# A Unified Model for Image Colorization 

Fabien Pierre, Jean-François Aujol, Aurélie Bugeau, Vinh-Thong Ta

## To cite this version:

Fabien Pierre, Jean-François Aujol, Aurélie Bugeau, Vinh-Thong Ta. A Unified Model for Image Colorization. CPCV workshop - European Conference on Computer Vision (ECCV), Sep 2014, Zürich,
France. pp.1-12. hal-01038055

## HAL Id: hal-01038055

## https://hal.science/hal-01038055

Submitted on 23 Jul 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

# A Unified Model for Image Colorization 

Fabien Pierre ${ }^{1,2,3,4}$, Jean-François Aujol ${ }^{1,2}$, Aurélie Bugeau ${ }^{3,4}$, Vinh-Thong Ta ${ }^{4,5}$

${ }^{1}$ Univ. Bordeaux, IMB, UMR 5251, F-33400 Talence, France. ${ }^{2}$ CNRS, IMB, UMR 5251, F-33400 Talence, France.
${ }^{3}$ Univ. Bordeaux, LaBRI, UMR 5800, F-33400 Talence, France. ${ }^{4}$ CNRS, LaBRI, UMR 5800, F-33400 Talence, France. ${ }^{5}$ IPB, LaBRI, UMR 5800, F-33600 Pessac, France.


#### Abstract

This paper addresses the topic of image colorization that consists in converting a gray-scale image into a color one. In the literature, there exist two main types of approaches to tackle this problem. The first one is the manual methods where the color information is given by some scribbles drawn by the user on the image. The interest of these approaches comes from the interactions with the user that can put any color he wants. Nevertheless, when the scene is complex many scribbles must be drawn and the interactive process becomes tedious and timeconsuming. The second category of approaches is the exemplar-based methods that require a color image as input. Once the example image is given, the colorization is generally fully automatic. A limitation of these methods is that the example image needs to contain all the desired colors in the final result. In this paper, we propose a new framework that unifies these two categories of approaches into a joint variational model. Our approach is able to take into account information coming from any colorization method among these two categories. Experiments and comparisons demonstrate that the proposed approach provides competitive colorization results compared to state-of-the-art methods.


## 1 Introduction

Colorization is an old subject that began with the ability of screens and devices to display colors. The first colorization method [1] tried to map every luminance (gray-scale) level into a color space. Obviously, all the color space can not be recovered without injecting other information. Priors can be added in two ways: with manual interactions or by giving a color image as an example (also called source). In the rest of this paper, we call target the gray-scale image to colorize.

In the first category of methods, a user manually adds points of color (called scribbles) on the target. Figure 1(d) shows an example of result obtained with such priors. Generally, the image is considered as the luminance channel which is not modified during the colorization. Only chrominance channels are computed within the algorithm. Numerous methods have been proposed based on this principle. For instance, the method of Levin et al. [2] solves an optimization problem to diffuse the chrominance of the scribbles to the target with the

(a) Source

(b) Scribbles

(c) Exemplar

(d) Manual

(e) Our model

045
046
047
048
049
with the source image using different features. The final color is obtained by minimizing a functional including a total variation regularization on the chrominance channels. Nevertheless, despite this regularization, the contours are not always well preserved.

To summarize, the interactivity of manual methods is interesting since the user can add the color information he wants, but this task can be tedious and time-consuming. In contrast, the automatic aspect of exemplar-based methods is also interesting since they try to avoid these user's interventions by using one or several source images. However, in many cases, the user wants to add a color that is not present in the source image or to improve/correct the colorization result in one particular region by adding a scribble. The work proposed in this paper follows this idea and proposes a novel model that unifies both approaches. Up to our knowledge, this is the first method proposing this unification.

The main contribution of this work is the combination of the two categories of methods into a unified variational model which allows interactivity.

The paper is organized as follows. We first introduce in Section 2 a variational model for image colorization and give an efficient algorithm to compute the solution. In Section 3 we present the unified model for colorization. In section 4 comparisons with state-of-the-art methods demonstrate the improvements of the proposed approach.

## 2 A Variational Model for Image Colorization

In this section we propose a variational framework for image colorization. As done in most existing colorization methods, we consider the target to be a luminance image and we compute chrominances for each pixels in order to recover the final color. First, the variational model including a regularization is introduced. Next, the corresponding algorithm is given.

### 2.1 Penalized Variational Labelling

The color can be expressed as a value of luminance $Y$ and two values of chrominance $U$ and $V$. With these three values, it is possible to display an image on most devices. The luminance channel being given by the target, the colorization problem consists in recovering the chrominance values for each pixels. Inspired from [18], we suppose that, for each pixel $x, C$ chrominance candidates $c_{i}, i=1 \ldots C$ are available. These color candidates can both be given by extraction according texture features, by a manual method or by any colorization method. Our model consists in choosing the best color among the $C$.

To that end, we propose to minimize the following functional where $u$ is the vector of chrominances $(u=(U, V))$ to compute:

$$
\begin{equation*}
F(u, W):=T V_{c}(u)+\frac{\lambda}{2} \int_{\Omega} \sum_{i=1}^{C} w_{i}\left\|u-c_{i}\right\|^{2}+\chi_{\mathcal{R}}(u)+\chi_{\mathcal{E}}(W) \tag{1}
\end{equation*}
$$

To simplify the notations, the dependence of each values to the position of the

as the luminance one. We experimentally chose $\gamma=25$ for all the experiments of the paper.

In Figure 3 we compare our model with a version without coupling. This result is provided by replacing $T V_{c}$ by the classical total variation on chrominance channels, or by taking $\gamma=0$ in our model. These results have been performed with 3 (b) as target image and $3(\mathrm{a})$ as source.


Fig. 3. Comparison of our method with the classical $T V$.

Without coupling the results are totally burred and the colorization process fails. Thanks to $T V_{c}$, our new formulation is able to preserve contours by coupling the channel of luminance $Y$ with the chrominance channels $U$ and $V$.

### 2.3 Algorithm

In this section, a min-max version of (1) is proposed. A primal-dual algorithm, inspired from [20] is described to provide a local minimum of functional (1).

To this end, we rewrite the term $T V_{c}$ from (2) in a dual form:

$$
\begin{equation*}
T V_{c}(U, V)=\min _{U, V} \max _{p=\left(p_{1}, p_{2}, p_{3}\right)}\left\langle\nabla U, \nabla V \mid p_{2}, p_{3}\right\rangle+\left\langle\nabla Y \mid p_{1}\right\rangle+\chi_{\left\|\left(p_{1}, p_{2}, p_{3}\right)\right\| \leq 1} \tag{3}
\end{equation*}
$$

where $p \in \mathbb{R}^{6}$ and $p_{j} \in \mathbb{R}^{2}, j=1 \cdots 3 . Y$ is provided from the target. Minimizing (1) becomes equivalent to maximizing the dual model w.r.t. to the dual variable $p$ and minimizing it w.r.t. $u$ and $W$. Algorithm 1 summarizes the minimization procedure.

```
Algorithm 1 Primal dual algorithm minimizing (1).
    \(u_{0} \leftarrow \sum_{i} w_{i} c_{i} ;\left(p_{0}\right)_{1} \leftarrow \nabla Y ;\left(p_{0}\right)_{2,3} \leftarrow \nabla u_{0}\)
    for \(n \geq 0\) do
        \(\left(p_{n+1}\right)_{1,2,3} \leftarrow P_{p}\left(\left(p_{n}\right)_{1},\left(p_{n}\right)_{2,3}+\sigma \nabla u_{n}\right)\)
        \(u_{n+1} \leftarrow P_{u}\left(\frac{u_{n}+\tau\left(\operatorname{div}\left(\left(p_{n+1}\right)_{2,3}\right)+\lambda S\left(u_{n}\right)\right)}{1+\tau \lambda}\right)\)
    end for
```

$S\left(u_{n}\right)$ stands for the closest candidate of $u_{n}$, the colorized image at the $\mathrm{n}^{\text {th }}$ iteration of Algorithm 1. $Y$ is the luminance channel of the image to colorize. Parameters $\tau$ and $\sigma$ are the time steps. The algorithm of [20] converges when $16 \tau \sigma<1$. The operator div stands for the divergence and $\nabla$ the gradient defined as in [21]. The algorithm requires the projection of the two estimated data $p$ and $u$. The projection $P_{u}$ is necessary to ensure that the estimated image stays in the standard range of chrominance values $\mathcal{R}$ and is just a projection onto a rectangle. The computation of $w_{i}$ used at initialization is described in Section 3. Finally the projection of the dual variable $P_{p}$ ensures the constraint $\chi_{\left\|\left(p_{1}, p_{2}, p_{3}\right)\right\| \leq 1}$, by projecting $p$ onto the unit ball:

$$
\begin{equation*}
P_{p}(p)=\frac{\left(p_{1}-\sigma\left(\partial_{x} Y, \partial_{y} Y\right), p_{2}, p_{3}\right)}{\max \left(\left\|\left(p_{1}-\sigma\left(\partial_{x} Y, \partial_{y} Y\right), p_{2}, p_{3}\right)\right\|_{2}^{2}, 1\right)} . \tag{4}
\end{equation*}
$$

## 3 Unifying Manual and Exemplar-based Colorization

This section presents a simple method to unify both exemplar and manual priors for colorization of image. Although exemplar-based colorization tackles the tedious work of putting scribbles in manual colorization, the choice of the source image is rarely easy and the results contain often errors. The user may prefer to correct the result by adding a manual prior. The integration of this new prior to the exemplar-based result is not obvious. The solution of this problem is the main contribution of the paper.

Exemplar-based colorization. In our model, the exemplar-based priors are introduced via candidates. When a source image is provided, the first step consists in extracting for each pixel the set of candidates as done in [18]. These candidates can be provided by any colorization method. The weights $w_{i}$ are then chosen as $W=1 / C$ where $C$ is the number of candidates extracted at each pixel. The algorithm can work directly with these data.

Manual colorization. This section presents how scribbles can be directly introduced into the proposed model. The scribbles can either be given by the user before or added in an interactive and/or an iterative way. The proposed model can use the scribbles alone, the source alone or both.

The scribble information only affects the weights and the number of candidates. More precisely, for each pixel, a new candidate per scribble is added.

Its value is the chrominance of the given scribble. When scribbles candidates are present, their initial weights depend on the geodesic distance. The geodesic distance map, denoted by $D$, is computed with the fast marching algorithm [22] and with a potential equal $\left(0.001+\|\nabla u\|_{2}^{2}\right)^{-4}$ given in [23]. $D$ is normalized to have a range between 0 and 1 . We use the implementation of [24] to compute the geodesic distance.


Fig. 4. Example of color propagation with the geodesic distance. (a) represents the initial scribble, (b) the geodesic distance map from this scribble and (c) the diffusion of the color of the scribble according to this distance map. This diffusion provides a good initialization which is not perfect, but sufficient for our algorithm.

Unified colorization. The unification of the two priors is done at initialization of Algorithm 1. The variable $W$ is initialized with $1 / C$ for the candidates which come from the exemplar-based candidates extraction (in the source image) and
with $1-D$ for the candidate(s) corresponding to the scribble(s), where $D$ is the normalized distance map. Pixels that have a low geodesic distance to a scribble get its color. At the opposite for pixels having a high geodesic distance, this new candidate will have no influence onto the colorization result.

The variable $W$ is projected onto the simplex before running the algorithm. The projection is performed with the algorithm of [25]. The variable $u$ is set to $\sum_{i} w_{i} c_{i}$ and the functional is minimized using this initialization.

Figure 4(a) shows the initial blue scribble located in the sky. The associated geodesic distance $D$ with respect to the scribble is presented Figure $4(\mathrm{~b})$ and Figure 4(c) is our colorization result. Our method is able to diffuse the color information of the scribble on constant parts of the image and at the convergence
of the algorithm the coupled total variation gives more accurate results than the geodesic distance.

## 4 Experimental Results

In this section, we give some details about the implementation and the parameters of the unified model. We demonstrate the potential of our approach compared to state-of-the-art methods in both categories, i.e., manual and exem-plar-based methods.

### 4.1 Implementation and Parameters Setting

The implementation of Algorithm 1 has been done on GPU. The convergence takes few seconds and allows interactivity. All the presented experiments use the same set of parameters, i.e., $\sigma=0.004, \tau=5, \lambda=7.10^{-3}, \gamma=25$ and 500 iterations. With this choice, a lot of different types of image can be colorized without tuning of parameters which is a practical advantage. For exemplar-based results, we use the candidate extraction described in [18].

### 4.2 Comparison with State-of-the-art Methods

Figure 5 presents a first example of our proposal. Figures 5(a) and 5(b) show the source and the target images. Figure 5(c) corresponds to the exemplarbased colorization result provided by our model. In this figure, the sky is not correctly colorized since it appears brown instead of blue as in the ruins main door. Moreover, blue colors appear on the floor. Figure 5(d) shows the results performed with only the corrections of the user where 3 scribbles are added in order to correct the first (exemplar-based) colorization result (Figure 5(c)). Figure 5(e) illustrates the advantage of the proposed unified image colorization since, the user with less effort, obtained the desired result. Finally, this result also illustrates that our model is well adapted to preserve the color contours.

Figure 6 presents results and illustrates the advantage of using a unified image colorization as compared to only using a source image or some scribbles. Manual colorization results are obtained with [2] and exemplar-based colorization results are obtained with [14]. Colorization results of the last column of Figure 6 are clearly better than the ones obtained with only the source image (fourth column) or with only the scribbles (fifth column). Actually, some objects (for instance the tramway, or the background of the portrait) are not present on the source image, thus the exemplar-based method fails. For the manual method, there is a strong lack of information, because few scribbles are provided. We remark in the fourth image that the method of [2] is not robust to noise, compared to ours. This experiment also highlights that old photographs and faces are hard to colorize as remarked, e.g., in [17]. Indeed, old photographs contain a lot of noise and the texture are usually degraded. Face images contain very smooth


Fig. 5. First example of proposed image colorization model. Neither exemplar-based approach nor the manual one are able to properly colorize this image with the given priors. The unified method gives a suitable result.


Fig. 6. Advantage of the proposed unified model as compared to only exemplar-based or scribble-based model. From left to right: the target image to colorize, the source image, the scribbles added by the user, exemplar result of [14], manual result of [2], result with the unified approach. The unified model increases the quality of the results by taking advantages in both types of methods.
parts (e.g., the skin) and the background is rarely suitable. Nevertheless, very promising results are obtained with our method. The manual method does not colorize the hair because no scribble is given. The exemplar one does not colorize the background. Finally, the additional prior given by the scribbles of the user does not only have a local effect. Indeed, in the last result of Figure 6, the blue scribble needed to colorize the sky through the arch also improves the sky color at the bottom left of the image. Figure 9 provides additional results.

### 4.3 Our Model vs. existing Exemplar-based Methods

Figure 7 provides comparison of our method with existing exemplar-based colorization methods. Figure 8 is a zoom on a particular results. On the left, the source and target images are shown. Our results are in the third column while the other columns are results from [14], [18], and [11]. Due to the lack of regularization, images of [11] present artefacts: areas that were originally homogeneous now present irregularities (see the sky of the first image). Moreover, their method is not reliable on contours (see the third image). Our approach better preserves the contours and the homogeneous parts such as the sky. The results of [18] present halo near contours due to the lack of coupling of the classical total variation on chrominance channels. On the second image, the color are too shiny.


Source


Target

[14]

[18]

[11]


Our model reliability and the efficiency of our colorization method.

## 5 Conclusion

In this paper, a variational model for unified image colorization is proposed. This method combines manual and exemplar-based methods in a simple and intuitive model. Moreover, it can take into account results from any colorization methods to improve results. It opens the way to powerful interactive colorization. Our variational model includes a total variation term which couples luminance and chrominances channels. With this representation, the contours of the colorized


Fig. 8. Zoom on the third line of Figure 7.

9. Lezoray, O., Ta, V.T., Elmoataz, A.: Nonlocal graph regularization for image
10. Ding, X., Xu, Y., Deng, L., Yang, X.: Colorization using quaternion algebra with automatic scribble generation. In: Advances in Multimedia Modeling. (2012)
11. Welsh, T., Ashikhmin, M., Mueller, K.: Transferring color to greyscale images. ACM Trans. on Graphics 21(3) (2002) 277-280
12. Wei, L.Y., Levoy, M.: Fast texture synthesis using tree-structured vector quantization. In: ACM Comp. graphics and interactive techniques. (2000) 479-488
13. Irony, R., Cohen-Or, D., Lischinski, D.: Colorization by example. In: Eurographics conference on Rendering Techniques, Eurographics Association (2005) 201-210
14. Gupta, R.K., Chia, A.Y.S., Rajan, D., Ng, E.S., Zhiyong, H.: Image colorization using similar images. In: ACM Int. Conf. on Multimedia. (2012) 369-378
15. Ren, X., Malik, J.: Learning a classification model for segmentation. In: Proc. of ICCV. (2003) 10-17
16. Charpiat, G., Hofmann, M., Schölkopf, B.: Automatic image colorization via multimodal predictions. In: Proc. of ECCV. (2008) 126-139
17. Chen, T., Wang, Y., Schillings, V., Meinel, C.: Grayscale image matting and colorization. In: Proc. of ACCV. (2004) 1164-1169
18. Bugeau, A., Ta, V.T., Papadakis, N.: Variational exemplar-based image colorization. IEEE Trans. on Image Processing 23(1) (2014) 298-307
19. Pierre, F., Aujol, J.F., Bugeau, A., Ta, V.T.: Hue constrained image colorization in the RGB space. Preprint. (2014)
20. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. Jour. of Math. Imag. and Vis. 40(1) (2011) 120-145
21. Bresson, X., Chan, T.F.: Fast dual minimization of the vectorial total variation norm and applications to color image processing. Inverse Problems and Imaging 2(4) (2008) 455-484
22. Sethian, J.A.: Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Volume 3. Cambridge university press (1999)
23. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. on Image Processing 10(2) (2001) 266-277
24. Peyré, G.: Toolbox fast marching - a toolbox for fast marching and level sets computations (2008)
25. Chen, Y., Ye, X.: Projection onto a simplex. arXiv preprint arXiv:1101.6081 (2011)

