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Existence results for degenerate
cross-diffusion systems
with application to seawater intrusion

J. Alkhayal, S. Issa, M. Jazar, R. Monneau
August 18, 2014

Abstract: In this paper, we study degenerate parabolic systems, which are strongly cou-
pled. We prove general existence results, but the uniqueness remains an open question. Our
proof of existence is based on a crucial entropy estimate which both control the gradient of the
solution and the non-negativity of the solution. Our systems are of porous medium type and
our theory applies to models in seawater intrusion both in the confined and unconfined cases.

Keywords: Degenerate parabolic system, entropy estimate, porous medium like sys-
tems.

1 Introduction

For sake of simplicity, we will work on the torus Q := TV = (R/Z)", with N > 1.

Let Qp :=(0,T) x Q with T > 0. Let an integer m > 1. Our purpose is to study a class of
degenerate strongly coupled parabolic systems in two different cases,

Unconfined case:

ul = div (uiZAijVuj> in Qp, fori=1,...,m. (1.1)

j=1

Confined case:

ul = div (uiv <p + ZlAijuj>> in Qp, fori=1,...,m,
i=

. (1.2)
Sul(t,x) =1 in Qrp,
i=1
with the initial condition
u'(0,2) = uh(z) >0 a.e. inQ, fori=1,...,m. (1.3)

In the confined case (1.2), p is the pressure defined on 2r, which appears as a Lagrange
multiplier of the constraint on u = (u');<;<m, given by the second line of (1.2). In the core
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of the paper we will assume that A = (A;;)1<ij<m is a real m x m matrix (not necessarily
symmetric) that satisfies the following positivity condition: we assume that there exists
0o > 0, such that we have

ETAE > 6pl€)?,  forall € € R™. (1.4)

This condition can be weaken: see Subsection 4.1. Problem (1.1) and (1.2) appear naturally
in the modeling of seawater intrusion (see Subsection 1.2).

1.1 Main results

To introduce our main results, we need to define the space H'(2)/R and the entropy function
v

The space H'(Q)/R:

We define H'(Q)/R as the space of functions of H'(2), up to addition of constant. A natural
norm 1is

(1.5)

‘ 1
Pl s m) = 12 1P = ellimie) = Hp ) W/QP

The function V:
We define the nonnegative function ¥ as

Hl(ﬂ).

1 alna for a >0,
U(a) — - = 0 for a=0, (1.6)
€ +o0o0 for a <0,

C .. 1
which is minimal for a = —.
e

Theorem 1.1 (Existence for the unconfined system)
Assume that A satisfies (1.4). Fori=1,...,m, let ui > 0 in Q satisfying

Z/qu(ug) < o0, (1.7)

where W is given in (1.6). Then there exists a function v = (u')1<i<m € (L*(0,T; H(Q)) N
C([0,T); (Wh(Q))))™ solution in the sense of distributions of (1.1),(1.8), with u* > 0 a.e.
m Qp, fori=1,...,m. Moreover this solution satisfies the following entropy estimate for
a.e. t € (0,T), with u'(t) = u'(t,-):

g/ﬂ‘l’(“i@))Jr%g/ot/ﬂwuiﬁ < g[)@(ug)’ (1.8)

where U is given in (1.6).

Theorem 1.2 (Existence for the confined system)

Assume that A satisfies (1.4). Fori = 1,...,m, let ul > 0 in Q satisfying (1.7). Then
there exists a function u = (u')1<i<m € (L*(0,T; HY(Q2)) N C([0,T); (WL(Q)))™, and a
function p € L*(0,T; H'(Q2)/R) such that (u,p) is a solution in the sense of distributions of



(1.2),(1.3), with u* > 0 a.e. in Qp, fori=1,...,m. Moreover this solution satisfies the
entropy estimate (1.8) and for a.e. t € (0,T), with u'(t) = u'(t,-), p(t) = p(t,-):

Lwnor <iaPy [ v, (19)

Here || A]| is the matrix norm defined as

| Al = [?f—pl |AE]. (1.10)

Notice that the entropy estimate (1.8) guarantees that Vu' € L?(0,T; L*(€2)), and therefore

allows us to define the product uiZAijVuj in (1.1) and (1.2). Similarly, estimate (1.9)
i=1

guarantees that Vp € L%*(0,7T; L*(2)) and allows us to define the product u'Vp in (1.2).

When our proofs were obtained, we realized that a similar entropy estimate has been obtained

in [7] and [9] for a special system different from ours.

1.2 Application to seawater intrusion

In this subsection, we describe briefly two models of seawater intrusion (confined and un-
confined), which are particular cases of our systems (1.1) and (1.2).
An aquifer is an underground layer of a porous and permeable rock through which water can
move. On the one hand coastal aquifers contain freshwater and on the other hand saltwater
from the sea can enter in the ground and replace the freshwater. We refer to [3] for a general
overview on seawater intrusion models.
Now let v =1 — &g € (0, 1) where

g0 = Vs — V¥

Vs

with «, and 74 are the specific weight of the saltwater and freshwater respectively. We can
distinguish two types of aquifers, confined and unconfined.

Unconfined aquifers:

dry soil /
z=g+h

freshwater

/

saltwater

S S i

z=0

Figure 1: Unconfined aquifer



We assume that in the porous medium, the interface between the saltwater and the bedrock is
given as {z = 0}, the interface between the saltwater and the freshwater, which are assumed
to be unmiscible, can be written as {z = ¢(¢,2)}, and the interface between the freshwater
and the dry soil can be written as {z = h(t,x) + g(¢,2)}. Then the evolutions of h and g
are given by a coupled nonlinear parabolic system (we refer to see [14]) of the form

{ he = div{hV(v(h+g))} in Qr,

g = divigV(vh+g¢)} inQp, (1.11)

This is a particular case of (1.1), where the 2 x 2 matrix

v v
A:(y1) (1.12)
satisfies (1.4).

Confined aquifers:
A confined aquifer is an aquifer that lies between two impermeable layers. For simplicity we
assume that z = 0 and z = 1 represent these two layers.

=1 c%flnlyérocl;/

freshwater

/

.

saltwater

ST weeod

z=0

Figure 2: Confined aquifer

Then a natural model is the following system:

hy = div{hV(p+v(h+g))} in Qr,
g = div{gV(p+rvh+g)} in Qrp,
htg = 1 in Oy,

where p is the pressure on the top confined rock. This is a particular case of (1.2) with
matrix A given by (1.12).

1.3 Brief review of the litterature

The cross-diffusion systems, in particular the strongly coupled ones (for which the equations
are coupled in the highest derivatives terms), are widely presented in different domains such
as biology, chemistry, ecology, fluid mechanics and others. They are difficult to treat. Many
of the standard results cannot be applied for such problems, such as the maximum principle.
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Among them, the model proposed by Shigesada, Kawasaki and Teramoto in [25] which arises
in population dynamics and can be written as

=divJ' + fi(u',u?), J = V(B + aputu’ + apuu’) + da'g, i=1,2, (1.13)

where u’ denotes the population density of the i-th species, J? the corresponding population
flows and ¢ = VU where U(t,x) is a prescribed environmental potential, modeling areas
where the environmental conditions are more or less favorable. The existence of a solution
for this problem was frequently studied with restrictions on the diffusion coefficients. We
cite some of the available results for

(

11 = Qlgg = Qg1 = 0, Qg > O, 61,52 > 0, dl = dg = 0, see [23, 24],
app = agy = 0,91 = agp = 1, Bi,82 >0, dy=dy=0, see[6],
aq1, Q2 > 0,001 = 0,012 > 0 B, Ba >0, di=dy=0, see [21],
Q11 = Qg = Qg1 = 0,@12 > O, 51 = 62 > 0, di =dy = 0, see [13],
0 < a9 < 8aq1,0 < agg < 8ans, 61,52 > 0, dl, dy > 0, see [27],
0 < as <8ai1,0 < agg < 8ags, ﬁl,ﬂg >0, dl, dey € R, see [11],
i1, Qop > 0, 291 < 11, 20019 < Qigg, 61 — Bg > 0, d] = dg =0, see [16]
a1 > a1 > 0, 99 > arg > O,
Q1201 < (11 — a91) (e — aga), pr— P2 >0, diy = dy =0, see [15],
L Q11 = Qigg > 0,@21 = X192 = ]., 617ﬁ2 Z 0, dl, d2 c ]R, see [7]

In [28], the existence of a global solution of a problem such:

(ﬁi + Zaijuj) uZ] = (ai - Zbijuj> u', fori=1,...,m,
j=1 Jj=1

is studied where 3; > 0 and «;; > 0. For the stationary problem, we refer to see, for example,
20] where §; > 0 and «;; > 0. In [17], Lepoutre, Pierre and Rolland studied a relaxed model,
without a term source (see also [4, 16]) of the form

u! = Ala;(w)u'], = (0")1<i<m, for i=1,....m,
't — &AW =u', with §; > 0, for i=1,....m

(1.14)

Y

in any dimension and for general nonlinearities bounded a; € C([0,00)™;[n, o)), for some
n > 0. In [17], they show the existence of a weak solution. Moreover if the functions a; are
locally Lipschitz continuous then it is shown that this solution has more regularity and then
is unique.

Another example of such problems is the electochemistry model studied by Choi, Huan and
Lui in [8] where they consider the general form

Ouj i .
ZZ&Q ( aw) . u= (u)i<icm for i=1,...,m, (1.15)

and prove the existence of a weak solution of (1.15) under assumptions on the matrices
Aj(u) = (af (1))1<ij<m: it is continuous in u, its components are uniformly bounded with
respect to u and its symmetric part is definite positive. Their strategy of proof seeks to use
Galerkin method to prove the existence of solutions to the linearized system and then to apply
Schauder fixed-point theorem. Then they apply the results obtained to an electrochemistry



model.
A fourth example of cross-diffusion models is the chemotaxis model introduced in [18]. The
global existence for classical solutions of this model is studied by Hillen and Painter in [12]:

u = V(Vu—V(u,v)Vv),
vy = pAv+g(u,v),

where the chemotactic cross-diffusion V' is assumed to be bounded, and the function g

describes production and degradation of the external stimulus.

A fifth example is a seawater intrusion problem in a confined aquifers, studied in [22]. It

consists in a coupled system of an elliptic and a degenerate parabolic equation. The global
existence is obtained by using Schauder’s fixed point with a parabolic regularization.

1.4 Strategy of the proof

In the unconfined case (1.1) (respectively the confined case (1.2) ), the elliptic part of the
equation does not have a Lax-Milgram structure. Otherwise, our existence result is mainly
based on the entropy estimate (1.8). It is difficult to get this entropy estimate directly (we
do not have enough regularity to do it), so we proceed by approximations:
Approximation 1:

T
We discretize in time system (1.1) (respectively (1.2)), with a time step At = 178 where

K € N*. Then for a given u" = (u"")1<i<m € (H*(2))™, we consider the implicit scheme
which is an elliptic system:

ui,n—i—l o ui,n ) m ]
A—t = div Ul’n+l Z AijVu]’"H . (116)
j=1

Approximation 2:
We regularize the PDE term:

div {ui’"Jrl Z AijVuj’”H} . (1.17)
i=1
To do that, we take n > 0 and 0 < € < 1 < ¢, and we choose the following regularization
div {Tﬁvf(um*l) > AV, x pyxutmH } , (1.18)
j=1

where T%¢ is a truncation operator defined as,

e ifa<e,
T(a):={ a ife<a<l/, (1.19)
¢ ifa>/,

1
and the mollifier p,(z) = —Np(f) with p € C®(RY), p > 0, / p=1and p(—2z) = p(z).
n n N

RN A
Now with the convolution by p, in (1.18), the term Vp, * p, * u"! behaves like u/"*.
Note that the convolution p, * u7"*! is done on R¥, considering u/"*! as its Z"- periodic
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extension on RY.

Approximation 3:

Let 6 > 0. We then add a term like JAwu’. This way, the term dAu’ remains the main term,
and we can apply the Lax-Milgram theorem.

Approximation 4:

We consider div (5T€7£(ui)Vui) instead of JAu’, to keep an entropy estimate.

Then by freezing the coefficients to make a linear structure (these coefficients are now called
§T=*(vo"1)), we obtain these following modified systems:

Unconfined case:

wn+l _ in ' m .
% — div {Tﬁ’e(vl’”“) (ZAUW” *e py x4 5vum+1> } , (1.20)
j=1
Confined case:
R T . m 4
G U~ div { 7o) (T Y AV, kg w6V )
o = (1.21)

m .
Suntl =1,
=1

i,n+1 i,n+1

We will look for fixed points solutions v =u of these modified systems. Finally, we
will recover the expected result dropping one after one all the approximations.

1.5 Organization of the paper

In Section 2, we recall some useful tools. In Section 3, we study the unconfined case (1.1). By
discretizing our problem on time, in Subsection 3.1, we obtain an elliptic problem. We use the
Lax-Milgram theorem to show the existence of a unique solution to a linear problem (when
the coefficients T=(u*"*1) are frozen to be T=!(v®"*1)). We demonstrate, in Subsection 3.2,

the existence of a solution of the nonlinear problem, using the Schaefer’s fixed point theorem.

Then we pass to the limit when

(At,e) — (0,0) in Subsection 3.3,
(¢,n,0) — (00,0,0) in Subsection 3.4.

Generalizations (including more general matrices A or tensors) will be presented in Section
4. Finally, Section 5 contains the Appendix with some technical results.

2 Preliminary tools

Theorem 2.1 (Schaefer’s fixed point theorem) /10, Theorem 4 page 504]
Let X be a real Banach space. Suppose that

o: X - X
s a continuous and compact mapping. Assume further that the set
{ue X, u=Ad(u) forsome \e]|0,1]}
18 bounded. Then ® has a fized point.



Proposition 2.2 (Aubin’s lemma)/26/
For any T >0, and Q =TV, let E denote the space

E:={ge L*(0,T); H(Q)) and g, € L*((0,T); H ()},

endowed with the Hilbertian norm

[ I

2 2
lwllz = <||W||L2(0,T;H1(Q)) + Hwt”L?(O,T;H*l(Q)))

The embedding
E — L*((0,T); L*(?)) s compact.

On the other hand, it follows from [19, Proposition 2.1 and Theorem 3.1, Chapter 1] that
the embedding
E < C([0,T); L*(2)) is continuous.

Lemma 2.3 (Simon’s Lemma)[26]
Let X, B and Y three Banach spaces, where X — B with compact embedding and B — Y
with continuous embedding. If (¢"), is a sequence such that

19" |aco.:m) + 19" |21 0,0x) + 1198 |22 0.1y < €

where 1 < ¢ < 0o, and C' is a constant independent of n, then (g"), is relatively compact in
LP(0,T;B) forall1 <p<q.

Now we will present the variant of the original result of Simon’s lemma [26, Corollary 6,
page 87|. First of all, let us define the norm |'|Var([a »y) Where Y is a Banach space.

For a function g : [a,b) — Y, we set

|g|var([a,b);Y) = SUPZ l9(aji1) — glaj)ly (2.1)
j

over all possible finite partitions:
a<ag<---<a,<b.

Theorem 2.4 (Variant of Simon’s Lemma)
Let X, B and Y three Banach spaces, where X — B with compact embedding and B — Y
with continuous embedding. Let (g"), be a sequence such that

’gn|L1(07T;X) + |gn|Lq(07T;B) + |gn’ Var(o,1);y) <C, (2‘2)

where 1 < q < 0o, and C' is a constant independent of n. Then (g"), is relatively compact
in LP(0,T; B) for all1 < p < q.

Proof of Theorem 2.4
Step 1: Regularization of the sequence
Let p € C*(R) with p >0, [, p =1 and supp p C (—1,1). For € > 0, we set

pe(z) ="' p(e x).



We extend g™ = ¢"(t) by zero outside the time interval [0, 7). Because ¢ < +00, we see that
for each n, we choose some 0 < ¢,, — 0 as n — +oo such that

9" — 9" |LeoriBy 0 as n— +oo, with g" =p., xg" (2.3)
For any § > 0 small enough, we also have for n large enough (such that ¢, < 9):

19" L6 r—0:x) < 19" 220, < C

and
197 -6y < 19" IVarqo.ryyy < € (2.4)

Step 2: Checking (2.4)

Note that by definition of | - |Var([ ) (see (2.1)), there exists a sequence of step functions

0,7);Y
f, which approximates uniformly g” on [0,7) as n — 0, with moreover satisfies

|/ ‘Var([o,T);y) —|g" |Var([0,T);Y)'

Therefore we get easily (for €, < 0)

(P * fo)elLror—siv) < [falVarqor)a

which implies (2.4), when we pass to the limit as 1 goes to zero.

Step 3: Conclusion

We can then apply Corollary 6 in [26] to deduce that g" is relatively compact in LP(0,T’; B)
for all 1 < p < ¢g. Because of (2.3), we deduce that this is also the case for the sequence
(9")n, which ends the proof of the Theorem. O

3 Existence for the unconfined case

Our goal is to prove Theorem 1.1 in order to get the existence of a solution for the unconfined
system (i.e. system (1.1)).

3.1 Existence for a linear elliptic problem

In this subsection we prove the existence, via Lax-Milgram theorem, of the unique solution
for the linear elliptic system given in (1.20).
Let us recall our linear elliptic system. Assume that A is any m x m real matrix. Let
v = (V) e € (LA(Q))™ and u” = (u'™)1<i<m € (H'(2))™. Then for all At, ¢, ¢,
n, d > 0, with e < 1 < ¢ and At < 7 where 7 is given in (3.2), we look for the solution
u"t = (u""t1) ;< of the following system:

uz,n+1 — b

A =div {Ji,, 5" w1} in D(Q),

(3.1)
Do AN py x pyx w4 5vui,n+1} ;
=1

J

€

T s umtl) = Tet(vhntl) {

where T is given in (1.19).



Proposition 3.1 (Existence for system (3.1))
Assume that A is any m x m real matriz. Let At, e, £, n, d >0, with e <1 < {, such that

Sen?
S E— (3.2)
Co*? | A
where
Co = ||v:0||L1(RN)‘ (3.3)
Then for n € N, for a giwen v"*' = (v, € (LA(Q)™ and u™ = (u"")1<i<cm €
(HY(Q))™, there exists a unique function u"™ = (u"")icic, € (HY(Q))™ solution of

system (3.1). Moreover, this solution u™ satisfies the following estimate

AL\ g . . "
(1= 2 1 e+ A9 s < W e (30)

where T is given in (3.2).

Proof of Proposition 3.1.

The proof is done in two steps using Lax-Milgram theorem.

First of all, let us define for all u"™! = (u""™)1;c,, and @ = (¢")1<i<m € (HY(Q))™, the
following bilinear form:

a(u n+1 Z/ bl l—I—AtZ/TEE ”H_l)AzJ (an*pn*u]n+l) 'v@i

i,7=1

+At62/ T5,€<Uz‘,n+1>vui,n+1 . V9017
, Q

which can be also rewritten as

a(un+1, 90) _ < n+1’ 90> (@ —l— At <T€’£(Un+1)VSOv AVpn * Pn * un+1>(L2(Q))
e n+1 n+1
+Atd <T8 )WV, Vu >(L2(Q))m )

where (-, ) 2(q)m denotes the scalar product on (L2(22))™, and the following linear form:

=D /Q utpt = (" )@y
=1

Step 1: Continuity of a
For every n € N, ™! and ¢ € (H'(Q2))™, we have

"Ll < I el )m+At€HA||||Vpn*pn*U"“|| @) [ Vel 2@y
AV | 2y Vel 2

la(u

where || A|| is given in (1.10) and we have used the fact that

IV0 % oo > ™| oy < 1V 1 (3:5)

)m)
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and
e <T%(a) < ¥, forallacR. (3.6)

Step 2: Coercivity of a
For all ¢ € (H*(2))™, we have that a(p, ) = ag(p, @) + ai(p, @), where

2
ao(: @) = el L2ym + Al <TE’Z(%0)V% v90>(L2(Q))m

and
ar(p, ) = AL (T (0)Vip, AV py % oy % ) 12y

On the one hand, we already have the coercivity of ay:

ao(p, ) > HQOH%L?(Q))’"+At5€||vwl|%L2(Q))m‘

On the other hand, we have

ai(p, 0)| < Atl[A] ||VP77*P77*90||(L2(Q))"L Voll p2@)ym

1 2 a 2
< A|A] (% |V oy * p *90||(L2(Q))m + 5 HVSOH(Lz(Q))m)

At AP C2 Ated )
Tan? H(:DH(LQ(Q))W + 9 ”VSOH(LZ'(Q))m )

o
where in the second line we have used Young’s inequality, and chosen o = m in the third
line, with Cj is given in (3.3) and ||A|| is given in (1.10). So we get that
At Ated
alp,p) > (1 - Z) el (z2gpym + 5 IVl iz capym (3.7)

is coercive, since At < 7 where 7 is given in (3.2).
Finally, it is clear that L is linear and continuous on (H*(2))™, and then by Lax-Milgram
theorem there exists a unique solution, u"*!, of system (3.1).

Step 3: Proof of estimate (3.4)
Using (3.7) and the fact that a(u™™ u" ™) = L(u"™) we get

(1 - E) [ H”?”(Q))m T3 [vu +1||?L2(9))m < (it +1>(L2(Q))m
1 1
E 9 HunH?LZ(Q))m + 92 ||un+1||?L2(Q))m ’

which gives us the estimate (3.4). O

3.2 Existence for the nonlinear time discrete problem

In this subsection we prove the existence, using Schaefer’s fixed point theorem, of a solution
for the nonlinear time discrete system (3.10) given below. Moreover, we also show that this
solution satisfies a suitable entropy estimate.

11



First, to present our result we need to choose a function W, , which is continuous, convex

1
and satisfies that U7 ,(z) = Toi(a)’ where 7= is given in (1.19). So let
y €, x
;—z—f-alne—% if a <e,
1
U (a)—= = alna ife <a<ld, (3.8)
e

C talnl—L ifa> fL.

Let us introduce our nonlinear time discrete system: Assume that A satisfies (1.4). Let

u? = (u"?)1<icm = up = (u})1<i<m that satisfies

Z/ﬂqf&g(ug) < +o0, (3.9)

such that uf > 01in Q for i = 1,...,m. Then for all At, e, £, n, 6 > 0, with e < 1 < £ and
At < 7 where 7 is given in (3.2), for n € N, we look for a solution u"™ = (u""™),<;<,, of
the following system:

ui,n+1 _ ui,n ]
— Q= div {JZ,, 5(u"t umt)} in D'(Q), forn >0
i (3.10)

u™0(x) = uh(x) in Q,
where J?,, 5 is given in system (3.1), and T=* is given in (1.19).

Proposition 3.2 (Ezistence for system (3.10))

Assume that A satisfies (1.4). Let ug = (u})1<i<m that satisfies (3.9), such that u} > 0 a.e.
n Q fori=1,....m. Then for all At, €, £, n, 6 >0, withe <1 </ and At < T where T
is given in (3.2), there exists a sequence of functions u™™ = (u*") i € (H(Q))™ for
n € N, solution of system (3.10), that satisfies the following entropy estimate:

i/{)q/s,e(ui’n+l)+5ﬁtii/ﬂ|VUi’k+1|2+50At2m:i/ﬂ|Vpn*ui’k+1|2 < i/ﬁ‘lfs,z(ué),
=1 =1

i=1 k=0 i=1 k=0
(3.11)
where W., is given in (3.8).

Proof of Proposition 3.2.
Our proof is based on the Schaefer’s fixed point theorem. So we need to define, for a given
wi=u" = (U")1<icm € (L3(Q))™ and v := o™ = (v )i € (L2(Q))™, the map ® as:

o (L) — (LX)
(% — u

where u := u"™ = (v 10 = P(V™T) € (H(Q))™ is the unique solution of system
(3.1), given by Proposition 3.1.
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Step 1: Continuity of ¢
Let us consider the sequence v such that

ve € (L2()™,

v, — v in (L2(Q2))™.

We want to prove that the sequence uy = ®(vy) — u = ®(v) to get the continuity of .
From the estimate (3.4), we deduce that wy is bounded in (H'(Q2))™. Therefore, up to a
subsequence, we have

up, — u weakly in (H'(Q))™,

and

ur, — u strongly in (L*(Q))™,
where the strong convergence arises because () is compact. Thus, by the definition of the
truncation operator 75, we can see that 7% is continuous and bounded, then by dominated
convergence theorem, we have that

T (vl) — T*(v") in L*(Q), fori=1,...,m.

Now we have

up — w'

At

This system also holds in H~'(Q), because J!,, s(vi,ur) € L*(Q2). Hence by multiply-
ing this system by a test function in (H'(£2))™ and integrating over € for the bracket
(-, ->H,1(Q)XH1(Q), we can pass directly to the limit in (3.12) when & tends to 400, and we
get

=div{J!,, s(,ux)} in D(Q). (3.12)

ut — w'

;t = div{Jl,, s(v,u)} in D'(Q). (3.13)

where we used in particular the weak L? - strong L? convergence in the product T¢(v;,) Vuy,.
Then u = (u')1<i<m = P(v) is a solution of system (3.1). Finally, by uniqueness of the solu-
tions of (3.1), we deduce that the limit u does not depend on the choice of the subsequence,
and then that the full sequence converges:

up — u strongly in  (L*(Q))™, with u = ®(v).

Step 2: Compactness of ¢
By the definition of ® we can see that for a bounded sequence (vg)g in (L2(2))™, ®(vg,) = uy
converges strongly in (L*(2))™ up to a subsequence, which implies the compactness of ®.

Step 3: A priori bounds on the solutions of v = A®(v)
Let us consider a solution v of

v=AP(v) forsome \€J0,1].

By (3.4) we see that there exists a constant C; = C;(At,¢,...) such that for any given
w € (L*(Q))™, we have [|®(0)[| g1 gym < C1 [l 12(q)m- Hence v = A®(v) is bounded.

13



Step 4: Existence of a solution
Now, we can apply Schaefer’s fixed point Theorem (Theorem 2.1), to deduce that ® has a
fixed point " on (L*(Q2))™. This implies the existence of a solution u"* of system (3.10).

Step 5: Proof of estimate (3.11)

We have,
i":/ ‘I’s,e(ui’nﬂ) _ ‘I’s,é(ui’n)
i=1 /% At
m ui,n—l—l o ui,n) )
S \11/ (uz,n+1>
> [ (=)
m ui,nJrl . ui,n .
- ()
— H-Y(Q)xH(Q)
_ Z <5T8,€(ui,n+1)vui,n+l + Ta,((ui,n—i—l) Z Aijvpn * Py * uj,n—‘rl’ \Ijlal’g(ui,n+1)vui,n+l>
- -y {5/ (Vi _|_/van*ui,nJrlAijvpn*uj,n+1}
i=1 Q Q=1
<

_25/ ‘Vui,n+1|2_502/ |V py % w2,
i=1 9 i=1 Y8

where we have used, in the second line, the convexity inequality on V. ,. In the third line,
im+l _ ) in

we used the fact that % € H™'(Q) and that V., (u""1) = W7 (a1 Vuint e

L?(Q) because W, ,(u""*') € C*(R), see [5, Proposition IX.5, page 155]. Thus, in the fourth

line we use that u*"*! is a solution for system (3.10) where we have applied an integration

by parts. In the fifth line, we used the transposition of the convolution (see for instance [5,

Proposition IV.16, page 67]), and the fact that p,(z) = p,(—x) = p,(z). Finally, in the last

line we use that A satisfies (1.4).

Then by a straightforward recurrence we get estimate (3.11). This ends the proof of Propo-

sition 3.2. 0

3.3 Passage to the limit when (At,¢) — (0,0)

In this subsection we pass to the limit when (At,e) — (0,0) in system (3.10) to get the
existence of a solution for the continuous approximate system (3.16) given below.
First, let us define the function ¥y, as

( +00 if a <0,
1 0 if a =0,
Uosla) — == (3.14)
¢ alna if0<a</,
| C talnl—£L ifa>¢(

14



Now let us introduce our continuous approximate system. Assume that A satisfies (1.4). Let
Uy = (Up)1<i<m satistying

03 = Z/ qjoj(Ué) < 400, (315)
=179

which implies that u) > 0 a.e. in  for ¢ = 1,...,m. Then for all ¢, 5, § > 0, with
1 < { < 400, we look for a solution u = (u')1<;<,, of the following system:

ul = div {Jé’e, ’5(u)} in D'(Qr),
Joomst) = T% (u') {Z AN pyx ppxu + 5Vu’} : (3.16)
=1
u'(0,2) = ub(z) in Q.

where T%¢ is given in (1.19) with € = 0, and we recall here Q7 := (0,7 x Q.

Proposition 3.3 (Existence for system (3.16))

Assume that A satisfies (1.4). Let ug = (u})1<i<m satisfying (3.15). Then for all ¢, 7,
§d > 0 with 1 < { < 400 there exists a function u = (u')1<i<m € (L*(0,T; H'(2)) N
C([0,T); L2())™, with u* > 0 a.e. in Qp, solution of system (3.16) that satisfies the
following entropy estimate for a.e. t € (0,T) with u'(t) = u'(t, )

m t m t m m
/Z\I/o,z(ui(t))—HS/ /Z\vui\%&)/ /Z\vpn*uif S/Z%,g(ug). (3.17)
Q=1 0 JQ 0 JQ ;4 Q5,4

Proof of Proposition 3.3.

T
Our proof is based on the variant of Simon’s Lemma (Theorem 2.4). Recall that At = 17

where K € N* and T > 0 is given. We denote by C' a generic constant independent of At
and €. For all m € {0,..., K —1} and ¢« = 1,...,m, set t, = nAt and let the piecewise
continuous function in time:

UWAYt, ) = u" Y (x), for t € (tn,tnia], (3.18)
with U240, ) = u () satisfying (3.9).

Step 1: Upper bound on HVUAtH(LQ(O,T;LQ(Q)))m
We will prove that UA! = (UA!) <<, satisfies

and HUAtH(m(o,T;L?(Q)))m

T
/0 IVUS ()P 2 @pym < C.

Forallne€{0,..., K —1} andi=1,...,m, for t € (t,,t, 1] we have
VU (t, 2) = Vu"" " ().

Then

tn+1 . .
[ IR Ol = AT,
ln

15



Hence

K-1

T
| IO O = AT IV

0 k=0
Cy

<_7
)

where we have used the entropy estimate (3.11) with

Cy = .T_HZI/Q\PE’@%)' (3.19)

Hence, using Poincaré-Wirtinger’s inequality we can get similarly an upper bound on
T
HU“MHZ2 oy independently of At (using the fact that /ui’"+1 = /u’" = /ui’o
0 (L2(9) 0 Q Q
by equation (3.10)) .

Step 2: Upper bound on HUNH(var([o,T);H”(Q)))”

We will prove that
HUAt||(Var([O,T);H_1(Q)))m =C.

Thus we have fori =1,....m

K-1
1T oy = 50 D U (tgn) = U2 (t0)| 1
n=0

K-1
— i+l i,nH
sup § : [Ju Uil g-1(q)
n=0
—1 wn+l

u
At

=

ui,n

= Atsup
H-1(Q)

T
LL

IN

Atsup ) || (u""*) (Z AN py % py > w4 5Wi’”+1)

=1

S
I
o

< (At SUPKz:l {HAHDO zm: Hvﬂn * ui’nHHL‘Z(Q) +90 HVUWHHH(Q)}

. Ca n=0 Jj=1

where m
4l = maze 314 (3:20)

i

and we have used in the last inequality the entropy estimate (3.11), and the fact that

K-1 K-1 2
At Z Hvui’nHHHm) <VT (At Z Hvui,nﬂ“i?(g))
n=0 n=0

16
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Step 3: U € LP(0, T,L*(Q)) with p > 2

The estimate (3.11) gives us that U2t € L>(0,T; LY(Q)) N L*(0,T; HY(Q)) for i =
1,...,m. Using Sobolev injections we get H'(Q2) — L>**™)(Q), with a(N) > 0, and then
U»At ¢ L2(0,T; L***™)(Q)). Hence by interpolation, we find that U>* € LP(0, T; L*())

11 11 1 1
with (p 2> (1—6) (oo 2) +0 (§,m) and 6 € (0,1), which gives us that
4+ 4a(N)
SV}
2t alN)

Step 4: Passage to the limit when (At,s) — (0,0)
We have now that

1T omszzy + 1T oy + 177 Naro.yi-1y < €

compact continous

Then by noticing that H(Q) L*(Q) H7Y(Q), and applying the vari-
ant of Simon’s Lemma (Theorem 2.4), we deduce that (U%2!),, is relatively compact in
L*(0,T; L*(Q)), and that there exists a function U = (U%)1<i<p, € (L*(0,T; H'(Q)))™ such
that, when (At,e) — (0,0), we have (up to a subsequence)

VUt ~ VU!  weakly in L*(0,T; L*(Q)),
UbAt — Ut strongly in L?(0,T; L*()).

In addition we have that

Uz‘,At(t + At) _ Uz‘,At(t)
At

— Ul in D'(Qr).

Now since we have for ¢t € (¢,_1,t,)

ui,n-i—l _ ui,n B Ui,At(t + At) o Ui’At(t)
At B At ’

system (3.10) can be written as

Uz',At(t + At) _ Uz',At( )

A =div {J.,, ;(U> U} inD(Q), (3.21)

where JZE s s given in (3.1). Hence by multiplying this system by a test function in D(€2)
and 1ntegrat1ng over 2, we can pass directly to the limit when (At,e) — (0,0) in (3.21) to
get

U, = div (T” () (ZAUVM; * oy U7 + (WU’)) in D'(S2r),
7j=1

where we used the weak L? - strong L? convergence in the products such T=¢(U»A)VUHA!
to get the existence of a solution of system (3.16).
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Step 5: Recovering the initial condition
Let p € C°(R) with p >0, [, p=1 and supp p C (—3,3). We set
1

pa(t) = At (AL ).

Then we have

IN

IN

IN

IN

<

2

m K—
”ﬁm * Ut&H?L?(o,T;Hfl(Q)) m Z/ Z - )01 % Pt
i=1 =0 H=Y(Q)
m K-1 T i,n+1 imn ||2
ub — b
ANtpa(t — t,
Y | @taate =t | o
m K-l nt1 in ||2
ubm T —
CyAt
; = At la-e
K—-1 m m 2
C, At Z/ T (ub ) (Z AijVpy* pp x4 (5Vui’"+1>
n=0 i=1 Y j=1
K-1 m
Ci2 CALY Y- / (Z AN py K py * u” "“) + 82| wutn |
n=0 i=1
Cy 2 AL z% /Q {HA”2 [V oy * py *“nHH?Lz(Q))m +0° ||Vun+1H?L2(Q))m}
K—1
04 2 €2At Z {“AHQHVP,I *un+1||%L2( m + (52 ||V n+1H (L2 Q))m}
n=0

Cy 2 P2C <H I +5>
O

T
where Cy := / p(t) dt. Moreover, for all p € D(Qr) we have

I

which implies that pa; U
we can prove that pa; x UM — U? strongly in LQ(O T; LQ(Q)).
Uie{ge L*0,T; HY(Q));g: € L*(0,T; H*(22))}. And now U*(0, z) has sense, by Proposi-

pAt*UtzAt _ / /,OA *UzAt X / /PA *UzAt

= / /UZN Pt * PAL — — / /UZ Y = / /UZ ®,

tion 2.2, and we have that U*(0, z) = u{(x) by Proposition 5.1.

Step 6: Proof of estimate (3.17)

By Step 4 we have that there exists a function U* € L*(0,T; H'(Q2)) such that we have the

following convergences when (At, &) — (0,0)

Ui,At N Uz
VUHAt — VU in L*(0,T; L*(Q)).
Vp, U — Vp, « U’

18
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Now using the fact that the norm L? is weakly lower semicontinuous, with a sequence of
integers n; (depending on At) such that ¢,,.1 — t € (0,7) and

Ui,At(t) _ Ui,At(th_l) — unt-i-l’

we get

t ) tnt+1
//|VU1‘ < liminf / /’VU’N‘ lim inf AtZ/]Vu’kH\Z (3.22)
0o Jo (At,e)—(0,0) (At,e)—(0,0)

t tnt+1
Vo, «U'|" < liminf Vg U lim inf At§j Vo xut M
/0 /Q‘ P ‘ Agg)linoo / / [Von ‘ Atlgl—lglo (0,0) / Vg a7

(3.23)
Moreover, since we have Ut — U in L2(0,T; L?(R))), we get that for a.e. t € (0,7) (up
to a subsequence) UbAt(t,-) — Ui(t,-) in L?(€2). For such ¢t we have (up to a subsequence)
Ubal(t,-) — U(t,-) for a.e. in Q. Noticing that ¥, ,(a) — ¥os(a) for a.e. a € R and
applying Lemma 5.2 we get that for a.e. t € (0,7T)

U, (U(t)) < liminf LALE)) = liminf (ut ™y, (3.24
;/ﬂ e (t))_(Aginilgoo)Z/ (U Atlir)l_l)nooz:/ (3.24)

Therefore (3.22),(3.23) and (3.24) with the entropy estimate (3.11) give us tht for a.e. ¢t €
(0,7)

Z/ EéUl —l—(SZ//‘VUZ‘ —F(Soz//‘vpn*[]z
\I/e,z(u’”t“)—k lim inf 5At22/|vuzk+12

(At,e)—(0,0)
i=1 =1 k=0

+lim i 1nf SoAt Z Z / IV oy % uF |2

i=1 k=0
=3 KRTIES oy R!
1=1 =1

which implies our result.

IA
=
Le

=)

:>\

Step 7: Non-negativity of U’
Let Q° := {U’Vm < 8}. By estimate (3.11), we get that there exists a positive constant C'
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independent of € and At such that for all i = 1,...,m we have

c z/ (U

Z / \I{aZ UzAt
zAt
= / U + U™ Ine — -
Qe €
1 Uz At
> / +elne — =
Qe €
(Uz At
= )
QS
So we get that .
(Uz,At)2 1
—— < C+ - 3.25
/s 2 T + 2 ( )
Now by passing to the limit when ¢ — 0 in (3.25) we deduce that we have certainly
‘Ui‘Q = 0, where Q~ := {U’ < 0}, which gives us that (U")~ = 0 in L*(Q), where
Q- .
(U")~ = min(0,U"). O

Remark 3.4 (Another method by Lions-Magenes)

Note that it would be also possible to use a theorem in Lions-Magenes [19, Chap. 3, Theorem
4.1, page 257]. This would prove in particular the existence of a unique solution for the
following system:

ul =div{Ji,, s(v,u)} in D'(Qr),
T gns(vu) =T (v') {ZAUVPT; * pxu! + 5VU2} ; (3.26)
i=1
u'(0,2) =ul(w) in

where T** is given in (1.19).

It would then be possible to find a fized point solution v = u of (3.26) to recover a solution of
(8.16). We would have to justify again the entropy inequality (3.17). Note that our method
with time discretisation will be also applicable easily to the confined case (see the proof of
Theorem 1.2), which we are not aware of a reference for an analogue result to Theorem 4.1
in [19] applicable directly to the confined case.

3.4 Passage to the limit when (¢,7,5) — (00,0,0)

In this subsection we pass to the limit when (¢,7n,0) — (00,0,0) in system (3.16) to get the
existence result, announced in Theorem 1.1, of a solution for system (1.1),(1.3).

Let us recall system (1.1),(1.3). Asume that A satisfies (1.4). Let up = (u))1<i<m satisfying
(1.7). Then we look for a solution u = (u’);<;<p, of the following system:

ui = div {“iZAijV“j} e (327)

Jj=1

u'(0,2) = ub(z) a.e. in Q.
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Proof of Theorem 1.1

Let C be a constant independent of ¢, n and § that can be different from line to line, and
u’ = (u")1<i<pm a solution of system (3.16), where we drop the indices 7 and § to keep light
notations. The proof is accomplished by passing to the limit when (¢,7,d) — (00,0,0) in

(3.16) and using Simon’s lemma (Lemma 2.3), in order to get the existence result.

Step 1: u'* € LP(0, T,L?(Q)) with p > 2

The estimate (3.17) gives us that u™* € L>®(0,T;LY () n L*0,T; H(Q)) for i =
1,...,m. Using Sobolev injections we get H'(Q) — L*™)(Q), with a(N) > 0, and
then u* € L2(0,T, L>***™)(Q)). Hence by interpolation, we find that u™* € L?(0,T, L*(Q))

11 1 1 1 1
Wlth (]—), 5) = (1 — 6) (g, 5) + 0 (5, m) and 0 S (0, ].), Wthh giVGS us that
2

Step 2: Upper bound on u}*

S i lanansion =3 [ |

W1°° @)y
= Z/ div {TOE ZK <Z Aljvpﬁ*pn u]ﬂ +5VUZZ>}
j=1 ey
m T
< Z/ / TO,E(ui,e) {Z Aiijn*pn*uj,f_i_dvuil}
i=1 Y0 JQ g
m T m
— Jo Ja <
< Z/ /{ *uzf ZAZJVpn*u]é +5UM}VUZ£|}
HA
i Hp” ) UZH(LQ(O TEAE)™ uZ”(L2(O,T;L2(Q)))m
_ HVUEH (L2(0,T5L2(9) )))m ”uZH oo
< C,

where we have used in the last inequality the fact that u*‘ satisfies the entropy estimate
(3.17) (and again Poincarré-Wirtinger’s inequality).

Step 3: Passage to the limit when (¢,7,0) — (c0,0,0)
We have now that

il
t

<C.

i 7 LNOT(Wh=(2))

o

||“i’£HLP(o,T;L2(Q)) (0,7:H' ()
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compact continous

Then by noticing that H'(Q) LQ(Q) (Whe°(Q)), and applying Simon’s
Lemma (Lemma 2.3), we deduce that (u®t), is relatively compact in L2(0,7T; L?(€2)), and
that there exists a function v’ € {g € L*(0,T; H'(Q)), g: € L*(0,T; (W'>=(£2))")} such that,
when (£,7,9) — (00, 0,0), we have (up to a subsequence)

ubt — weakly in L2(0,T; H'(2)),
Vuit = Vu/  weakly in L2(0,T; L*(2)),

uie — !  weakly in D'(Qr),

utt — strongly in L?(0,T; L*(2)).

This implies in particular

Vpy * py*u?* = Vul  weakly in L2(0,T; L*(9)),
T (ut) — o strongly in L?(0,T; L*(2)),

where we have used in the last convergence the nonnegativity of u’ a.e. (because u** — u!
a.e.). We recall problem (3.16)

£ = div {T” (Zvapn * p K udt 4 5VW> } in D'(Qr). (3.28)

7j=1

Hence by multiplying this system by a test function in D(€Q7) and integrating over 2 we
can pass directly to the limit in (3.28) as (¢,n,d) — (00,0,0), and we get

= div {uiZAijVuj} in D'(Qr).
=1

where we used in particular the weak L? - strong L? convergence in the products such
T () Vubt. Then u = (u')1<i<p is a solution of system (3.27).

Step 4: Recovering the initial condition

2
First of all, let ¢ = % > 1, where p > 2 is given in Step 1 of this proof. It remains to

|

prove that fori=1,...,m
b <C.
La(0,T;(Whe°)(Q))
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Thus we have that

T
it
g | Lo,y wree @)yy = (/0 ‘u

il
t

1
q q
(W1*°°(Q))’>

=

T m . E
= / div {TO,K(ui,z) (Z Aiijn * P * ut + (5Vui’£> }
0 j=1 e
T m q %
< </ (/ TO,K(UZ',K) {Z Aiijn * Pn *uj,é + 5Vu“} ‘) )
’ . Jj=1
T m ! é
= (/ (/ (Pn * uz’,‘v’) Z AV py xut| 4 dut |Vui7g|> )
0 Q s
= Huz.,gHL”(O’T%LQ(Q)) Z AV py +0 Hui7£||Lp(0,T;L2(Q)) HVUMH L2(0,T5L2(Q))
j=1

L2(0,T;L2(Q))

< el oo zizacay (”A”oo D IVou x| o iy + HVUMHLQ(O,T;LQ(Q))>
j=1
< C,

where we have used in the fifth line Holder’s inequality and in the last line the entropy
estimate (3.17) and Step 1 of this proof, with ||A]|__ is given in (3.20). Moreover since we
have that WH1(0, T; (W1>(Q))) < C([0,T); (Wh>(Q))’) then «'(0,z) has sense and we
have that u*(0,z) = u{(x) for all i = 1,...,m by Proposition 5.1.

Step 5: Proof of the estimate (1.8)

The proof is similar to Step 6 of the proof of Proposition 3.3. Hence by using Fatou’s Lemma
on the sequence (Vg (u®t)),, and the fact that the norm L? is lower semicontinuous, then by
passing to the limit inferior in estimate (3.17), we get the estimate (1.8). O

4 Generalizations

4.1 Generalization on the matrix A

Assumption (1.4) can be weaken. Indead, we can assume that A = (A;j)1<ij<m IS a real
m X m matrix that satisfies a positivity condition, in the sense that there exist two positive
definite diagonal m x m matrices L and R and ¢y > 0, such that we have

C'LARC > 6o|¢?, forall ¢ €R™ (4.1)

Remark 4.1 (Comments on the positivity condition (4.1))

The assumption of positivity condition (4.1), generalize our problem for A not necessarily
having a symmetric part positive definite. Here is an example of such a matriz, whose
symmetric part is not definite positive, but the symmetric part of L A R is definite positive
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for some suitable positive diagonal matrices L and R.

We consider
1 —a )
A= (2a 1 ) with |a| > 2.
2

AT+ A ( )
satisfying det(A*Y™) =1 — az < 0. And let

2
2 0 10
L= (0 1) and R = (0 1) .

B=LAI= (;a _fa) ,

2 0
sym __
= (5 1)

Proposition 4.2 (The case where L = 1,)

Let A be a matriz that satisfies the positivity condition (4.1) with L = Iy. Then u is a
solution for system (1.1) with the matriv A = AR (instead of A) if and only if u' = Ry’
is a solution for system (1.1) with the matriz A.

Indeed,
ASYm —

— e

1
2

On the other hand,
satisfies that

is definite positive.

Proof of Proposition 4.1 )
Let u be a solution for system (1.1) with the matrix A = A R (instead of A), i.e.

'L_Lz = div <'L_LlZAUR”V’I_L]> .
j=1

This implies

Ruﬂz = div (RMUZZAURMVUJ) s

j=1
which means
j=1
U
Proposition 4.3 (The case where R = I,)
Let u"™ = (v 1<icn be a solution of system (3.10) with a matriz A satisfying the
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positivity condition (4.1) with R = I and L a positive diagonal matriz. Then u™* satisfies
the following entropy estimate

y i,n+1 ; y k412
;/QL“\Ild(u ) + 5At1r§nil§n{L”}ZZ/Q]Vu |

i=1 k=0
SN 90 O N\ SIS DY WA LT
i=1 k=0 " i=1 Y9

Proof of Proposition 4.2
We have that (from fifth line of the computation in Step 5 of the proof of Proposition 3.2)

m U, intly 0, in m.om ) )
Z /Q L;; ( ,Z(U )At ,E(U )) < - /Q Z Z LiiAij(vpn * P *uj,n+1> . Vuz,nJrl
=1 i

i=1 j=1
m
_5§ :/Lii|vuz,n+1|2
i=1 /&

/Q Z Z(Vpn * uj’nJrl)LiiAij (V,On * Ui’n+1)

i=1 j=1

_5Z/Ln‘|vui’n+1|2
i=1 Y

m m
< 0 /Q Z [V oy xu™ 2 =5 1I<I%i<nm {Li;} Z/Q Va2,
=1 - i—1

where we have used, in the last line, the fact that the matrix A satisfies (4.1) with R = I5.
Then by a straightforward recurrence we get (4.2). O

IA

Corollary 4.4 Theorem 1.1 and Theorem 1.2 still hold true if we replace condition (1.4) by
condition (4.1).

4.2 (Generalisation on the problem
4.2.1 The tensor case

Our study can be applied on a generalized systems of the form
m N N ;
) 0 . o’
up = E — (fi(uZ)Aijkla—Zl) fori=1,...,m, (4.2)

where f; satisfies

( fz € C(R)7

0< fila) <C(1+|al) fora € R and C' > 0,

clal <fi(a) for a € [0,a0] with ag,c > 0.
41
——da < 4+ for all A > ay.
\ ap f’l<a)
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An example for such f; is

fila) = maxx (0, min (o, fa =11} ).

Moreover, A = (Aijki)ijk 1S @ tensor of order 4 that satisfies the following positivity condi-
tion: there exists dy > 0 such that

Z A 7' Ge G = dolnP|¢* for all p € R™, ¢ € RY. (4.3)
gkl

The entropy function ¥, is chosen such that ¥; is nonnegative, lower semi-continuous, convex

1
and satisfies that U7 (a) = )
la

fori=1,...,m. Our solution satisfies the following entropy

estimate for a.e. ¢t >0

Z/ +5OZ//\W\2<Z/ i(uf). (4.4)

To get this entropy we can apply the same strategy announced in Subsection 1.4 where f;(u’)
will be replaced by T=( f;(v')) where T is the truncation operator given in (1.19) and we

use the fact that
7 O [ Oui
A = ) A
/ %:z Oxy, jkl aIz C/Qiz,;l (axk) Jkl(axl)
= / Z Cku Aiji G ui

4,5,k

> 0(50/|§u| —60/|Vu|

with ¢ = (27T)N.

4.2.2 The variables coeflicients case

Here the coefficients A;j(x,u) may depend continuously of (x,u). Then we have to take
pn * (Aii(x,u)(Vp, xu?)) instead of A;;V(p, * p, *xw’) in the approximate problem. We can

consider a problem
j=1

where the source terms are not too large as u goes to infinity.

4.2.3 Laplace-type equations

Moreover, our theory applies to models of the form

ui = A(ai(u)ui) with u = (Ui)lgigma (4.5)
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under these assumptions:

al(u) >0 if />0 forj=1,...,m,
a; is sublinear,

a; € C, (4.6)

Sym (((%i) ) > 09l with 0 > 0,
du; ij

where Sym denotes the symmetric part of a matrix. We can consider a particular case of

\

(4.5) where a'(u) = Z A;u’. Then problem (4.5) can be written as

j=1

ul = div {uZ Z Ay V! + (Z Aijuj) Vuz} , (4.7)
j=1 j=1
which can be also solved under these assumptions:

Az]ZO for i,j:l,...,m,
Sym(A) > dol.

5 Appendix: Technical results

In this section we will present some technical results that are used in our proofs.

Proposition 5.1 (Recovering the initial condition)
Let Y be a Banach space with the norm ||.|y such that L*(Q2) < Y with a continuous em-
bedding. Consider a sequence (Gm)m € L*(0,T; L*()) such that (gm): is uniformly bounded
in L9(0, T;Y) with 1 < q < 2, and that there exists a function g € L*(0,T; L*(Q)) such that
Gm — g strongly in L*(0,T; L*(2)). Let go in Y. We assume that (gm)—o — go in Y. Then
we have

Jjt=0 = 9o inY.
Proof of Proposition 5.1
We have that for all ¢ € (0,7

[ @t

< / 1(gon) (7)1 ds

a=1
t | (gm)7 (Dl La.r:v),

l9m() = gy = ]

Y

IN

where we have used in the last line Holder’s inequality. Moreover, Using the fact that (g,,),
is uniformly bounded in L?(0,7;Y’), then there exists a constant C, such that

gm(t) — gm(0)|ly < Ct'7 .

Now let ¢ € C2°((0,4+00),R), be such that ¢ > 0. Using the above inequality, we get that
t t

[ lon) = amO)lets) ds < €1 [ s(s) ds 6.1
0 0
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Now since we have L*(0,T; L*(Q2)) < L%(0,T;Y’) with a continuous embedding we get that
gm — g  strongly in LY(0,T;Y).

By passing to the limit in m in (5.1), we deduce that

t
| (l9) = gl = €15777) ) <o
0
Since ¢ > 0 is arbitrary, we deduce that for almost every ¢, we have

g=1
lg(t) = golly < Cta.

Particularly, for ¢ = 0, we have

19(0) = golly = 0.

This implies the result. ]

Lemma 5.2 (Convergence result)
Let (a.). a real sequence such that a. — ag when € — 0. Then we have

\IIO,Z(G/O) < hren_gonf \I[E,Z(a’e)7

where U, and Wy, are given in (3.8) and (3.14) respectively.

Proof of Lemma 5.2

Case 1: suppose that ag > 0 the result is easily obtained.

Case 2: suppose that ap < 0. Then we have ¥ (ap) = +00 < ligl_}iglf U, s(a:) = +oo.

Case 3: suppose that ag = 0. Let (b:). a sequence that decreases to 0 when ¢ — 0 with
b. > a.. We can prove that W, ,(b.) — 0 = W, ,(0). Now since V., is decreasing with respect
to the variable a we get W, ¢(a.) > U, ;(b.). This ends the proof. O

Acknowledgments: R.M. thanks SAAW.
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