+α(N)(Ω)). Hence by interpolation, we find that U i,∆t ∈ Lp(0, T ;L2(Ω))

with

(
1

p
,
1

2

)
= (1 − θ)

(
1

∞ ,
1

2

)
+ θ

(
1

2
,

1

2 + α(N)

)
and θ ∈ (0, 1), which gives us that

p =
4 + 4α(N)

2 + α(N)
> 2.

Step 4: Passage to the limit when (∆t, ε) → (0, 0)
We have now that

∥∥U i,∆t
∥∥
Lp(0,T ;L2(Ω))

+
∥∥U i,∆t

∥∥
L1(0,T ;H1(Ω))

+
∥∥U i,∆t

∥∥
Var([0,T );H−1(Ω))

≤ C.

Then by noticing that H1(Ω)
compact→֒ L2(Ω)

continous→֒ H−1(Ω), and applying the vari-
ant of Simon’s Lemma (Theorem 2.4), we deduce that (U i,∆t)∆t is relatively compact in
L2(0, T ;L2(Ω)), and that there exists a function U = (U i)1≤i≤m ∈ (L2(0, T ;H1(Ω)))m such
that, when (∆t, ε) → (0, 0), we have (up to a subsequence)

{
∇U i,∆t ⇀ ∇U i weakly in L2(0, T ;L2(Ω)),
U i,∆t → U i strongly in L2(0, T ;L2(Ω)).

In addition we have that

U i,∆t(t+∆t)− U i,∆t(t)

∆t
→ U i

t in D′(ΩT ).

Now since we have for t ∈ (tn−1, tn)

ui,n+1 − ui,n

∆t
=

U i,∆t(t+∆t)− U i,∆t(t)

∆t
,

system (3.10) can be written as

U i,∆t(t+∆t)− U i,∆t(t)

∆t
= div

{
J i
ε,ℓ,η,δ(U

i,∆t, U i,∆t)
}

in D′(Ω), (3.21)

where J i
ε,ℓ,η,δ is given in (3.1). Hence by multiplying this system by a test function in D(Ω)

and integrating over Ω, we can pass directly to the limit when (∆t, ε) → (0, 0) in (3.21) to
get

U i
t = div

(
T 0,ℓ(U i)

(
m∑

j=1

Aij∇ρη ⋆ ρη ⋆ U
j + δ∇U i

))
in D′(ΩT ),

where we used the weak L2 - strong L2 convergence in the products such T ε,ℓ(U i,∆t)∇U i,∆t

to get the existence of a solution of system (3.16).

17



Step 5: Recovering the initial condition
Let ρ̄ ∈ C∞

c (R) with ρ̄ ≥ 0,
∫
R
ρ̄ = 1 and supp ρ̄ ⊂ (−1

2
, 1
2
). We set

ρ̄∆t(t) = ∆t−1ρ̄(∆t−1t).

Then we have

∥∥ρ̄∆t ⋆ U
∆t
t

∥∥2
(L2(0,T ;H−1(Ω)))m

=
m∑

i=1

∫ T

0

∥∥∥∥∥

K−1∑

n=0

(ui,n+1 − ui,n)δtn+1
⋆ ρ̄∆t

∥∥∥∥∥

2

H−1(Ω)

=
m∑

i=1

K−1∑

n=0

∫ T

0

(∆tρ̄∆t(t− tn+1))
2

∥∥∥∥
ui,n+1 − ui,n

∆t

∥∥∥∥
2

H−1(Ω)

= C4∆t
m∑

i=1

K−1∑

n=0

∥∥∥∥
ui,n+1 − ui,n

∆t

∥∥∥∥
2

H−1(Ω)

≤ C4∆t
K−1∑

n=0

m∑

i=1

∫

Ω

∣∣∣∣∣T
ε,ℓ(ui,n+1)

(
m∑

j=1

Aij∇ρη ⋆ ρη ⋆ u
j,n+1 + δ∇ui,n+1

)∣∣∣∣∣

2

≤ C42 ℓ2∆t
K−1∑

n=0

m∑

i=1

∫

Ω





(
m∑

j=1

Aij∇ρη ⋆ ρη ⋆ u
j,n+1

)2

+ δ2
∣∣∇ui,n+1

∣∣2




≤ C4 2 ℓ2∆t

K−1∑

n=0

∫

Ω

{
‖A‖2

∥∥∇ρη ⋆ ρη ⋆ u
n+1
∥∥2
(L2(Ω))m

+ δ2
∥∥∇un+1

∥∥2
(L2(Ω))m

}

≤ C4 2 ℓ2∆t

K−1∑

n=0

{
‖A‖2‖∇ρη ⋆ u

n+1‖2(L2(Ω))m + δ2
∥∥∇un+1

∥∥2
(L2(Ω))m

}

≤ C4 2 ℓ2C2

(
‖A‖2
δ0

+ δ

)
,

where C4 :=

∫ T

0

ρ̄(t) dt. Moreover, for all ϕ ∈ D(ΩT ) we have

∫ T

0

∫

Ω

ρ̄∆t ⋆ U
i,∆t
t · ϕ =

∫ T

0

∫

Ω

(ρ̄∆t ⋆ U
i,∆t)t · ϕ = −

∫ T

0

∫

Ω

ρ̄∆t ⋆ U
i,∆t · ϕt

= −
∫ T

0

∫

Ω

U i,∆t · ϕt ⋆ ρ̄∆t → −
∫ T

0

∫

Ω

U i · ϕt =

∫ T

0

∫

Ω

U i
t · ϕ,

which implies that ρ̄∆t ⋆ U i,∆t
t ⇀ U i

t weakly in L2(0, T ;H−1(Ω)) when ∆t → 0. Similarly
we can prove that ρ̄∆t ⋆ U i,∆t → U i strongly in L2(0, T ;L2(Ω)). Then we deduce that
U i ∈ {g ∈ L2(0, T ;H1(Ω)); gt ∈ L2(0, T ;H−1(Ω))}. And now U i(0, x) has sense, by Proposi-
tion 2.2, and we have that U i(0, x) = ui

0(x) by Proposition 5.1.

Step 6: Proof of estimate (3.17)
By Step 4 we have that there exists a function U i ∈ L2(0, T ;H1(Ω)) such that we have the
following convergences when (∆t, ε) → (0, 0)





U i,∆t → U i

∇U i,∆t ⇀ ∇U i

∇ρη ⋆ U
i,∆t → ∇ρη ⋆ U

i

∣∣∣∣∣∣
in L2(0, T ;L2(Ω)).
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Now using the fact that the norm L2 is weakly lower semicontinuous, with a sequence of
integers nt (depending on ∆t) such that tnt+1 → t ∈ (0, T ) and

U i,∆t(t) = U i,∆t(tnt+1) = unt+1,

we get

∫ t

0

∫

Ω

∣∣∇U i
∣∣2 ≤ lim inf

(∆t,ε)→(0,0)

∫ tnt+1

0

∫

Ω

∣∣∇U i,∆t
∣∣2 = lim inf

(∆t,ε)→(0,0)
∆t

nt∑

k=0

∫

Ω

|∇ui,k+1|2, (3.22)

and

∫ t

0

∫

Ω

∣∣∇ρη ⋆ U
i
∣∣2 ≤ lim inf

(∆t,ε)→(0,0)

∫ tnt+1

0

∫

Ω

∣∣∇ρη ⋆ U
i,∆t
∣∣2 = lim inf

(∆t,ε)→(0,0)
∆t

nt∑

k=0

∫

Ω

|∇ρη ⋆ u
i,k+1|2.

(3.23)
Moreover, since we have U i,∆t → U i in L2(0, T ;L2(Ω)), we get that for a.e. t ∈ (0, T ) (up
to a subsequence) U i,∆t(t, ·) → U i(t, ·) in L2(Ω). For such t we have (up to a subsequence)
U i,∆t(t, ·) → U i(t, ·) for a.e. in Ω. Noticing that Ψε,ℓ(a) → Ψ0,ℓ(a) for a.e. a ∈ R and
applying Lemma 5.2 we get that for a.e. t ∈ (0, T )

m∑

i=1

∫

Ω

Ψε,ℓ(U
i(t)) ≤ lim inf

(∆t,ε)→(0,0)

m∑

i=1

∫

Ω

Ψε,ℓ(U
i,∆t(t)) = lim inf

(∆t,ε)→(0,0)

m∑

i=1

∫

Ω

Ψε,ℓ(u
i,nt+1). (3.24)

Therefore (3.22),(3.23) and (3.24) with the entropy estimate (3.11) give us tht for a.e. t ∈
(0, T )

m∑

i=1

∫

Ω

Ψε,ℓ(U
i) + δ

m∑

i=1

∫ t

0

∫

Ω

∣∣∇U i
∣∣2 + δ0

m∑

i=1

∫ t

0

∫

Ω

∣∣∇ρη ⋆ U
i
∣∣2

≤ lim inf
∆t→0

m∑

i=1

∫

Ω

Ψε,ℓ(u
i,nt+1) + lim inf

(∆t,ε)→(0,0)
δ∆t

m∑

i=1

nt∑

k=0

∫

Ω

|∇ui,k+1|2

+ lim inf
∆t→0

δ0∆t

m∑

i=1

nt∑

k=0

∫

Ω

|∇ρη ⋆ u
i,k+1|2

≤
m∑

i=1

∫

Ω

Ψε,ℓ(u
i
0) ≤

m∑

i=1

∫

Ω

Ψ0,ℓ(u
i
0),

which implies our result.

Step 7: Non-negativity of Ui

Let Ωε :=
{
U i,∆t ≤ ε

}
. By estimate (3.11), we get that there exists a positive constant C

19



independent of ε and ∆t such that for all i = 1, . . . ,m we have

C ≥
∫

Ω

Ψε,ℓ(U
i,∆t)

≥
∫

Ωε

Ψε,ℓ(U
i,∆t)

=

∫

Ωε

1

e
+

(U i,∆t)2

2ε
+ U i,∆t ln ε− ε

2

≥
∫

Ωε

1

e
+

(U i,∆t)2

2ε
+ ε ln ε− 1

2

≥
∫

Ωε

(U i,∆t)2

2ε
− 1

2
.

So we get that ∫

Ωε

(U i,∆t)2

2ε
≤ C +

1

2
. (3.25)

Now by passing to the limit when ε → 0 in (3.25) we deduce that we have certainly∫

Ω−

∣∣U i
∣∣2 = 0, where Ω− := {U i ≤ 0}, which gives us that (U i)− = 0 in L2(Ω), where

(U i)− = min(0, U i). �

Remark 3.4 (Another method by Lions-Magenes)
Note that it would be also possible to use a theorem in Lions-Magenes [19, Chap. 3, Theorem
4.1, page 257]. This would prove in particular the existence of a unique solution for the
following system:





ui
t = div

{
J i
ǫ,ℓ,η,δ(v, u)

}
in D′(ΩT ),

J i
ǫ,ℓ,η,δ(v, u) = T ǫ,ℓ(vi)

{
m∑
j=1

Aij∇ρη ⋆ ρη ⋆ u
j + δ∇ui

}
,

ui(0, x) = ui
0(x) in Ω,

(3.26)

where T ε,ℓ is given in (1.19).
It would then be possible to find a fixed point solution v = u of (3.26) to recover a solution of
(3.16). We would have to justify again the entropy inequality (3.17). Note that our method
with time discretisation will be also applicable easily to the confined case (see the proof of
Theorem 1.2), which we are not aware of a reference for an analogue result to Theorem 4.1
in [19] applicable directly to the confined case.

3.4 Passage to the limit when (ℓ, η, δ) → (∞, 0, 0)

In this subsection we pass to the limit when (ℓ, η, δ) → (∞, 0, 0) in system (3.16) to get the
existence result, announced in Theorem 1.1, of a solution for system (1.1),(1.3).
Let us recall system (1.1),(1.3). Asume that A satisfies (1.4). Let u0 = (ui

0)1≤i≤m satisfying
(1.7). Then we look for a solution u = (ui)1≤i≤m of the following system:





ui
t = div

{
ui

m∑

j=1

Aij∇uj

}
in D′(ΩT ),

ui(0, x) = ui
0(x) a.e. in Ω.

(3.27)
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Proof of Theorem 1.1
Let C be a constant independent of ℓ, η and δ that can be different from line to line, and
uℓ := (ui,ℓ)1≤i≤m a solution of system (3.16), where we drop the indices η and δ to keep light
notations. The proof is accomplished by passing to the limit when (ℓ, η, δ) → (∞, 0, 0) in
(3.16) and using Simon’s lemma (Lemma 2.3), in order to get the existence result.

Step 1: ui,ℓ ∈ Lp(0,T,L2(Ω)) with p > 2
The estimate (3.17) gives us that ui,ℓ ∈ L∞(0, T ;L1(Ω)) ∩ L2(0, T ;H1(Ω)) for i =
1, . . . ,m. Using Sobolev injections we get H1(Ω) →֒ L2+α(N)(Ω), with α(N) > 0, and
then ui,ℓ ∈ L2(0, T, L2+α(N)(Ω)). Hence by interpolation, we find that ui,ℓ ∈ Lp(0, T, L2(Ω))

with

(
1

p
,
1

2

)
= (1 − θ)

(
1

∞ ,
1

2

)
+ θ

(
1

2
,

1

2 + α(N)

)
and θ ∈ (0, 1), which gives us that

p =
4 + 4α(N)

2 + α(N)
> 2.

Step 2: Upper bound on ui,ℓ
t

m∑

i=1

‖ui,ℓ
t ‖L1(0,T ;(W 1,∞(Ω))′) =

m∑

i=1

∫ T

0

∥∥∥ui,ℓ
t

∥∥∥
(W 1,∞(Ω))′

=
m∑

i=1

∫ T

0

∥∥∥∥∥div
{
T 0,ℓ(ui,ℓ)

(
m∑

j=1

Aij∇ρη ⋆ ρη ⋆ u
j,ℓ + δ∇ui,ℓ

)}∥∥∥∥∥
(W 1,∞(Ω))′

≤
m∑

i=1

∫ T

0

∫

Ω

∣∣∣∣∣T
0,ℓ(ui,ℓ)

{
m∑

j=1

Aij∇ρη ⋆ ρη ⋆ u
j,ℓ + δ∇ui,ℓ

}∣∣∣∣∣

≤
m∑

i=1

∫ T

0

∫

Ω

{
ui,ℓρη ⋆

∣∣∣∣∣

m∑

j=1

Aij∇ρη ⋆ u
j,ℓ

∣∣∣∣∣+ δui,ℓ
∣∣∇ui,ℓ

∣∣
}

≤
m∑

i=1

∫ T

0

∫

Ω

{
(
ρη ⋆ u

i,ℓ
)
∣∣∣∣∣

m∑

j=1

Aij∇ρη ⋆ u
j,ℓ

∣∣∣∣∣+ δui,ℓ
∣∣∇ui,ℓ

∣∣
}

≤ 1

2

∥∥ρη ⋆ uℓ
∥∥2
(L2(0,T ;L2(Ω)))m

+
‖A‖2
2

∥∥∇ρη ⋆ u
ℓ
∥∥2
(L2(0,T ;L2(Ω)))m

+
δ

2

∥∥∇uℓ
∥∥2
(L2(0,T ;L2(Ω)))m

+
δ

2

∥∥uℓ
∥∥2
(L2(0,T ;L2(Ω)))m

≤ C,

where we have used in the last inequality the fact that ui,ℓ satisfies the entropy estimate
(3.17) (and again Poincarré-Wirtinger’s inequality).

Step 3: Passage to the limit when (ℓ, η, δ) → (∞, 0, 0)
We have now that

∥∥ui,ℓ
∥∥
Lp(0,T ;L2(Ω))

+
∥∥ui,ℓ

∥∥
L1(0,T ;H1(Ω))

+
∥∥∥ui,ℓ

t

∥∥∥
L1(0,T ;(W 1,∞(Ω))′)

≤ C.
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Then by noticing that H1(Ω)
compact→֒ L2(Ω)

continous→֒ (W 1,∞(Ω))′, and applying Simon’s
Lemma (Lemma 2.3), we deduce that (ui,ℓ)ℓ is relatively compact in L2(0, T ;L2(Ω)), and
that there exists a function ui ∈ {g ∈ L2(0, T ;H1(Ω)), gt ∈ L1(0, T ; (W 1,∞(Ω))′)} such that,
when (ℓ, η, δ) → (∞, 0, 0), we have (up to a subsequence)





ui,ℓ ⇀ ui weakly in L2(0, T ;H1(Ω)),
∇uj,ℓ ⇀ ∇uj weakly in L2(0, T ;L2(Ω)),

ui,ℓ
t ⇀ ui

t weakly in D′(ΩT ),
ui,ℓ → ui strongly in L2(0, T ;L2(Ω)).

This implies in particular

{
∇ρη ⋆ ρη ⋆ u

j,ℓ ⇀ ∇uj weakly in L2(0, T ;L2(Ω)),
T 0,ℓ(ui,ℓ) → ui strongly in L2(0, T ;L2(Ω)),

where we have used in the last convergence the nonnegativity of ui a.e. (because ui,ℓ → ui

a.e.). We recall problem (3.16)

ui,ℓ
t = div

{
T 0,ℓ(ui,ℓ)

(
m∑

j=1

Aij∇ρη ⋆ ρη ⋆ u
j,ℓ + δ∇ui,ℓ

)}
in D′(ΩT ). (3.28)

Hence by multiplying this system by a test function in D(ΩT ) and integrating over ΩT we
can pass directly to the limit in (3.28) as (ℓ, η, δ) → (∞, 0, 0), and we get

ui
t = div

{
ui

m∑

j=1

Aij∇uj

}
in D′(ΩT ).

where we used in particular the weak L2 - strong L2 convergence in the products such
T 0,ℓ(ui,ℓ)∇ui,ℓ. Then u = (ui)1≤i≤m is a solution of system (3.27).

Step 4: Recovering the initial condition

First of all, let q =
2p

p+ 2
> 1, where p > 2 is given in Step 1 of this proof. It remains to

prove that for i = 1, . . . ,m ∥∥∥ui,ℓ
t

∥∥∥
Lq(0,T ;(W 1,∞)′(Ω))

< C.
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Thus we have that

‖ui,ℓ
t ‖Lq(0,T ;(W 1,∞(Ω))′) =

(∫ T

0

∥∥∥ui,ℓ
t

∥∥∥
q

(W 1,∞(Ω))′

) 1

q

=



∫ T

0

∥∥∥∥∥div
{
T 0,ℓ(ui,ℓ)

(
m∑

j=1

Aij∇ρη ⋆ ρη ⋆ u
j,ℓ + δ∇ui,ℓ

)}∥∥∥∥∥

q

(W 1,∞(Ω))′




1

q

≤
(∫ T

0

(∫

Ω

∣∣∣∣∣T
0,ℓ(ui,ℓ)

{
m∑

j=1

Aij∇ρη ⋆ ρη ⋆ u
j,ℓ + δ∇ui,ℓ

}∣∣∣∣∣

)q) 1

q

≤
(∫ T

0

(∫

Ω

(
ρη ⋆ u

i,ℓ
)
∣∣∣∣∣

m∑

j=1

Aij∇ρη ⋆ u
j,ℓ

∣∣∣∣∣+ δui,ℓ
∣∣∇ui,ℓ

∣∣
)q) 1

q

≤
∥∥ui,ℓ

∥∥
Lp(0,T ;L2(Ω))

∥∥∥∥∥

m∑

j=1

Aij∇ρη ⋆ u
j,ℓ

∥∥∥∥∥
L2(0,T ;L2(Ω))

+ δ
∥∥ui,ℓ

∥∥
Lp(0,T ;L2(Ω))

∥∥∇ui,ℓ
∥∥
L2(0,T ;L2(Ω))

≤
∥∥ui,ℓ

∥∥
Lp(0,T ;L2(Ω))

(
‖A‖∞

m∑

j=1

∥∥∇ρη ⋆ u
j,ℓ
∥∥
L2(0,T ;L2(Ω))

+ δ
∥∥∇ui,ℓ

∥∥
L2(0,T ;L2(Ω))

)

≤ C,

where we have used in the fifth line Holder’s inequality and in the last line the entropy
estimate (3.17) and Step 1 of this proof, with ‖A‖∞ is given in (3.20). Moreover since we
have that W 1,1(0, T ; (W 1,∞(Ω))′) →֒ C([0, T ); (W 1,∞(Ω))′) then ui(0, x) has sense and we
have that ui(0, x) = ui

0(x) for all i = 1, . . . ,m by Proposition 5.1.

Step 5: Proof of the estimate (1.8)
The proof is similar to Step 6 of the proof of Proposition 3.3. Hence by using Fatou’s Lemma
on the sequence (Ψ0,ℓ(u

i,ℓ))ℓ, and the fact that the norm L2 is lower semicontinuous, then by
passing to the limit inferior in estimate (3.17), we get the estimate (1.8). �

4 Generalizations

4.1 Generalization on the matrix A

Assumption (1.4) can be weaken. Indead, we can assume that A = (Aij)1≤i,j≤m is a real
m×m matrix that satisfies a positivity condition, in the sense that there exist two positive
definite diagonal m×m matrices L and R and δ0 > 0, such that we have

ζTLAR ζ ≥ δ0|ζ|2, for all ζ ∈ R
m. (4.1)

Remark 4.1 (Comments on the positivity condition (4.1))
The assumption of positivity condition (4.1), generalize our problem for A not necessarily
having a symmetric part positive definite. Here is an example of such a matrix, whose
symmetric part is not definite positive, but the symmetric part of LAR is definite positive
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for some suitable positive diagonal matrices L and R.
We consider

A =

(
1 −a
2a 1

)
with |a| > 2.

Indeed,

Asym =
AT + A

2
=

(
1 a

2
a
2

1

)
,

satisfying det(Asym) = 1− a2

4
< 0. And let

L =

(
2 0
0 1

)
and R =

(
1 0
0 1

)
.

On the other hand,

B = L.A.I2 =

(
2 −2a
2a 1

)
,

satisfies that

Bsym =

(
2 0
0 1

)
,

is definite positive.

Proposition 4.2 (The case where L = I2)
Let A be a matrix that satisfies the positivity condition (4.1) with L = I2. Then ū is a
solution for system (1.1) with the matrix Ā = AR (instead of A) if and only if ui = Rii ū

i

is a solution for system (1.1) with the matrix A.

Proof of Proposition 4.1
Let u be a solution for system (1.1) with the matrix Ā = AR (instead of A), i.e.

ūi
t = div

(
ūi

m∑

j=1

AijRjj∇ūj

)
.

This implies

Riiū
i
t = div

(
Riiū

i

m∑

j=1

AijRjj∇ūj

)
,

which means

ui
t = div

(
ui

m∑

j=1

Aij∇uj

)
.

�

Proposition 4.3 (The case where R = I2)
Let un+1 = (ui,n+1)1≤i≤m be a solution of system (3.10) with a matrix A satisfying the
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positivity condition (4.1) with R = I2 and L a positive diagonal matrix. Then un+1 satisfies
the following entropy estimate

m∑

i=1

∫

Ω

LiiΨε,ℓ(u
i,n+1) + δ∆t min

1≤i≤m
{Lii}

m∑

i=1

n∑

k=0

∫

Ω

|∇ui,k+1|2

+ δ0∆t
m∑

i=1

n∑

k=0

∫

Ω

|∇ρη ⋆ u
i,k+1|2 ≤

m∑

i=1

∫

Ω

LiiΨε,ℓ(u
i
0)

Proof of Proposition 4.2
We have that (from fifth line of the computation in Step 5 of the proof of Proposition 3.2)

m∑

i=1

∫

Ω

Lii

(
Ψε,ℓ(u

i,n+1)−Ψε,ℓ(u
i,n)

∆t

)
≤ −

∫

Ω

m∑

i=1

m∑

j=1

LiiAij(∇ρη ⋆ ρη ⋆ u
j,n+1) · ∇ui,n+1

−δ

m∑

i=1

∫

Ω

Lii|∇ui,n+1|2

≤
∫

Ω

m∑

i=1

m∑

j=1

(∇ρη ⋆ u
j,n+1)LiiAij(∇ρη ⋆ u

i,n+1)

−δ

m∑

i=1

∫

Ω

Lii|∇ui,n+1|2

≤ −δ0

∫

Ω

m∑

i=1

|∇ρη ⋆ u
i,n+1|2 − δ min

1≤i≤m
{Lii}

m∑

i=1

∫

Ω

|∇ui,n+1|2,

where we have used, in the last line, the fact that the matrix A satisfies (4.1) with R = I2.
Then by a straightforward recurrence we get (4.2). �

Corollary 4.4 Theorem 1.1 and Theorem 1.2 still hold true if we replace condition (1.4) by
condition (4.1).

4.2 Generalisation on the problem

4.2.1 The tensor case

Our study can be applied on a generalized systems of the form

ui
t =

m∑

j=1

N∑

k=1

N∑

l=1

∂

∂xk

(
fi(u

i)Aijkl
∂uj

∂xl

)
for i = 1, . . . ,m, (4.2)

where fi satisfies




fi ∈ C(R),

0 ≤ fi(a) ≤ C(1 + |a|) for a ∈ R and C > 0,

c |a| ≤fi(a) for a ∈ [0, a0] with a0, c > 0.

∫ A

a0

1

fi(a)
da < +∞ for all A ≥ a0.
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An example for such fi is

fi(a) = max
(
0,min

(
a,
√
|a− 1|

))
.

Moreover, A = (Aijkl)i,j,k,l is a tensor of order 4 that satisfies the following positivity condi-
tion: there exists δ0 > 0 such that

∑

i,j,k,l

Aijkl η
i ηj ζk ζl ≥ δ0|η|2|ζ|2 for all η ∈ R

m, ζ ∈ R
N . (4.3)

The entropy function Ψi is chosen such that Ψi is nonnegative, lower semi-continuous, convex

and satisfies that Ψ′′
i (a) =

1

fi(a)
for i = 1, . . . ,m. Our solution satisfies the following entropy

estimate for a.e. t > 0

m∑

i=1

∫

Ω

Ψi(u
i(t)) + δ0

m∑

i=1

∫ t

0

∫

Ω

|∇ui|2 ≤
m∑

i=1

∫

Ω

Ψi(u
i
0). (4.4)

To get this entropy we can apply the same strategy announced in Subsection 1.4 where fi(u
i)

will be replaced by T ε,ℓ(fi(v
i)) where T ε,ℓ is the truncation operator given in (1.19) and we

use the fact that

∫

Ω

∑

i,j,k,l

∂ui

∂xk

Aijkl
∂uj

∂xl

= c

∫

Ω

∑

i,j,k,l

(̂
∂ui

∂xk

)
Aijkl

(̂
∂uj

∂xl

)

= c

∫

Ω

∑

i,j,k,l

ζk ûi Aijkl ζl ûj

≥ c δ0

∫

Ω

|ζû|2 = δ0

∫

Ω

|∇u|2 ,

with c =
1

(2π)N
.

4.2.2 The variables coefficients case

Here the coefficients Aij(x, u) may depend continuously of (x, u). Then we have to take
ρη ⋆ (Aij(x, u)(∇ρη ⋆ u

j)) instead of Aij∇(ρη ⋆ ρη ⋆ u
j) in the approximate problem. We can

consider a problem

ui
t = div

(
ui

m∑

j=1

Aij(x, u)∇u

)
+ gi(x, u),

where the source terms are not too large as u goes to infinity.

4.2.3 Laplace-type equations

Moreover, our theory applies to models of the form

ui
t = ∆(ai(u)u

i) with u = (ui)1≤i≤m, (4.5)
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under these assumptions:




ai(u) ≥ 0 if uj ≥ 0 for j = 1, . . . ,m,
ai is sublinear,
ai ∈ C1,

Sym

((
∂ai
∂uj

)

i,j

)
≥ δ0I with δ0 > 0,

(4.6)

where Sym denotes the symmetric part of a matrix. We can consider a particular case of

(4.5) where ai(u) =
m∑

j=1

Aiju
j. Then problem (4.5) can be written as

ui
t = div

{
ui

m∑

j=1

Aij∇uj +

(
m∑

j=1

Aijuj

)
∇ui

}
, (4.7)

which can be also solved under these assumptions:
{

Aij ≥ 0 for i, j = 1, . . . ,m,
Sym(A) ≥ δ0I.

5 Appendix: Technical results

In this section we will present some technical results that are used in our proofs.

Proposition 5.1 (Recovering the initial condition)
Let Y be a Banach space with the norm ‖.‖Y such that L2(Ω) →֒ Y with a continuous em-
bedding. Consider a sequence (gm)m ∈ L2(0, T ;L2(Ω)) such that (gm)t is uniformly bounded
in Lq(0, T ;Y ) with 1 < q ≤ 2, and that there exists a function g ∈ L2(0, T ;L2(Ω)) such that
gm → g strongly in L2(0, T ;L2(Ω)). Let g0 in Y . We assume that (gm)|t=0 → g0 in Y . Then
we have

g|t=0 = g0 in Y.

Proof of Proposition 5.1
We have that for all t ∈ (0, T )

‖gm(t)− gm(0)‖Y =

∥∥∥∥
∫ t

0

(gm)τ (τ)

∥∥∥∥
Y

≤
∫ t

0

‖(gm)τ (τ)‖Y ds

≤ t
q−1

q ‖(gm)τ (τ)‖Lq(0,T ;Y ),

where we have used in the last line Holder’s inequality. Moreover, Using the fact that (gm)τ
is uniformly bounded in Lq(0, T ;Y ), then there exists a constant C, such that

‖gm(t)− gm(0)‖Y ≤ Ct
q−1

q .

Now let ϕ ∈ C∞
c ((0,+∞),R), be such that ϕ ≥ 0. Using the above inequality, we get that

∫ t

0

‖gm(s)− gm(0)‖qY ϕ(s) ds ≤ Cq

∫ t

0

sq−1ϕ(s) ds. (5.1)
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Now since we have L2(0, T ;L2(Ω)) →֒ Lq(0, T ;Y ) with a continuous embedding we get that

gm → g strongly in Lq(0, T ;Y ).

By passing to the limit in m in (5.1), we deduce that

∫ t

0

(
‖g(s)− g0‖qY − Cqsq−1

)
ϕ(s) ≤ 0.

Since ϕ ≥ 0 is arbitrary, we deduce that for almost every t, we have

‖g(t)− g0‖Y ≤ Ct
q−1

q .

Particularly, for t = 0, we have

‖g(0)− g0‖Y = 0.

This implies the result. �

Lemma 5.2 (Convergence result)
Let (aε)ε a real sequence such that aε → a0 when ε → 0. Then we have

Ψ0,ℓ(a0) ≤ lim inf
ε→0

Ψε,ℓ(aε),

where Ψε,ℓ and Ψ0,ℓ are given in (3.8) and (3.14) respectively.

Proof of Lemma 5.2
Case 1: suppose that a0 > 0 the result is easily obtained.
Case 2: suppose that a0 < 0. Then we have Ψ0,ℓ(a0) = +∞ ≤ lim inf

ε→0
Ψε,ℓ(aε) = +∞.

Case 3: suppose that a0 = 0. Let (bε)ε a sequence that decreases to 0 when ε → 0 with
bε > aε. We can prove that Ψε,ℓ(bε) → 0 = Ψ0,ℓ(0). Now since Ψε,ℓ is decreasing with respect
to the variable a we get Ψε,ℓ(aε) ≥ Ψε,ℓ(bε). This ends the proof. �

Acknowledgments: R.M. thanks SAAW.
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